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A B S T R A C T

Missing data are a common issue in medical research. We aim to explain in non-technical language the issues and
concepts around missing data, as well as discuss common methods for handling missing data. Specifically, our
objectives are to answer the following questions: (1) What are missing data and why should we care about them?
(2) What are the missingness mechanisms and how do they impact statistical analysis? (3) How can we explore
missing values in our datasets? (4) What are ad-hoc methods for dealing with missing values and are they valid?
(5) What is multiple imputation? (6) What should we consider when conducting a multiple imputation analysis?
(7) Is multiple imputation always needed? (8) How should we report an analysis with missing data? We illustrate
discussions with examples from an orthodontic study.
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Introduction

Missing data remain a common issue in medical research, despite
researchers’ best efforts to prevent their occurrence through careful
design and conduct of studies.1,2 The literature on missing data is well-
developed, with various discussions on different methods for handling
missing data and their applications in both randomised trials and obser-
vational studies.3−7

Here we aim to explain in a non-technical manner key issues and con-
cepts around missing data in biomedical research, and some common
methods for handling missing data. This paper follows a similar structure
to a series of articles recently published by the authors.8−15 We will illus-
trate the discussions using different examples from an orthodontic study.
What are missing data and why should we care about them?

Missing data are data that we planned to collect to answer a research
question, such as participant characteristics at the start of the study or
their health outcomes after receiving some treatments, but for some rea-
son we were not able to. In practice there are various ways in which
missing data can arise. Table 1 describes an example created based on a
randomised trial comparing probing depth (a sign of periodontal health)
between 2 types of treatments (retainer A/B).16 The outcome, mean
probing depth over 6 lower teeth, was measured at baseline (pd1) and 5
follow-up time points (pd2−pd6). Data collected on other participant
characteristics at baseline included age (years) and sex (female/male).

Sometimes, a mean probing depth value might be recorded, later
judged to be wrong, and deleted from the dataset, which also gives rise
to missing data. Missing data can occur in the outcomes, one or more
covariates, or both the outcomes and covariates.

A participant’s probing depth could also be unobserved if the partici-
pant had lost their teeth or died during the study, after which their data
no longer existed and would be considered ‘truncated’.17,18 Data trunca-
tion is conceptually different from data that are missing due to e.g. fail-
ure to attend a follow-up visit, and is not the focus of this paper.

Since missing data represent a loss of information, having missing
values reduces statistical power of our study, which is the likelihood of a
hypothesis test concluding an effect if there is one. The occurrence of
missing data complicates statistical analysis, because we cannot perform
the analysis originally intended for complete data without having to
handle the missing values first. A direct consequence of this is that inap-
propriate handling of missing values can lead to bias and incorrect
conclusions.4
What are the missingness mechanisms and how do they impact
statistical analysis?

Any analysis that uses variables containing missing values (i.e.
‘partially observed’ or ‘incomplete’ variables) makes some untestable
assumptions about how these values have become missing. These
assumptions are called missingness mechanisms.19

The missingness mechanism describes how the likelihood of data
being observed or missing is associated with the values of the variables
included in our analysis. In our previous example, consider probing
depth data at the end of the trial for 5 participants (pd6, Table 2). Con-
ceptually, missingness in pd6 is represented by a binary indicator r6.
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Table 1
An example of missing data in an orthodontic randomised trial.

ID Age Sex Randomised
treatment

pd1 pd2 pd3 pd4 pd5 pd6

1 37 Male B 1.67 1.50 1.5 1.17 1.42 1.5
11 34 Female A 1.08 0.83 1.08 . . .
32 36 Male B 1.83 1.42 . 1.5 1.75 1.42
90 18 Female A 1.58 . . . . .

Note: ID, participant identification; pd1−pd6, mean probing depth over 6
lower teeth measured at baseline and 5 follow-up time points, respectively;
dot, missing value.

Table 2
Missing values and missingness indica-
tors.

ID pd1 pd6 r6 pd6*

107 1.17 0.92 1 0.92
108 2.25 0.83 1 0.83
109 1.58 . 0 1.17
110 1.42 . 0 1.08
111 1.25 0.75 1 0.75

Note: ID, participant identification;
pd6, probing depth measured at time
point 6; r6, indicator of whether pd6 is
observed or missing; pd6*, an example
of what pd6 could be had it been
observed.
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This variable takes value 1 if the participant’s probing depth is observed
and 0 if the participant’s probing depth is missing. In case probing depth
is missing (denoted by a dot in pd6), there exists an underlying measure-
ment of pd6 (e.g. possibly the values in bold in pd6*) that we were not
able to observe.

There are 3 broad missingness mechanisms, missing completely at
random, missing at random, and missing not at random. Continuing
with our previous example, suppose probing depth was measured for all
participants at baseline (i.e. pd1 is fully observed), while some partici-
pants did not have their probing depth measured at the final time point
(pd6 is partially observed, missingness is governed by indicator r6, such
as in Table 2).

Here, the missingness mechanism describes how the likelihood of
pd6 being observed or missing depends on pd1 as well as the (possibly
missing) values of pd6. Directed acyclic graphs (DAGs) could be used to
describe these relationships, with nodes representing the variables and
arrows representing their relationships and directions of effects.20

If the likelihood of pd6 being observed is independent of both pd1
and the values of pd6 (i.e. no arrow from either pd1 or pd6 to r6,
Fig. 1a), then pd6 is said to be missing completely at random (MCAR).
The missing pd6 values are a random subset of and are fully comparable
to the observed values.

If the likelihood of pd6 being observed depends on pd1 (i.e. arrow
from pd1 to r6, Fig. 1b), but among participants with the same pd1
Fig. 1. Directed acyclic graphs of missingness mechanisms in probing depth at time p
(end of trial); r6, binary indicator of whether pd6 is observed or missing.
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value, the likelihood of pd6 being observed is the same (i.e. no arrow
from pd1 to r6, Fig. 1b), then pd6 is said to be missing at random (MAR)
conditional on pd1. MAR means that given the same value of pd1, the
missing values of pd6 are fully comparable with the observed values of
pd6.

Finally, if even among participants with the same pd1 value, pd6 is
more likely to be missing for e.g. participants with higher values of pd6
(i.e. arrows from both pd1 and pd6 to r6, Fig. 1c), then pd6 is considered
missing not at random (MNAR). MNAR means that given the same value
of pd1, the likelihood of observing pd6 may still vary with the values of
pd6. This assumption means that missing pd6 values are not fully com-
parable with the observed values, even among participants with the
same pd1 value.

As will be shown in the next section, assumptions about the missing-
ness mechanism are untestable and often we cannot conclude whether
missing values are MCAR, MAR or MNAR from just looking at the
observed data. MCAR is the most restrictive and least likely to be plausi-
ble in medical research, since there is often some information related to
the data collection that can be used to partly explain how the missing-
ness occurs.21 The least restrictive mechanism is MNAR, which is also
the hardest to handle because in reality we will never truly know how
the missingness may have arisen. In practice, MAR is often a good start-
ing point for analysis, and standard implementation of methods such as
multiple imputation (see ‘What is multiple imputation?’) is based on the
MAR assumption.22 In our example, the MAR mechanism for pd6 is
described using a single variable pd1, but an incomplete variable can be
MAR conditional on several variables. Therefore, the MAR assumption
can be made more plausible by collecting data on variables that are asso-
ciated with both the missingness as well as the values of the incomplete
variable (see next section).

How can we explore missing values in our datasets?

Before doing any statistical analysis, the first step is to understand
the extent of missingness (e.g. how much and in which variables) in our
dataset, as well as whether some missingness mechanisms are more
plausible than others. This is important because the consequence of
incorrect handling of missing values (e.g. assuming the wrong missing-
ness mechanisms) has a greater effect with more missing data.

Simple statistics such as percentages of missing values in relevant
variables should be calculated. They are useful to assess the reliability of
the data collection process, especially during the conduct of a study. We
could also consider omitting from analysis some less important covari-
ates with very high percentages of missing values.

The missingness patterns describe the location of the missing values
(Table 3). These are categorised into univariate or multivariate, and the
latter is categorised as monotone or non-monotone. When missingness
occurs in a single variable, the missingness pattern is said to be univari-
ate (Table 3a). When there are more than one incomplete variable in the
dataset, the missingness pattern is said to be multivariate. If the incom-
plete variables could be arranged such that when a variable is missing
for a participant then all subsequent variables are also missing for that
participant, then the missingness pattern is monotone (Table 3b). Mono-
tone missingness patterns often occur in studies where participants
oint 6.Note: pd1 and pd6, probing depth measured at baseline and time point 6



Table 3
An example of what different missingness patterns of probing depth
measured at baseline and 5 follow-up time points might look like in
a dataset.

a. Univariate

Group of participants pd1 pd2 pd3 pd4 pd5 pd6
1 x x x x x x
2 x x x x x x
3 x x x x x x
4 x x x x x x
5 x x x x x x
6 x x x x x .

b. Multivariate monotone

Group of participants pd1 pd2 pd3 pd4 pd5 pd6
1 x x x x x x
2 x x x x x x
3 x x x x x .
4 x x x x . .
5 x x x . . .
6 x x . . . .

c. Multivariate non-monotone

Group of participants pd1 pd2 pd3 pd4 pd5 pd6
1 x x x x . x
2 . x x x x x
3 x x x x x x
4 x x . x x .
5 x . . . x .
6 x x x . x .

Note: pd1—pd6, probing depth measured at 6 time points; the dots
and ‘x’s represent probing depth being missing and observed for the
time points, respectively.
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might attend all follow-up visits up to a point and then drop out, after
which point all of their subsequent data become missing. When we can-
not order variables according to their missingness in this way, e.g. some
participants might attend all follow-up visits except the first one, while
some participants do not have data at baseline and the last time point,
then the missingness pattern is non-monotone (Table 3c). A tabulation
of missingness patterns, or graphical tools such as UpSet plots (Fig. 2),23
39
could be used to assess possible errors in the data collection and process-
ing, e.g. when a variable is only observed if another variable is observed
and exceeds a threshold.

Observed data can be used to assess, to some extent, the potential
missingness mechanism. Suppose that in the probing depth randomised
trial, we were able to measure everyone’s probing depth at baseline, but
probing depth at the end of the trial was missing for some participants.
We could check whether probing depth at baseline was predictive of
missingness in probing depth at the end of the trial, e.g. by fitting a logis-
tic regression model with the missingness indicator of probing depth at
time 6 (i.e. r6) as the dependent variable, and baseline probing depth
(pd1) as the explanatory variable.24 If there are other variables that
might explain missingness in pd6, such as baseline age and sex, they
could be included in this logistic regression model as additional explana-
tory variables. The choice of variables that might explain missingness
depends on the context of each study and should be defined a-priori
where possible (e.g. in the study protocol or statistical analysis plan).
Identifying these variables may require input from clinical members of
the research team as well as those involved in data collection.

If the estimated odds ratio and 95% confidence interval from fitting
this logistic regression model provide evidence of an association, e.g.
pd6 was more likely to be observed in participants with large baseline
probing depth pd1, this indicates that our data are not likely to be
MCAR, and that we need to adjust for pd1 in the analysis. From a study
conduct point of view, this information could be used to improve com-
pleteness of probing depth data collection at time point 6.

The logistic regression model described above is a useful tool for
checking whether our data are likely to be MCAR or not MCAR. If we
have evidence against MCAR, we cannot proceed to distinguish between
MAR and MNAR, as doing so would require e.g. fitting a logistic regres-
sion of r6 on pd6, which we cannot do because of the missing values in
pd6. Therefore, as mentioned in section ‘What are the missingness
mechanisms and how do they impact statistical analysis?’, we cannot
verify whether the assumed MAR mechanism holds from the observed
data alone. In some longitudinal studies where the outcome is measured
over time (e.g. the probing depth trial), we could cross-tabulate missing-
ness in the outcome measured at a given time point against the outcome
measured at a previous time point. If participants with poor outcome
tend to having missing values at the next time, this could suggest that
their outcome might even be poorer over time, which is consistent with
a MNAR mechanism.
Fig. 2. UpSet plot of an example multivariate non-monotone missingness
pattern of probing depth measured at baseline and 5 follow-up time points
for N=133 participants.Note: the ‘x’ at each time point indicates that the
participant had a probing depth measurement at that time point; the bars
represent the frequency of participants with a particular pattern, e.g. the
first bar indicates that n=81 participants had a probing depth measure-
ment at all time points including baseline; the second bar indicates that
n=9 participants had a probing depth at all time points except time
point 4.
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The plausibility of the MAR assumption can be improved by adjust-
ing for variables that are predictive of both the missingness and the val-
ues of the incomplete variables.4 In our example above, if probing depth
at time point 6 was more likely to be missing for younger participants
with low probing depth at baseline, then including age and baseline
probing depth in the analysis will make the MAR assumption more plau-
sible. Because of the untestable nature of these assumptions, it is impor-
tant in any analysis with missing data to perform sensitivity analyses to
assess the results under plausible alternative MNAR assumptions.25−27

What are ad-hoc methods for dealing with missing values and are
they valid?

There are simple methods for handling missing values, such as creat-
ing a ‘missing’ category for categorical variables, replacing missing val-
ues of a continuous variable with a summary measure (e.g. mean) of the
observed values, or replacing missing values with the last observed val-
ues in longitudinal studies (also known as last observation carried for-
ward). These methods were proposed mainly for their computational
convenience, and except in some specific situations28 they are almost
never valid. There have been extensive discussions on the limitations of
these methods in the missing data literature.21,29,30

When an analysis is performed on a dataset that contains some miss-
ing values, the default option in most statistical software packages is to
exclude from analysis cases with missing values in any of the variables
of interest. This method is known as complete case or complete record
analysis. The validity of complete case analysis might depend on
whether data are missing in the outcome, or in the covariates.31,32 It is
important to state clearly the assumptions being made for missing data
when a complete case analysis is performed.

In randomised trials, participant data can be missing in several ways.
Participants may stop taking part in some or all aspects of the trial, after
which point they may not provide further data on the outcome of inter-
est. They may also be unable to attend some follow-up visits, resulting in
missing outcome data for those visits. Some baseline data might occa-
sionally not be collected, leading to missing values in the covariates. In
observational studies, the same issues may occur, but missing values in
the covariates occur more frequently.

It is well known that complete case analysis is valid when missing
values are MCAR, such that the complete cases are a random subset of
the whole sample. However, a complete case analysis is also valid in
regression analyses where missingness does not depend on the
outcome.31,33

In our previous probing depth example, suppose that the only vari-
able containing missing values was probing depth at the end of the trial,
pd6, and missingness in pd6 was explained by pd1, e.g. such that partici-
pants with low probing depth at baseline tended to be more likely to
have missing probing depth at the end of the trial. Assume that we want
to model the effect of treatment on probing depth at the end of the trial
using a linear regression, i.e. pd6 is regressed on randomised treatment.
When this analysis is performed among participants whose outcome was
observed, the analysis is valid provided that the model adjusts for base-
line probing depth, i.e. a linear regression of pd6 on randomised treat-
ment and pd1. Adjusting for baseline probing depth would also be
desirable to improve the precision of treatment effect estimation.34

Suppose instead that pd6 was observed for everyone, but some pd1
values were missing, and missingness in pd1 depended on its (possibly
missing) values. Here, the linear regression of pd6 on randomised treat-
ment and pd1 among the complete cases is unbiased, even though the
assumption for missingness in baseline probing depth is consistent with
a MNAR mechanism. In settings such as missing baseline data in a trial,
this MNAR assumption might be more easily justified than a MAR
assumption where baseline data (e.g. pd1) are missing conditional on
the outcome (e.g. pd6) and the outcome is measured in the future. How-
ever, there are 2 issues with handling missing baseline covariates with a
complete case analysis in randomised trials. First, the approach does not
40
comply with the intention to treat principle that all randomised partici-
pants should be included in the analysis. Second, complete case analysis
is inefficient because outcome data from participants who have missing
baseline covariate values are excluded from analysis. This is a particular
setting where using a simple method such as mean imputation for han-
dling missing baseline covariates is appropriate and preferred to a com-
plete case analysis.28

What is multiple imputation?

Multiple imputation (MI) is a popular approach for handling missing
values in medical research. The basis of imputation is to replace missing
values with some guesses. A simple imputation approach mentioned in
the previous section is to replace missing values with the mean (or
mode) of the observed data (mean or mode imputation) for a quantita-
tive (or categorical) variable. Apart from some specific settings (see
‘What are ad-hoc methods for dealing with missing values and are they
valid?’ and ‘Is multiple imputation always needed’), simple imputation
is generally poor, due to a few reasons.

The main drawback of simple imputation is that it fails to account for
associations between variables in the dataset. For example, missing
probing depth values at time point 6 should be imputed in a way that
accounts for their correlation with other time points 1−5. Another
downside of simple imputation is that there is no distinction between
the imputed and observed data. For example, when imputing missing
values in pd6, we need to acknowledge that there is uncertainty in pre-
dicting what the missing values could be. Mean imputation is a form of
single imputation since each missing value is replaced with a single imputed
value. When the analysis is performed, it does not distinguish between the
values that have been imputed and the values that were observed, and
imputed values are treated as actually observed values. Analyses following
single imputation are therefore likely to be overconfident.

MI overcomes this issue by recognising that we do not know the true
values of the missing data, and instead we provide some best guesses of
what these values might have been with some uncertainty. This is done
by creating several imputed datasets, each one representing a guess of
what the complete data might have looked like.

While the implementation of MI is readily available in common sta-
tistical software packages, it is important to understand the steps
involved in creating an imputed dataset using MI. Continuing with our
probing depth example, suppose we want to use MI to impute missing
values in pd6 based on pd1, and the imputation process is carried out
separately in each randomised arm. Fig. 3 shows a scatterplot of pd6 (to
be imputed) against pd1 (assumed complete). Each filled circle repre-
sents one observed data point. The solid lines are lines of best fit among
the observed data, showing a positive association between baseline
probing depth and probing depth measured at the end of the trial. The
dashed lines are a perturbed version of the lines of best fit, representing
a possibility of what the true relationship might look like. Each ‘+’ rep-
resents a participant whose pd1 was observed and pd6 was missing. The
hollow circles are values drawn from a distribution around the predicted
pd6 for participants with missing pd6. For example, consider the partici-
pant who was randomised to receiving retainer A, whose pd1 was 3.5
and pd6 was missing. Their missing pd6 measurement has been imputed
with a value above the line of best fit (2.42); however, in another
imputed dataset this value could also be imputed to be below the pre-
dicted line.

This process is repeated several (M) times, resulting in M completed
datasets. For example, if we create M=5 imputations of pd6, we could
obtain the 5 completed datasets shown in Fig. 4, where the missing val-
ues in pd6 have been replaced with similar but not identical imputed
values.

After M completed datasets have been created, the analysis planned
for complete data is carried out in each completed dataset separately.
For example, to compare probing depth between 2 treatments we could
regress pd6 on randomised treatment (retainer), and adjust for baseline



Fig. 3. An illustration of how an incomplete variable (pd6) may
be imputed using a complete variable (pd1) separately in groups
randomised to retainer A or retainer B.

T.M. Pham et al. Seminars in Orthodontics 30 (2024) 37−44
factors such as age, sex and pd1. Doing this separately in each of M com-
pleted datasets will give us M estimates of the treatment effect together
with M estimates of the uncertainty (Table 4). Finally, these M results
are pooled together using a procedure called Rubin’s rules.22 First, the
overall estimate of the treatment effect is simply an average of the M
estimated treatment effects. Second, the overall measure of uncertainty
associated with this treatment effect (e.g. standard error and confidence
interval) is obtained by pooling together (i) the uncertainty in analysing
each of the M completed datasets and (ii) the variability between the M
Fig. 4. An example ofM=5 imputations of pd6, where pd6 i
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completed datasets. The second source of variation is what is lacking in
single imputation methods and represents our uncertainty about the
true values of the missing data.

MI using Rubin’s rules provides valid results (good estimates and
valid confidence intervals) as long as the imputation procedure is carried
out appropriately. Standard implementation of MI is based on the
assumption of data being MAR. MI under MNAR is possible but often
more complex and requires further (usually untestable) assumptions
about the missing values.
s imputed using age, sex, randomised retainer, and pd1.



Fig. 5. An illustration of the MICE procedure for pd6, pd1, age, sex, and treat-
ment group.Note: pd1, pd6, age are partially observed while sex and randomised
treatment are fully observed; MI is performed in each treatment group sepa-
rately.

Table 4
An example of combining coefficient and standard error estimates from 5 com-
pleted datasets using Rubin’s rules.

Completed
dataset

Estimated treatment
effect on pd6

Standard
error

Overall treatment
effect on pd6

Overall
standard
error

1 0.047 0.048 0.040 0.050
2 0.029 0.048
3 0.048 0.048
4 0.020 0.046
5 0.055 0.047

Note: the coefficient and standard error estimates are obtained by fitting, sepa-
rately in each of the 5 completed dataset, a linear regression model of pd6 on
randomised treatment and baseline factors including age, sex, and pd1. The
overall estimates are obtained using Rubin’s rules.
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What should we consider when conducting a multiple imputation
analysis?

The previous section illustrated the principles of MI using an exam-
ple of a single incomplete variable (univariate missingness). In practice,
most datasets have missing data in several variables (multivariate miss-
ingness), and MI can also be used to impute more than one variable.3

Multivariate missingness poses further difficulties and requires some
considerations on how MI should be performed.

The most common MI approach when there are several incomplete
variables is multivariate imputation by chained equations (MICE).35 In
MICE, we set up an imputation model for each variable to be imputed,
based on the principles described in the previous section. A suitable
regression model would typically be used as the imputation model. In
our probing depth example, continuous variables like probing depth or
age might be imputed using a linear regression model, while a binary
variable like sex might be imputed using a logistic regression model. In
general, quantitative variables could be imputed by either linear regres-
sion, as described in Fig. 3, or predictive mean matching where each
missing value is imputed with the observed value of another participant
with similar characteristics.36 Categorical variables could be imputed
with ordered or multinomial logistic regression models, depending on
whether or not there is an order to the categories.

MI requires careful consideration of which variables to be included.
It is essential that all variables present in the analysis model are included
in the imputation models, regardless of whether they are complete or
incomplete. By doing this, we ensure that all relationships present in the
observed data are reflected in the imputed data.

Continuing with our probing depth example, suppose our analysis
model is a linear regression of pd6 on randomised treatment, adjusting
for baseline factors including age, sex, and pd1. Here we assume pd6,
age, and pd1 are incomplete, while randomised treatment and sex are
fully observed. The MICE procedure often starts by imputing arbitrary
values, then each incomplete variable is imputed in turn using an appro-
priate imputation model, with new imputed values replacing the previ-
ously imputed ones (Fig. 5). Stable imputations are usually achieved
after this process has completed a small number of cycles, typically less
than 10.

In Fig. 5, we can see that pd6 is used to impute missing values in pd1
despite being measured later than pd1. This is important.37 Using pd6 to
predict the missing values in pd1 ensures that the relationship between
probing depth measured at the 2 different time points are respected, and
the imputations are plausible representations of what the missing values
could have been.

In addition to variables that are in the analysis model, it is also useful
to include in MI variables that are not in the analysis model but are (i)
needed to make the MAR assumption more plausible, or (ii) predictive
of values of the incomplete variables. Variables that fulfil the latter crite-
rion are also known as ‘auxiliary variables’. For example, in the probing
42
depth example, we could use probing depth measurements at other time
points (pd2−pd5) to inform imputations of pd1 and pd6, since repeated
measurements of the outcome are often correlated. Selecting good can-
didate auxiliary variables and the number of auxiliary variables to be
included also requires careful consideration (e.g. with regards to small
study samples or complex analysis models); this issue has been discussed
elsewhere.38−40

Above we emphasised that all variables present in the analysis model
must be included in the imputation procedure to generate plausible
imputations. When the analysis model contains structures such as inter-
actions or non-linear effects, the imputation also needs to account for
such structures, which could quickly complicate the MI procedure, espe-
cially in observational studies.41 In randomised trials a straightforward
way to account for any potential treatment-covariate interactions is to
perform MI separately in each randomised arm. Similarly, in other data-
sets MI could be performed separately by a key variable, but this vari-
able needs to be fully observed.

Another implementation issue is how many imputations are needed.
We want to perform enough imputations so that we are confident that
the results obtained from MI are unlikely to be different substantially if
more imputations were created. A practical rule of thumb is to create as
many imputations as the percentage of incomplete cases. For example, if
80% of participants have complete data in all variables considered in the
analysis model, and the remaining 20% of participant have some missing
values, then at least 20 imputations are needed in MI.

Common statistical software packages can also report the Monte
Carlo errors of the imputation results. An example is given in Table 5.
The analysis performed was a linear regression of pd6 on randomised
treatment, adjusting for baseline factors including age, sex, and pd1.
Missing values in pd1 were handled with mean imputation; missing val-
ues in pd6 were handled with MI using predictive mean matching to 5
nearest neighbours, conditional on age, sex, and (observed and mean
imputed) pd1. MI of missing values in pd6 usedM=20 imputations. The
upper confidence limit is estimated to be 0.138, which might in fact be
as low as 0.131 and as high as 0.145 (0.138 ± 1.96 ×Monte Carlo error).
In either case, the 95% confidence interval covers 0, indicating no evi-
dence of a difference in probing depth between the 2 treatments.

A common question is: how much missing data can multiple imputa-
tion handle? In principle, multiple imputation can handle a large
amount of missing values, but the multivariate imputation by chained



Table 6
An example of how an analysis of the probing depth data might be reported.

In the Methods section
Missing data in probing depth measured at baseline were handled by mean imputa-
tion. Missing data in probing depth measured at 5 follow-up time points were han-
dled by multivariate imputation by chained equations. These variables were
imputed by predictive mean matching to 5 nearest neighbours. All imputation
model included as covariates baseline factors (age, sex, and baseline probing depth).
Imputation was performed separately by randomised treatment. M=50 imputed
datasets were created. Analyses of imputed data used Rubin’s rules. This analysis
assumes that data were missing at random.

In the Results section
Missing values occurred in probing depth measured at baseline and 5 follow-up time
points. There were 81 (61%) participants with observed probing depth at all time
points, and 111 (84%) with observed probing depth at both baseline and the end of
the trial. Probing depth was missing more frequently in the group randomised to
retainer A at later time points [present a table of missingness pattern by randomised
treatment].

Estimated treatment effects from a complete case analysis and a MI analysis are shown
in Table A. In both analyses, there was no evidence of a difference in probing depth
between 2 treatments at the end of the trial.

Table A. Estimated treatment effect from a complete case analysis and a MI analysis.

Method Estimated
treatment
effect

Standard
error

95% confidence interval

Complete case analysis
(N=111)

0.036 0.052 −0.067 0.138

MI (N=133) 0.027
[<0.001]

0.049
[<0.001]

−0.071
[<0.001]

0.125
[<0.001]

Note: Monte Carlo errors are presented in square brackets for MI estimates.

In the Discussion section
The MI analysis was performed under the assumption of data being missing at random.
Further sensitivity analyses could be conducted to explore alternative assumptions to
missing at random, for example, where mean probing depth of participants who were
lost to follow-up is assumed to be x points lower or higher than mean probing depth
of those who remained in the trial.

Table 5
An example of estimated treatment effect on probing depth (pd6, incomplete) from a linear
regression model adjusted for baseline factors, usingM=20 imputations.

Variable MI coefficient Standard error 95% confidence interval

Randomised treatment 0.036 [0.004] 0.051 [0.001] −0.067 [0.006] 0.138 [0.004]

Note: MI coefficient and standard error were obtained using Rubin’s rules; Monte Carlo
errors in square brackets represent the likely error in the MI coefficient, standard error, and
95% confidence interval; baseline factors included age (complete), sex (complete), and pd1
(incomplete, mean imputed).
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equations algorithm might converge slowly, and bias arising from incor-
rect specification of the imputation model (e.g. incorrectly diluting a
relationship by omitting a variable in the analysis model) will be greater
with more missing data. The choice of whether to perform multiple
imputation given the extent of missing data is also context dependent.
For example, in a study involving a very rare outcome, the analyst might
choose to perform multiple imputation over a complete case analysis
even if there is only a very small percentage of missing values. This
should also be accompanied by relevant sensitivity analyses.

Is multiple imputation always needed?

Although MI is a popular method for handling missing data, we have
illustrated in previous sections that doing MI well requires a lot of care-
ful considerations. In addition, when faced with the issue of missing
data, we should always ask whether MI is needed.

It is useful to consider whether simpler alternatives are valid given
our assumed missingness mechanism. As shown in section ‘What are ad-
hoc methods for dealing with missing values and are they valid?’, in sev-
eral situations including missing outcome data in randomised trials, a
complete case analysis may be valid. The method is also valid under cer-
tain MNAR assumptions (e.g. missingness in baseline covariates not
dependent on outcome) that are arguably more plausible than a MAR
assumption. In addition, in randomised trials, for missing values in base-
line covariates, simple methods such as mean imputation or missing
indicator can be used.28

When analysis involves repeated measurements of an outcome which
are analysed using a linear mixed model, then missing data in the
repeated outcome are implicitly ‘handled’ under the assumption of data
being MAR. Here MI is only preferred to a mixed model when e.g. there
are auxiliary variables that could be used to improve the imputation.

Since standard implementation of MI is based on the MAR assump-
tion, which is untestable, it is important to conduct sensitivity analyses
to explore alternative plausible MNAR assumptions. Such sensitivity
analyses could be based on some information about the incomplete vari-
able that is available externally,42 or information provided by experts
about the potential difference in outcome between participants who
remained in the study versus those who were lost to follow-up.43,44 In
randomised trials, plausible MNAR assumptions about the missing data
could also be constructed using information internal to the trial, e.g.
observed information in one randomised arm could be used to inform
missing values in the other arm.25

How should we report an analysis with missing data?

As with other aspects of reporting, analysis with missing data should
be reported clearly and with sufficient details to ensure transparency.
There are extensive guidelines and checklists for randomised trials and
observational studies.45,46

Here we provide an example of an analysis of data from the probing
depth trial (N=133), together with how results could be reported.

The aim of this analysis was to compare the effect of 2 treatments on
mean probing depth over 6 lower teeth measured at the end of the trial.
The analysis model intended for complete data was a linear regression
43
of probing depth at time point 6 on randomised treatment, adjusting for
baseline factors including age, sex, and baseline probing depth. Probing
depth was measured at baseline and 5 follow-up time points, and there
were missing values at all time points. Other variables were fully
observed. We performed MI of missing probing depth values at all time
points using MICE. This analysis, which improves slightly on that shown
in Table 5, is reported in Table 6.
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