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Abstract—With the explosive increase in computing demands
and the rise of portable wearable devices, the concept of mobile-
edge computing (MEC) has emerged and attracted a lot of
attention from both academia and industry. Unmanned Aerial
Vehicle (UAV) as flexible moving platform has been wide adopted
as a edge computing server to help ground users compute their
intensive tasks. Although UAV-assisted edge computing is capable
to enhance the computing performance, there are still many
challenges in this system, including UAV 3D trajectory design,
the allocation of UAV computational resources and the communi-
cation time allocation between users and UAV. In this article, we
try to solve these challenges in a UAV-assisted edge computing
system, aiming at minimizing the completion time of computing
users’ tasks. Specially, we propose a combination algorithm of
the alternating optimization method and the bisection search
method to minimize the delay of the whole system. The whole
algorithm can be described in two iterative steps. In the first
step, with given total number of time slot N assuming each slot
with fixed length, we check whether the current N can satisfy
the computational demands of the whole system through the
alternating optimization algorithm to obtain the computational
and time allocation. In the second step, we use the resource
allocation results obtained in the first step to choose whether to
increase or decrease N via the bisection search method. Then we
repeat the first and second steps until we find the the smallest
N that best fits the current computational demand. Extensive
experimental results demonstrate that our proposed algorithm
greatly reduces the users’ task completion time in comparison
with traditional benchmarks. In addition, the convergence of the
proposed algorithm can be guaranteed.

I. INTRODUCTION

The emerging technology of edge computing caters to the
needs of this era of rapid growth in computation task size and
strict requirements for latency, thus attracting wide attention
from researchers. The application scenarios of edge computing
have been explored in [1] and [2], which include virtual reality,
massive machine-like communication, intelligent unmanned
vehicle, etc. Meanwhile, edge computing servers deployed
on the user side can provide massive computing resources to
support the vision of intelligent IoT. UAV is now seen as a
cost-effective and reliable platforms for communications and
computing due to its characteristics of flexible deployment and
low-cost. The prospects and challenges of UAV in wireless
communication systems have been extensively studied in [3]–
[5].

In [6], UAV with edge computing and storage server is
used to reduce the latency of online VR users, and the
authors effectively reduce the latency of the whole system
by optimizing the resource allocation and UAV deployment

location. In [7], The authors use Lagrange multiplier and
sub-gradient descent methods to optimize spectrum resource
allocation, offloading task size, and computational resource
allocation, and use the SCA method to optimize the 2D
trajectory of the UAV to minimize the energy consumption
of both the UAV and the users. In [8], The authors envision
an extreme case of combining wireless charging and edge
computing. The base station first charges the energy-poor user
via wireless charging and then helps users to complete the
computation task after the charging. The energy consumption
of the base station is minimized by optimizing the user’s
offloading decisions, time allocation, and base station transmit
power. In [9], the weighted energy minimization problem of a
three-level edge computing architecture consisting of satellites,
spacecrafts and users is investigated. Moreover, the authors
used multiple antenna technique and classical WMMSE op-
timization method to overcome the path loss due to the long
distance transmission caused by satellite communication. The
problem of minimizing the mission completion time of an edge
computing system composed of satellites, base stations and
users is also introduced in [10], and the closed-form solution of
the scaling factors for each level are derived and then solve the
problem jointly with an intelligent algorithm. Besides, [11]–
[13] investigated the problem of minimizing the completion
time of UAV-enabled information collection and UAV-enabled
broadcasting via trajectory design, respectively, [14] solved
the problem of minimizing the completion time of an edge
computing system with multi-UAV collaboration, but it only
considering 2D UAV trajectory optimization. In addition, the
time minimization problem was studied in different ways in
[15]–[17], but these articles only considered scenarios where
UAVs are used for communication and did not consider the
scenario where UAV with edge computing capability.

Inspired by the above mentioned paper, an edge computing
system consisting of a UAV and users is considered in this
paper. In this scenario, UAV with its prominent mobility
can move around the users to provide emergency computing
support to the users to ensure that users can achieve low
computing latency. The main contributions of this paper are
summarized as follows. We incorporate the UAV into the
edge computing system as a complement to the computational
resources. We propose an alternating optimization algorithm
that sequentially optimizes UAV 3D trajectory, time and
computational resource allocation. In this algorithm, we use
the quadratic transformation in the trajectory optimization, so
that the horizontal and vertical trajectories of the UAV can
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be optimized together. And we find the optimal solution of
this minimization time problem by combining the method of
the bisection search method and the alternating algorithm.
Simulation results prove that our proposed algorithm and
scheme can greatly reduce user latency.

Fig. 1. UAV-enabled MEC system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, a three-dimensional (3D) Euclidean
coordinate system is adopted, whose coordinates are measured
in meters. Consider a system consisting of a UAV and K
users denoted by the set K = {1, ...,K}, and the location
of user k denoted as wk ∈ R1×2. For ease of discussion,
the completion time T is divided into N small equal-size
time slots with each size of δ, which are denoted by the set
N = {1, ..., N}. Therefore the trajectory of the UAV in time
slot n ∈ N can be denoted by (q[n], z[n]), in which q[n] is
horizontal coordinates that can be denoted as q[n] ∈ R1×2 and
z[n] is vertical coordinates. It is also assumed that each user
has a bit-wise-independent and computation-intensive task,
furthermore, UAV carries an edge computing servers, which
can help users handle their required computing tasks. We
minimize the completion time of the system by optimizing
the 3D trajectory, time and computational resource allocation.

A. UAV Trajectory Model

Each time slot is δ = T
N , which is so small that we

assume that the position and channel condition of UAV are
constant during each time slot. And the maximum horizontal
and vertical speed denoted by Vhor

max and Vver
max in meter/second

(m/s), respectively. In order to be able to design an UAV
trajectory that are feasible given the motion characteristics,
the following constraints have to be ensured

∥q[n+ 1]− q[n]∥2 ≤ Vhor
max · δ, (1)

|z[n+ 1]− z[n]| ≤ Vver
max · δ, (2)

q[1] = q0, z[1] = z0, (3)
Hmin ≤ z[n] ≤ Hmax, (4)

where constraints (1), (2), and (4) denote the speed and
maneuverability constraint of the UAV, and constraint (3)
denotes that the UAV starts from a fixed starting point in this
paper.

B. UAV-Users Channel Model

Due to the high mobility of the UAV, the channel states
between UAV and users are coherently changing, especially
when the altitude of the UAV changes during its movement, the
channel states is always switching back and forth between LoS
and NLoS states. It should be noted that the LoS probability
between UAV and users in the general scenario is given by

Pk[n]
LoS =

1

1 + ae−(b(θk[n]−a))
, PNLoS

k [n] = 1− PLoS
k [n],

(5)
n ∈ N , k ∈ K,

θk [n] =
180

π
arcsin

(
z [n]

Dk
ku[n]

)
, n ∈ N , k ∈ K, (6)

where a and b are constant term depend on the environment.
The average channel power gain from UAV to user k in

time slot n can be modeled as

hk [n] =
(
(1− ϱ)PLoS

k [n] + ϱ
)
β0D

k
gu [n]

−α
2 , n ∈ N , k ∈ K,

(7)

Dk
ku[n] =

√
∥q [n]−wk∥2 − z2 [n], n ∈ N , k ∈ K, (8)

where Dk
ku[n] is the distance between UAV and user k, β0

denotes the channel power gain at the reference distance of
1 meter and ϱ < 1 is the additional attenuation factor due to
the NLoS condition. However hk[n] is quite complicated and
difficult to deal with, fortunately, an approximate expression
for the transmission rate in this case is given in [11], which
is used throughout our paper to express the transmission rate
between users and UAV, which is given by

Rk[n] = Blog2(1 +
rk(C1 +

C2

1+e−(B1+B2Vk[n]) )

(∥q[n]−wk∥22 + z[n]2)
a
2
) (9)

n ∈ N , k ∈ K,

Vk[n] =
z[n]

(∥q[n]−wk∥22 + z[n]2)
1
2

, n ∈ N , k ∈ K, (10)

where rk = Pkβ0

σ2Γ is the SNR of signal from user k to UAV, σ2

is the receiver noise power and Γ ≥ 1 denotes the signal-to-
noise ratio (SNR) gap between the practical modulation-and-
coding scheme and the theoretical Gaussian signaling. And
C1, C2, B1, and B2 is constant term depend on environment,
respectively.

C. Offloading Model

In this paper, we assume that all computing tasks can be
arbitrarily divided to be transmitted to the UAV for computing
and ignore the time delay for returning the computing result
from UAV to users. Users can offload the computing tasks
to the UAV, and UAV utilizes the edge computing servers
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it carries to help users to complete required task, therefore,
leading to the following constraints:

K∑
k=1

tk,u[n] ≤ δ, n = 1, 2, ..., N, (11)

tk,u[n]Rk[n]Ck

fUAV
k [n+ 1]

≤ δ, ∀k, ∀n, (12)

N−1∑
n=1

tk,u[n]Rk[n] +
Nδfk
Ck

≥ Ik,∀k, (13)

0 ≤ tk,u[n] ≤ δ, 0 ≤ tu,b[n] ≤ δ, ∀k, ∀n, (14)
tk,u[N ] = tu,b[1] = 0,∀k, (15)

fUAV
k [n] ≥ 0, ∀k,∀n, (16)
K∑

k=1

fUAV
k [n] ≤ FUAV

max , n = 2, 3, . . . , N, (17)

where tk,u[n] denotes the amount of allocated transmission
time between user k and UAV in n-th time slot. fUAV

k [n] is
the computing resources allocated by the UAV to user k in n-th
time slot, Ck is the required CPU cycles for computing 1 bit of
the required computing tasks of user k, fk and FUAV

max denote
the maximum CPU frequency of user k and UAV, respectively.
Constraint (12) states that the computational task transmitted
from user k to the UAV in the n-th time slot must be processed
and return the result to user k in the n + 1-th time slot. Ik
denotes the size of the required computing tasks of each user k.
Constraint (13) guarantees that each user’s computational task
must be completed in time T . Constraint (17) states that the
computational resources allocated by the UAV to each user in
the n-th time slot cannot exceed its maximum computational
resources.

D. Problem Formulation

Our objective is to minimize the completion time by op-
timizing 3D UAV trajectory, computing resources and time
allocation in each time slot, which is expressed as:

(P1) min
q[n],z[n],fUAV

k [n],tk,u[n],N

N∑
n=1

δ[n] (18a)

s.t.(1)− (4), (11)− (17). (18b)

III. OPTIMIZATION ALGORITHM DESIGN

A. Reformulation of the problem P1

The formulated problem P1 is difficult to be sufficiently
solved due to the non-convex constraints (12) and (13), and
N is a constant term in the problem P1, which is contradictory
to our purpose in this paper. Therefore, how to get a suitable
N is a tricky problem. In order to deal with this problem,
we introduce a auxiliary variable η , which denotes the rela-
tionship between task requirements and optimization values.

If η ≥ 1, with given N , denotes tasks requirements of (P1)
can be completed by solving (P2) and η < 1 otherwise.

(P2) max
q[n],z[n],fUAV

k [n],tk,u[n],N
η (19a)

s.t.(1)− (4), (11)− (12), (14)− (17), (19b)∑N−1
n=1 tk,u[n]Rk[n] +

Nδfk
Ck

Ik
≥ η, ∀k. (19c)

Theorem 1. The optimal value η(N) of problem (P2) is a
increasing function of N .

Proof. we assume that N1 > N2, the optimal solution of
(P2), with given N2, is denoted as η∗(N2). Obviously, the
feasible solution of trajectory of probblem (P2), with given
N1, has a special solution, in which we firstly find N2 time
slots from N1 time slots and let them satisfy the optimal
solution of η∗(N2), the set of these N2 points is denoted
as N ′, and the values of remaining variables are arbitrarily
given under the constraints. Therefore, a feasible solution
η of problem (P2) is η(N1), which is determined by the

value of min
k∈K

∑
n∈N′ tk,u[n]Rk[n]+

∑
n∈N1/N

′ tk,u[n]Rk[n]+
Nδfk
Ck

Ik
.

Because tk,u[n] ≥ 0 when n ∈ N1/N
′ and Nδfk

Ck
increases

with the increase of N , so we can conclude that η∗(N1) ≥
η(N1) > η∗(N2), where η∗(N1) is the optimal solution of
problem (P2) with given N1. Therefore the optimal solution
of η of problem (P2) increases with the increase of N .

Unlike P1 that is highly dependent on the initial trajectory
due to constraint (13), which leads to the feasibility of problem
1 if N is small, P2 doesn’t require a strict initial trajectory. We
can know whether the current constant term N can meet the
requirements of the whole system by solving P2 according to
algorithm that we propose in the later part of this paper. Since
the optimal solution of P2 increases as N increases, we can
always find a suitable N using a combination of the method
of bisection and the alternating optimization algorithm that we
proposed below so that the optimal solution of P2, η∗(N), is
just around one, which means we find the minimum time to
complete the whole task. The whole process will be described
in detail in the rest parts of this paper.

B. UAV Trajectory Subproblem

For any given t[n], fUAV
k [n] and N , the UAV trajectory sub-

problem can be optimized by solving the following problem
(P3):

(P3) max
q[n],z[n]

η (20a)

s.t.(1)− (4), (12), (19c). (20b)

Problem (P3) is difficult to be handled due to constraints (12)
and (13) are still non-convex w.r.t q[n] and z[n]. Therefore,
we introduce four slack variables βk[n] ξk[n] ψk[n] and ζk[n],
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and thus, constraints (12) and (19c) can be converted as the
following form:

tk,u[n]βk[n]Ck

fUAV
k [n+ 1]

≤ δ, (21a)∑N−1
n=1 tk,u[n]βk[n] +

Nδfk
Ck

Ik
≥ η, (21b)

βk[n] ≤ Blog2(1 +
rk(C1 +

C2

ξk[n]
)

ψk[n]
a
2

), (21c)

ξk[n] ≥ 1 + e−ζk[n], (21d)
ζk[n] ≤ B1 +B2Vk[n], (21e)

ψk[n] ≥ ∥q[n]−wk∥22 + z[n]2, (21f)

where the right side of constraint (21c) is a joint convex
function w.r.t ψk[n]

a
2 and ξk[n]. Therefore, for given feasible

point ψm
k [n]

a
2 and ξkm[n], we get the lower-bound of the right

side of constraint (21c) as follow.

βk[n] ≤ Blog2(1 +
rk(C1 +

C2

ξmk [n] )

ψm
k [n]

a
2

) +
B

ln2
(ξk[n]− ξmk [n])×

Cm
k [n] +

B

ln2
(ψk[n]

a
2 − ψm

k [n]
a
2 )Dm

k [n], (22)

where Cm
k [n] =

−C2rk
ξm
k

[n]2

1+
rk(C1+

C2
ξm
k

[n]
)

ψm
k

[n]
a
2

and Dm
k [n] =

−rk(C1+
C2

ξm
k

[n]
)

ψm
k

[n]a

1+
rk(C1+

C2
ξm
k

[n]
)

ψm
k

[n]

a
2

.

After the above analysis, we can see that constraints (21a)
- (21c), (21d), and (21f) are convex constraints w.r.t q[n] and
z[n]. However, constraint (21e) is still a non-convex constraint
due to Vk[n] is a fractional form and not a convex function
for z[n] and q[n], fortunately, according to [9] and [18], the
method of quadratic transform can be used to handle Vk[n].
According to [18], we have the following theorem.

Theorem 2. By applying the quadratic transformation,
Vk[n] can be equivalently written in the following form

Vk[n] = 2ek[n]
√
z[n]− e2k[n](∥q[n]−wk∥22 + z[n]2)

1
2 ,
(23)

where ek[n] is the auxiliary variable we introduced. Given the
z[n] and q[n], at the m-th iteration, the optimal ek[n] at the
m-th iteration can be updated by

emk [n] =

√
zm[n]

(∥qm[n]−wk∥22 + zm[n]2)
1
2

, (24)

Proof. The detailed proof can be found in the [18] and will
not be described in detail here.

However, Vk[n] is still non-convex, due to (∥q[n]−wk∥22+
z[n]2)

1
2 , next, we can use SCA method to solve it efficiently.

The first order Taylor expression of (∥q[n]−wk∥22 + z[n]2)
1
2

w.r.t ∥q[n] − wk∥22 + z[n]2 around feasible point qm[n] and
zm[n] at the m-th iteration is give by

√
(∥qm[n]−wk∥22 + zm[n]2)

2
+

∥q[n]−wk∥22 + z[n]2

2
√
∥qm[n]−wk∥22 + zm[n]2

.

(25)

Now, constraint (21e) is converted to a convex constraint.
And by substituting constraints (12) - (13) with constraints
(21a) - (21b), (21d) - (21f). It can be noted that problem (P3)
is convex with respect to q[n] z[n] ξk[n] ψk[n] ζk[n] and
ωk[n], it can be sufficiently solved by the convex optimization
tools such as CVX in matlab.

C. Time Allocation of Users to UAV Sub-problem

For any given q[n] z[n] fUAV
k [n] and N , the time allocation

between users and UAV can be optimized by solving the
following problem (P4):

(P4) max
tk,u[n]

η (26a)

s.t.(11)− (15). (26b)

When the other variables fixed, the constraints (11) - (15)
are linear with respect to tk,u[n], thus P4 is a standard convex
problem. Therefore, which can be sufficiently solved by the
convex optimization tools such as CVX in matlab.

Algorithm 1: Proposed Algorithm for Problem (P2)

1: Initialize Nup as a suitable number, Ndown = 0, Ntore =

10 and define the tolerance ε.
2: repeat
3: Update N = Nup+Ndown

2
, m = 0.

4: The initial tm fm qm and zm are chosen according to the
size of N.

5: while m ≤ Ntore or ηm < 1 do
6: update m = m + 1
7: Given tm fm , update qm zm by solving problem (P3).
8: Given qm zm fm, update tm and ηm by solving problem

(P4).
9: Given qm zm tm, update fm by solving problem (P6).
10: end while
11: if ηm ≥ 1 then
12: Let Nup = N, Nopt = N.
13: else
14: Let Ndown = N.
15: end if
16: until (Nup - Ndown) ≤ ε.
17: Output: Nopt

D. UAV computing resource allocation Subproblem

For any given q[n] z[n] tk,u[n] and N , the UAV computing
resources allocation subproblem can be optimized by solving
the following problem (P5):

(P5) max
fUAV
k [n]

η (27a)

s.t.(12), (17). (27b)
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Problem (P5) is a typical resource allocation problem, We
will use the following criteria for the allocation of computing
resources of UAV

(P6) min
fUAV
k [n]

K∑
k=1

(tk,u[n]Rk[n])Ck

fUAV
k [n+ 1]

(28a)

s.t.(12), (17). (28b)

It is worth noting that problem (P5) is a convex problem
w.r.t fUAV

k [n], we can obtain the closed-form solution of
fUAV
k [n] via KKT conditions [19].

fUAV
k [n+ 1] =

 0, tk,u[n] = 0√
Ak[n]∑K

i=1

√
Ai[n]

FUAV
max , else,

(28c)

where Ak[n] = tk,u[n]Rk[n]Ck.

Theorem 3. Following the criteria that we proposed above,
the computational resource allocation in the m-th interation
ensures that the optimal solution η∗ with given N in the m+1-
th iteration is greater than or equal to the optimal solution η∗

with given N in the m-th interation.

Proof. By solving P6, we can always know that for

min
k∈K

∑N−1
n=1 tk,u[n]Rk[n]+

Nδfk
Ck

Ik
, the completion time of the of-

fload task transmitted to the UAV in each time slot of users
in the next time slot less than or equal to delta, and in
the next optimization, we can always find a suitable set of

tk,u[n] q[n] and z[n] such that min
k∈K

∑N−1
n=1 tk,u[n]Rk[n]+

Nδfk
Ck

Ik

increases. Otherwise, the optimal solution of Problem 2 has
been reached.

IV. SIMULATION RESULTS

In this section, numerical results are presented to evaluate
the performance of our proposed algorithm. We consider K =
5 users whose coordinates are (-30 -32), (-20 -14), (0 20), (24
-20) and (32 38), respectively. The minimum flight altitude
for UAV set at ten meters. The transmit power of all users is
assumed to be 0.1 W and their maximum CPU frequency is 2
GHz. The UAV carries an edge computing server, which has
a maximum computing frequency of 10 GHz. The maximum
horizontal speed and maximum vertical speed of the UAV are
20 m/s and 10 m/s, respectively. We assume that the initial
path of the UAV is a straight line path from user 1 to user 5
and the flight altitude of the initial trajectory is 15 m. Set the
value of Ck from user 1 to user 5 as [600 650 700 650 800]
cycles/bit respectively. According to [11], let B1 = - 4.3221,
B2 = 6.0750, C1 = 0, C2 = 1 and the path loss exponent α
= 2. The referenced channel gain and noise power are β0 = -
60 dB and σ2 = - 90 dBm. The total bandwidth in this paper
is 5 MHz.

In Fig. 2, we compare our algorithm with four benchmark
for different task sizes and plot the completion time as a func-
tion of task size Ik in different scenarios : 1) No offloading:
Users handle their own computational tasks without the help
of the UAV; 2) Equal time: We assume that the time for the
user to transmit the offloading task to UAV is divided equally

Fig. 2. Completion time versus the required task size.

Fig. 3. Convergence performance.

in each time slot, i.e. tk,u[n] = δ/k; 3) Equal frequency:
Assuming that the UAV allocates its computational resources
equally to each user in each time slot 4) Initial trajectory: We
fix the trajectory as the initial trajectory. As can be seen from
the Fig. 1, we achieved extremely marvellous performance in
reducing the overall system latency performance by jointly
optimizing the 3D trajectory of the UAV, the user’s time
allocation and the UAV’s computational resource allocation.
With the task size of 140Mb, our proposed algorithm reduces
the overall system latency by 53.5%.

In the Fig. 3 we plot the trend in the size of eta with the
number of iterations for a given N used to demonstrate the
convergence of our proposed algorithm. From Fig. 2 and Fig. 3
, we can conclude that the required N , can be found accurately
by our proposed algorithm to fit the required task size. And as
can be seen in Fig. 3, given a suitable N , eta monotonically
increases to near 1 and finally stabilizes near and greater than
1 by our proposed alternating optimization algorithm. The
efficiency and stability of the algorithm proposed in this paper
can be proved by the above two points.

The 2D and 3D flight trajectories of the UAV are presented
in Fig. 4.(a) and Fig. 4.(b), respectively. We sample the users
as ▲. From Fig. 4, it can be seen that in order to reasonably
allocate the computational resources of the UAV, which tends
to choose a relatively centered route to fly regardless of
whether the task size is 100MB or the task size is 140MB,
and due to the larger task size of user 3 user 4 and user 5, the
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(a) 2D trajectory
(b) 3D trajectory

Fig. 4. 2D vs 3D UAV trajectory with different required task size.

UAV hovers around the second half of the flight at the point
that simultaneously enables these three users to get a better
communication rate, minimizing the overall completion time.
In terms of changes in flight altitude, if the average elevation
angle of the UAV to the simultaneously served users is not fa-
vorable for receiving the offloading task, the UAV will increase
or decrease its flight altitude to achieve better communication
quality. Overall, when we design the trajectory of the UAV,
there is a trade-off between distance and elevation angle to
simultaneously served users to achieve optimal communication
quality, making the overall task completion time minimal.

(a) time allocation

Fig. 5. Time allocation chart for a task size of 140MB.

As shown in Fig. 5, since the UAV chooses a trajectory
far away from user 4, the UAV maintains communication
with user 4 throughout most of the whole time to share its
computational tasks as compensation, and for the other users,
the UAV chooses to connect with users relatively close to it
to maximize the communication rate, thus reducing the delay
of the whole system.

V. CONCLUSIONS

In this paper, we consider the resource allocation and 3D
trajectory design for a UAV-assisted MEC system. we mainly
use quadratic transformation and SCA method to solve the
3D trajectory design, time and computing resource allocation
problem of the UAV-enabled MEC system. We convert the
intractable Problem 1 into the form of Problem 2, which is still
nonconvex. Furthermore, a combination of bisection search
method and alternating optimization algorithms is leveraged
to make Problem 2 solvable, which alternately optimizes the
3D trajectory, time and computational resource allocation. The

simulation results show that our proposed algorithm has a
significant performance improvement over the four benchmark
schemes. In addition, the efficiency and stability of our pro-
posed algorithm are also clearly verified.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[2] F. Giust, V. Sciancalepore, D. Sabella, M. C. Filippou, S. Mangiante,
W. Featherstone, and D. Munaretto, “Multi-access edge computing: The
driver behind the wheel of 5g-connected cars,” IEEE Communications
Standards Magazine, vol. 2, no. 3, pp. 66–73, 2018.

[3] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: Opportunities and challenges,” IEEE Com-
munications magazine, vol. 54, no. 5, pp. 36–42, 2016.

[4] L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV
communication networks,” IEEE communications surveys & tutorials,
vol. 18, no. 2, pp. 1123–1152, 2015.

[5] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial
on UAV communications for 5g and beyond,” Proceedings of the IEEE,
vol. 107, no. 12, pp. 2327–2375, 2019.

[6] Y. Zhou, C. Pan, P. L. Yeoh, K. Wang, M. Elkashlan, B. Vucetic,
and Y. Li, “Communication-and-computing latency minimization for
UAV-enabled virtual reality delivery systems,” IEEE Transactions on
Communications, vol. 69, no. 3, pp. 1723–1735, 2020.

[7] X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying
and edge computing: Scheduling and trajectory optimization,” IEEE
Transactions on Wireless Communications, vol. 18, no. 10, pp. 4738–
4752, 2019.

[8] X. Hu, K.-K. Wong, and K. Yang, “Wireless powered cooperation-
assisted mobile edge computing,” IEEE Transactions on Wireless Com-
munications, vol. 17, no. 4, pp. 2375–2388, 2018.

[9] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimization
of transmission and computation resources for satellite and high altitude
platform assisted edge computing,” IEEE Transactions on Wireless
Communications, vol. 21, no. 2, pp. 1362–1377, 2021.

[10] X. Zhu and C. Jiang, “Delay optimization for cooperative multi-tier
computing in integrated satellite-terrestrial networks,” IEEE Journal on
Selected Areas in Communications, 2022.

[11] C. You and R. Zhang, “3D trajectory optimization in rician fading for
UAV-enabled data harvesting,” IEEE Transactions on Wireless Commu-
nications, vol. 18, no. 6, pp. 3192–3207, 2019.

[12] Y. Zeng, X. Xu, and R. Zhang, “Trajectory design for completion
time minimization in UAV-enabled multicasting,” IEEE Transactions on
Wireless Communications, vol. 17, no. 4, pp. 2233–2246, 2018.

[13] C. Zhan and Y. Zeng, “Completion time minimization for multi-UAV-
enabled data collection,” IEEE Transactions on Wireless Communica-
tions, vol. 18, no. 10, pp. 4859–4872, 2019.

[14] Y. Xu, T. Zhang, J. Loo, D. Yang, and L. Xiao, “Completion time
minimization for UAV-assisted mobile-edge computing systems,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 11, pp. 12 253–
12 259, 2021.

[15] M. Li, S. He, and H. Li, “Minimizing mission completion time of UAVs
by jointly optimizing the flight and data collection trajectory in UAV-
enabled wsns,” IEEE Internet of Things Journal, vol. 9, no. 15, pp.
13 498–13 510, 2022.

[16] H. Wang, J. Wang, G. Ding, J. Chen, F. Gao, and Z. Han, “Completion
time minimization with path planning for fixed-wing UAV communica-
tions,” IEEE Transactions on Wireless Communications, vol. 18, no. 7,
pp. 3485–3499, 2019.

[17] J. Li and Y. Han, “Optimal resource allocation for packet delay mini-
mization in multi-layer UAV networks,” IEEE Communications Letters,
vol. 21, no. 3, pp. 580–583, 2016.

[18] K. Shen and W. Yu, “Fractional programming for communication
systems—part I: Power control and beamforming,” IEEE Transactions
on Signal Processing, vol. 66, no. 10, pp. 2616–2630, 2018.

[19] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.


