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Abstract. The Zig-Zag process is a Piecewise Deterministic Markov
Process (PDMP), efficiently used for simulation in an MCMC setting.
A generalisation of this process, the Speed Up Zig-Zag (SUZZ) process,
was later suggested in Vasdekis G. and Roberts G. O. (2023+) [28] as
a way to explore the tails of the distribution faster, making it an ideal
candidate for heavy tailed targets. In this article we will describe the
SUZZ process, we will review the main theoretical results and we will
present a numerical study on some more practical models than the ones
discussed in Vasdekis G. and Roberts G. O. (2023+) [28], showing that
the advantages of using SUZZ may also extend to lighter tailed targets.
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1 Introduction

Markov Chain Monte Carlo (MCMC) is an important technique, widely applied
in Bayesian statistics when one tries to numerically estimate intractable inte-
grals with respect to a posterior distribution. MCMC offers a solution to this
problem by constructing a Markov chain that has the posterior as invariant
and then using samples from the chain as samples distributed approximately
according to the law of the posterior. One then uses these samples to estimate
the intractable integral. Traditional MCMC algorithms, such as MALA or Ran-
dom Walk Metropolis (RWM) are constructed to be time-reversible. On the
other hand, there is evidence that non-reversible Markov chains can sometimes
outperform reversible ones (see for example [20, 17, 24, 13, 21, 3, 18]). Piecewise
deterministic Markov processes (PDMPs) have recently been used as a way to
construct non-reversible MCMC algorithms. These are processes that move de-
terministically for a random period of time before randomly jumping to a differ-
ent type of deterministic movement. This partially deterministic behaviour gives
them a notion of momentum which can accelerate the state space exploration.

General literature on PDMPs and their applications to MCMC includes [19,
26, 5, 4, 9, 11, 8, 7, 15, 16, 25] etc. The two PDMPs that first appeared in the liter-
ature of MCMC were the Bouncy Particle Sampler [12] and the Zig-Zag sampler
[6]. The latter was suggested in [6] as an algorithm particularly well suited in a
Bayesian setting involving large data sets. In [10] the authors prove ergodicity
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and exponential ergodicity of the Zig-Zag process in arbitrary dimension. As in
many other MCMC algorithms, the exponential ergodicity result must assume
that the target distribution has tails lighter than some exponential distribution.
In [28], the authors proved that the Zig-Zag process fails to be exponentially
ergodic when the target distribution has tails heavier than any exponential dis-
tribution. In fact, polynomial rates of L2-convergence have been proven in [1]
for the process in arbitrary dimension, while [27] proves tight polynomial rates
of convergence in the total variation distance, for the one-dimensional process,
when the target has tails that decay like a Student distribution.

In order to overcome the problem of Zig-Zag’s slow mixing on heavy tails, [28]
introduced a variant of the Zig-Zag process, called Speed Up Zig-Zag (SUZZ).
Instead of only permitting the process to move with unit speed, the SUZZ pro-
cess has a positive, position-dependant speed, which assists exploration of the
tails and subsequent return to the high density areas of the distribution more
rapidly. Indeed, exponential ergodicity results were established in [28] for the
SUZZ process, and, when applied to some heavy tailed toy models, the process
was shown to provide significant computational advantages, even against state
of the art algorithms. In this article, we will provide numerical results that show
that the SUZZ process can be efficient even on lighter tails.

The rest of the article is organised as follows. In Section 2 we describe the
SUZZ process. In Section 3 we recall the theoretical results proved in [28] con-
cerning the process. Finally, in Section 4 we provide a numerical comparison
between the SUZZ process, the original Zig-Zag and a Metropolis-Hastings al-
gorithm in the context of Bayesian logistic regression.

2 The SUZZ process

In this section we will describe the SUZZ process, introduced in [28]. This is a
d-dimensional, continuous time process that moves in straight lines, parallel to
vectors of the form {−1,+1}d, but the speed in which the process traverses these
straight lines depends on its current position. Typically the speed s ∈ C1

(
Rd
)
of

the process will increase the more the process moves away from the mode of the
posterior, allowing for a faster exploration of the tails. The state of the process
consists of a position x ∈ Rd and a direction v = (v1, ..., vd) ∈ {−1,+1}d.
For a random period of time, the direction v remains constant, while the x-
component of the process deterministically follows the straight line parallel to v.
This random period of time is given as the first arrival time of a non-homogeneous
Poisson process. Afterwards, the direction v is updated and the process starts
following a different straight line, etc.

More precisely, let us assume that one wants to target a d-dimensional pos-
terior with density

π(x) =
1

Z
exp{−U(x)}, (1)
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with U ∈ C1 and Z =
∫
Rd exp{−U(y)}dy < ∞. Let us assume that the process

has speed function s ∈ C1. For all i ∈ {1, ..., d}, let’s consider the functions

λi(x, v) = max {0, viAi(x)}+ γi(x), (2)

where

Ai(x) = s(x)∂iU(x)− ∂is(x), (3)

and ∂i denotes the partial derivative with respect to the i-coordinate. Here γi
can be picked by the user of the algorithm and can be any non-negative, locally
bounded, integrable function that only depends on x. A natural choice is γi(x) =
0 for all x ∈ Rd.

The state space of the process will be E = Rd × {−1, 1}d. When the process
is at point (x, v) ∈ E, with x ∈ Rd and v ∈ {−1, 1}d, the x-component will
move along the straight line {x+ vt, t ≥ 0} with speed function s that depends
on the current position. Formally, the x-component of the process will follow a
deterministic pathXt which solves the system of Ordinary Differential Equations
(ODE) 

d

dt
Xt = v · s(Xt), t ≥ 0

X0 = x.
(4)

For each coordinate i ∈ {1, ..., d}, we let T i
1 denote the first event of a non-

homogeneous Poisson Process with rate mi(t) = λi(Xt, v).
Let T1 = mini∈{1,...,d} T

i
1 and j = argmini∈{1,...,d}{T i

1}. The SUZZ process is
defined until time T1 to be (Xt, Vt)t<T1

, where Xt is the solution of (4) until
time T1 and Vt = v. At time T1 the direction VT1

of the process switches from
v to Fj(v) = (v1, ..., vj−1,−vj , vj+1, ..., vd). Then the process starts again from
the new starting point (XT1 , Fj(v)) and the x-component evolves as the solution
of the ODE (4), with starting point XT1

and direction Fj(v). The x-component
follows this ODE until the random time T2, defined as the first arrival time of a
Poisson processes, in a similar fashion to T1. Then the direction of the process
is again updated and the process starts again, etc.

The algorithmic description of a d-dimensional SUZZ process targeting a
d-dimensional posterior distribution with density is given by the following algo-
rithm.

Algorithm 1 (Speed Up Zig-Zag) 1. Set t = 0
2. Start from point (Xt, Vt) = (x, v) ∈ Rd × {−1,+1}d.
3. The process (Xt+u, Vt+u) moves according to the deterministic ODE system

d

du
Xt+u = v · s(Xt+u), u ≥ 0

Xt = x,
(5)

and Vt+u = v, u ≥ 0. Let {Φu(x, v), u ≥ 0} be the solution over time u of
the ODE (5) with starting point x ∈ Rd and v ∈ {−1,+1}d.
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Fig. 1: Trace plots of ZZ and SUZZ process with speed s(x) =
(
1 + ∥x∥22

)1/2
,

targeting a two-dimensional Cauchy with positive correlations.

4. For every coordinate i ∈ {1, ..., d}, define the function λi : Rd × {−1,+1}d
as in (2). For all i, consider the non-homogeneous Poisson process with
intensity {mi(u) = λi(Φu(x, v), v), u ≥ 0}.

5. Let τi be the first arrival time of the i’th Poisson process, i.e. for all t0 ≥ 0,
P(τi ≥ t0) = exp{−

∫ t0
0

mi(u)du}. Let j = argmin{τi, i = 1, ..., d} and
τ = τj the first arrival time of all the processes.

6. For u ∈ [0, τ) set Xt+u = Φu(x, v) and Vt+u = v.
7. Set t = t+ τ , x = Φτ (x, v) and Xt = x.
8. If v = (v1, ..., vd), set a new v = (v1, ..., vj−1,−vj , vj+1, ..., vd) and set Vt = v.
9. Repeat from the Step 2.

Remark 1. It is important to note that for one to use the SUZZ algorithm to
target π, one needs to use the entire path (Xt)t≥0 and not only the switching
points XTk

since these will be biased towards the tails of the distribution. In
practice one can specify a δ > 0 and use the points Xm·δ,m = 1, 2, 3, ... as the
output of the MCMC algorithm.

When one tries to implement the SUZZ process in a computer, two issues
arise. The first is efficiently simulating the switching times of the process from the
Poisson process, a common problem in the PDMP literature. For recent work
on how one can practically tackle this problem we refer the reader to [15, 16,
25]. The second issue is that one needs to be able to simulate the deterministic
dynamics of the process directly, meaning that one should use a speed function s
such that the ODE (4) admits a closed form solution. A family of speed functions
that lead to closed form solutions is

s(x) =
(
1 + ∥x∥22

) 1+k
2 , (6)
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for any k = 0, 1, 2, 3, .... For more details on how one can explicitly solve the
ODE for this class of speed functions, the reader is referred to [28].

It is interesting to note that for s as in (6) with k > 0, and more generally
when the speed function s grows super-linearly, the solution to the ODE (4)
explodes and reaches infinity in finite time. This could be of great use since it
can allow the algorithm to quickly reach and explore the tails of the target. At
the same time, after the process reaches the tails of the target, it can quickly
come back to the mode, leading to a very stable algorithmic behaviour. Part of
the theory of [28] was to prove that using this type of ODE is mathematically
feasible to implement. In order to do that, one needs to prove that even though
the deterministic dynamics may explode in finite time, the rate of switching
direction is sufficiently large and the Poisson process will a.s. force the SUZZ
process to switch direction before reaching infinity. This way, the process is
a.s. non-explosive. To the best of our knowledge this is the first time explosive
dynamics are being used in PDMP Monte Carlo.

3 Theoretical Results

We now recall the main theoretical results of [28], which prove that under con-
ditions on s and U , the SUZZ process exhibits exponentially fast convergence
to the target distribution in total variation distance. Indeed one can prove that
for practical choices of speed functions, the convergence is exponential even for
some heavy tailed targets, such as targets that decay like exp{−∥x∥a} for some
a < 1 (see [28] for more details).

In order to guarantee the theoretical properties of SUZZ process, one must
make the following assumptions.

Assumption 1 (Speed Growth) lim∥x∥→∞ ∥x∥d−1s(x) exp{−U(x)} = 0.

Assumption 2 (Rates Growth) Assume that for the refresh rates there exists
γ̄ such that for all i ∈ {1, ..., d}, x ∈ Rd , γi(x) ≤ γ̄.
Furthermore, assume that there exists R > 0 and A > 0 so that for all ∥x∥ ≥ R,

d∑
i=1

|Ai(x)| > A > max{3dγ̄, 4d(d− 1)γ̄}. (7)

Furthermore, the authors in [28] make the following assumption.

Assumption 3 If we iteratively define the functions hn : [0,+∞) → [0,+∞)
such that

h0(x) = x (8)

and for n ≥ 1
hn(x) = log(1 + hn−1(x)). (9)

then there exists an n ∈ N such that

lim
∥x∥→∞

hn (s(x)∥∇ (U(x)− log s(x)) ∥1)
U(x)− log s(x)

= 0. (10)
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Furthermore, assume that for all j ∈ {1, ..., d}, Aj ∈ C1 and ,

lim
∥x∥→∞

s(x)∑d
k=1 |Ak(x)|

d∑
i=1

d∑
j=1

|∂iAj(x)|
1 + |Aj(x)|

= 0. (11)

In what follows we will be writing µ to denote the measure on E such that

µ = π ⊗ 1

2d

∑
v∈{−1,+1}d

δv, (12)

i.e. the product measure between π and the uniform distribution on {−1,+1}d,
which has π as marginal in the x-component and the uniform as marginal on
the v-component. Then, [28] proves the following.

Theorem 1. Let (Zt)t≥0 = (Xt, Θt)t≥0 be a SUZZ process with speed function
s ∈ C2 bounded away from 0.

– Assume that the rates satisfy (2) and Assumptions 1, 2 and 3 hold. Then
the SUZZ process is a.s. non-explosive and has the measure µ in (12) as
invariant.

– Assume further that the function U − log s ∈ C3 and has a non-degenerate
local minimum, i.e. there exists a local minimum x0 such that the Hessian
of U − log s is strictly positive definite at x0. Finally, assume that µ is a
probability measure. Then the SUZZ process is exponentially ergodic, i.e.
there exists ρ < 1 and M : E → [1,+∞) such that for all (x, v) ∈ E,

∥Px,v ((Xt, Vt) ∈ ·)− µ(·)∥TV ≤ M(x, v)ρt.

– Assuming the assumptions of the previous bullet, let {Yn, n ≥ 0} be any
skeleton of the SUZZ process (i.e. for some δ > 0, Yn = Zn·δ for all n ∈ N)
and let f : E → R such that there exists an ϵ > 0 with Eµ[f

2+ϵ] < ∞. Then,

a CLT result holds, i.e. there exists a γ2
f ∈ [0,∞) and Z̃ ∼ N (0, γ2

f ) such
that

√
n

(
1

n

n∑
k=1

f(Yk)− µ(f)

)
n→∞−−−−→

D
Z̃.

The second convergence result proved in [28] is of similar flavour and makes
assumptions that are easier to verify in practice. On the other hand these as-
sumptions essentially force the target to have lighter tails (i.e. one must have that
lim inf∥x∥→∞ ∥∇U(x)∥ > 0). However, light tailed targets can be very commonly
found in applications of Bayesian statistics.

Assumption 4 Assume that U − log s ∈ C2 and there exists an M̃ > 0 such
that the rates γi as in (2) satisfy γi(x) ≤ M̃s(x) for all x ∈ Rd. Assume further
that for some n ∈ N, if hn as in (9) and Hess denotes the Hessian matrix, then

lim
∥x∥→∞

hn (∥∇(U(x)− log s(x))∥)
U(x)− log s(x)

= 0, lim
∥x∥→∞

∥Hess(U(x)− log s(x))∥
∥∇ ((U(x)− log s(x)) ∥

= 0,
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and that there exists R > 0 and A > 0 so that for all ∥x∥ ≥ R,

∥∇(U(x)− log s(x))∥1 > A > max{3dM̃, 4d(d− 1)M̃}. (13)

Theorem 2. Let (Zt)t≥0 = (Xt, Θt)t≥0 be a SUZZ process with speed function
s ∈ C2 bounded away from 0.

– Assume that the rates satisfy (2) and Assumptions 1 and 4 hold. Then the
SUZZ process is non-explosive and has the measure µ in (12) as invariant.

– Assume further that the function U − log s ∈ C3 and has a non-degenerate
local minimum, in the sense of Theorem 1. Finally, assume that µ is a prob-
ability measure. Then the SUZZ process is exponentially ergodic.

– Assuming the assumptions of the previous bullet, let {Yn, n ≥ 0} be any
skeleton of the SUZZ process and let f : E → R such that there exists an
ϵ > 0 with Eµ[f

2+ϵ] < ∞. Then, the CLT result of Theorem 1 holds.

One should note that the assumptions of Theorem 2 are essentially the same
as the ones made in [10] to prove exponential ergodicity for the original Zig-Zag
process. This seems to suggest that the SUZZ process with any reasonable speed
function should at least not perform much worse than the original Zig-Zag on
any target where the latter one performs well. This allows us to see the speed
function as a tuning parameter for the process, which, if chosen carefully, could
lead to significant computational advantages. In [28] the authors show through
some toy model simulations that these advantages can occur in heavy tailed
targets. In the next section we will show that these advantages can occur even
on light tailed targets, more commonly encountered in Bayesian applications
(see for example [14]).

4 Numerical Examples

Below we present a numerical example where we target the posterior occurring
from a logistic regression model. This is commonly used as a benchmark problem
for MCMC algorithms (see for example [14]). In this model, conditional on a
d-dimensional parameter β = (β1, ..., βd) and given d-dimensional covariates
xj = (xj

1, ..., x
j
d) ∈ Rd, where j = 1, ..., n, the binary variable yj ∈ {0, 1} has

distribution given by

P
(
yj = 1

)
=

1

1 + exp
{
−
∑d

i=1 βix
j
i

} .
We considered this model for dimension d = 2 and d = 16. For both cases
we assigned β a prior distribution such that for all i, βi are i.i.d. N (0, 100).
This is a fairly non-informative prior. We generated data using the values of
β1 = − log(4) and β2 = 0.5 for both d = 2 and d = 16 cases. We also set xj

1 = 1

for all j and we generated xj
2 according to N (0, 5). For the d = 16 case, we

also set β3 = 10−3 , and βi = 1 for i = 4, ..., 16, while xj
i ∼ N (0, 5) for all
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i = 3, ..., 16. We considered the posterior distributions on β for various number
of observations. More specifically, we considered n = 26, 27, ..., 210 for the d = 2
case and n = 27, ..., 212 for the d = 16 one.

We compared the performance of the original Zig-Zag process (ZZ) with the
one of the SUZZ(1) process, where SUZZ(k) denotes the SUZZ process with
speed function given by (6). Note that SUZZ(1) has explosive deterministic dy-
namics, but the actual process a.s. does not explode. A general way to construct
the deterministic dynamics for this type of speed functions can be found in [28].
We also compared these algorithms against a Random Walk Metropolis (RWM)
algorithm with Normal distribution as proposal. For the covariance matrix of the
random walk’s proposal we used an approximation of the asymptotic covariance
matrix of the maximum likelihood estimators of β’s (see for example [22]). For
the d = 16 case, we also compared against a RWM with diagonal covariance
matrix, which we will call Independent RWM (IRWM). Following the guidelines
of [23], all the proposals for the RWM and IRWM algorithms were tuned so
that the acceptance ratio was close to 0.234. For each posterior and each of the
algorithms presented, we simulated ten independent realisations of the process,
until N = 105 switches of direction occurred (or for N = 105 steps in the case
of Random Walk). As a sample from the PDMPs we used the position of the
process every δ time units, as mentioned in Remark 1. Here δ was chosen after
an initial run of the algorithm such that the sample size was roughly equal to
the number of direction switches (N = 105). We refer the reader to [28] for more
details on why choosing δ this way. All simulations were performed using MATLAB
in a computer with i7-8550U CPU and 1.80 GHz.

We present our results in Figures 2 and 3. The x-axis of the Figures is the
number of observed data used to construct the posterior. For every such posterior
and for each algorithm, we present the average ESS per minute of implemen-
tation time (Figure 2) or the average ESS per likelihood evaluation (Figure 3).
We should note here that for presentational convenience, the ESS in Figure 3
are stated in scale 10−3, i.e. one should multiply with 10−3 to get the actual
value. The averages are taken over the ten independent implementations of the
respective algorithm. For all algorithms, we compute the ESS using the routine
mcmcse of R. Both figures report results both for dimension d = 2 and d = 16.

In dimension d = 2, all three algorithms provided a small Mean Square Error
(MSE), which can increase our trust that all algorithms converged to the right
distribution. In terms of performance comparison, we observe that both PDMPs
vastly outperformed the RWM, while the ZZ algorithm outperformed SUZZ(1).

The picture is different when the dimension of the parameter space increased.
In particular, the IRWM consistently underperformed compared to the other
algorithms, the RWM and the ZZ performed relatively similar, while SUZZ(1)
outperformed all three other algorithms. Indeed SUZZ(1) seems to consistently
outperform ZZ in this higher dimensional case, irrespective of the number of
observations. This shows that using a speed function in the context of PDMP
algorithms can lead to significant benefits, even when the target has light tails.
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Fig. 2: Average ESS per minute of implementation for SUZZ(1), ZZ, RWM
and IRWM algorithms in the logistic regression model for dimensions d = 2 and
d = 16 and various number of observed data.
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IRWM algorithms in the logistic regression model for dimensions d = 2 and
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Finally, we should note that if one has an understanding of the posterior’s
covariance matrix (as is the case in logistic regression, used in the RWM case
when tuning the proposal’s covariance matrix), one can try to improve the per-
formance of the original Zig-Zag and the SUZZ algorithm, for example using
ideas from [2]. One could also try to use speed functions that take into account
the known approximation C of the covariance matrix, for example by using

s(x) =
(
1 + xTC−1x

) 1+k
2 .

Using this type of ideas is work in progress.
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