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Abstract

Demonstrating parallelism in quantitative
laboratory tests is crucial to ensure accur-
ate reporting of data and minimise risks to
patients. Regulatory authorities make the
demonstration of parallelism before clinical
use approval mandate. However, achieving
statistical parallelism can be arduous, espe-
cially when parallelism is limited to a sub-
range of the data. To address potential bi-
ases and confounds, I propose a simple graph-
ical method, the Partial Parallelism Plot, to
demonstrate partial parallelism.
The proposed method offers ease of un-

derstanding, intuitiveness, and graphical sim-
plicity. It enables the graphical assessment
of quantitative data risk when parallelism is
lacking within a defined range. As parallel-
ism may not be consistent across the entire
analytical range, the plots focus on partial
parallelism. The method can readily be pro-
grammed into graphical applications for en-
hanced interactivity. By providing a clear
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graphical representation, the method allows
researchers to ascertain the presence of paral-
lelism in laboratory tests, thus aiding in the
validation process for trials and clinical ap-
plications.
Keywords: Parallelism, biomarker, labor-

atory test, graphical statistics.
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1 Introduction

In clinical medicine, precise determination of
the concentration of a given compound is es-
sential. For instance, in the case of suspec-
ted heart attack, the concentration of specific
biomarkers must be determined accurately
in a blood sample of the patient to support
the diagnosis. Inaccurate mathematical cal-
culations based on laboratory measurements
may lead to erroneous biomarker concentra-
tions and misdiagnosis. Therefore, mathem-
atical calculations are heavily relied upon in
daily clinical and laboratory practices, but it
is crucial to ensure that the underlying as-
sumptions of these calculations are satisfied.
This report addresses one such assumption,
namely parallelism.

Demonstration of parallelism is crucial for
the accuracy of any test based on calcu-
lating sample concentration from a stand-
ard curve [1]. However, it has been noted
that there is no widely adopted universal
strategy for assessing parallelism in bioas-
says. Without assurance of parallelism,
investigators are unable to calculate reli-
able estimates for serum antibody concentra-
tions [1]. To address this issue, it has been
suggested to visually compare the slope of
logistic-log curves, for which a series of ex-
cellent examples have been provided. The
authors cautioned against purely statistical
assessments of parallelism, as the methods of
computation are complex, not readily avail-
able in software packages, prone to error un-
less interpreted correctly, and overly sensit-
ive to negligible departures from parallelism
when model precision is high. Furthermore,

no guidance was provided on how to interpret
the data in cases where there is partial non-
parallelism, which may make it challenging
for users to determine the appropriate course
of action. Notwithstanding this constraint,
the parallelism plots initially proposed [1]
continue to serve as a valuable graphical tool
for evaluating parallelism in laboratory tests,
and their significance has been acknowledged
in subsequent research. According to this au-
thoritative perspective [2], the experimental
validation of parallelism remains a challen-
ging and pivotal aspect in the validation of
bioanalytical methods to this day, an asser-
tion that was reiterated in a highly influential
white paper [3].
Regulatory authorities impose strict re-

quirements for the approval of an assay,
including the demonstration of parallel-
ism. As per the latest guidelines by the
Food and Drug Administration (FDA) and
European Medical Agency (EMA), parallel-
ism is defined as “Parallelism demonstrates
that the serially diluted incurred sample re-
sponse curve is parallel to the calibration
curve” [4]. The guideline provides expli-
cit laboratory instructions for conducting
the study, involving the dilution of a high-
concentration study sample to at least three
concentrations with a blank matrix. How-
ever, the interpretation of results becomes
more ambiguous. The guideline states that
the consistency of back-calculated concentra-
tions between samples in a dilution series
should not exceed a 30% coefficient of vari-
ation (CV). Nevertheless, it is essential to
carefully monitor the data, as results meeting
this criterion may still indicate trends of non-
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parallelism. In cases where the sample does
not dilute linearly, a predefined procedure for
reporting results should be established. In
this report, I propose a simple graphical ap-
proach for such a procedure, as it may of-
fer greater intuitiveness and be less suscept-
ible to the limitations previously recognised
in purely numerical methods [1, 2].

The concept of parallelism may appear
simple at first glance, but it can be difficult to
understand upon further examination. Addi-
tionally, numerically driven, statistical rep-
resentations of parallelism may not be in-
tuitive for individuals without a statistical
background. This lack of understanding can
be problematic for regulatory authorities and
mixed expertise panels tasked with making
decisions in laboratory-based research.

2 The Range of Accuracy

and Effect Size in the

Assessment of

Laboratory Tests

Experimental evidence indicates a signific-
ant impact of the lack of parallelism on
the quantification of neurofilaments, a well-
established biomarker for neurodegenera-
tion [5, 6]. The FDA and the EMA approved
the use of two novel drugs based on labor-
atory results quantifying neurofilaments. A
state-of-the-art randomised controlled trial
(RCT) demonstrated a reduction in neuro-
filament blood levels as proof of efficacy for
a novel disease-modifying treatment in mul-

tiple sclerosis [7], and another RCT [8] lead
to rapid FDA approval for the antisense oli-
gonucleotide tofersen to treat amyotrophic
lateral sclerosis. However, neither study
considered the possibility of partial non-
parallelism of neurofilaments. Although not
currently relevant in studies with large effect
sizes, such as [7, 8], non-parallelism becomes
more pertinent in studies with smaller effect
sizes, such as those encountered in the large
number of trials on Alzheimer’s disease which
employ biomarkers as an outcome measure.
Accepting that parallelism is a vital factor

in the evaluation of laboratory tests for bio-
markers, it needs to be acknowledged that
parallelism is just one among several other
factors influencing test reliability [9]. Pum
emphasised that analytical and clinical spe-
cificity and sensitivity are additional crit-
ical factors [2]. Various biological and tech-
nical factors, such as matrix effects, vari-
ations in biomarker metabolism, or variations
in laboratory test procedures, can also influ-
ence the accuracy of laboratory tests for bio-
markers. A large international consortium
underscored the importance of using high-
quality samples [10]. Furthermore, prospect-
ive experimental evidence highlighted that
the inter-laboratory reproducibility and tech-
nician skills are other key factors affecting
test outcomes [11].
Assessing the range of accuracy of labor-

atory tests for biomarkers is a complex task
that depends on multiple factors in addition
to parallelism. It is crucial to be aware of
these factors and to critically evaluate labor-
atory tests to determine their suitability as
diagnostic tools and trial outcome measures
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in medicine.

3 The Definition of

Parallelism and

Partial Parallelism

The term parallelism, in its simplest defini-
tion, describes the relationship between the
concentration of an analyte (such as a bio-
marker) in a sample and the signal produced
by the reference standard of the laboratory
test used to measure that analyte as earlier
introduced [1, 2]. When the relationship
between concentration and signal is linear,
parallelism is said to be present. Hence, the
other term used in the literature for paral-
lelism is linearity. This is important because
it means that the laboratory test accurately
reflects the concentration of the analyte in
the sample and, therefore, provides a reliable
measurement of the biomarker.

However, if there is non-parallelism (i.e.,
a non-linear relationship between concentra-
tion and signal), the accuracy of the labor-
atory test may be compromised. This can
occur if there is interference from other sub-
stances in the sample, or if the laboratory test
is not able to accurately detect the analyte,
for example, at higher concentrations. This
is a frequent problem with biomarker assays
requiring use of a non-linear standard curve,
as reviewed theoretically in reference [2] and
demonstrated experimentally in reference [5].

In order to test for linearity, a regression
analysis is performed to determine the slope
of the line of best fit. The formula for the

slope of the line is:

slope =

n∑
i=1

(xi − x̄)× (yi − ȳ)

n∑
i=1

(xi − x̄)2
(1)

where

xi is the concentration of the biomarker in
the sample;

yi is the signal produced by the test used
to measure the biomarker;

n is the number of data points;

x̄ is the mean concentration of the bio-
marker;

ȳ is the mean signal produced by the labor-
atory test.

If the slope is not significantly different
from 1 (i.e., if |slope − 1| ≤ SE where SE
is the standard error), then parallelism is
present. The values of xi are the given con-
centrations (i.e., ng/mL, pg/mL, g/L), and
formula (1) uses those values to calculate the
slope of the line of best fit, which represents
the relationship between the concentration of
the analyte and the signal produced by the
laboratory test, as detailed in an entire book
chapter [9]. It follows that for biomarker
assays with proof of linearity, a parallelism
coefficient close to 1 indicates that the pa-
tient sample and standard curve have similar
slopes:

Parallelism coefficient =
Slope of Patient Dilution

Slope of Standard Curve
(2)

In absence of linearity, determination of
parallelism was defined for bioassay dilution
curves in absence of a standard curve by a
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logistic-log model in which the signal for the
test are optic densities (OD) as:

OD = d+
a− d

1 + ( dilution
c

)b
(3)

where
a is the upper asymptote of the curve of the

OD at a theoretical infinite concentrations;
d is the lower asymptote of the curve of the

OD at a theoretical zero concentrations;
b is a curvature parameter;
c is the symmetry point of the sigmoid.
Linear transformation of the curve is

achieved through a logistic function where
ODmin and ODmax correspond to bespoke up-
per and lower asymptotes as

Logit(OD)fs = log

(
OD −ODmin

ODmax −OD

)
(4)

The formula can be reduced to express a
partially specified logit model introduced in
reference [1]:

Logit(OD)ps = log

(
OD

ODmax −OD

)
(5)

The visualisation of this approach is illus-
trated in Figure 1. Clearly, none of these
curves in Figure 1A meet the criteria for lin-
earity as defined at the onset of this section.
Only bespoke logistic-log transformation per-
mits to demonstrate parallelism (Curves 1–4
in Figure 1B) and lack of parallelism (Curve
5 in Figure 1B). The logistic-log transforma-
tion is the basis for the statistical analysis of
a dilution series intended to facilitate visual-
isation as intended [1].

Relative dilutioni = 100×
(
actual sample dilutioni
max dilution in series

)
(6)

Figure 1: Comparison of logistic-log curves and their
fully specified logit-log transformed counterparts.
(A) Lines 1 and 2, logistic-log curves with identical
slopes and asymptotes; Lines 3 and 4, logistic-log
curves with identical slopes and different asymptotes;
Line 5, logistic-log curve with different slope and
asymptotes. (B) Corresponding straight lines formed
by using the fully specified logit-log transformation.
[Reproduced with permission from reference [1]].

where i indicates the dilution step. Finally,
Plikaytis et al. used Generalised Linear Mod-
els (one-way analysis of covariance) for de-
termination of parallelism.

In summary, parallelism is described as a
critical aspect of the analytical test validation
in the context of analytical linearity (i.e., re-
gression analysis (Formula (1)), parallelism
coefficient (Formula (2))) and non-linearity
(i.e., a logistic-log model (Formulas (3)–(5))).
The logistic-log transformation ensures that
the test can accurately measure the concen-
tration of the biomarker over a range of con-
centrations [1]. Overall, the choice of method
for assessing parallelism depends on the data
distribution (i.e., linear or nonlinear).
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4 Graphical

Presentations of

Parallelism

Graphical presentations of parallelism can
provide a visual representation of the accur-
acy and reliability of laboratory tests for bio-
markers. Graphical presentations can help
healthcare providers and researchers to rap-
idly (i.e., at a glance) identify potential is-
sues with biomarker tests, such as interfer-
ence from other substances in the sample or
limitations with the analytical sensitivity of
the test. They can also be useful for compar-
ing the accuracy of different laboratory tests
for the same biomarker.

One common graphical presentation of par-
allelism is the parallelism plot, which involves
plotting the signal produced by the laborat-
ory test on the y-axis and the concentration
of the biomarker on the x-axis. A seminal
example from the literature was presented in
Figure 1. If the lines are parallel, it sug-
gests that the laboratory test accurately re-
flects the concentration of the biomarker in
the sample and that parallelism is present.

One development in the biomarker field,
since the introduction of the logistic-log
transformation [1], has been the use of calib-
rated and quality controlled protein standard
curves. Consequently, reported biomarker
concentrations are derived from the curve
between the symmetry point (c as defined
for Formula (3)), but never from the asymp-
totes. The lower asymptotes (d) indicate
non-measurable data. This is either because
the detection limit of the assay is insufficient

Table 1: Raw data for the doubling dilution curves
used for Figures 2 and 3.

Dilution Standard Sample-A Sample-B

1:1 10 8 4
1:2 5 4 6
1:4 2.5 2 5
1:8 1.25 1 4
1:16 0.625 0.5 3
1:32 0.3125 0.25 1.5
1:64 0.15625 0.125 0.75
1:128 0.078125 0.0625 0.375
1:256 0.0390625 0.03125 0.1875
1:512 0.01953125 0.015625 0.09375

or because there is nothing there to be meas-
ured. For the upper asymptote (a), the con-
centration of the biomarker is too high to be
estimated reliably. Extrapolation is not per-
mitted. Sample dilution is required. Taken
together parallelism of a biomarker is there-
fore only determined for

(xstd
i , ystdi ),∈ {1, . . . , nstd},where y ̸= a ∨ d (7)

Table 1 shows the data used for calculation
of the graphical presentation of the curves
in Figures 2 and 3. The first step of the
data transformation used for the graphical
presentation of the partial parallelism plots
is to adjust the calculated concentration at
each dilution step (i) as follows:

zi = xstd
i × i (8)

This is followed by normalisation of each
value of the transformed series to the value
for the lowest dilution step (i.e., dilution 1:1,
Table 2) as

z̄i =
zi

z1
(9)

Overall, graphical presentations of parallel-
ism are an important tool for evaluating the
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Figure 2: Conventional presentations of a doub-
ling dilution curve for demonstration of parallelism
between a standard and a sample. This graph il-
lustrates how the concentration of a compound (y-
axis) decreases with subsequent dilution steps (x-
axis) either presented as a continuous variable on
(A), a linear scale as used in reference [12], and (B)
on the logarithmic scale derived from Formula (5) [1].
The standard curve (cross, dotted grey line) and di-
lution curves (Sample-A, open square, dashed grey
line; Sample-B, open circle, black line).
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Figure 3: Graphical comparison of the partial logistic
presentation on the x-axis only [1] in (A) switched
for a categorical variable in (B). For any test, the
standard (cross, dotted grey line) is used as the main
comparator. In this example, the dilution curve for
Sample-A (open square, dashed grey line) is paral-
lel to the standard curve. There is a small offset on
the y-axis between the standard and Sample-A be-
cause the starting concentration for Sample-B was
less than for the standard. In contrast, the dilution
curve for Sample-B (open circle, black line) is not
parallel to the standard. For Sample-B, there is an
increase in the concentration with the first dilution
step. For dilution steps 1:4 to 1:16, the concentration
in Sample-B reduces to a lesser degree than for the
standard. After Dilution Step 1:32, there is paral-
lelism between Sample-B and the Standard, but this
is not clearly visible with this format of graphical
presentation.
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Table 2: Transformed data from Table 1 as needed
to develop the partial parallelism plots shown in Fig-
ure 4. Abbreviations: Standard = Std, Sample-A =
a, Sample-b = b. The horizontal bar above the ab-
breviation (e.g. Std) indicates the normalised values.

Dil. Std∗ A1 B1 Std† A2 B2

1:1 10 8 4 1 1 1
1:2 10 8 12 1 1 3
1:4 10 8 20 1 1 5
1:8 10 8 32 1 1 8
1:16 10 8 48 1 1 12
1:32 10 8 48 1 1 12
1:64 10 8 48 1 1 12
1:128 10 8 48 1 1 12
1:256 10 8 48 1 1 12
1:512 10 8 48 1 1 12

accuracy and reliability of laboratory tests
for biomarkers, but there are important prac-
tical limitations to their interpretability. The
next section will illustrate how this can be
overcome in a standardised way which will
simplify the interpretation of the graphical
presentation.

5 Partial Parallelism

Plots

In a partial parallelism plot, the laboratory
test results are plotted against each other on
the x- and y-axes. A line of unity is then ad-
ded to the plot to represent perfect parallel
agreement between the measurements. The
slope of the line, normalised to the first dilu-
tion step of the standard curve, is zero with

∗Data of concentrations from table 1 multiplied by
dilution step from series (i.e. 5×2 = 10, 2.5×4 = 10,
etc.) as summarised in formula 8.

†data normalised to concentration at lowest dilu-
tion step of the series (i.e. 10

10 = 1, etc.) as summar-
ised in formula 9.
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(B) Plot of data normalised to 1:1 concentration

Figure 4: (A) illustrates that the parallelism between
the Standard and Sample-A is visually more intuit-
ive compared to Figure 2. For this presentation, the
value of the concentration was corrected by multi-
plication with the dilution. The offset on the y-axis
between the Standard and Sample-A is explained by
the difference in concentration. This can be a prob-
lem for the graphical representation if this difference
is very large. Therefore, in example (B), all values
were normalised to the baseline concentration. Now
parallelism between the Standard and Sample-A is
illustrated by the overlay of the horizontal lines at
the y-axis value of one. The consequence of the ab-
sence of parallelism for Sample-B in the initial dilu-
tion steps leads to an overestimation of a factor of
≈12.5 once parallelism is achieved after a dilution
of 1:32.
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an intercept of one. Therefore, a horizontal
reference line at once permits the comparison
of the slope of the samples to visually analyse
the degree of parallelism for the biomarker in
question. If the line of unity (horizontal ref-
erence line) is significantly different from the
slope of the line of best fit for the sample, it
suggests that partial parallelism is absent.
One advantage of partial parallelism plots

is that they can be used to assess parallelism
between samples over a limited, thought to
represent the clinically useful, range of con-
centrations. This can provide a more prac-
tical evaluation of parallelism as relevant for
routine healthcare practice.
As a first step towards this goal, Figures 3

and 4 introduce the graphical representation
of the line of unity. The result of norm-
alisation for subsequent dilution steps (for-
mula (7)) is shown graphically for the data
from Table 1. In this presentation, there
is a similar graphical pattern for the plots
in Figure 3A,B. The difference between the
two plots can be seen on the x-axis. Note
that the x-axis in Figure 3A is log based.
Whilst mathematically correct, this present-
ation does not make for an easy laboratory,
clinical, or health authority-tuned assessment
of the biomarker concentration.
A much more common notation is the dilu-

tion step as used on the categorical scaled x-
axis in Figure 3B. A limitation of both graph-
ical presentations is that it cannot readily be
seen that parallelism between Sample-B and
the line of unity is only achieved after a dilu-
tion step of 1:32.
The graphical presentation can be im-

proved to better visualise when parallelism is

achieved. Figure 4A gives a graphical repres-
entation of the same two plots as in Figure 3,
adjusted for the dilution steps. For gener-
alisation, the intercept is normalised to one
at the baseline in Figure 4B. This graphical
presentation is the basis for the development
of partial parallelism plots.

The term partial parallelism plot shall
be defined as a defined range of biomarker
concentrations for which parallelism between
sample and standard can be demonstrated.
In laboratory practice, parallelism may only
be achieved after a certain dilution step
because of, for example, a matrix effect
(Table 3). Figure 5A illustrates a theoret-
ical situation with a small matrix effect which
persists up to a dilution of 1:4 (see vertical
reference line). The graphical presentation
for a mildly stronger matrix effect persisting
up to a dilution of 1:8 is shown in Figure 5B.

Importantly, lack of parallelism can also be
present at later stages of the dilution curve
(Table 4), for example, because the concen-
tration of the biomarker is below the detec-
tion limit of the assay (i.e., d in Formula (3)).
Figure 6A shows the graphical presentation
for lack of parallelism after a dilution step
of 1:128. It would be physically impossible
to see the developing lack of parallelism with
the curves presented in Figure 3. Finally, Fig-
ure 6B illustrates the presence of partial par-
allelism between a dilution of 1:8 to 1:128. At
lower or higher dilution steps there is non-
parallelism. Again, this pattern cannot be
visually extracted from the graphical present-
ation in Figure 3.
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(A) Partial Parallelism achieved after a dilution of 1:4
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(B) Partial Parallelism achieved for a dilution of 1:8

Figure 5: These two examples show that parallelism
is achieved after (A) a dilution of 1:4 and (B) a di-
lution of 1:8. The data are from Table 3.
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(A) Partial Parallelism lost after a dilution of 1:128
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(B) Partial Parallelism for dilutions of 1:8 to 1:128

Figure 6: These two examples shows that parallelism
is lost after (A) a dilution of 1:128. Finally, (B) il-
lustrates that parallelism was only achieved between
a dilution of 1:8 to 1:128. Data are from Table 4.
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Table 3: Raw and transformed data for the partial
parallelism plots shown in Figure 5A,B. Subsequent
steps of data transformation are indicated by the su-
perscript in the Table (e.g. Std1, Std2, etc). The
numbers for Std2 and B2 were used to draw Figure 5.

Dil. Std B Std1 B1 Std2 B2

(A)
1:1 10 9 10 9 1 1
1:2 5 8.1 10 16.2 1 1.8
1:4 2.5 4.05 10 16.2 1 1.8
1:8 1.25 2.025 10 16.2 1 1.8
1:16 0.625 1.0125 10 16.2 1 1.8
1:32 0.3125 0.50625 10 16.2 1 1.8
1:64 0.15625 0.253125 10 16.2 1 1.8
1:128 0.078125 0.1265625 10 16.2 1 1.8
1:256 0.0390625 0.06328125 10 16.2 1 1.8
1:512 0.01953125 0.031640625 10 16.2 1 1.8

(B)
1:1 10 1 10 1 1 1
1:2 5 1.1 10 2.2 1 2.2
1:4 2.5 0.7 10 2.8 1 2.8
1:8 1.25 0.4 10 3.2 1 3.2
1:16 0.625 0.2 10 3.2 1 3.2
1:32 0.3125 0.1 10 3.2 1 3.2
1:64 0.15625 0.05 10 3.2 1 3.2
1:128 0.078125 0.025 10 3.2 1 3.2
1:256 0.0390625 0.0125 10 3.2 1 3.2
1:512 0.01953125 0.00625 10 3.2 1 3.2

Table 4: Raw and transformed data for the partial
parallelism plots shown in Figure 6A,B. The numbers
for Std2 and B2 were used to draw Figure 6.

Dil. Std B Std1 B1 Std2 B2

(A)
1:1 10 2 10 2 1 1
1:2 5 1 10 2 1 1
1:4 2.5 0.5 10 2 1 1
1:8 1.25 0.25 10 2 1 1
1:16 0.625 0.125 10 2 1 1
1:32 0.3125 0.0625 10 2 1 1
1:64 0.15625 0.03125 10 2 1 1
1:128 0.078125 0.015625 10 2 1 1
1:256 0.0390625 0.006 10 1.536 1 0.768
1:512 0.01953125 0.0001 10 0.0512 1 0.0256

(B)
1:1 10 2 10 2 1 1
1:2 5 1.5 10 3 1 1.5
1:4 2.5 0.9 10 3.6 1 1.8
1:8 1.25 0.5 10 4 1 2
1:16 0.625 0.25 10 4 1 2
1:32 0.3125 0.125 10 4 1 2
1:64 0.15625 0.0625 10 4 1 2
1:128 0.078125 0.03125 10 4 1 2
1:256 0.0390625 0.01 10 2.56 1 1.28
1:512 0.01953125 0.002 10 1.024 1 0.512

6 Examples from the

Literature

In a test comparison study [12], parallel-
ism was investigated for allopregnanolone in
saliva samples from pregnant women. The
sample dilution curves were plotted as in Fig-
ure 2A (Figures 1 and 2 in reference [12]).
The conclusion was that the first kit (pg/mL)
requires a minimal dilution of 1:5 for an
acceptable mean percentage parallelism of
104.3%. The authors accepted that the
second kit’s test performance met the criteria
for parallelism. Using the partial parallelism
plot approach, Figure 7A illustrates a lack of
parallelism for the first kit. The interpreta-
tion of Figure 7A is different to the proposed
1:5 dilution to achieve parallelism [12]. For
the second kit, (ng/mL) partial parallelism
can be achieved for a dilution range from 1:1
to 1:16, as illustrated by the two vertical ref-
erence lines in Figure 7B. At higher dilutions,
there is a floor effect of the data suggesting
that the test has reached its lower detection
limit; hence, the incorrect overestimation of
higher concentrations with ever more dilution
steps.

There are situations where it is desirable
to quantify the same substance from different
types of samples. Consequently, an Enzyme-
Linked Immunosorbent Assay (ELISA) was
developed for measurement of luteinizing hor-
mone (LH) from whole blood, serum, cell
extracts, cell culture medium, and pituitary
gland extracts [13]. Averaged LH data on the
parallelism experiments for these five differ-
ent sample sources were provided in Tables 6
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(A) Groetsch et al. (2022) Kit 1
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(B) Groetsch et al. (2022) Kit 2

Figure 7: Literature example for allopregnano-
lone quantified by ELISA from saliva samples ana-
lysed [12]. (A) Lack of parallelism for Kit 1. The
maximum error occurs at a dilution step of 1:8 with
an ≈ 8-fold overestimation of the concentration of
allopregnanolone (B) Partial parallelism between a
dilution of 1:1 to 1:16 (red vertical reference lines).
In this example, a horizontal black reference line is
given at y = 1 which illustrates that there is also a
problem with the standard in (B), most likely diluted
beyond the analytical detection limit of the assay.

1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128

Dilution

0.0

0.5

1.0

1.5

2.0

C
on
ce
nt
ra
tio
n

ExtractMediaCells
SerumBloodStandard
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Kreisman et al. (2022)

Figure 8: Literature example for luteinizing hormone
quantified by ELISA from different sources [13]. At
first glance, near perfect parallelism weakens after a
dilution step of 1:4 (dotted vertical reference line).
The error for partial parallelism is, however, minimal
(≈0.2 units). Therefore, partial parallelism can be
accepted for a dilution range of 1:1 to 1:32 (closed
red vertical reference lines).

to 10. Based on these data, Figure 8 shows
good partial parallelism for a dilution range
from 1:1 to 1:4. After that, near perfect par-
allelism appears to be lost. The conclusion
could be that the concentrations of LH can-
not anymore be calculated reliably for com-
parison from different sources. But the de-
viation from one on the y-axis are only min-
imal (≤0.2 units). Therefore, in this example,
partial parallelism persists up to a dilution of
1:32. After a dilution step of 1:64 the detec-
tion limit of the assay is reached for all sample
sources.

Lack of parallelism has also been reported
explicitly [14]. These authors clarify in the
abstract poor “dilution linearity” attributed
to “presence of a matrix effect and/or dif-
ferent immunoreactivity of the antibodies to
the recombinant standard and the endogen-
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Figure 9: Literature example for reported lack of par-
allelism for erythroferrone quantified by ELISA from
human serum samples [14]. Note that in this example
an inverse logarithmic scale was used compared to
what was presented in Figure 2B. This choice was
based on the uneven dilution steps reported for this
experiment. For clarity, each data point was labelled
with the corresponding dilution step.

ous analyte”. The partial parallelism plot in
Figure 9 is based on the raw data provided in
Table 2 in reference [14]. Consistent with the
author’s conclusion, this graph convincingly
shows absence of parallelism.

Finally, an example for perfect partial par-
allelism is shown in Figure 10. This example
is based on an ELISA for quantification of hu-
man insulin (uU/mL) for a dilution range of
1:1 to 1:8 [15]. The data for the partial par-
allelism plot were taken from Table 4 in ref-
erence [15], which also details that Samples
A to D were based on plasma samples with
exogenous insulin added (dashed lines in Fig-
ure 10) and high endogenous insulin (dotted
lines in Figure 10). Note that the range of
the y-axis presented in Figure 10 is very nar-
row at only 1 uU/mL insulin (range 0.95 to
1.05 uU/mL). Both spiked (samples with exo-

1:1 1:2 1:4 1:8

Dilution
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Even et al. (2007)

Figure 10: Literature example for perfect parallelism
for insulin quantified by ELISA from human plasma
samples [15]. The error for partial parallelism is neg-
ligible (<0.01 units).

genous insulin added) and native samples are
perfectly parallel to the standard (solid hori-
zontal reference line at y = 1).
Taken together, partial parallelism plots

are a useful graphical method for evaluat-
ing the accuracy of calculating the biomarker
concentration from a sample based on a bio-
marker standard curve for a defined range of
concentrations. Therefore they can provide a
more practical evaluation, which is also easy
to understand, and can help identify poten-
tial sources of non-parallelism.

7 Relationships between

Confounds and

Parallelism

The relationship between confounds and par-
allelism in laboratory tests is an important
topic, as confounds can have a significant im-
pact on the accuracy and reliability of labor-
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atory tests. By definition, confounds are vari-
ables that can affect the results of labor-
atory tests but are not directly related to
the biomarker being measured. It has been
noted that frequent examples of confounds
include chemical stability of the biomarker,
repeated freeze-thaw cycles, gender, height,
weight, renal function, medication use, and
co-morbidities such as diabetes mellitus [9].

Protein biomarker studies have shown that
the presence of confounds, including sample
preparation and storage, can impact the de-
gree of parallelism between laboratory tests
as earlier stated [5, 10]. The relationship
between confounds and parallelism can be
expressed mathematically using regression
equations as

y = β0 + β1x+ ϵ (10)

where y is the signal produced by the labor-
atory test, x is the concentration of the bio-
marker being measured, β0 is the intercept,
β1 is the slope, and ϵ is the error term. Con-
sequently, confounds can be added to equa-
tion (10) as additional independent variables:

y = β0 + β1x+ β2c+ ϵ (11)

where c represents a confounding variable.
The impact of the confound on the parallel-
ism between laboratory tests can be assessed
by comparing the slopes of the regression
lines with and without the confound. The
need for testing this has been highlighted in
a recent white paper [3].

It is important for researchers and health-
care providers to be aware of the potential
impact of confounds ( c ) on the accuracy and

reliability of the biomarker tests. Laborator-
ies should take steps to minimise the impact
of confounds, including controlling for them
in statistical analyses or by stratification of
the analyses by confounding variables.

Overall, the need for research studies to
include testing for confounds for their rela-
tionship with the degree of parallelism in bio-
marker tests has been recognised, but not yet
been implemented systematically in the liter-
ature.

8 Discussion

The practical advantages of partial parallel-
ism plots for biomarker tests has been il-
lustrated statistically and graphically. Ap-
plication of partial parallelism plots to real
biomarker data has revealed the strength of
the approach compared to alternatives which
were reviewed and discussed with regard to
their historical development. The assess-
ment of partial parallelism is an essential step
in the validation of laboratory tests, as it
determines whether the assay produces ac-
curate and reliable results. There are two
primary methods for statistical and graphical
assessment. Each method has its own bene-
fits and limitations.

Statistical assessment, such as regression
analysis and the calculation of parallel-
ism and non-parallelism indexes, provides a
quantitative measure of the degree of paral-
lelism between two or more samples as dis-
cussed [1, 2]. These methods are precise and
objective, making them ideal for the assess-
ment of large datasets or when a high level

A. Petzold. Partial Parallelism Plots. Appl. Sci. 2024;14(2):602–621

https://Doi.org/10.1016/S1474-4422(22)00200-9


Partial Parallelism Plots Page 15

of accuracy is required. Additionally, statist-
ical methods can detect subtle differences in
parallelism that may be missed by graphical
assessment.
However, statistical methods also have lim-

itations. They assume that the assay follows
a linear relationship between the concentra-
tion of the analyte and the response of the
assay. This may not always be the case, as
assays may exhibit non-linear responses at
high or low concentrations. For example, the
FDA and EMA guidelines state that “Par-
allelism is a performance characteristic that
can detect potential matrix effects.” [4]. A
limitation of this definition is that it does
not consider the possibility of compound ag-
gregate release or modifiable epitope mask-
ing in immunoassays [5]. Additionally, it
was highlighted that statistical methods may
not detect non-parallelism due to confound-
ing factors, such as matrix effects or interfer-
ence by endogenous substances, the CV, and
the critical difference [16]. Statistical meth-
ods are also not necessarily easily compre-
hensible to many of the parties involved in
appraisal of a biomarker test.
Visual assessment, on the other hand, re-

lies on the interpretation of graphs or charts
that depict the relationship between the con-
centration of the biomarker and the response
of the assay. This method is very intuit-
ive and can quickly identify gross deviations
from partial parallelism, making it useful for
screening biomarker assays for technicians,
lay people, and regulatory authorities. Ad-
ditionally, graphical assessment may detect
non-parallelism due to confounding factors
that are not detected by statistical methods.

This includes, for example, a drop in the ana-
lytical sensitivity which affects a biomarker
and test standard curve similarly (see Fig-
ure 7B). There are many chemical and biolo-
gical reason to the lack of parallelism [17].
The major contributors to non-parallelism
are related to interference or a mismatch with
the capture antibody (or surface), the detec-
tion antibody, the surrogate reference mater-
ial, the endogenous analyte, and specific and
non-specific interactions. For optimal graph-
ical presentation of the concentration range
where parallelism applies in a test, a “raw sig-
nal” approach was proposed which includes a
four parameter logistic regression curve fit-
ting. The “raw signal” approach is similar
to the Figure 3B. Present proposal of partial
parallelism plots, as presented in Figures 5–9,
should be interpreted as a further simplifica-
tion of the “raw signal” approach. Individual
researchers from all backgrounds and regulat-
ory authorities may also find an advantage
in the simplified pattern recognition of the
partial parallelism plots. Importantly, both
approaches emphasise that parallelism does
not need to extend over the entire analytical
range of a given test.
However, graphical assessment also has

limitations. It is subjective and may vary
depending on the experience and expertise
of the assessor. Additionally, graphical as-
sessment may not detect subtle deviations
from partial parallelism that may affect the
accuracy and reliability of the assay. One
such factor relates to confounds and was ex-
pressed as the CV. In such a situation where
the graph may not be clear cut, the visual
approach can be improved by showing the
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parameters obtained from the fits, including
the R-square values. Another improvement
is the option to zoom into specific regions of
the partial parallelism plots. One example
was presented in Figure 8. After zooming
in, it becomes visibly clearer that the data
distribution is more random for the dilution
steps 1:2 to 1:16 than for the following di-
lution steps which clearly demonstrate devi-
ation from parallelism, even if the CV ini-
tially improves. Providing this level of inter-
activity will be a valuable improvement of the
method for digital applications making use of
proposed partial parallelism plots.

Taken together, both statistical and graph-
ical assessment methods have their own be-
nefits and limitations in the assessment of
partial parallelism for biomarker tests. A
combination of both methods may provide
a comprehensive assessment of the degree of
partial parallelism and the presence of non-
parallelism due to analytical issues or con-
founding factors.

9 Conclusion

In conclusion, the introduction of partial par-
allelism plots as a tool for assessing paral-
lelism in biomarker tests holds great prom-
ise. These plots offer a clear visualisation of
the relationship between biomarker concen-
tration and assay response for each sample,
enabling the identification of non-parallelism
arising from analytical challenges or con-
founding factors. Emphasising the import-
ance of determining the optimal range of di-
lutions for each sample, these plots provide

a language that is easily interpretable, ulti-
mately leading to the attainment of accurate
and reliable results. As such, incorporating
partial parallelism plots into the validation
process of quantitative laboratory tests is an
essential step to ensure their appropriateness
for clinical medicine, bolstering confidence in
their utility.
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Supplementary Materials

The following supporting information can be
downloaded from app14020602/s1. Supple-

mentary data are provided in form of an Ex-
cel sheet with two tabs for raw data and par-
tial parallelism plot calculations.
Tab 1: Raw Data for Real-Life Examples
The first tab of this Excel sheet provides

comprehensive details of the raw data used
to generate the Figures based on real-life ex-
amples. Each row corresponds to an indi-
vidual data point, and the first author’s name
is referenced for the source of the data. The
columns are structured as follows:

1. Dilution Steps (String Variable): This
column represents the dilution steps
used in the experiments.

2. Dilution Steps (Numeric Variable): This
column provides the numeric represent-
ation of the dilution steps.

3. Sample Description: This column
provides information about the samples
used in the experiments.

4. Numeric Values for Y-axis (Column 1):
The first column containing numeric val-
ues used for the Y-axis in the Figures.

5. Numeric Values for Y-axis (Column 2 —
Optional): An optional second column
containing additional numeric values for
the Y-axis.

Following the raw data presentation, each
example is followed by a section detailing the
conversion of the Y-axis values into values
suitable for the partial parallelism plots (PPP
plot calculations) presented in this paper.
Tab 2: Compact Format for PPP Plot

Calculations
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The second tab of the Excel sheet con-
tains the data organised in a concise 5-column
format, specifically designed for easy export
into a comma-separated file (.csv). This
format is suitable for generating graphical
representations used in the present article.
The columns are arranged as follows:

1. Author’s first name and year of publica-
tion.

2. Dilution Steps (String Variable): This
column represents the dilution steps
used in the experiments.

3. Dilution Steps (Numeric Variable): This
column provides the numeric represent-
ation of the dilution steps.

4. Sample Description: This column offers
a brief description of the samples.

5. Numeric Values for Y-axis (Column 1):
The first column containing numeric val-
ues used for the Y-axis in the Figures.

6. Numeric Values for Y-axis (Column 2 —
Optional): An optional second column
containing additional numeric values for
the Y-axis.

The section containing PPP plot calcula-
tions serves as a template for readers to con-
duct their own calculations. It is crucial to
verify the accuracy of the dilution steps and
ensure that the reference for the “normalised”
fields remains unchanged during the process.
By presenting the raw data and providing

a user-friendly template for PPP plot calcu-
lations, this Excel sheet aims to enhance re-

producibility and facilitate further research in
the field.
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