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Abstract— autism spectrum disorder (ASD) and attention 
deficit hyperactivity disorder (ADHD) are both 
neurodevelopmental conditions that produce social interaction 
and executive functioning challenges but require very different 
therapeutic strategies. For that reason, early and accurate 
differentiation is important. However, their heterogeneity and 
overlap in symptoms make ASD and ADHD difficult to 
differentiate. The current diagnostic procedure to detect and 
distinguish ASD and ADHD is lengthy as it involves a 
comprehensive medical, developmental, and behavioral 
assessment. A more accessible and faster screening tool is needed 
to avoid delays in treatment. There is evidence that some retinal 
responses captured by the electroretinogram (ERG) are reduced 
in ASD subjects compared to neurotypicals whereas an opposite 
trend has been reported in ADHD, making ERG a promising 
tool for differentiating ASD and ADHD. However, previous 
ERG analyses based on amplitude and timing of ERG waves 
have exhibited limited success in differentiating ASD and 
ADHD. Recently, it has been found that time-varying spectral 
analysis of ERG allows for more accurate ASD detection 
compared to time-domain analysis. In this study, we evaluated 
the feasibility of differentiation of ASD and ADHD using 
features obtained by decomposing ERG using variable 
frequency complex demodulation (VFCDM). We used VFCDM 
features to train machine learning models and evaluated them 
using a subject independent validation approach. We achieved a 
maximum accuracy of 84% (87% sensitivity, 79% specificity), 
outperforming previous studies using ERG. Features from 
higher frequencies were found to be more important than 
features from lower frequencies. 

Clinical Relevance—This study establishes high frequency 
ERG information as a potential biomarker to differentiate ASD 
and ADHD. 

I. INTRODUCTION

Autism spectrum disorder (ASD) and attention deficit 
hyperactivity disorder (ADHD) are the most prevalent 
neurodevelopmental disorders, affecting approximately 1% 
and 5% of children worldwide, respectively [1], [2]. Detecting 
neurodevelopmental disorders at an early stage can ameliorate 
the progress and reduce the long-term effect by enhancing 
their cognitive and executive functioning skills [3]. Despite 
their distinct neurological conditions, ASD and ADHD may 
present as a co-occurring condition and for ADHD the 
diagnosis may be delayed owing to there not being an 
objective clinical test as there is for ASD [4] to formalize the 
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diagnosis. Thus there is a need to provide a clinical measure 
that can identify the ASD and ADHD phenotype [5]. Given 
there is no specific biological or genetic test available that can 
definitively diagnose either condition novel biological signals 
derived from the electroretinogram (ERG) may offer new 
biomarkers to support the diagnosis and management of ASD 
and ADHD [6]. Previous studies have limited the ERG 
analysis to measures of amplitudes and time to peaks of the 
main features of the ERG [7], [8]. In this study, we used a high- 
resolution spectral decomposition technique named variable 
frequency complex demodulation (VFCDM) to extract highly 
sensitive time-frequency features and deployed machine 
learning (ML) algorithms to differentiate ASD and ADHD. 

Impaired social and communication skills along with 
restrictive and repetitive patterns of behavior characterizes 
ASD [9], whereas impulsivity, hyperactivity and struggling to 
sustain attention on tasks are associated with ADHD [10]. 
Currently available diagnosis for these disorders involves a 
comprehensive assessment of an individual's developmental 
history, behavioral and cognitive performance in various 
settings which includes multiple screening by qualified 
healthcare professionals such as psychiatrist, developmental 
pediatrician with expertise in diagnosing neurological 
disorders. This makes the diagnosis lengthy and expensive 
obstructing access to early intervention and support. 

To establish a reliable basis and objective diagnosis of 
ASD and ADHD previous studies have analyzed different 
biosignals such as electroencephalogram (EEG) [11], [12], 
heart rate variability (HRV) [13], and eye tracking [14]. 
Shephard et al. has reported reduced power in alpha and theta 
bands in ASD subjects whereas ADHD subjects exhibited 
decreased power in delta bands of the EEG [12]. Bellato et al. 
showed atypical autonomous response obtained from HRV as 
an indicator to separate ASD and ADHD with reduced 
parasympathetic activation in ASD during stress and reduced 
sympathetic functioning in ADHD during resting [13]. These 
studies based on EEG and HRV did not report any 
quantification of classification performance and were limited 
to statistical analysis. Duda et al. proposed a ML model based 
on feature from behavioral measures to classify ASD and 
ADHD with an area under the ROC curve (AUC) of 0.96 [15]. 
However, behavioral assessments are subjective and can be 
influenced by external factors which fail to provide an 
objective assessment. 

Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, 
London, UK. Email: dorothy.thompson@ucl.ac.uk 

Fernando Marmolejo-Ramos is with the University of South Australia 
Online, Adelaide, Australia. email: Fernando.Marmolejo- 
Ramos@unisa.edu.au 
Irene O Lee is with the Behavioral and Brain Sciences Unit, Population 
Policy and Practice Program, UCL Great Ormond Street Institute of Child 
Health, University College London, London, UK. email: 
irene.lee@ucl.ac.uk 

mailto:Paul.Constable@flinders.edu.au
mailto:dorothy.thompson@ucl.ac.uk
mailto:Ramos@unisa.edu.au
mailto:irene.lee@ucl.ac.uk


 

The retina contains a dense array of photosensitive cells 
providing a window to the brain and there is growing evidence 
suggesting that analyzing the underlying neurochemistry can 
help better understand brain disorders [16]. The ERG is a fast 
and non-invasive diagnostic test providing a superimposed 
electrical activity of retinal cells and their synaptic activity in 
response to light stimulation. Previous studies have identified 
atypical ERG responses in neurological disorders such as 
schizophrenia [17], bipolar disorder [18] and ASD [19]. Lee et 
al. has analyzed several time-domain indices of ERG reporting 
lower b-wave amplitude in ASD compared to neurotypicals 
and increased b-wave voltage in ADHD [8]. Based on this the 
authors were able to differentiate ASD and ADHD subjects 
with an AUC score of 0.88 (sensitivity: 84%, Specificity: 
57%) although the ADHD sample size was small. Recently, 
time-varying spectral analysis of ERG have been used to 
identify more sensitive biomarkers of neurodevelopmental 
disorders [19], [20]. We hypothesize that detailed analysis of 
ERG using spectral characteristics and applying ML 
techniques will help improve the ASD vs ADHD classification 
performance. 

the LA-ERG responses starting from right eye and then left 
eye. Table 1 shows the total ERG samples for flash strength/ 
eye configurations. Flashes were presented on a 40 cd.m^-2 
white background at 2 Hz and 30-60 responses were averaged 
to generate the final ERG waveform. ERG data was collected 
by placing self-adhesive electrodes 2-3 mm below the lower 
eyelid according to the manufacturer’s recommendation. ERG 
waveforms were collected with a sampling frequency of 2000 
Hz with electrode impedance < 5 kΩ. Data collection was 
conducted in seated condition and the subjects were asked not 
to blink during the procedure. ERG data was discarded from 
the study if either the a-wave amplitude was < 1µV or the 
electrode was placed > 4mm below the lower eyelid. We 
performed visual inspection of the data to remove highly 
corrupted samples which may affect the analysis. For further 
detailed information see [8], [20]. 

 
TABLE I. TOTAL ERG SAMPLES (ADHD/ASD) 

 

 Right Eye Left Eye 
113 Td.s 112 / 191 107 / 172 
446 Td.s 112 / 193 114 / 167 

II. DATA COLLECTION 

A total of 46 ADHD (age mean ± SD, 13.2 ± 3.4) and 94 
ASD (11 ± 4.5) individuals were recruited for this study at two 
different sites: London (UK) and Adelaide (Australia) where 
pediatric psychiatrists and psychologists performed diagnostic 
assessments. Participants met the diagnostic and statistical 
manual of mental disorder (DSM-IV or DSM-V) criteria after 
comprehensive evaluation supported by the Developmental, 
Dimensional and Diagnostic Interview (3Di) [21] and Autism 
Diagnostic Observation Schedule (ADOS) [4]. We did not 
include any subjects with any history of traumatic brain injury, 
inherited retinal or ocular disease, epileptic seizure and unable 
to follow verbal instructions. For participants under the age of 
16 written consent from parents/legal guardian was collected. 
Ethical approval to collect data from human subjects was taken 
from Flinders University Human Research Ethics Committee 
and the Southeast Scotland Research Ethics Committee, UK. 
Customized light adapted (LA) full field ERG (LA-ERG) 
series was carried out by following the International Society 
for Clinical Electrophysiology of Vision (ISCEV) standards 
[22]. Based on our previous analysis we selected two flash 
strengths: 113 Trolands seconds (Td.s) and 446 Td.s. to evoke 

 
III. ERG PROCESSING AND MACHINE LEARNING 

The ERG waveform is the summated response of the 
underlying neural generators. A typical LA-ERG waveform is 
shown in fig. 1 (Top) where the negative trough after the onset 
of the stimulus is caused by the hyperpolarization of cone 
photoreceptor cells and the positive b-wave is produced by 
depolarization of on and off bipolar cells. There are some high 
frequency wavelets seen in between the a-wave and the b- 
wave of the ERG waveform which are known as oscillatory 
potentials which are generated by the interaction between 
amacrine and bipolar cells of the retina [7], [22]. 

A. Feature Extraction and Statistical Analysis 
There are four main time-domain parameters of the ERG 

waveform: a- wave peak time 𝑇𝑇𝑎𝑎 , a-wave peak amplitude 𝑉𝑉𝑎𝑎, 
b-wave peak time 𝑇𝑇𝑏𝑏 and b-wave peak amplitude𝑉𝑉𝑏𝑏 . These 
parameters were extracted from local minima and maxima of 
a and b waves using RFF extractor software followed by visual 
inspection to confirm. Atypical change of these parameters 
indicates abnormalities in retinal function. The power spectral 
density of the ERG (Fig. 1 (bottom)) shows that most of the 

 

  
Figure 1: ERG signal (Top) and Power spectral density (Bottom) Figure 2: VFCDM decomposition of ERG 



 

power is contained within 300 Hz which is in accordance with 
retinal physiology [22]. To extract informative features from 
different spectral regions we then decomposed the ERG signal 
into 24 equal width (1000/24=41.67 Hz) frequency bands 
using VFCDM [23]. However, since relevant information is 
found within 300 Hz, we utilized only the first 8 components 
in our analysis. Fig. 2 shows the first 8 VFCDM components 
extracted from a given ERG signal. Note that the first 20 and 
the last 50 points from the VFCDM components were 
removed to discard border effects. We extracted several 
statistical features from these components to analyze the 
dynamics of different frequency bands. Table 2 lists the time- 
domain features from raw ERG and statistical features 
computed from VFCDM components. Then we performed 
statistical analysis on these features to explore the features 
that provide more information for a more accurate separation 
between ASD and ADHD. We performed thresholding-based 
classification using these features and used Youden’s J index 
to find optimum threshold. 

 
TABLE II. FEATURES USED FOR MLMODELS 

 

Time-domain features 
from ERG waveform 

Ta, Va, Tb, Vb 

Statistical Features from 
VFCDM components 

Mean, Max, Variance, Kurtosis, 
Skewness, Entropy, Inter-Quartile range 

 
B. Machine Learning Analysis 

After extracting features and statistical analysis we 
performed machine learning (ML) to classify ASD and 
ADHD. We applied different ML models such as random 
forest (RF), adaptive boosting (AdaBoost), gradient boosting 
(GradBoost), support vector machine (SVM), K-nearest 
neighbor (KNN), extreme gradient boosting (XGBoost) to find 
the best classifier. Since we had limited number of samples 
and multiple samples from the same subject, we performed 10- 
fold leave p groups out cross validation on the whole dataset 
which ensured that there was no data leakage. We extracted 60 
features (4 time-domain, 56 statistical features from VFCDM 
components) in total and some of which may be redundant for 
classification. To discard redundant features, we used RF 
based feature selection process since RF has built-in feature 
selection method and is easily interpretable. After selecting 
features with higher separation strength, we performed 
hyperparameter optimization of the classifiers using 3-fold 

 

Figure 3: Machine learning analysis workflow 

 

 
Figure 4: Statistical analysis of features 

* and ** refer to statistically significantly different based on 0.01 and0.001 level of 
significance respectively 

 
cross validation on the training dataset using GridSearchCV. 
Fig. 3 shows the workflow for the ML analysis. 

IV. RESULTS 

A. Feature Analysis and thresholding 
One study identified the LA b-wave amplitude of ERG as 

the best time-domain feature to classify ASD and ADHD [8]. 
So, we analyzed features including 𝑉𝑉𝑏𝑏 for comparison. We 
performed Shapiro-wilk normality test and found that most of 
the features are non-normal and that’s why we performed 
Mann Whitney U test to determine whether they differed 
significantly between ASD and ADHD. Since comparing all 
the features from different frequency regions is beyond the 
scope of this report, and the inter-quartile range (IQR) was 
found to be typically the most important feature based on RF 
feature selection model, we chose IQR from 1st (0-41.67 Hz), 
4th (125-166.6 Hz) and 7th (250-291.67 Hz) VFCDM 
component to compare with 𝑉𝑉𝑏𝑏 as shown in Fig. 4. Table 3 
shows the classification result using thresholding on these 
features and we report only (446/Right Eye) configuration. 
Here, sensitivity and specificity were used to assess the 
performance of the model to classify ASD and ADHD. 

TABLE III. THRESHOLDING BASED CLASSIFICATION 
 

Feature Sensitivity 
(Sen.) 

Specificity 
(Spe.) 

Accuracy 
(Acc.) 

AUC 

𝑉𝑉𝑏𝑏 0.42 0.86 0.58 0.69 
IQR-1 0.72 0.38 0.59 0.52 
IQR-4 0.83 0.56 0.73 0.74 
IQR-7 0.81 0.75 0.79 0.82 

A. Classification Result 
Since we had ERG samples using 2 different flash 

strengths (113 Td.s and 446 Td.s) from both right and left eyes 
giving us 4 different combinations, we performed ML analysis 
for all the combinations separately. Out of all the ML models, 
the best classification performance was found using 
GradBoost and XGBoost. Table 4 reports classification 
performance of our proposed ML models. 

TABLE IV. ML BASED CLASSIFICATION 
 

Flash strength/ Eye Classifier Sen. Spe. Acc. AUC 
446 / Right GradBoost 0.87 0.79 0.84 0.87 

XGBoost 0.86 0.78 0.83 0.90 
446 / Left GradBoost 0.78 0.60 0.70 0.77 

XGBoost 0.76 0.55 0.68 0.78 



 

 

113 / Right GradBoost 0.78 0.63 0.72 0.77 
XGBoost 0.83 0.60 0.75 0.79 

113 / Left GradBoost 0.85 0.64 0.76 0.80 
XGBoost 0.82 0.71 0.78 0.87 

 
V. DISCUSSION AND CONCLUSION 

In this study, we have presented a novel approach to 
classify ASD and ADHD. We have divided the overall spectral 
information into several equal width bands and showed that 
features computed from the high frequency bands of VFCDM 
decomposition are highly discriminative between ASD and 
ADHD subjects. We performed thresholding-based 
classification on both previously reported biomarker time 
domain parameter 𝑉𝑉𝑏𝑏 [8] and statistical features from high 
frequency region. We found that IQR from the high frequency 
VFCDM component were more sensitive than low frequency 
components and able to separate ASD and ADHD subject with 
79% accuracy compared to 58% accuracy with 𝑉𝑉𝑏𝑏 . Finally, we 
performed machine learning based classification using all the 
features achieving 0.87 AUC score and 84% accuracy (Sen.= 
0.87, Spe. = 0.79) which is a significant improvement over 
previously reported 0.88 AUC score (Sen.= 0.84, Spe.= 0.57) 
[8]since we achieved a balanced classification of both ASD 
and ADHD subjects where the previous study was highly 
biased towards one class. We have found that VFCDM 
decomposition of ERG provides suitable biomarkers to 
classify ASD and ADHD. However, ASD and ADHD are 
sometimes present in the same individual which has not been 
considered in this study. For our future studies we will 
investigate the potential of VFCDM decomposition and ML 
analysis to separate concomitant ASD and ADHD from ASD 
and ADHD alone. We found higher classification performance 
using 446/Right Eye configuration which might be the effect 
of collecting ERG data from right eye first. Further research is 
needed to explore the physiological significance of this finding 
and correlate with clinical severity. This work paves the way 
towards establishing a biomarker capable of detecting 
neurodevelopmental disorders to improve earlier diagnosis. 
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