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Abstract—This paper studies the constructive interference (CI)
precoding under per-antenna power constraint (PAPC) in the
downlink of multi-user multiple-input single-output (MU-MISO)
systems. The scenario of PAPC is more practical than that under
sum power constraint (SPC) in actual systems. In this paper,
we extend the mathematical precoding structure analysis of CI
precoding under SPC to PAPC. By analyzing the formulated
optimization problem with KKT conditions and generalized
matrix inverse theory, we obtain the closed-form structure of
the CI-PAPC precoder as a function of introduced variables
and simplify the problem. Then, the primal-dual interior point
method (IPM) is employed to solve this simplified problem
more efficiently. Simulation results verify our mathematical
derivations and show that the proposed method enjoys much
lower complexity while maintaining the same communication
performance, which promotes the practical implementation of
CI precoding in realistic scenarios.

Index Terms—MIMO, constructive interference, per-antenna
power constraint, primal-dual IPM, closed-form solutions.

I. INTRODUCTION

With the evolution of wireless communications, the limited
spectrum cannot meet the increasing demand for transmission
rate. For this reason, MIMO technology has been introduced
to improve the spectrum efficiency of communication systems
in recent years [1]. However, interference in MIMO is a
limiting factor and precoding is required to handle it in multi-
user MIMO communications. Dirty paper coding (DPC) can
achieve the system capacity theoretically, but it is challenging
to implement in practice because of its prohibitive complexity
[2]. Unlike non-linear precoding, linear precoding schemes
represented by zero-forcing (ZF) and regularized ZF (RZF)
make a promising tradeoff between the performance and the
complexity such that they are often deployed practically [3].

The studies from DPC reveal that we can achieve the
optimal capacity by coding along the direction of interference,
which motivates us to rethink the role of interference in wire-
less systems. The concept of constructive interference was first
proposed in [4], where the multiple access interference (MAI)
in CDMA systems is divided into constructive interference
(CI) and destructive interference (DI). Since the initial idea of
CI precoding is to preserve CI while eliminate DI, a modified
ZF precoder called selective channel inversion is presented in
[5]. Moreover, literature [6] proposes an advanced CI metric
for PSK modulations, where the conception of the constructive
region is presented, and the ‘phase rotation’ metric is given. In
[7], CI precoding is extended to multi-level modulations, and

the ‘symbol scaling’ metric is introduced. In CI precoding,
a convex optimization problem needs to be solved to obtain
the optimal precoding matrix, and the update of the precoding
matrix is on a symbol level, which results in unfavorable com-
putation complexity. The low-complexity closed-form iterative
precoder of CI precoding for phase rotation metric is proposed
in [8], where the optimal solution can be obtained in only
a few iterations. Literature [9] extends the work of [8] to
multi-level modulations. Moreover, [10] proposes a block-level
approach to exploit CI where the precoding matrix is constant
within a given transmission block. Besides, deep learning-
based methods can also be employed to reduce the complexity
of CI-based optimization problems [11].

The precoding schemes mentioned above currently consider
the sum power constraint (SPC), where the transmit power
is enforced on the antenna array in each slot. However,
each transmitter antenna is equipped with a dedicated power
amplifier in realistic scenarios [12], which means that the per-
antenna power constraint (PAPC) scenario is more suitable in
practice. Under PAPC, most papers study the precoding design
to optimize a specific objective function [13]. Furthermore, in
recent years there are also some studies for CI-based precoding
with PAPC, which contains per-antenna power minimization
under Quality-of-Service constraints [14], the max-min fair
problem under PAPC [15], weighted per-antenna power mini-
mization and spatial peak-to-average power ratio minimization
[16]. Specifically, [17] proposes computationally efficient CI-
PAPC precoding based on the phase-rotation metric for PSK
signaling, where the original CI-PAPC problem is transformed
by approximating the objective function as a smooth convex
function. However, the use of approximations means that the
solution obtained in [17] is not optimal, which results in
performance loss.

In this paper, we extend the phase rotation metric of CI
precoding under SPC to the scenario of PAPC for PSK
signaling. First of all, we formulate the CI-PAPC optimization
problem under the phase rotation metric. By using the KKT
conditions and leveraging a theorem in generalized inverse
theory [18], the closed-form structure of the CI-PAPC precoder
is obtained as a function of introduced variables, and the
original problem is further simplified. Then, the primal-dual
interior point method (IPM) [19] is employed to solve the
simplified problem, where we design an available initial point
selection scheme to speed up the convergence of the primal-
dual IPM. Numerical results demonstrate that our method



reduces the complexity while maintaining the identical BER
performance compared with the original optimization problem.

II. SYSTEM MODEL

Throughout this paper, we consider a downlink MU-MISO
system, where the transmitter is equipped with Nt antennas
and communicates with K single-antenna users simultane-
ously in the same time-frequency resource. When CSI is
ideally provided at the transmitter, the received signal vector
r = [r1, r2, · · · , rK ]

T can be expressed as

r = HWs+ n, (1)

where s = [s1, s2, · · · , sK ]
T is the transmitted data symbol

vector, and si ∈ C1×1 that has been normalized is the
symbol for user i. W ∈ CNt×K denotes the precoding
matrix. H = [h1,h2, · · · ,hK ]

T is the channel matrix where
a flat-fading Rayleigh channel is assumed, and each entry
in H ∈ CK×Nt follows the standard complex Gaussian
distribution. Additionally, n = [n1, n2, · · · , nK ]

T denotes
additive Gaussian noise vector, and ni ∈ C1×1 is the noise
with zero mean and variance σ2 at user i.

CI refers to the interference that can push the constellation
points at the receiver away from the system detection bound-
aries. Fig. 1 shows the schematic diagram of the phase rotation
metric under PSK modulations. In the case of strict phase
rotation, the phase of the received noiseless signal is enforced
to be strictly aligned with that of the interested transmitted
signal. When the constructive region (the green region in Fig.
1) is introduced to relax the condition of strict phase rotation,
the phase of the received noiseless signal is no longer strictly
aligned with that of the desired signal, which is the non-strict
phase rotation metric. For example, in Fig. 1, the phase of O⃗B
is strictly aligned with that of O⃗S, which means the condition
of strict phase rotation can be expressed as hT

kWs = λksk [8],
where λk is a real number satisfying λk ≥ t, and sk = O⃗S.
On the other hand, while the phase of O⃗C is not equal
to that of O⃗S, point C is still confined to the constructive
region. Therefore, the corresponding condition of non-strict
phase rotation can be similarly given by hT

kWs = λksk [8],
but in this case λk becomes a complex number satisfying∣∣ℑ(λk)∣∣ − (ℜ(λk)− t) tan θt ≤ 0, where

∣∣ℑ(λk)∣∣ = ∣∣C⃗D∣∣,
ℜ(λk) =

∣∣O⃗D∣∣, ∣∣λk∣∣ =
∣∣O⃗C∣∣, θt = π/M , and M is the

modulation order for M -PSK modulations.

III. CI-PAPC PRECODING FOR PSK MODULATIONS

In this section, we focus on the design of CI-PAPC pre-
coding under PSK modulations, where the non-strict phase
rotation metric is considered. Moreover, since the strict phase
rotation is a particular case of the non-strict phase rotation, the
corresponding optimization problem can be solved similarly.

A. Optimal Closed-Form Structure for W

With the non-strict phase rotation metric, the optimization
problem of CI-PAPC precoding that aims to make the received

Fig. 1: Schematic diagram of phase rotation metric, 8PSK.

constellation points located in the CI region can be expressed
as

P1 :min
W,t
− t

s.t.hT
kWs− λksk = 0, ∀k ∈ K (2a)∣∣λℑk ∣∣− (λℜk − t) tan θt ≤ 0, ∀k ∈ K (2b)∥∥eTnWs

∥∥2
2
≤ P, ∀n ∈ N (2c)

where P = p0/Nt is the maximum permitted power at
each antenna, p0 represents the maximum available power
per symbol slot, en denotes the n-th column of the iden-
tity matrix, K = {1, 2, · · · ,K}, and N = {1, 2, · · · , Nt}.
Then, we decompose the precoding matrix W into column
vectors, which is W = [w1,w2, · · · ,wK ]. Based on the
virtual multicast formulation presented in [6] and the fact that
Ws =

∑K
i=1 wisi, without loss of generality we assume each

wisi is identical such that (2c) can be transformed into

eTn

(
K∑
i=1

wisi (wisi)
H

)
en ≤

P

K
. (3)

Furthermore, we construct the Lagrangian function of P1 as

L (wi, t, δk, µk, νn) = −t+
K∑

k=1

δk

(
hT
k

K∑
i=1

wisi − λksk

)

+

K∑
k=1

µk

( ∣∣λℑk ∣∣− (λℜk − t) tan θt)
+

Nt∑
n=1

νn

(
eTn

( K∑
i=1

wisi (wisi)
H

)
en −

P

K

)
(4)

where δk, µk and νn are the Lagrangian multipliers, and the
power constraints (2c) are substituted by (3). With (4), we
express partial KKT conditions that we will employ in the
following as

∂L
∂wi

=

K∑
k=1

δkhksi +

Nt∑
n=1

νnsis
∗
i

(
ene

T
n

)
w∗

i = 0, ∀i ∈ K

(5a)

hT
k

K∑
i=1

wisi − λksk = 0, ∀k ∈ K (5b)

νn

(
eTn

( K∑
i=1

wisi (wisi)
H

)
en −

P

K

)
= 0, ∀n ∈ N (5c)



By defining a diagonal matrix D =
∑Nt

n=1 νn ·
(
ene

T
n

)
=

diag
(
ν
1
, ν

2
, · · · , ν

Nt

)
, (5a) can be further transformed into

Dwi = − 1
si

∑K
k=1 δ

∗
kh

∗
k, where each νn is a real number

such that D = D∗. When optimality of P1 is achieved, we can
observe that the power constraint of each antenna is not always
active under PAPC, which means when the complementary
slackness conditions (5c) are considered, D is rank-deficient
as partial diagonal elements in D are zero. Thus, we cannot
directly obtain the structure of wi by taking the inverse of D.

Proposition 1: There exists a matrix D⋆
1 such that the

optimal wi can be formulated as

wi = D⋆
1 ·

(
− 1

si

K∑
k=1

δ∗kh
∗
k

)
. (6)

Proof: Firstly, we can regard Dwi = − 1
si

∑K
k=1 δ

∗
kh

∗
k as

a set of linear equations to vector wi, which has infinite solu-
tions as D is rank-deficient. Then, according to the definition
of generalized inverse matrix [18], there exists a generalized
inverse of D satisfying DD1D = D such that all the solutions
of wi can be expressed as wi = D1 ·

(
− 1

si

∑K
k=1 δ

∗
kh

∗
k

)
,

where the number of such feasible D1 is also infinite.
Therefore, there must be a generalized inverse matrix D⋆

1

corresponding to the optimal wi, which completes the proof.
■

Although proposition 1 proves the existence of D⋆
1, finding

an exact expression for that is unnecessary because D⋆
1 will be

substituted as will be shown in the following. Based on (6), we
can derive wisi = D⋆

1 ·
(∑K

k=1 δ
∗
kh

∗
k

)
, and due to our assump-

tion that each wisi is identical, we can obtain that (6) holds
for each wi. Then, by introducing Θ = −

∑K
k=1 δ

∗
kD

⋆
1h

∗
k and

ŝ =
[

1
s1
, 1
s2
, · · · , 1

sK

]
, the precoding matrix is given by

W = [w1,w2, · · · ,wK ]

= −
K∑

k=1

δ∗kD
⋆
1h

∗
k ·
[
1

s1
,
1

s2
, · · · , 1

sK

]
= Θŝ. (7)

To proceed, we express (5b) in a compact form, which is

HWs = diag(Λ)s, (8)

where Λ = [λ1, λ2, · · · , λK ]
T . By substituting (7) into (8)

and considering ŝs = K, we can further obtain

HΘ =
1

K
diag(Λ)s. (9)

Consequently, when the scenario of Nt = K is considered,
we can directly obtain the precoding matrix as

W = Θŝ =
1

K
H−1diag(Λ)sŝ. (10)

However, since the dimension of H is K×Nt, it is challenging
to get the structure of Θ under Nt > K as (9) to Θ has infinite
solutions.

Proposition 2: For the scenario of Nt ≥ K, the optimal
structure of the CI-PAPC precoding matrix under PSK modu-
lations can be formulated as

W =

[
1

K
HH

(
HHH

)−1

diag(Λ)s+M · y
]
ŝ, (11)

where M = I−HH
(
HHH

)−1

H, and y ∈ CNt×1 is a newly
introduced optimization variable.

Proof: First of all, we consider the case of Nt > K.
If the system of linear equations Ax = b has solutions,
the general solutions of this system can be expressed as
x = A1b+(I−A1A)y, where A1 is the generalized inverse
of A satisfying AA1b = b [18]. With (9), we can similarly
obtain the corresponding general solution to Θ as

Θ =
1

K
H1diag(Λ)s+ (I−H1H)y, (12)

where for convenience, we set the generalized inverse H1 =

HH
(
HHH

)−1

. Thus, we can directly obtain the precoding
structure as (11). For the case of Nt = K, the precoding
matrix (11) can be transformed into (10) due to M = 0, and
then we complete the proof. ■

To proceed with (11), firstly, we can obtain that

Ws = HH
(
HHH

)−1

diag(Λ)s+KMy

= HH
(
HHH

)−1

diag(s)Λ+KMy

= Φu, (13)

where Φ =

[
HH

(
HHH

)−1

diag(s) KM

]
and u =[

ΛT ,yT
]T

. Then, the power constraints (2c) can be further
transformed into uHQnu ≤ P , where Qn = ΦHene

T
nΦ, and

u is a complex vector such that we need to turn uHQnu ≤ P
into real-valued constraints. Therefore, letting

û =

[
ℜ (u)
ℑ (u)

]
, Q̂n =

[
ℜ (Qn) −ℑ (Qn)
ℑ (Qn) ℜ (Qn)

]
, (14)

we can obtain ûT Q̂nû ≤ P that is equivalent to uHQnu ≤ P ,
and then P1 can be simplified as

P2 :min
û,t
− t

s.t.
∣∣λℑk ∣∣− (λℜk − t) tan θt ≤ 0, ∀k ∈ K (15a)

ûT Q̂nû ≤ P, ∀n ∈ N (15b)

However, since the dual of P2 is not quadratic programming,
it is challenging to follow the derivation in [8]. Consequently,
in this paper, we resort to the primal-dual interior point
method to solve P2. To begin with, based on the fact that
û =

[
ℜ(ΛT ) ℜ(yT ) ℑ(ΛT ) ℑ(yT )

]T
, by introducing

Ê1 =
[
IK 0 0 0

]
and Ê2 =

[
0 0 IK 0

]
, we can

obtain ℜ (Λ) = Ê1û and ℑ (Λ) = Ê2û such that (15a) can
be further transformed into

Ê · û+ t · 1 ≤ 0, (16)

where we define Ê = −
[
−Ê2/ tan (θt)− Ê1

Ê2/ tan (θt)− Ê1

]
. Furthermore,

by introducing a =
[
0 · · · 0 −1

]T
, T̂ =

[
−Ê 1

]
, x̂ =



[
ûT t

]T
, Ẑn =

[
Q̂n 0
0 0

]
, we can rewrite P2 as

P3 :min
x̂

aT x̂

s.t. g (x̂) =


x̂T Ẑ1x̂− P

...
x̂T ẐNt x̂− P

T̂x̂

 ⪯ 0 (17)

B. Primal-Dual IPM for Solving P3

In this paper, we consider the basic primal-dual IPM pro-
posed in [19]. Based on P3, we first construct the Lagrangian
function as

L = aT x̂+ΨTg (x̂) , (18)

where Ψ = [ψ1, ψ2, · · · , ψNt+2K ]
T . Therefore, the modified

KKT conditions can be formulated as[
rdual
rcent

]
=

[
a+ JT (x̂)Ψ

−diag (Ψ)g (x̂)− (1/tp) · 1

]
=

[
0
0

]
, (19)

where rdual and rcent are the dual residual and centrality
residual, respectively. tp is a positive parameter related to the
duality measure, and J(x̂) is the Jacobian matrix of g(x̂). By
taking the first order Taylor series expansion of (19), we can
obtain that[ ∑Nt

i=1 2ψiẐi JT (x̂)
−diag(Ψ)J (x̂) −diag (g (x̂))

] [
△x̂
△Ψ

]
= −

[
rdual
rcent

]
.

(20)
Furthermore, by combining (19) and (20), we can derive the
Newton search direction as follows:

R · △x̂ = −a+
1

tp
JT (x̂)G (21)

△Ψ = −Ψ− 1

tp
G− diag (g (x̂))

−1
diag (Ψ)J(x̂) · △x̂

(22)

where

R =

Nt∑
i=1

2ψiẐi − JT (x̂)diag (g (x̂))
−1
diag (Ψ)J(x̂) (23)

and G = diag (g (x̂))
−1

1. However, we find R is rank-
deficient in practice, which leads to the fact that △x̂ cannot
be directly obtained by multiplying R−1 by the right side
of (21). Consequently, the pseudo-inverse of R is adopted to
obtain △x̂, that is

△x̂ = R† · (−a+
1

tp
JT (x̂)G). (24)

We summarize the basic primal-dual IPM in Algorithm 1. For
P3, the selection of the initial point must guarantee g(x̂) ≺ 0,
i.e., x̂T Ẑnx̂ − P < 0, n ∈ N and T̂x̂ ≺ 0. Firstly, the
constraints x̂T Ẑnx̂ − P < 0, n ∈ N are equivalent to

Algorithm 1 Primal-Dual Interior Point Method

Input: s, H
Output: x̂

1: Choose a strictly feasible initial point x̂0 and Ψ0;
2: Initialize i = 0, m = size(g(x̂), 1), µ, ε;
3: while max {∥rdual∥2 , ∥rcent∥2} > ε and i < imax do
4: i← i+ 1;
5: Compute tp = µm/η, η = −g(x̂)T ·Ψ;
6: Compute △x̂ and △Ψ based on (22) and (24);
7: Determine step length s (backtracking line search);
8: Update x̂← x̂+ s · △x̂, Ψ← Ψ+ s · △Ψ;
9: end while

ûT Q̂nû < P, n ∈ N , where we set û = a ·1 for convenience,
and then the power constraints can be expressed as

ûT Q̂nû < P, n ∈ N

⇒ a <

√
P

1T Q̂n1
, n ∈ N

⇒ a <

√
P

maxn∈N {1T Q̂n1}
. (25)

We define a0 =
√

P
maxn∈N {1T Q̂n1}

and multiply a0 by a
scaling parameter γ satisfying γ < 1 such that the initial û
is given by û0 = a0γ · 1. On the other hand, the constraints
T̂x̂ ≺ 0 are equivalent to

∣∣λℑk ∣∣− (λℜk − t) tan θt < 0, k ∈ K,
where with û0 = a0γ · 1 the initial t0 must be a negative
number. Combining û0 = a0γ · 1 and t0 < 0, we can finally
obtain the initial point as x̂0 = [ûT

0 , t0]
T . As for Ψ0, we

set [Ψ0]i = −1/[g(x̂0)]i, i = 1, · · · , Nt + 2K. Moreover,
the backtracking line search is adopted to determine the step
length s, where α ∈ [0.01, 0.1], β ∈ [0.3, 0.8] [19].

IV. NUMERICAL RESULTS

In this section, based on Monte Carlo simulations, the
numerical results of our proposed method are presented to
evaluate the practical performance. In each symbol slot, we
assume p0 = 1, and then the transmit SNR can be expressed as
ρ = 1/σ2. The corresponding parameters in primal-dual IPM
iterations are α = 0.05, β = 0.75, γ = 0.1, µ = 5, t0 = −1,
ε = 10−6, and imax = 60. We obtain all the simulation results
from the PC with an i7-12700K CPU and 32GB RAM.

For convenience, we employ the following abbreviations in
our simulation results:

1) ‘ZF-PAPC’: ZF precoder satisfying the PAPC, that is

WZF−PAPC =
√
p0/Nt · βZF−PAPC ·H†, (26)

where βZF−PAPC = 1/(maxi∈N
∣∣[H†s

]
i

∣∣) is a positive
scaling parameter [20].

2) ‘RZF-PAPC’: RZF precoder satisfying the PAPC, that is

WRZF−PAPC =
√
p0/Nt · βRZF−PAPC ·WRZF, (27)

where we denote that WRZF = HH(HHH + K
ρ · I)

−1

and βRZF−PAPC = 1/(maxi∈N |[WRZFs]i|).
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3) ‘CI-PAPC-CVX(or IPM)’: constructive interference pre-
coding with per-antenna power constraint solved by
CVX (or our proposed primal-dual IPM), where the non-
strict phase notation metric is employed.

Fig. 2 shows the BER of the ZF-PAPC precoder, RZF-PAPC
precoder and CI-PAPC precoder under QPSK. When SNR >
15 dB, the CI-PAPC precoder can achieve a better performance
than the other precoders. Moreover, for the scenarios of Nt =
K and Nt > K, the primal-dual IPM achieves the identical
performance as CVX, which verifies the availability of our
proposed scheme.

Fig. 3 shows the average number of iterations in the
primal-dual IPM. Overall, the primal-dual IPM requires only
a dozen iterations to obtain the optimal solution within our
antenna configurations. Moreover, since the dimension of the
optimization variable has increased under Nt > K due to the
introduction of vector y, the scenario of Nt > K needs more
iterations compared with that of Nt = K.

Fig. 4 shows the average execution time of the above
precoders. In comparison with CVX, our proposed method
reduces the average execution time by one or two orders of
magnitude. Furthermore, for Nt > K, the performance gain
of the primal-dual IPM over CVX is decreased compared to
Nt = K as the dimension of the problem has increased.

V. CONCLUSION

This paper investigates the CI precoding under PAPC
scenario. By analyzing the KKT conditions, we derive the
structure of the optimal precoding matrix and simplify the
original problem. Then, the primal-dual IPM is employed
to solve this simplified problem. In the simulation results,
our proposed scheme reduces the complexity while maintain-
ing the same BER performance compared with the original
problem, which promotes the implementation of CI-PAPC
precoding in practical systems.
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