
1

On the Closed-Form Detection Error Rate Analysis
in Physical Layer Anonymous Communications
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Abstract—In recent years, physical layer (PHY) anonymous
precoding has become imperative in applications that carry
personal and sensitive data. While manipulating the signaling
pattern of transmitted signals for obtaining high utility, the
anonymous precoder also mask the sender’s PHY characteristics
for the purpose of sender anonymity. Nevertheless, the anonymity
provided by anonymous precoding has only been numerically
demonstrated, and there still lacks analytic result regarding the
detection error rate (DER) performance. In this letter, we give the
first attempt to show analytic DER result of generic precoders.
The closed-form yet tight DER expressions are derived, as a
function of the precoder employed at the sender, block length,
propagation channel, and noise status. Some important properties
are revealed. Finally, simulation results validate that the deviation
between the closed-form and actual DER results is on the level of
0∼0.05. The proposed analytic DER results help easily quantify
the anonymity performance of existing anonymity-agnostic and
anonymous precoders.

Index Terms—Closed-form DER, anonymous communications,
physical layer, anonymous precoding.

I. INTRODUCTION

IN the era of the Internet of Things (IoT), provision of
security and privacy is a pervasive issue. In general, pur-

pose of data security is to prevent confidential communication
from being exploited or attacked by external eavesdroppers.
Authentication [1], cryptography [2], covert communication
[3], securing beamforming and other methods [4] from the
PHY to the upper layers of networks have been extensively
studied for security. By contrast, the aim of privacy protection
is to minimize the receiver’s capability to infer the non-
shared information, while guaranteeing the communication
quality of the same receiver for utility [5]. For example,
when receiving signal for utility in smart homes and tele-
medicine, a legitimate but curious receiver may also infer
the user’s non-shared data, such as users’ political inclination,
lifestyle and whereabouts. Hence, when communicating with
service providers for utility, users wish to remain anonymous
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towards the receiver for avoiding potential cyberfraud, known
as anonymous communications.

On the upper layers of networks, a bundle of anonymous
protection strategies has been studied, including anonymous
encryption [6], anonymous authentication [7], routing designs
[8] and so on. These techniques conceal users’ characteristics
of the higher layers, such as their identities (ID)s or media
access control (MAC)/Internet protocol (IP) addresses. As a
further step, the work in [5] points out that the signaling
pattern at the PHY can also be leveraged to unmask indi-
viduals. To be specific, when employing classic minimum
mean squared error (MMSE), zero-forcing (ZF) [9], singular
value decomposition (SVD) [10], power minimization (PM)
[11] and other anonymity-agnostic precoders, the pattern of
the received signal is coupled with the user’s unique channel
state information (CSI). Hence, the receiver can employ PHY
sender detection algorithms, which will be detailed in Section
II, to disclose the sender. As a countermeasure at the PHY,
anonymous precoding is investigated [5], which is capable of
concealing a sender’s CSI from the transmitted signal, thereby
scrambling the accuracy of sender detection at the receiver side
[5].

Nevertheless, the provision of anonymity by the anonymous
precoder has only been numerically proved. [5] was the first
to show that, with an empirical anonymous constraint, the
pattern of the transmitted signal can be controlled for the
purpose of sender anonymity. [12] pointed out that a stricter
value of anonymous constraint is able to better guarantee the
anonymity, thus deteriorating the DER performance of the
receiver. Despite of recent progress made, the analytic DER
performance achieved by different precoders is still an open
challenge. As a result, the anonymity performance gain of the
anonymous precoder has not been quantified yet. This further
hinders researcher from flexibly balancing the anonymity and
communication performance. Motivated by this issue, in this
paper, we attempt to present theoretical analysis of the DER
performance. Our contributions are summarized as follows.

Exploiting the statistics of the received signal, we first
demonstrate analytic DER performance of two classic PHY
sender detection strategies, i.e., the maximum Frobenius norm
(MFN) based and the maximum likelihood estimation (MLE)
based detectors. The closed-form but tight DER expression is
explicitly derived, as a function of the precoder employed at
the sender, block length, propagation channel, and noise status.
With the closed form DER expression at hand, we evaluate the
DER of several classic block- and symbol-level anonymity-
agnostic precoders, as well as anonymous precoders. Also, a
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series of important properties regarding the PHY anonymity
has been revealed.

Notation: Matrices and vectors are represented by boldface
capital and lower case letters, respectively. In denotes an n-
by-n identity matrix. [A]mn abstracts the element in row m
and column n of a matrix. AH , tr(A) and ∥A∥F denote the
Hermitian transpose, trace and Frobenius norm of a matrix.
∥x∥2 denotes the 2-norm of a vector x. | · | denotes absolute
value of a complex number. N{·} and CN{·} represent Gaus-
sian distribution and complex Gaussian distribution. Pr(a|b)
denotes the conditional probability of a given b. E{·} and
V{·} denote expectation and variance of a random variable.
cov{a, b} denotes covariance of two random variables.

II. SYSTEM MODEL AND SENDER DETECTION
STRATEGIES

In this section, system model and PHY sender detectors are
introduced in subsections II-A and II-B.

A. System Model
Consider an uplink multiuser multiple-input and multiple-

output (MIMO) transmission scenario, where a group of users
K (|K| = K) send signals to a base station (BS) under time-
division-multiple-access. In particular, users remain anony-
mous during transmitting. Assume that each user is equipped
with Nt transmit-antennas, while the BS is equipped with
Nr receive-antennas. Define Hk ∈ CNr×Nt as the block-
fading MIMO channel between the k -th user and the BS. As
the sender detection is performed at the block level, assume
that the block length is L. Define W k ∈ CNt×Ns as the
precoding matrix of the k-th user, and Sk ∈ CNs×L as
the symbol matrix transmitted by the k-th user, where Ns
denotes the number of symbols transmitted per slot depending
on the specific multiplexing strategy. Denote N ∈ CNr×L

as the circularly symmetric complex Gaussian (CSCG) noise
with noise variance σ2 and element as [N ]mn ∼ CN (0, σ2).
Without loss of generality, assume that the k-th user sends
signal to the BS in the considered block, and the received
signal at BS is written as

Y = HkW kSk +N . (1)

At PHY layer, the BS only analyzes the received signal
and the inherent characteristics of the wireless channels to
detect the sender. The sender detection can be formulated as
a multiple hypotheses testing (MHT) problem

Y =


H0 : N ,

H1 : H1W 1S1 +N ,

...
HK : HKWKSK +N ,

(2)

where the hypothesis H0 denotes that only noise appears at
the BS, while hypothesis Hk means a signal coming from the
k -th user is received.

B. Sender Detection Strategies

In this subsection, the MFN and the MLE sender detection
strategies are briefly discussed for the sake of completeness
[5]. For handling the MHT problem in (2), the BS can first
detect the presence of a signal, generally solved by classic

energy detection [13]. The test statistic is given by Γ (Y ) =
∥Y ∥2

F

LNr
. On comparing Γ (Y ) against a detection threshold ε,

the hypothesis H0 is clarified to be true when Γ (Y ) < ε, and
to be false otherwise.

1) MFN Sender Detection: The philosophy of the MFN
is to leverage the concept of match filter for sender detec-
tion. As the received signal propagates from Hk, one can
multiply the received signal with HH

k . Then, the resulted
F-norm Gk = ∥HH

k Y ∥2F = ∥HH
k HkW kSk + HH

k N∥2F
has a high probability to be higher than the norm Gi =
∥HH

i Y ∥2F , calculated by a false hypothesis channel Hi.
Thus, the MFN sender detection is written as ΨMFN =
argmax

k∈K
{∥HH

1 Y ∥2F , . . . , ∥H
H
KY ∥2F }.

2) MLE Sender Detection: The philosophy of the MLE
detection is to estimate the transmitted signal with differ-
ent users’ channels, and then compute the Euclidean dis-
tance between the reconstructed and actual received sig-
nal. Explicitly, if the i-th (i ̸= k) user’s channel is used
for estimation, a reconstructed signal is given as Ŷ i =
HiH

†
iY = HiH

†
iHkW kSk + HiH

†
iN , where H†

i =
(HH

i Hi)
−1HH

i . Then, the Euclidean distance between the
reconstructed and actual received signal is calculated as Di =
∥Y − Ŷ i∥2F = ∥(HiH

†
i − INr

)HkW kSk + (HiH
†
i −

INr
)N∥2F , where H†

k = (HH
k Hk)

−1HH
k . In a similar vein,

when the real sender k’s channel is used for detection, the Eu-
clidean distance is computed as Dk = ∥(HkH

†
k−INr

)N∥2F .
As Dk only contains a noise term, there is a high proba-
bility that Di > Dk. Therefore, the MLE sender detection
algorithm can be expressed as ΨMLE = argmin

k∈K
{∥(H1H

†
1 −

INr )Y ∥2F , . . . , ∥(HKH†
K − INr )Y ∥2F }.

III. ANALYSIS ON DETECTION ERROR RATE
PERFORMANCE

In this section, the DER performance of the MFN and MLE
detectors is quantified, and associated closed-form yet tight
expression expressions are presented.

A. DER Analysis of MFN Detector
Exploiting the MHT problem (2), evidently, DER is the

probability of under Hk, the BS falsely declaring either that
no signal is received, or that a signal is transmitted from a
user other than the k-th user, written as

ζMFN = 1− Pr(Γ (Y ) ≥ ε|Hk)

K∏
i,i̸=k

Pr(Gi ≤ Gk|Hk). (3)

The term Pr(Γ (Y ) ≥ ε|Hk) represents the probability of
under Hk, the BS correctly identifies an incoming signal.
The term

∏K
i,i̸=k Pr(Gi ≤ Gk|Hk) represents the probability

of the BS correctly identifies user k as the signal sender.
For the energy detector, its test statistic Γ (Y ) follows chi-
square distribution with 2NrL degree of freedom (DoF) and
non-centrality parameter 2∥HkW kSk∥2

F

σ2 [13]. Hence, the term
Pr(Γ (Y ) ≥ ε|Hk) is calculated as

Pr(Γ (Y ) ≥ ε|Hk) = 1− Pr(Γ (Y ) < ε|Hk) = 1− C
(
2NrεL

σ2

)
,

(4)
where C(·) denotes the cumulative distribution function (cdf)
of the non-central chi-square distributed variable Γ (Y ). In
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Pr(γi ≥ 0|Hk) =
1

2

(
1 + erf

(
Lσ2tr(HkH

H
k −HiH

H
i )+tr(UH

k Uk−UH
i Ui)√

2Lσ4tr(HkH
H
k

HkH
H
k

+HiH
H
i HiH

H
i )+4σ2tr(UH

k
HH

k
HkUk+UH

i HH
i HiUi)

))
. (10)

ζMFN = 1−
(
1− C

(
2NrεL

σ2

)) K∏
i,i̸=k

1

2

(
1 + erf

(
Lσ2tr(HkH

H
k −HiH

H
i )+tr(UH

k Uk−UH
i Ui)√

2Lσ4tr(HkH
H
k

HkH
H
k

+HiH
H
i HiH

H
i )+4σ2tr(UH

k
HH

k
HkUk+UH

i HH
i HiUi)

))
. (11)

ζMFN = 1−
K∏

i,i̸=k

1

2

(
1 + erf

(
Lσ2tr(HkH

H
k −HiH

H
i )+tr(UH

k Uk−UH
i Ui)√

2Lσ4tr(HkH
H
k

HkH
H
k

+HiH
H
i HiH

H
i )+4σ2tr(UH

k
HH

k
HkUk+UH

i HH
i HiUi)

))
. (12)

order to calculate the term Pr(Gi ≤ Gk|Hk), we first need
to investigate the statistics of Gk and Gi as summarized in
Lemma 1.

Lemma 1: Define U i = HH
i HkW kSk. The expectation

and variance of Gi are given as

E{Gi} = Lσ2tr(HiH
H
i ) + tr(UH

i U i), (5)

and

V{Gi} = Lσ4tr(HiH
H
i HiH

H
i ) + 2σ2tr(UH

i HH
i HiU i). (6)

Proof of Lemma 1: please see Appendix. ■
The expectation and variance of Gk can be obtained in

the same manner. Although the expectation and variance of
Gi are given by Lemma 1, it is still difficult to obtain an
exact probability density function (pdf) of Gi. The exact pdf
of such a quadratic form was presented in [14]. However,
it involves complex integration, which limits its application
in our DER analysis. Fortunately, as Gi in fact contains the
summation of NrL samples, they can be approximated as
Gaussian distributed variables.

Fig. 1 (a) shows that the value of Gi and Gk indeed
approximately follow Gaussian distribution. More importantly,
Gk and Gi show distinct expectations and variances, which
thus can be used to distinguish the two statistics. Defining
γi = Gk −Gi, its expectation and variance are

E{γi} = E{Gk} − E{Gi}
= Lσ2tr(HkH

H
k −HiH

H
i ) + tr(UH

k Uk −UH
i U i),

(7)

and
V{γi} = V{Gk}+ V{Gi}+ cov{Gk, Gi}
= Lσ4tr(HkH

H
k HkH

H
k +HiH

H
i HiH

H
i )

+ 2σ2tr(UH
k HH

k HkUk +UH
i HH

i HiU i),

(8)

where the covariance term cov{Gk, Gi} is ignored because Gk
and Gi are weakly correlated. Given that γi follows Gaussian
distribution, we have

Pr(Gi ≤ Gk|Hk) = Pr(γi ≥ 0|Hk)

=

∫ ∞

0

fγi(t)dt =
1

2

(
1 + erf

(
E(γi)√
2V(γi)

))
,

(9)

where fγi
(·) denotes the pdf of the variable γi, and erf(·)

denotes the Gaussian error function. Substituting (7) and (8)
into (9), Pr(γi ≥ 0|Hk) is rewritten as (10). Substituting (4)
and (10) into (3) leads a tight closed-form DER expression of
the MFN detector in (11), as shown at the top of this page.

As the term C
(
2NrεL

σ2

)
approaches 0 when ε is a small

value, the miss detection rate can be omitted. According to
the Neyman-Pearson criterion, the probability of false alarm
may be raised by the small valued ε. However, its effect ca
be significantly reduced on account of the multiple antennas
at the receiver. Ignoring the effect of miss detection, a tight

expression of DER is given as (12), which is shown at the top
of this page.

B. DER Analysis of MLE Detector
Recalling the MLE detection, its DER is expressed as

ζMLE = 1− Pr(Γ (Y ) ≥ ε|Hk)

K∏
i,i̸=k

Pr(Di ≥ Dk|Hk). (13)

To calculate the term Pr(Di ≥ Dk|Hk), we first investigate
the distributions of Dk and Di. For the sake of simplicity,
denote Θi = HiH

†
i − INr

and V i = ΘiHkW kSk. The
expectation and variance of Di are summarized in Lemma 2.

Lemma 2: The expectation and variance of Di are given as

E{Di} = Lσ2tr(ΘiΘ
H
i ) + tr(V H

i V i), (14)

and

V{Di} = Lσ4tr(ΘiΘ
H
i ΘiΘ

H
i ) + 2σ2V H

i ΘH
i ΘiV i. (15)

The proof of Lemma 2 is similar to that of Lemma 1, and
thus is omitted due to page limit. ■

Similarly, the expectation and variance of Dk are calculated
as

E{Dk} = Lσ2tr(ΘkΘ
H
k ), (16)

and
V{Dk} = Lσ4tr(ΘkΘ

H
k ΘkΘ

H
k ). (17)

Again leveraging the central limit theorem, Di and Dk
are approximated to follow Gaussian distribution. Fig. 1 (b)
demonstrates that, the approximated Gaussian variables indeed
match the actual simulation results. Defining ρi = Gk − Gi,
its expectation is

E{ρi} = E{Dk} − E{Di}
= Lσ2tr(ΘkΘ

H
k −ΘiΘ

H
i )− tr(V H

i V i).
(18)

Since it is easy to find that tr(ΘkΘ
H
k −ΘiΘ

H
i ) = 0, (18)

can be simplified into

E{ρi} = −tr(V H
i V i). (19)

The variance of ρi is

V{ρi} = V{Dk}+ V{Di}+ cov{Dk, Di}
= Lσ4tr(ΘiΘ

H
i ΘiΘ

H
i +ΘkΘ

H
k ΘkΘ

H
k )

+ 2σ2tr(V H
i ΘH

i ΘiV i),

(20)

where the covariance term cov{Dk, Di} is ignored because
Dk and Di are weakly correlated. With simple manipulations,
it proves that ΘkΘ

H
k ΘkΘ

H
k = ΘkΘ

H
k and ΘiΘ

H
i ΘiΘ

H
i =

ΘiΘ
H
i . Thus, (20) can be simplified into

V{ρi} = Lσ4tr(ΘiΘ
H
i +ΘkΘ

H
k ) + 2σ2tr(V H

i V i). (21)
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Fig. 1. The actual and approximated pdfs of the values of Gk , Gi, Dk and
Di. MMSE precoder is employed by the sender [9], SNR is set to 10 dB.

Since ρi follows Gaussian distribution, the value of Pr(ρi ≤
0|Hk) can be calculated by the cdf of ρi as

Pr(ρi ≤ 0|Hk) =

∫ 0

−∞
fρi(t)dt =

1

2

(
1 + erf

(
0−E(ρi)√

2V(ρi)

))
,

(22)
where fρi(·) denotes the pdf of ρi. Substituting (19) and (21)
into (22), Pr(ρi ≤ 0|Hk) is rewritten as

Pr(ρi ≤ 0|Hk) =

1

2

(
1 + erf

(
tr(V H

i V i)√
2Lσ4tr(ΘiΘ

H
i +ΘkΘ

H
k

)+4σ2tr(V H
i V i)

))
.

(23)

Substituting (4) and (23) into (13) leads to a tight expression
of ζMLE as

ζMLE = 1−
K∏

i,i̸=k

1

2

(
1 + erf

(
tr(V H

i V i)√
2Lσ4tr(ΘiΘ

H
i +ΘkΘ

H
k

)+4σ2tr(V H
i V i)

))
.

(24)
With the closed-form DER, we are able to conclude a series

important remarks below.
Remark 1: For classic anonymity-agnostic precoders, their

design principles can be rate, user fairness, weighted signal to
interference plus noise ratio (SINR) maximization, or power
minimization. Since the value of tr(V H

i V i) is typically a
non-zero finite valued number, a small or moderate value of
noise variance makes the value of the erf function in (24)
approach 1, meaning that the receiver can correctly reveal the
real sender. In a different manner, the anonymous precoder
manipulates the signaling pattern to let the value of tr(V H

i V i)
approach 0. As a result, the user j acts as an alias sender,
and makes the receiver fail to distinguish the real sender
k and alias j. The resulted DER equals to 0.5. Evidently,
for achieving a better DER performance, one needs to add
more anonymous constraints, and lets the associated value of
tr(V H

j V j) approach 0.
Remark 2: As for the closed-form DER of MFN detector

in (12), the value of the term tr(UH
k Uk−UH

i U i) is typically
a non-zero finite valued number, when classic anonymity-
agnostic precoders are employed. As the term tr(HkH

H
k −

HiH
H
i ) approaches 0, a small value of noise variance makes

the value of the erf function in (12) approach 1, resulting
to the DER of the MFN detector approaching 0. Hence, the

principle of the anonymous precoder against the MFN detector
is to manipulate the term tr(UH

k Uk −UH
i U i), and makes it

approach or even less than 0. As a result, the value of the erf
function in (12) approaches or is less than 0, thus scrambling
the DER performance.

Remark 3: With a large value of block length L, the value
of DER is effectively reduced. A special case would be L →
∞, it makes the erf function in (12) and (24) to approach 1,
and thus both ζMFN and ζMLE approach 0. In other words,
with more samples for sender detection, it becomes easier for
both MFN and MLE detectors to identify the sender. A high
level of signal-to-noise ratio (SNR) makes the value of the erf
function in (12) and (24) approach 1, resulting in better DER
performance of MFN and MLE detectors. The observation is
intuitive, as the detection performance can be improved with
a smaller value of noise.

Remark 4: As shown in subsection II-B , the principles
of the MFN and MLE detectors are exploiting the difference
of the users’ CSI for sender detection. Hence, the DER per-
formance is significantly dependent of the channel correlation
among users. When two users’ channels are strongly correctly,
Gk and Gi (Dk and Di) will have similar value of expectation
and variance. It becomes difficult for the receiver to distinguish
those two users.

Remark 5: The MLE detector identifies the sender by
exploiting the difference in distributions of Dk and Di. As
shown in subsection II-B, Di (∀i ̸= k) involves the term
(HiH

†
i − INr )HkW kSk and colored noise, while Dk only

contains a colored noise. This leads to a significant difference
in their expectation and variance, as shown in Fig. 1 (b).
However, for the MFN detector, both Gk and Gi contain the
signal related term and colored noise, as shown in subsection
II-B. As a result, the detection accuracy of MFN detector is
inferior to that of the MLE detector.

IV. SIMULATION RESULTS

To verify the tightness of the analytic analysis, Monte
Carlo simulation is carried out. Quadrature phase shift keying
(QPSK) is used in modulation. Assume that there are K = 5
users, and the communication user is randomly generated per
slot. The energy detection threshold is ε = 10−2, and the
antenna configuration of the BS and the user is Nr = 9
and Nt = 8 respectively. We normalize the maximum power
pmax = 1 watt, while changing SNR by tuning the noise
power. Assume that the block size L = 50. Consider Rayleigh
block fading MIMO channel, we select the following classic
precoders: 1) MMSE precoder [9], 2) SVD precoder [10], 3)
PM precoder [11], 4) constructive interference (CI) precoder
[15], 5) CI-based anonymous (CIA) precoder [5]. Note that
CI and CIA precoders perform at symbol level, while others
perform at block level. Also, the CIA is an anonymous pre-
coder, which manipulates the transmitted signal for masking
the real sender.

Fig. 2 (a) shows the closed-form and actual DER results of
the MFN detector. It can be observed that the closed-form DER
is close to the actual DER regardless of the employed pre-
coders and SNR statuses. Typically, with a generic precoder,
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Fig. 2. The impact of receive SNR on the DER by different precoders.
Nt = 8, Nr = 9. The SINR of each receive antenna of the PM precoder
is set to 5 dB. The anonymous related thresholds of CIA (MFN) and CIA
(MLE) precoder are set to 2 and 0.01.

the deviation between the closed-form and actual DER results
are on the levels of 0∼0.05. Also, it proves that anonymous
CIA precoder obtains better DER performance than other
anonymity-agnostic precoders. It validates our analysis in
Remark 1 that, by manipulating transmitted signaling pattern,
the DER performance of sender detection can be scrambled.

Fig. 2 (b) shows the closed-form and actual DER results of
the MLE detector. It can be seen that the closed-form DER
is also close to the actual DER regardless of the employed
precoders and SNR statuses. Analogous to the MFN detection,
the deviation between the closed-form and actual DER results
of the MLE detection are on the same levels of 0∼0.05. In
addition, it shows that the detection accuracy of the MLE
detector is better then that of the MFN detector, validating
the analysis in Remark 1. Also, the anonymous CIA precoder
obtains better DER performance against the MLE detector,
effectively protecting user anonymity as we discussed in
Remark 1.

V. CONCLUSION

In this letter, the DER performance of two classic PHY
sender detectors has been theoretically analyzed, and their
tight closed-form expressions have been derived. Based on the
analytic DER result, we have theoretically built the relation
between the instantaneous signaling pattern and the statistical
DER performance for generic precoders applied at the sender
side. In addition, a series of important properties have been
presented, such as the impact of blocklength, noise status,
and precoder on the DER performance. Finally, we have
benchmarked the derived closed-form DER against actual
simulation results, and the tightness of the derived closed-form
results has been verified.

APPENDIX
PROOF OF LEMMA 1

Denote y(j), ui(j) and µ(j) as the j-th column of Y , U i

and HkW kSk, respectively. We have that Gi = ∥HH
i Y ∥2F =∑L

j=1 ∥H
H
i y(j)∥22, where y(j) ∼ N (µ(j),Λ) and Λ =

σ2INr
. Since each term ∥HH

i y(j)∥22 is quadratic with respect
to y(j), the expectation of ∥HH

i y(j)∥22 can be calculated as

E{∥HH
i y(j)∥

2
2} = E{yH

(j)HiH
H
i y(j)}

= E{tr(HiH
H
i y(j)y

H
(j))} = tr(HiH

H
i E{y(j)y

H
(j)})

= σ2tr(HiH
H
i ) + uH

i(j)ui(j).

(25)

Now we use the moment generating function (MGF) to
calculate the variance of ∥HH

i y(j)∥22. Let D(t) = INr
−

2tHiH
H
i Λ, and the MGF of yH

(j)HiH
H
i y(j) is written as

M(t)=|D|− 1
2 e−

1
2 [INr−D−1(t)]Λ−1µ(j) . We further let k(t) =

ln(M(t)), and denote its second-order derivative as k′′(t).
Substituting the value of |D|t=0, d|D|

dt |t=0, d2|D|
dt2 |t=0, D|t=0,

D−1|t=0, dD
dt |t=0 and d2D

dt2 |t=0 into k′′(t), we have

V{∥HH
i y(j)∥

2
2} = k′′(0)

= σ4tr(HiH
H
i HiH

H
i ) + 2σ2uH

i(j)H
H
i Hiui(j).

(26)

Considering the block length L, the expectation and vari-
ance of Gi are

E{Gi} =

L∑
j=1

E{∥HH
i y(j)∥

2
2} = Lσ2tr(HiH

H
i ) + tr(UH

i U i),

(27)
and

V{Gi} =

L∑
j=1

V{∥HH
i y(j)∥

2
2}

= Lσ4tr(HiH
H
i HiH

H
i ) + 2σ2tr(UH

i HH
i HiU i).

(28)
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