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Most genome-wide association studies (GWAS) of major depression (MD)
have been conducted in samples of European ancestry. Here we reporta
multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD

cases and 902,757 controls to previously reported data. This analysis used
arange of measures to define MD and included samples of African (36% of
effective sample size), East Asian (26%) and South Asian (6%) ancestry and
Hispanic/Latin American participants (32%). The multi-ancestry GWAS
identified 53 significantly associated novel loci. For loci from GWAS in
European ancestry samples, fewer than expected were transferable to other
ancestry groups. Fine mapping benefited from additional sample diversity. A
transcriptome-wide association study identified 205 significantly associated
novel genes. These findings suggest that, for MD, increasing ancestral and
global diversity in genetic studies may be particularlyimportant to ensure
discovery of core genes and inform about transferability of findings.

Major depression (MD) is one of the most pressing global health chal-
lenges'. While genome-wide association studies (GWAS) have shown
promise of uncovering biological mechanisms underlying the devel-
opment of MD*?, they have revealed a highly polygenic genetic archi-
tecture, characterized by variants that individually confer small risk
increases®, probably due to the heterogeneity of MD symptoms and
etiology’. Previous genetic research explored the impact of different
outcome definitions>®, sex”® and trauma exposure'®? on heterogene-
ity. However, the role of ancestry and ethnicity in the genetics of MD
has not yet been systematically evaluated.

So far, GWAS of MD were mostly conducted inindividuals of Euro-
pean ancestry”>”. The largest MD GWAS combined data from several
studies and identified 223 independent significant single-nucleotide
polymorphisms (SNPs)®”. That study alsoincluded data from 59,600 Afri-
can Americans from the Million Veteran Program (MVP) cohort. Intheir
bi-ancestral meta-analysis, the number of significant SNPs increased
t0233. Other MD GWASs were conducted in African American and His-
panic/Latin American participants with limited sample sizes, and did
not find variants with statistically significant associations with MD'®".

With10,640 female Chinese participants, the CONVERGE study is
the largest MD GWAS conducted outside ‘Western’ countries so far’.
The study identified two genome-wide significant associations linked
to mitochondrial biology and reported a genetic correlation of 0.33
with MD in European ancestry samples™. In line with this, our recent
work demonstrated that some of the previously identified loci from
GWAS conducted in samples of European ancestry are not transferable
to samples of East Asian ancestry®.

Heterogeneity ingenetic effects couldimpact on findingswheneval-
uating causal effects of risk factors for MD. Previous studies in samples of
Europeanancestry reported genetic correlations and causal relationships
between MD and cardiometabolic outcomes>*">*°, Notably, our previ-
ous study indicated a contradicting direction for associations between
MD and body mass index (BMI) in East Asian individuals and European
ancestry individuals (positive causal effect of BMI)'*?. Thus, investigat-
ing causal relationships using Mendelian randomization (MR) indiverse
ancestry groups and indifferent disease subtypesisimportantto ensure
generalizability and to distinguish between biological and societal mecha-
nisms underlying the relationship between arisk factor and the disease.
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Fig.1|Schematic diagram of the analyses in this study. We included data from
21 cohorts with diverse ancestry. We assigned individuals into ancestry/ethnic
groups and carried out association analyses with MD for each. Subsequently,

we meta-analyzed the results by ancestry/ethnic group. We tested whether
previously reported MD loci from European ancestry studies are transferable

to these groups. We also used the results for discovery of novel depression
associations and MR to assess the causal effects of cardiometabolic traits by
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ancestry. We subsequently merged all ancestry/ethnicity-specific resultsina
multi-ancestry meta-analysis that also included samples with European ancestry.
The multi-ancestry meta-analysis results formed the basis for locus discovery,
fine mapping to identify causal variants and several gene prioritization
approaches to identify genes linked to MD risk. ST.(n) refers to the corresponding
Supplementary Table. ST.2* (in green) refers to Supplementary Table 2, showing
genomic inflation estimates of multiple analyses.

Increasing diversity ingeneticresearchis alsoimportantto ensure
equitable health benefits?. In the United States, differences in pres-
entation of MD across ethnic groups can impact on the likelihood of
diagnosis®. Genetics optimized for European ancestry participants
would primarily benefit that group of patients and could therefore fur-
ther widen the disparities in diagnosis and treatment between groups.

In this Article, we used data from samples with diverse ancestries
and carried out genome-wide association meta-analyses, followed by
fine mapping and prioritization of target genes (Fig. 1). We assessed
the transferability of genetic loci across ancestry groups. Finally,
we explored bi-directional causal links between MD and cardiometa-
bolic traits.

Results

GWAS in African, East Asian and South Asian ancestry and
Hispanic/Latin American samples

We first conducted GWAS meta-analyses stratified by ancestry/ethnic
group. Individuals were assigned to ancestry groups (African, South
Asian, East Asian or European) using principal component analyses
based on genetic relatedness matrices. Assignment to the Hispanic/
Latin American group was based on self-report or on recruitmentina
Latin American country (Supplementary Figs.1-7)* %, We acknowledge
thearbitrary nature of thisapproach and of choosing reference groups

and cut-offs to assign participants. However, creating such groups ena-
bled ustolook for associations that are specific to groups and to assess
the transferability of previously identified loci. The studies included
inthe meta-analyses used the following measures to define MD: struc-
tured clinical interviews, medical healthcare records, symptoms
questionnaires and self-completed surveys (Supplementary Table 1
and Supplementary Note).

The analyses included 36,818 MD cases and 161,679 controls of
African ancestry, 21,980 cases and 360,956 controls of East Asian
ancestry, 4,505 cases and 27,176 controls of South Asian ancestry,
and 25,013 cases and 352,946 controlsin the Hispanic/Latin American
group (Extended Data Fig.1and Supplementary Figs. 8-11). To account
for the minor inflation found in the Hispanic/Latin American samples
(41,000 =1.002 and linkage disequilibrium score regression (LDSC) inter-
cept1.051; Supplementary Table 2), we corrected test statistics for this
analysis based on the LDSC intercept.

Inthe Hispanic/Latin American group, the G-allele of rs78349146 at
2q24.2 was associated withincreased risk of MD (effect allele frequency
(EAF) 0.04, B (regression coefficient) = 0.15,s.e.m.0.03,P=9.3 x10™)
(Supplementary Fig.12). To test the role of these lociin molecular pro-
files, we performed colocalization for depression and multi-ancestry
brain expression quantitative trait loci (eQTLs)”. Loci with posterior
probability (PP) >90% for both traits being associated and sharing two
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Fig.2| Transferability of previously reported loci from European ancestry
discovery GWAS of MD to other ancestry groups. a, A Venn diagram showing
the numbers of previously identified loci from European ancestry studies

with evidence of transferability to the other ancestry/ethnic groups: African,
Hispanic/Latin American, South Asian and East Asian (in black) and their
intersections (in cyan). Only the 112 loci with evidence of transferability to at
least one ancestry group are shown here. b, A plot showing power-adjusted
transferability (PAT) ratios. We first calculated the observed number of
transferable loci out of the 195,196,179 and 180 loci that were present in the
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African, Hispanic/Latin American, South Asian and East Asian ancestries,
respectively. These were divided by the expected number of transferable loci
(numbers displayed underneath the figure), taking effect estimates from
previous European ancestry studies, and allele frequency and sample size
information from our African, Hispanic/Latin American, South Asian and East
Asian ancestry cohorts. The ratios are presented separately for broadly defined
MD and clinically ascertained MD. The error bars indicate 95% Cls for PAT
ratios. We were unable to compute results for clinical MD in the Hispanic/Latin
American group because of insufficient numbers of cases.

different butlinked variants (hypothesis (H)3) or asingle causal variant
(H4)were considered as colocalized. We observed significant colocali-
zation for DPP4, RBMS1 and TANK. We tested ancestry-specific eQTLs
from blood and observed RBMS1 (H3: PP (Hispanic/Latin American)
99.12%) and TANK (H3: PP (European) 97.85%; H3: PP (Hispanic/Latin
American) 99.61%) at the 2q24.2 locus. For the protein quantitative
trait loci (pQTLs) from blood, we either did not find the genes in the
cohortorthe number of SNPs within the gene wastoo low (<20) to test
for colocalization (Supplementary Table 3).

No variants were associated at genome-wide significance in the
GWAS insamples of African, East and South Asian ancestry (Extended
DataFig.1a,b,d). Onelocus was suggestively associated in the African
ancestry GWAS (Extended DataFig.1aand Supplementary Fig.12). The
lead variant, rs6902879 (effect allele: A, EAF 0.16, =-0.08,s.e.m. 0.01,
P=53x10"®) at6ql6islocated upstream of the melanin-concentrating
hormone receptor 2 gene (MCHR2) and associated with increased
expression of MCHR2 in cortex based on genotype-tissue expression
(GTEx v8) (P=6.0 x107°). Testing the multi-ancestry brain eQTLs%,
we observed significant colocalization for GRIK2 and ASCC3, with
significant ancestry differences for ASCC3 (H3: PP (European) 99.97%).
MCHR2was not present in the RNA data.

Although the lead variants at 2q24.2 and at 6q16 did not display
strong evidence of association in a large published GWAS in partic-
ipants of European ancestry™ (P> 0.01), in each case there was an
uncorrelated variant within 500 kb of the lead variants associated at
P <107° (Supplementary Fig. 12). Hence, although the evidence does
not support a shared causal variant, we cannot rule out that there is
an association at the same locus, but possibly with a different causal
variantin European ancestry participants.

As a sensitivity analysis, we conducted a meta-analysis for each
ancestry/ethnic group for clinical depression, comprising studies in
which MD was ascertained by structured clinical interviews or medi-
cal healthcare records following the International Classification of
Diseases (ICD9)/10 or the Diagnostic and Statistical Manual of Mental
Disorders (DSM)-1V/5 criteria for major depressive disorder (Sup-
plementary Table 1). There were 29,389 cases and 49,999 controls of

African ancestry, 7,886 cases and 14,412 controls of East Asian ances-
try, 848 cases and 13,908 controls in the Hispanic/Latin American
group, and 4,252 cases and 26,738 controls of South Asian ancestry
(Extended Data Fig. 2 and Supplementary Figs. 13-16). In the South
Asian ancestry GWAS, the A allele of rs7749931 at 6q15 was associ-
ated with decreased risk of MD (effect allele: A, EAF 0.49, =-0.15,
s.e.m.0.03, P=4.3 x107®) (Extended Data Fig. 2d and Supplementary
Fig.15). The variant is located downstream of STX7 (syntaxin 7). We
did not observe genome-wide significant loci associated with clinical
depression inany other ancestry group.

Transferability of MD associations across ancestry groups

Previous GWAS in samples of European ancestry have identified 206
loci associated with MD (Supplementary Table 4)"*"". The results for
196 of these loci were available in at least one of the ancestry/ethnic
groups. We assessed whether these genetic associations are shared
across different ancestry groups. Individual loci may be underpowered
to demonstrate anassociation; therefore, we followed an approachwe
recently developed?® and first estimated the number of loci we expect to
see an association for when accounting for sample size (n), linkage dis-
equilibrium (LD) and minor allele frequency (MAF). This estimate varied
widely between ancestry groups, for example, we expected to detect
significant associations for 65% of MD lociin the GWAS with samples of
Africanancestry, but only for 15% of MD lociin samples of South Asian
ancestry (Fig. 2). We report the power-adjusted transferability (PAT)
ratio, that s, the observed number divided by the expected number
ofloci. Transferability was low, with PAT ratios of 0.27 (95% confidence
interval (CI) 0.19t0 0.35) in African ancestry samples,and 0.29 in both
East Asian (95% CI 0.20 to 0.39) and South Asian (95% CI 0.12 to 0.46)
ancestry samples. In the Hispanic/Latin American group, the PAT ratio
was 0.63 (95% C10.55t0 0.72), notably higher thaninthe other groups.
PAT estimates for clinical MD were close to those for broad MD, with
overlapping Cls in each case (Fig. 2). We were unable to estimate PAT
ratios for clinical MD in the Hispanic/Latin American group because of
insufficient numbers of cases based on this definition. We also assessed
the transferability of 102 loci identified in the Psychiatric Genomics
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Fig.3 | Genetic correlations for MD between different ancestry groups. A plot
showing the genome-wide genetic correlations between the African, European,
East Asian and Hispanic/Latin American groups. The intensity of the coloring
reflects the strength of the correlation. The estimated coefficients and standard
errors are alsoshownin each cell. We only present estimates where the s.e.m. was
smaller than 0.3; otherwise, the field is colored in gray.

Consortium-Major Depressive Disorder Working Group’s (PGC-MDD)
GWAS”andinanindependentstudy insamples of European ancestry,
the Australian Genetics of Depression Study (AGDS)™. The PAT ratio
was 1.48, considerably higher than the cross-ancestry PAT estimates.
Wereportevidence of transferability of individual loci (Supplementary
Table 5) as well as their ancestry-specific eQTL and pQTL colocalization
(Supplementary Table 6 and Supplementary Fig.17).

Inaddition, we estimated trans-ancestry genetic correlations using
POPCORN version 1.0 (ref. 29). We only present genetic correlation
estimates where the s.e.m. was less than 0.3. The sample size for the
South Asian ancestry group was too small to conduct this analysis. The
genetic correlations for MD between the European and the Hispanic/
Latin American, African and East Asianancestry groups were >0.75. The
lowest estimate was observed between the East Asian ancestry, and the
Hispanic/Latin American group (r,= 0.52) (Fig. 3).

Multi-ancestry meta-analysis

We carried out a multi-ancestry meta-analysis using data from stud-
ies conducted in participants of African, East Asian and South Asian
ancestry and Hispanic/Latin American samples (Supplementary Note),
and combined them with previously published data for 258,364 cases
and 571,252 controls of European ancestry™>", yielding a total sample
size 0f 345,389 cases and 1,469,702 controls. These analyses provided
results for 22,941,580 SNPs after quality control. There was no evidence
of residual population stratification (4, o, =1.001, LDSC intercept1.019;
Supplementary Table 2). We identified 190 independent genome-wide
significant SNPs mapping to 169 loci that were separated from each
otherby atleast 500 kb (Extended Data Fig. 3, Supplementary Table 7
and Supplementary Fig. 18). Fifty-three of the SNPs represent novel
associations (r? < 0.1 and located more than +250 kb from previously
reported variants). Most of the 196 previously reported loci were associ-
ated at genome-wide significance in the multi-ancestry meta-analysis,
whichincorporates the discovery data for these loci (Supplementary
Table 4).

As a sensitivity analysis, we also conducted a multi-ancestry
meta-analysis for clinical depression. There were 57,714 cases and
110,358 controls of European ancestry under the clinical definition
of MD, which were subsequently combined with the aforementioned
non-European clinically ascertained studies by meta-analysis (100,089

cases and 214,415 controls in total) (Extended Data Fig. 4 and Supple-
mentary Figs. 19 and 20). This analysis identified seven genome-wide
significant loci, two of which were novel (rs2085224 at 3p22.3 and
178676209 at 5p12) (Supplementary Table 8).

We then excluded cohorts that had an extreme case-control
ratio (Neyses/ Neonerots <0-25) and did not adjust for this analytically, as
well as cohorts with adolescent participants. This sensitivity analysis
also yielded consistent results for the 190 lead SNPs (Supplementary
Fig.21).

Finally, we re-analyzed the data using a multi-ancestry
meta-analysis approach implemented in MR-MEGA, which resulted
in44independentregions associated with MD after lambda GC correc-
tion, some of which had been missed in the main analyses due to their
between-ancestry heterogeneity (Supplementary Table 9).

Multi-ancestry fine mapping

We used a multi-ancestry Bayesian fine-mapping method*’ to derive
99% credible sets for 155 loci that were associated at genome-wide sig-
nificance and did not show evidence of multiple independent signals.
For comparison, we alsoimplemented single ancestry fine mapping of
the same loci based on GWAS conducted in participants of European
ancestry, including PGC-MDD and AGDS"*.

Multi-ancestry fine mapping increased fine-mapping resolution
substantially as compared with fine mapping solely based on the data
from European ancestry participants. The median size of the 99%
credible sets was reduced from 65.5 to 30 variants. Among the 145
loci for which we conducted fine mapping on both sample sets, 113
(77.9%) locihad asmaller 99% credible set from the multi-ancestry fine
mapping, while four loci (O from the European fine-mapping) were
resolved to single putatively causal SNPs (Fig. 4 and Supplementary
Table 10). For example, rs12699323, annotated as an intronic variant,
is linked to expression of TMEM106B (transmembrane protein106B).
rs1806152 is a splice region variant associated with expression of the
nearby gene PAUPAR (PAX6 upstream antisense RNA) on chromosome
11. Atanother locus, rs9564313 has been linked to expression of PCDH9
(protocadherin-9), a gene that is also highlighted in our TWAS and
multi-marker analysis of genomic annotation (MAGMA) results®"*2,

TWAS and gene prioritization

Tobetter understand the biological mechanisms of our GWAS findings,
we performed severalinsilico analyses to functionally annotate and pri-
oritize the most likely causal genes. We carried out atranscriptome-wide
associationstudy (TWAS) based on the results from the multi-ancestry
meta-analysis for expression in tissues relevant to MD**. We combined
the TWAS results with functional mapping and annotation (FUMA),
conventional MAGMA and HiC-MAGMA to prioritize target genes.

The TWAS identified 354 significant associations (P <1.37 x 1076)
with MD, 205 of which had not been previously reported (Fig. 5
and Supplementary Table 11). The two most significant gene asso-
ciations with MD were RPL31P12 (GTEx brain cerebellum, Z=-10.68,
P=1.27 x107%®) and NEGRI (GTEx brain caudate basal ganglia,Z=10.677,
P=1.30x107%), consistent with previous findings®.

PCDHS8PI1 (GTExbrainanterior cingulate cortex BA24, Z=-8.3679,
P=5.86 x1077) was the most significant novel TWAS result. NDUFAF3
was another novel gene association with MD (GTEx brain nucleus
accumbens basal ganglia, Z=-5.0785, P=3.80 x 10”7, best GWAS ID
1s7617480, best GWAS P=0.00001). These results were also confirmed
by HiC-MAGMA. The protein NDUFAF3 encodes is targeted by met-
formin, the first-line drug for treating type 2 diabetes.

Forty-three genes displayed evidence of association across all four
gene prioritization methods (TWAS, FUMA, MAGMA and HiC-MAGMA)
and were classified as high-confidence genes (Table 1 and Supple-
mentary Tables 11-15). These included genes repeatedly highlighted
in previous studies due to their strong evidence of association and
biological relevance in MD: NEGR1, DRD2, CELF4, LRFN5, TMEM161B
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Fig. 5| Manhattan-style Z-score plot of gene associations with MD in a TWAS
based on the GWAS summary statistics for broadly defined MD. Significant
gene associations are shown as red dots (354 significant genes, 205 of them
novel), and the 50 most significant gene names are highlighted on both sides of
the plot. Novel associations are shown in black, while genes previously associated

with MD are shown ingray. The red lines indicate the significance threshold
(P<1.37 x107®). For genes on the top part of the graph, increased expression was
associated with increased depression risk, while expression of the genes on the
bottom part of the plot showed an inverse association. NT, novel transcript.

and TMEM106B. Cadherin-9 (CDH9) and protocadherins (PCDHAI,
PCDHA2 and PCDHA3) were also among the high-confidence genes
(Supplementary Table 12). Finally, 25 of the high-confidence genes
encode targets of established drugs, such as simvastatin (RHOA). These
may indicate opportunities for drug repurposing.

MR

We assessed bi-directional causal relationships between MD genetic
liability and cardiometabolic traits using ancestry-specific two-sample
MR analyses. Our results indicated a positive, bi-directional relation-
ship between MD geneticliability and BMI (MD- > BMI: 8= 0.092, 95%
C10.024 t0 0.161, P=8.12 x 1073, BMI- > MD: 8= 0.138, 95% C1 0.097
to 0.180, P= 6.88 x10™) (Fig. 6 and Supplementary Table 16). This

bi-directional relationship was exclusively observedin samples of Euro-
peanancestry (P> 0.1linall other groups). MD genetic liability was also
causal for other indicators of unfavorable metabolic profilesin samples
of Europeanancestry: triglycerides (TGs, positive effect; = 0.116,95%
C10.070t0 0.162, P=7.93 x107), high-density lipoproteins (HDLs,
negative effect; f=-0.058,95% Cl -0.111to —0.006, P= 0.029) and
low-density lipoproteins (LDLs, positive effect; § = 0.054,95% C10.012
t0 0.096, P=0.011). The effects remained significant after removing
thevariants contributing to the possible heterogeneity bias observed
through the MR-pleiotropy residual sum and outlier global test. Addi-
tionally, no pleiotropy was observed (Supplementary Table 16). In
samples of East Asian ancestry, on the other hand, we found a negative
causal association between TG and MD (8 =-0.127,95% Cl -0.223 to
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Table 1| Genes associated with MD

Gene® Drug® FUMA® MAGMA/ Hi-CMAGMA?  TWASP Novel*  Credible
set'
Genes associated in TWAS and Hi-C MAGMA
NDUFAF3 Metformin, NADH No 1.00 0.004 3.80x1077 Yes 9
PBRM1 Alprazolam, durvalumab, everolimus No 0.10 0.017 3.20x1077 Yes -
TBCA - No 0.16 0.042 1.29x10°® Yes -
BTN2A3P - No 1.00 6.07x107® 2.33x10°® Yes -
ZNF204P - No 1.00 0.014 213x107® No -
HLA-B Thalidomide, ticlopidine, phenobarbital, No 0.46 3.7x10™ 1.13x107 No -
carbamazepine, clozapine, lamotrigine
RABGAP1 - No 1.00 0.001 1.91x10°® Yes =
GOLGA1 - No 1.00 0.020 1.56x107 Yes -
FRAT2 - No 0.78 0.017 9.39x1077 Yes -
ENSG0O0000278376 - No 0.06 0.004 6.55x1077 - 62
TRHDE-AST - No 014 0.048 6.92x1077 Yes -
INSYN1-AS1 - No 0.25 0.014 5.53x107® Yes 25
Genes associated across all four methods
RERE - Yes 3.48x1078 1.29x107° 7.35x107° No 45
NEGR1 - Yes 2.31x107® 1.53x1077 1.30x10% No -
ZNF638 Cytidine Yes 0.003 0.004 5.64x107 No 61
RFTN2 Lipopolysaccharide Yes 0.003 4.28x10™ 1.52x1077 No 204
ZNF445 - Yes 3.35x10™ 0.001 1.52x10™ No 138
ZNF197 - Yes 2.35x10™ 8.04x107° 4.61x10™° No 138
CCDC71 - Yes 5.56x107° 0.039 3.12x10™ Yes 9
ENSG0O0000225399 - Yes 0.010 0.003 1.07x107® - 9
RHOA Simvastatin, pravastatin, atorvastatin, Yes 0.031 0.019 1.45x1077 No 9
magnesium, CCG-1423
CDH9 Calcium Yes 0.003 0.002 217x1078 No 95
TMEM161B Crofelemer Yes 279x10°° 6.2x108 5.26x107° No -
PFDN1 - Yes 0.025 2.94x10™ 5.60x107° Yes 67
SLC4A9 Sodium bicarbonate Yes 0.029 0.002 2.25x10™ No 67
HARS1 Adenosine phosphate, pyrophosphate, Yes 0.024 0.017 5.29x10°® Yes M
phosphate, histidine
HARS2 Adenosine phosphate, pyrophosphate, Yes 0.019 0.044 2.32x10® No 14
phosphate, histidine
ZMAT2 - Yes 0.014 0.005 1.11x107° No 141
PCDHAT1 Calcium Yes 0.015 0.005 115%x1078 No 141
PCDHA2 Calcium Yes 0.031 0.010 1.55%x107® No 141
PCDHA3 Calcium Yes 0.043 0.004 1.06x10® No 11
TMEM1068B Crofelemer Yes 2.79x107° 1.57x10°® 4.87x10™ No 1
ZDHHC21 Coenzyme A, palmityl-CoA Yes 0.002 0.036 513x107 No 42
SORCS3 - Yes 2.23x10™ 1.28x10°® 1.98x10™° No 16
MYBPC3 - Yes 0.004 0.012 9.23x10™ No 48
SLC39A13 Zinc chloride, zinc sulfate Yes 0.007 0.003 914x107 Yes 48
CTNND1 - Yes 0.002 0.010 1.84x107 No 60
ANKK1 Methadone, naltrexone, fostamatinib Yes 0.0M 2.44x10° 1.41x10™" No -
DRD2 Cabergoline, ropinirole, sulpiride Yes 9.11x10™° 7.81x107° 3.95x1078 No -
MLEC - Yes 0.013 1.32x107° 8.90x1077 Yes -
SPPL3 - Yes 3.6x107 1.47x107 1.89x10™ No -
LRFN5 - Yes 4.28x107° 27x10™ 579x107® No 10
AREL1 - Yes 0.007 5.64x107° 7.24x1072 No 143
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Table (continued) 1| Genes associated with MD

Gene® Drug® FUMA® MAGMA/ Hi-CMAGMA®  TWASP Novel®  Credible
setf
DLST Lipoic acid succinyl-CoA, Yes 2.2x10™ 0.001 1.51x10™° No 143
coenzyme A, dihydrolipoamide
(S)-succinyldihydrolipoamide
MARK3 Fostamatinib, alsterpaullone Yes 1.43x10™ 2.34x10°° 3.50x10°° No 1
KLC1 Fluorouracil, irinotecan, leucovorin Yes 4.91x107° 9.99x107® 1.26x10™ No 1
XRCC3 Fluorouracil, irinotecan, leucovorin Yes 0.004 7.73x10°® 3.49x10™ No "
ZFYVE21 Inositol 1,3-bisphosphate Yes 3.0x107° 1.21x107 2.83x10™ Yes 1
CELF4 Iloperidone Yes 1.52x10°® 3.59x107° 9.66x107° No 8
RAB27B Guanosine-5'-diphosphate Yes 1.23x10°® 0.042 5.61x10™° No =
EMILIN3 - Yes 0.039 0.001 6.66x10 No 64
CHD6 Phosphate, ATP, ADP Yes 0.001 0.001 1.76x10™ No 64
EP300 Acetyl-CoA, TGF-B, garcinol, cyclic AMP, Yes 4.95x10™ 1.87x107° 1.71x107° No 16
curcumin, mocetinostat
RANGAP1 - Yes 1.82x10™ 0.003 6.73x107° No 16
ZC3H7B - Yes 0.001 2.03x10°® 1.37x10°° No 16

This table includes 12 genes significantly associated in the TWAS and Hi-C MAGMA, that is, not in physical proximity to a GWAS hit, and 43 genes significantly associated across all four
methods (TWAS, FUMA, MAGMA and Hi-C MAGMA). “Ensembl IDs are shown for genes without symbol names. *Drugs targeting the prioritized genes or genes of the same family from
GeneCards, DrugBank and ChEmbl. °Gene mapped by FUMA positional mapping or eQTL mapping. “Bonferroni adjusted two-sided P value for MAGMA or Hi-C MAGMA of z statistics
(P<0.05 implies statistical significance). °Novel report as compared with previous MAGMA and TWAS on MD. ‘Number of variants in the 99% credible set, only available for mapped loci from

multi-ancestry fine-mapping.

-0.032, P=9.22 x107%). Moreover, MD genetic liability showed a posi-
tive causal association with systolic blood pressure (SBP, = 0.034, 95%
C10.009 t0 0.059, P=7.66 x 107). In samples of African ancestry, SBP
had a positive causal association with MD (5 =0.080, 95% CI 0.026 to
0.133,P=3.43x107).

Discussion

We present the first large-scale GWAS of MD in an ancestrally diverse
sample, including data from almost 1 million participants of African,
East Asian and South Asian ancestry, and Hispanic/Latin American
samples. Thelargest previous reportincluded 26,000 cases of African
ancestry®.

By aggregating data in ancestry-specific meta-analyses, we iden-
tified two novel loci, 2q24.2 and 6p15. In the Hispanic/Latin American
group, variants at 2q24.2 were associated with MD. Most of the casesin
this group were defined using symptoms questionnaires. Future studies
willbe required to assess whether the association of this loci with clinical
MDis consistent with our estimate. While the additional association at
6ql6inthe GWASinsamples of Africanancestry requires further confir-
mationin futurestudies, thelink with MD is biologically plausible. The
lead variant was significantly associated with the expression of MCHR2
specifically in brain cortex tissue. Melanin-concentrating hormone
(MCH)isaneuropeptide thatis expressedinthe central and peripheral
nervous systems. It acts as a neurotransmitter and neuromodulator
inabroad array of neuronal functions directed toward the regulation
of goal-directed behavior, such as food intake, and general arousal*.

The diversity, incombination with the large sample size, enabled a
comparison of the causal genetic architecture across ancestry groups.
We assessed to what extent the 206 previously identified locifrom large
European ancestry discovery GWAS were transferable to other ancestry
groups. Differences in allele frequencies, linkage disequilibrium and
variable sample sizesimpact on power to observe associations for each
group. We recently developed PAT ratios, an approach to account for
all these factors by comparing observed transferable loci with what
is expected for a study of a given ancestry and sample size?®. The PAT
ratios were about 30% for African, South Asian and East Asian ancestry,
remarkably similar and consistently low. We previously computed PAT

ratios for several other traits and found variation between traits, but
the estimates for MD were at the bottom'*®, With a PAT ratio of 64%,
the transferability of MD loci discovered in European ancestry samples
was much higher for the Hispanic/Latin American group. This finding
may reflect that the Hispanic/Latin American group contained many
participants with a high proportion of European ancestry*>*®. The
majority of cases within this group were defined via symptom ques-
tionnaires rather than clinical MD. Hence, it may be possible that the
transferability for clinical MD is even higher in this group. For African,
South Asian and East Asian ancestry, the PAT ratios for clinicalMD were
allbelow 0.5 and consistent with the estimates from the main analysis,
demonstrating that heterogeneity in outcome definitions does not
explain the limited transferability of MD loci across ancestry groups.

To better understand mechanisms underlying individual differ-
encesinvulnerability to development of MD, we need to bridge the gap
from locus discovery to the identification of target genes. Our study
achieved substantial progressin this respect. Fine mapping benefitted
fromthe additional diverse samples, with median credible sets reduced
from 65.6to 35insize and with 32 lociresolved to <10 putatively causal
SNPs (11 loci from the European ancestry fine mapping).

Onthe TWAS, the expression of 354 genes was significantly associ-
ated with MD. Out of these, 205 gene associations were novel, and 89
were overlapping with results of the largest previously published MD
TWASP®, Furthermore, 80 genes were overlapping with associations
fromanother, previously published, large MD TWAS with largely over-
lapping samples of European ancestry®. A number of these TWAS fea-
tures, including NEGRI, ESR2 and TMEM106B, were previously also fine
mapped and highlighted as putatively causal in previous post-TWAS
analyses, strengthening the role of TWAS as animportanttool to better
understand the relationship between gene expression and MD.

Through TWAS and three other tools that incorporate the grow-
ing body of knowledge about functional annotations of the genome,
we classified 43 genes as ‘high confidence’. The definition admittedly
remains arbitrary until the field establishes clear guidelines. Neverthe-
less, the high-confidence list represents an evidence-based starting
point for further follow-up. It provides confirmation for several genes
that haverepeatedly been highlighted as being near a GWAS-associated
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Fig. 6 | Bi-directional MR tests between MD and cardiometabolic outcomes.
The data are presented with a fand a 95% CI. Nominally significant associations
are marked with ared asterisk. Statistics have been derived using the Sand
standard errors for the number of variants used as IVs in each analysis, shown
as NSNPs. Results are not shown for diastolic blood pressure for which there

were no significant associations. *P < 0.05 (Pvalues in order from top to bottom:
6.88x10™",8.22x107,9.22x10,7.93 x107,7.67 x107,3.43 x'10%,0.03 and 0.01).
More details can be found in Supplementary Table 16. AFR, African ancestry;

EAS, East Asian ancestry; EUR, European ancestry; HIS, Hispanic/Latin American
group; SAS, South Asian ancestry.

variant and having high biological plausibility>**"***: NEGR1, DRD2,
CELF4,LRFN5, TMEM161B and TMEM1068B.

Furthermore, cadherin-9 (CDH9) and protocadherins (PCDHAI,
PCDHA2 and PCDHA3) were classified as high-confidence genes. Cad-
herins are transmembrane proteins, mediating adhesion between cells
and tissues in organisms¥. In previous studies, cadherins have been
linked withMD and with other disordersinvolving the brain, including
late-onset Alzheimer’s disease, which often manifests as neuropsychi-
atricsymptoms coupled with depressionand anxiety***°. The results
of our study strengthen the evidence for the involvement of cadherins
and protocadherinsin the etiology of MD.

Genes newly implicated in MD development in our study high-
light novel pathways, pinpoint potential new drug targets and suggest
opportunities for drug repurposing. NDUFAF3 encodes mitochondrial
complexlassembly protein, which is the main target of the drug met-
formin*, the first-line drug for treating type 2 diabetes. Research in
model organisms has provided a tentative link between metformin and
areduction in depression and anxiety*. Furthermore, a recent study
using more than 360,000 samples from the United Kingdom Biobank

(UKB) found associations between NDUFAF3 and mood instability,
suggesting that energy dysregulation may play an important role in
the physiology of mood instability*.

Previous MR studies conducted in populations of European
ancestry suggested a causal relationship of higher BMl increasing
the odds of depression***¢, To our knowledge, evidence of areverse
causal association (that is, MD genetic liability increases the odds of
higher BMI) has not been previously reported”. We also observed that
the geneticliability to MD was associated with higher TG levels, lower
HDL cholesterol and higher LDL cholesterol levels in individuals of
European ancestry, which were not significant in the only previous
MR study of smaller statistical power". Individuals with depression
present higher levels of inflammation and are at increased risk of
cardiometabolic disorders, irrespective of the age of onset*s. The
phenotypic associations between MD and cardiometabolic traits
may partly reflect the genetic overlap between them*. However,
in other ancestry groups, no significant relationship between BMI
and MD was observed. Our MR analyses showed an effect of reduced
TGs onincreasing odds of MD in participants of East Asian ancestry.
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Therefore, we provide further evidence for an opposite direction
of effect for the relationship between MD and metabolic traits in
European and East Asian ancestry groups'®”. Instead of generalizing
findings about depression risk factors across populations, further
studies are needed to understand how genetic and environmental
factors contribute to the complex relationships across diverse ances-
try groups.

Our study has limitations. In this study, we assigned individuals
intoancestry and ethnicgroups. While this enabled importantinsights
(forexample, about transferability of MD loci), such categorical assign-
ments are imprecise and some participants with admixed ancestry may
still get excluded. In future research, we aim to implement different
analytic strategies that are fully inclusive.

The samplesize varied greatly across ancestry groups. The small-
est group were individuals of South Asian ancestry. Most of the indi-
vidualsincluded in our study live in the United States or in the United
Kingdom. To characterize MD in global populations, future studies
prioritizing primary data collection are needed. To contribute to this,
weare currently recruiting MD patients and controls from Pakistaninto
the DIVERGE study™®. However, a concerted global effort to increase
diversity in genetics will be necessary to fully address the issue?. This
also applies to the lack of other omics data and other functional data-
bases to support downstream analyses for ancestrally diverse GWAS,
such aslarge resources for transcriptomics or proteomics in relevant
tissues®*%, This may have impacted on our TWAS results because the
RNA sequencing data was predominantly from participants of Euro-
pean ancestry.

Furthermore, statistical power for discovery of genetic associa-
tions may be impacted by reduced coverage of genetic variation pre-
sent in diverse ancestral groups, as well as other factors such as the
reliability of outcome assessment across different groups.

Additionally, our bi-directional MR analysis tested the relation-
shipsbetween MD and cardiometabolic traits. When testing MD as the
exposure, theresults should be interpreted as the effect of MD genetic
liability and not as the effect of MD itself.

This study utilized data from several existing cohorts and biore-
sourcesto achieve large sample sizes. This necessitated using different
outcome definitions, covering self-administered symptom question-
naires, electronic healthcarerecords and structured clinical interviews.
The potential advantages and disadvantages of these approaches
have been extensively discussed in previous studies>®. It is possible
that some of the 190 genome-wide significant loci we identified are
linked to a more general susceptibility to mental illness instead of
being specific to MD. However, given the overlap between different
psychiatric disorders®, such findings are nevertheless of value for
our understanding of the biology and for the development of new
treatments for MD.

In conclusion, in this first large-scale, multi-ancestry GWAS of
MD, we demonstrated through transferability analyses that anotable
proportionof MD loci are specific to samples of European ancestry. We
identified novel, biologically plausible associations that were missed
in European ancestry analyses and demonstrated that large, diverse
samples can be important for identifying target genes and putative
mechanisms. These findings suggest that for MD, a heterogeneous
condition with highly complex etiology, increasing ancestral as well
asglobal diversity in genetic studies may be particularlyimportant to
ensure discovery of core genes and to inform about transferability of
findings across ancestry groups.
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Methods

Participating cohorts

For the analyses of the African, East Asian, South Asian and Hispanic/
Latin American group, we included datafrom21cohorts (Supplemen-
tary Table1) with ancestrally diverse participants, where measurements
were taken from distinct samples. Details including study design, geno-
typing and imputation methods and quality control for these studies
had been described by previous publications (Supplementary Note).
Allparticipants provided informed consent. All studies obtained ethical
approvals fromlocal ethics review boards. Measures were taken from
distinct samples rather than repeat measures from the same individual.

For each study, a principal component analysis was carried out
based onthe genetic similarity of individuals. Individuals who clustered
around a reference group with confirmed ancestry were assigned to
thatspecific group andincluded in the association analysis, except for
the Hispanic/Latin American group, which was based on self-reported
ethnicity. Individuals withadmixture between the predefined ancestry
reference groups were excluded.

We also included two previously published studies of MD, using
datafrom ancestrally European participants, including the PGC-MDD2
(M ages = 246,241 and Ny 01 = 558,568) " and the AGDS (n.,., = 12,123 and
Neonerots = 12,684) (ref. 14) to conduct a multi-ancestry meta-analysis of
MD (Supplementary Table1). The total sample size of the multi-ancestry
meta-analysis was 1,815,091 (1 e, = 345,389 and ng, = 559,332). Of the
participants, 70.1% (effective sample size) were of European ancestry,
8.2% East Asian, 11.8% African and 1.5% were of South Asian ancestry,
and 7.9% were Hispanic/Latin American.

We used a range of measures to define depression, including
structured clinical interviews, medical care records, symptom ques-
tionnaires and self-reported surveys (Supplementary Table 1). The
meta-analyses were primarily conducted combining GWASs of all
phenotype definitions (thatis, broad MD). In addition, meta-analyses
for clinical depression and relevant downstream analyses were also
conducted. We considered depression ascertained by structured clini-
calinterviews (directly assessing diagnostic criteria based on DSM-1V,
DSM-5 or ICD9/10 through interviews or self-report) or medical care
records (ICD9 or ICD10 from primary or secondary care units) as clini-
cal depression. Among the GWASs, the Genes and Health study, MVP,
the Genetic Epidemiology Research on Aging Study (GERA), BioVU,
the Prevention Intervention Research Center First Generation Trial
(PIRC), the Mexican Adolescent Mental Health Survey (MAMHS), CON-
VERGE, the UKB, the Army Study to Assess Risk and Resiliencein Service
Members (Army-STARRS) and BioMe fulfilled the clinical definition
of depression. On the basis of European ancestry data from previous
published work of the PGC-MDD group®, all studies fulfilled the clinical
definition, except for the UKB and the 23andMe, which were excluded
inthe analysis of clinical MD.

Study-level genetic association analyses

Throughout the manuscript, all statistical tests were two sided, unless
explicitly indicated. We had access to individual-level data for Army
STARRS, UKB, Women’s Health Initiative (WHI), Intern Health Study
(IHS), GERA, Jackson Heart Study (JHS), Drakenstein Child Health
Study and the Detroit Neighborhood Health Study. Data access was
granted viaour collaborators, the UKB under application ID 51119 and
the dbGaP under project ID 18933.

SNP-level associations with depression were assessed through
logistic regressions using PLINK version 1.90. The additive per-allele
model was employed. Age, sex, principal components and other rel-
evant study-level covariates were included as covariates. Where availa-
ble, genotypes onchromosome X were coded O or 2in male participants
and 0,1and 2 in female participants. Data for variants on X were only
available for some of the studies (Supplementary Table 1). The effec-
tive sample size was 1,763 for African, 58,833 East Asian, 13,099 South
Asian ancestry and 79,720 for Hispanic/Latin American. Summary

statistics were received from our collaborators for all other studies.
Additive-effect logistic regressions were conducted by the 23andMe
Inc, Taiwan-MDD study, MVP, BBJ, Rabinowitz, MAMHS, PrOMIS and
BioVU. Age, sex, principal components and other relevant study-level
covariates were included as covariates.

Mixed-effect models were used in the association analysis for
CKB, BioME and Genes and Health with SAIGE (version 0.36.1) (ref. 54).
The CONVERGE study initially conducted mixed-effect model GWA
tests with Bayesian and logistic regression toolkit-linear mixed model
(BOLT-LMM), followed by PLINK logistic regressions to retrieve log
oddsratios (ORs). For the CONVERGE study, thelogORs and s.e.m. from
PLINK were used in our meta-analysis. The HCHS/SOL implemented
mixed-effect model GWA tests to adjust for population structure and
relatedness with depression as binary outcome'® and was conducted
using GENESIS™. The summary statistics from GENESIS were converted
into logOR and s.e.m. before meta-analysis. First, the score and its
variance were transformed into 8 and s.e.m. by 8 = score/variance
and s.e.m. = sqrt(variance)/variance. Afterwards, f and s.e.m. were
converted into approximate logOR and s.e.m. using 8 = 5/(pi x (1 - pi))
ands.e.m.=s.e.m./(pi x (1 - pi)), where piis the proportion of casesin
analysis®.

We restricted the downstream analysis to variants with imputa-
tion accuracy info score of 0.7 or higher and effective allele count
(2 x MAF x (1- MAF) x N x R?) of 50 or higher. For study of small sample
size, we required a minor allele frequency of no less than 0.05. The
alleles for indels were re-coded as ‘I for the longer allele and ‘D’ for
theshorter one. Indels of different patterns at the same position were
removed.

Meta-analyses
We first implemented inverse variance-weighted (IVW) fixed-effect
meta-analyses for GWAS from each ancestry/ethnic group (that is,
African ancestry, East Asian ancestry, South Asian ancestry and the
Hispanic/Latin Americangroup) using METAL (version 2011-03-25) (ref.
57). The genomic inflation factor A was calculated for each study and
meta-analysis with R package GenABEL version 1.8.0 (ref. 58). Given the
dependence of this estimate on sample size, we also calculated A, o0
(ref.59) as Ay g0 =1+ (A= 1) X (1/N¢a5e + 1/ Neoniror) % 500 (ref. 60). The LDSC
intercept was also calculated with an ancestry-matched LD reference
panel from the Pan UKB reference panel® for each meta-analysis with
LDSC (version1.0.1) (ref. 62). For meta-analyses with residual inflation
(A>1.1), test statistics for variants were adjusted by LDSC intercept.
Following the meta-analyses by METAL, variants present in less than
two studies were filtered out. Statistical tests were generally two sided
unless otherwise stated. We also performed a heterogeneity analysis
with METAL to assess whether observed effect sizes (or test statistics)
are homogeneous across samples.

We combined datafrom 71 cohorts with diverse ancestry using an
IVW fixed-effects meta-analysisin METAL”. Aand A, 4o, Were calculated,
and were 1.687 and 1.001, respectively. The LDSC intercept was also
calculated with the multi-ancestry LD reference panel (Supplementary
Note), which was 1.019 (s.e.m. 0.011). We adjusted the test statistics
from the multi-ancestry meta-analysis using the LDSC intercept of
1.019. Only variants present in at least two studies were retained for
further analysis, yielding a total of 22,941,580 variants. We also calcu-
lated the number of cases and the total number of samples for each
variant based on the crude sample size and availability of each study.

We used a significance threshold of 5 x 1078, To identify independ-
ent association signals, the GCTA forward selection and backward
elimination process (command ‘cojo-slt’) were applied using the sum-
mary statistics from the multi-ancestry meta-analysis, with the afore-
mentioned multi ancestry LD reference panel (GCTA version 1.92.0
beta2)®*®*, It is possible that the algorithm identifies false positive
secondary signals if the LD in the reference set does not match the
actual LD inthe GWAS data well; therefore, for each independent signal
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defined by the GCTA algorithm, locus zoom plots were generated for
the 250 kb upstream and downstream region. We theninspected each
of these plots manually and removed any secondary signals from our
list where there was unclear LD separation, that is, some of the variants
close to the secondary hit were in LD with the lead variant.

Lociwere defined by the flanking genomicinterval mapping 250 kb
upstream and downstream of each lead SNP. Where lead SNPs were
separated by less than 500 kb, the corresponding loci were aggregated
as a single locus with multiple independent signals. The lead SNP for
each locus was then selected as the SNP with minimum association
Pvalue. The analysis for lociidentification, along with all other R-related
tasks unless otherwise stated, was conducted using R (version 3.4.3)
(ref. 65) and figures were produced using the packages ggplot2 (ver-
sion 3.2.1) (ref. 66), qqman (version 0.1.4) (ref. 67) and ggpubr (version
0.6.0) (ref. 68).

We conducted sensitivity analyses for outcome definitions,
case-control ratio and using a different multi-ancestry meta-analysis
approach (Supplementary Note).

Fine mapping

We fine mapped allloci with statistically significant associations from
the multi-ancestry GWAS using a statistical fine-mapping method
for multi-ancestry samples®°. Briefly, this method is an extension of
a Bayesian fine-mapping approach’®>® that utilizes estimates of the
heterogeneity across ancestry groups, such that variants with different
effect estimates across populations have asmaller prior probability to
be the causal variant.

Foreachleadvariant, wefirstextracted all nearby variants withr*> 0.1
as determined by the multi-ancestry LD reference. The multi-ancestry
prior for each variant to be causal was calculated from a fixed-effects
meta-analysis combining the summary statistics fromancestry-specific
meta-analysis for each of the five major ancestry groups. Pstatistics were
calculated to estimate the heterogeneity of the effect estimates across
ancestry groups. The posterior probability for a variant to be included
inthe credible set was proportional toits chi-square test statisticand the
prior. The 99% credible set for each lead variant was determined by rank-
ingall SNPs (within > 0.1 of the lead variant) according to their posterior
probabilities and then including ranked SNPs until their cumulative
posterior probabilities reached or exceeded 0.99.

As a comparison, we also conducted a Bayesian fine-mapping
analysis based on the summary statistics of the European-ancestry
meta-analysis. The same list of independent lead SNPs from the
multi-ancestry meta-analysis were used for this fine mapping in the
European ancestry data. All nearby SNPs with r*> 0.1 as determined
by the 1,000 Genomes European LD reference panel were included in
the fine mapping. The posterior probability was calculated in asimilar
way, but without the multi-ancestry prior. Similar to the multi-ancestry
fine mapping, all SNPs were ranked, and 99% of the credible sets were
derived accordingly.

Since our fine mapping was based on meta-analysis summary
statistics, heterogeneity of individual studies (for example, due to
differences in genotyping array) can influence the fine-mapping cali-
bration and recall. We used a novel summary statistics-based quality
controlmethod proposed by Kanai and colleagues (SLALOM) to dissect
outliers in association statistics for each fine-mapped locus™. This
method calculates test statistics (DENTIST-S) from Z-scores of test
variants and the lead variant (the variant of the lowest Pvalue in each
locus), and the LD r between test variants and the lead variant in the
locus”. Among the 155 fine-mapped loci in our study, there were 134
lociwith the largest variant posterior inclusion probability of greater
than 0.1. For these 134 loci, r values were calculated for all variants
within the 1 Mb region of the lead variant for each locus based on our
multi-ancestry LD reference from the UKB data. Inline with the criteria
used by Kanaiand colleagues, variants with DENTIST-S Pvalue smaller
than1x10™*and P with the lead variant greater than 0.6 were defined

asoutliers. Fine-mapped loci were classified as robust if there were no
outlying variants.

Colocalization analysis

We performed colocalization between genetic associations with MD
and gene expression in brain and blood tissues from samples of Euro-
pean and African ancestry and Hispanic/Latin American participants
using coloc R package’. To select genes for testing, we mapped SNPs
withina3 Mbwindow at2q24.2 and 6q16.2 using Variant Effect Predic-
tor”, resulting in eight and four genes, respectively. Loci with posterior
probability >90% either for both traits are associated and share two dif-
ferentbut linked variants (H3 hypothesis) or asingle causal variant (H4
hypothesis) were considered as colocalized. The European and African
ancestry summary statistics for MD were tested against multi-ancestry
brain eQTLs from European and African American samples”. For the
Hispanic/Latin American group, we tested gene and protein expres-
sion of blood tissue from Multi-Ethnic Study of Atherosclerosis and
Trans-omics for Precision Medicine’. For African ancestry, we tested
gene expression of blood from GENOA study” and proteome expres-
sion of blood”. For European ancestry, we tested gene expression of
blood fromeQTLgen’, and proteome expression fromblood”. We also
carried out ancestry-specific eQTL and pQTL colocalization analyses
for previously reported loci that were or were not transferable.

Assessment of transferability of MD-associated loci

We assessed whether published MD-associated loci display evidence of
associationinthe East Asian, South Asian and African ancestry and His-
panic/Latin American samples. Pooling the independent genome-wide
significant SNPs from two large GWAS of MD in samples of European
ancestry yielded 195 loci” . The ancestrally diverse groups included
in this study had smaller numbers of participants than the European
ancestry discovery studies. Also, a given variant may be less frequent
inanother ancestry group. Therefore, individual lead variants may not
display evidence of association because of lack of power. Moreover,
in the discovery study, the lead variant is either the causal variant or
is strongly correlated with it. However, differences in LD mean that
the lead variant may not be correlated in another ancestry group and
may therefore not display evidence of association. Our assessment
of transferability was therefore based on PAT ratios that aggregate
information across loci and account for all three factors, sample size,
MAF and differences in LD,

First, credible setsfor eachlocus were generated. They consisted
of lead variant plus all correlated SNPs (r* > 0.8) within a 50 kb window
of the lead variant (based on ancestry matched LD reference panels
from the 1,000 Genomes data) and with P <100 x P,.,4. A signal was
defined as being ‘transferable’to another ancestry groupif at least one
variant from the credible set was associated at two-sided
P < 10008100-09-Px(N-1) with MD and had consistent direction of effect
between the discovery and test study. N is the number of SNPs in the
credible set for each locus, and P;is a penalization factor we derived
from empirical estimations. The effective number ofindependent SNPs
was often higher in other ancestry groups due to differences in LD,
leading to higher multiple testing burden and higher likelihood of
identifying SNPs with alow Pvalue, by chance alone. This inflates the
test statistics and was adjusted for by the penalization factor (P;).
Toderive the P;for each ancestry group, we used the summary statistics
from a previous GWAS on breast cancer”’, in which phenotypes were
believed to be uncorrelated with MD. A total of 441 breast cancer sig-
nificant SNPs were taken from their paper, and linear regressions were
conducted for the P values of these SNPs in each of our ancestrally
diverse summary statistics for MD on the number of SNPs in credible
sets. The coefficient estimates (slope from regressions) were treated
as P, for each ancestry. As a result, P, were 0.008341, 0.007378,
0.006847 and 0.003147 for samples of African, East Asian, South Asian
ancestry and for the Hispanic/Latin American group, respectively.
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Inthe next step, the statistical power to detect an association ofa
givenlocus was calculated assuming an additive effect atatypelerror
rate of 0.05, with effect estimates from the discovery study, and allele
frequency and samplesize fromeach of the target datasets from diverse
ancestry/ethnic groups. The power estimates were summed up across
published locito give an estimate of the total number of loci expected
to besignificantly associated. Thisis the expected numberifalllociare
transferable and accounts for the statistical power for replication. We
calculated the PAT ratio by dividing the observed number of lociby the
expected number. In addition, loci were defined as ‘nontransferable’
if they had sufficient power for identifying an association but did not
display evidence of association, that is, if they contained at least one
variantinthe credible set with >80% power, while none of the variants
inthe credible sethad P < 0.05 and no variant within 50 kb of locus had
P<1x107inthetarget dataset.

For comparison, we also conducted a transferability assessment
foraEuropean ancestry look-up study. The 102 significantlocireported
by Howard and colleagues” were evaluated for their transferability in
the AGDS study using the aforementioned method.

To assess whether low transferability may be due to heterogene-
ous outcome definitions, we carried out a sensitivity analysis, where
we estimated PAT ratios based only on studies fulfilling the clinical
MD definition.

Trans-ancestry genetic correlations

We estimated trans-ancestry genetic correlations using POPCORN ver-
sion1.0 (refs.29,54,78). Pairwise correlations were calculated between
each combination of the five ancestry/ethnic groups (that is, African,
European, East Asian, South Asian and Hispanic/Latin American) for
broad depression and clinical depression separately.

Gene annotation

The summary statistic from the multi-ancestry meta-analysis was first
annotated with FUMA”. Both positional mapping and eQTL mapping
results were extracted from FUMA. The 1,000 Genomes European
samples were employed as the LD reference panel for FUMA gene
annotation. Datasets for brain tissue available in FUMA were employed
for eQTL gene annotation.

Gene-based association analyses were implemented using
Multi-marker Analysis of GenoMic Annotation (MAGMA, version 1.08)
(ref. 80) and Hi-C coupled MAGMA (H-MAGMA)®., The aforementioned
multiple ancestry LD reference panel fromthe UKB was used asthe LD
reference panel. H-MAGMA assigns noncoding SNPs to their cognate
genes based on long-range interactions in disease-relevant tissues
measured by Hi-C*. We used the adult brain Hi-C annotation file.

Transcriptome-wide association analysis and drug mapping
To perform a TWAS, the FUSION software was used®’. SNP weights
were downloaded from the FUSION website®* and were derived from
multiple external studies, including (1) SNP weights from all available
braintissues, adrenal gland, pituitary gland, thyroid gland and whole
blood* from GTEx v8 (ref. 84) (based on significantly heritable genes
and‘AllSamples’in GTEx v8, which alsoincludes African American and
Asian individuals); (2) SNP weights from the CommonMind Consor-
tium, which includes samples from the brain dorsolateral prefrontal
cortex; (3) SNP weights from the Young Finns study; and (4) from the
Netherlands Twin Register, which provides SNP weights from blood
tissues (whole blood and peripheral blood, respectively).

We used the multi-ancestry LD reference panel described above.
Variants presentinthe 1,000 Genomes European population reference
panel were retained. A separate TWAS was also performed usinga LD
reference panel based on the 1,000 Genomes Project’s samples of
European ancestry, as a sensitivity analysis.

The transcriptome-wide significance threshold for the TWAS asso-
ciationsin this study was P <1.37 x 10"®. This threshold was previously

derived using a permutation-based procedure, which estimates a
significance threshold based on the number of features tested™.

The results were compared with previous TWAS in MD, including
the two largest MD TWAS so far>>**5%8¢ These studies generally used
smaller sets of SNP weights (except the study by Dall’Aglio and col-
leagues, which used similar SNP weights as the current study, but with
SNP weights derived from the previous GTEx release, v7). The TWAS
Z-score plot was generated using a TWAS-plotter function®.

To assess the relevance of novel genes to drug discovery, genes
were searched in three large drug databases: GeneCards®, DrugBank
and ChEMBL®*°. In Table 1, a selection of drugs (the ones reported in
multiple publications) probably targeting our high-confidence prior-
itized gene sets are shown for each gene.

MR
We performed a bi-directional two-sample MR analysis using the
TwoSampleMR R package (version 0.5.6)°°* to test possible causal
effects between MD and six cardiometabolic traits. We followed the
STROBE-MR (strengthening the reporting of observational studies
in epidemiology using Mendelian randomisation) guidelines (Sup-
plementary Note). For individuals of European ancestry, the UKB was
usedtoselectinstruments for BMI, fasting glucose, HDL, LDL, SBP and
TGs.SBP summary datawere obtained from the UKB for individuals of
Africanand South Asian ancestry and Hispanic/Latin American partici-
pants. For samples of African, East Asian and South Asian ancestry and
the Hispanic/Latin American group, a meta-analysis was performed
using METAL> with inverse variance weighting using the UKB and the
following consortia: GIANT? for BMI; MAGIC®* for fasting glucose;
Global Lipids Genetics Consortium” for HDL, LDL and TG; and Biobank
Japan®?®for SBP in samples of East Asian ancestry. The genetic associa-
tions with quantitative variables were estimated with respect to the
scale, units and models defined in the original studies. Heterogeneity
analyses were also performed. To avoid sample overlap, the datasets
used to defineinstrumental variables (IV) for the cardiometabolic traits
were excluded from the MD genome-wide association statistics used
for the MR analyses conducted with respect to each ancestry group.
Genome-wide significance (P=5 x 10"®) was used as the threshold
to selectIVs for the exposures. However, if less than ten variants were
available, a suggestive threshold (P=5 x 107°) was used to select IVs
(Supplementary Table 16). We only included IVs that were present in
both datasets (exposure and the outcome). We followed the three main
IVassumptions for the analysis: (1) relevance: the IVis associated with
therisk factor of interest; (2) independence: the IVisnot associated with
confounders; and (3) exclusion: the IV is only associated with the out-
come through the exposure. We used the following criteria for clump-
ing: r*=0.001and a10,000 kb window. The following information was
usedinboththe exposure and outcome data: SNP ID, effect size, effect
allele, other allele, EAF and Pvalue. We used five different MR methods:
IVW, MR-Egger, weighted median, simple mode and weighted mode™.
TheIVW estimates were reported as the main results due to their higher
statistical power” while the other tests were used to assess the consist-
ency of the estimates across different methods. MR-Egger regression
intercept and MR heterogeneity tests were conducted as additional
sensitivity analyses. In case of significant heterogeneity, the MR-plei-
otropy residual sumand outlier global test was used to remove genetic
variants based on their contribution to heterogeneity®).

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

GWAS summary statistics will be made available via the PGC website
(https://www.med.unc.edu/pgc/download-results/) under dataset
identifier ‘mdd2023diverse’. 23andMe, WHI and JHS do not permit
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sharing of genome-wide summary statistics. The full GWAS summary
statistics for the 23andMe discovery dataset will be made available
through 23andMe to qualified researchers under an agreement with
23andMethat protects the privacy of the 23andMe participants. Please
visit https://research.23andme.com/collaborate/#dataset-access/ for
more information and to apply to access the data. Investigators can
applyforaccessto WHIandJHS via dbGaP (https://www.ncbi.nlm.nih.
gov/gap/). The current study utilized data from dbGaP studies under
application #18933.

Code availability

We used publicly available software for the analyses. The software used
is listed in the Methods section. Custom analysis scripts are available
athttps://doi.org/10.5281/zenod0.8335659.
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Extended Data Fig. 1| Manhattan plots for genetic associations with major
depression in non-European ancestries. The y-axes show the -log,,Pvalues

for the associations between each single-nucleotide polymorphism and major
depression. The x-axes show the chromosomal position (GRCh37). The red line
represents the genome-wide significance threshold of 5 x107® and the blue line
107°. a, Manhattan plot for African ancestry. Due to the restriction that SNPs need
to be available in at least two studies, only results for 6,051 variants were available
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onthe X chromosome. b, Manhattan plot for East Asian ancestry. ¢, Manhattan
plot for Latin American ancestry. Association Pvalues have been adjusted by the
LDSC intercept of1.0508. d, Manhattan plot for South Asian ancestry. Only one
cohort provided data for variants on the X chromosome. Those are not included
because for the meta-analysis at least two cohorts were required to provide data
for each variant.
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Extended Data Fig. 2| Manhattan plots for genetic associations with clinical
major depressioninindividuals of non-European ancestries. The y-axes
show the —log,,Pvalues for the associations between each single-nucleotide
polymorphism and major depression. The x-axes show the chromosomal
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ancestry. d, Manhattan plot for South Asian ancestry.
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values for the associations between each single-nucleotide polymorphism and
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Software and code

Policy information about availability of computer code

Data collection  Data collection not part of this study. No software was used for data collection.

Data analysis Mixed-effect models were used in the association analysis for CKB, BioME, Genes & Health with SAIGE (version 0.36.1, version 0.37, or version
0.39). The CONVERGE study initially conducted mixed-effect model GWA tests with FastLMM (version 2.06.20130802), followed by PLINK
logistic regressions to retrieve logORs. For the CONVERGE study, the logORs and standard errors from PLINK were used in our meta-analysis.
The HCHS/SOL implemented mixed-effect model GWA tests to adjust for population structure and relatedness with depression as binary
outcome and was run using GENESIS.

We implemented inverse-variance weighted fixed-effect meta-analyses using METAL (version 2011-03-25) and a multi ancestry meta-
regression using MR-MEGA (v.0.2).

To identify independent association signals, the GCTA (version 1.92.0 beta2) forward selection and backward elimination process (command
‘cojo-slt’) were applied using the summary statistics from the multi-ancestry meta-analysis, with a multi ancestry LD reference panel.

We performed colocalization between genetic associations with MD and gene expression in brain and blood tissues from samples of European
and African ancestry and Hispanic/Latinx participants using coloc R package (version).

The summary statistic from the multi-ancestry meta-analysis was first annotated with FUMA (v1.3.7).

Gene-based association analyses were implemented using Multi-marker Analysis of GenoMic Annotation (MAGMA, v1.08) and Hi-C coupled
MAGMA (H-MAGMA).

To perform a transcriptome-wide association study (TWAS), the FUSION software was used.

We performed a bi-directional two-sample MR analysis using the TwoSampleMR R package (v0.5.6, https://mrcieu.github.io/TwoSampleMR/
index.html).

We estimated trans-ancestry genetic correlations using POPCORN v1.029,55,64. Pairwise correlations were calculated between each




combination of the 5 major ancestry/ethnic groups (i.e. African, European, East Asian, Hispanic/Latinx and South Asian) for broad depression
and clinical depression separately.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

GWAS summary statistics will be made available via the PGC website https://www.med.unc.edu/pgc/download-results/. Dataset identifier: ‘mdd2023diverse’.
23andMe, WHI and JHS do not permit sharing of genome-wide summary statistics. The full GWAS summary statistics for the 23andMe discovery data set will be
made available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants. Please visit
https://research.23andme.com/collaborate/#dataset-access/ for more information and to apply to access the data. Investigators can apply for access to WHI and
JHS via dbgap https://www.ncbi.nlm.nih.gov/gap/.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender We used biological sex in the study. It was determined based on the participants' genotypes.

Population characteristics The population characteristics of participants across multiple studies are as follows:

CKB Study: Mean age is 52.2 years (SD=10.7), with a 59.5% female cohort.

CONVERGE Study: Mean age is 46.1 years, with an entirely female cohort.

Taiwan Study: Mean age is 49.2 years (SD=11.3), and 57.5% are female.

WHI Study: For different ancestries, the mean ages are as follows: 62.7 years (SD=7.5) for East Asians, 61.5 years (SD=7.1) for
Africans, and 60.3 years (SD=6.7) for Hispanic/Latin Americans. The cohort is 100% female.

IHS Study: Mean ages by ancestry are 27.4 years (SD=2.4) for East Asians, 27.8 years (SD=2.7) for Africans, and 26.6 years
(SD=2.1) for South Asians, with female proportions of 54.8%, 63.3%, and 46.9%, respectively.

UKB Study: Mean ages by ancestry are 52.1 years (SD=7.3) for East Asians, 50.7 years (SD=7.4) for Africans, and 53.0 years
(SD=8.3) for South Asians. The cohort has 72.1%, 61%, and 43.8% females, respectively.

Army-STARRS Study: Mean ages by ancestry are 24.5 years (SD=6.3) for East Asians, 23.5 years (SD=5.7) for Africans, and 22.8
years (SD=5.1) for Hispanic/Latin Americans, with female proportions of 12.5%, 21.4%, and 15.4%, respectively.

BioMe Study: Mean age is 58.9 years, with 58.7% females.

BBJ Study: Mean age is 63.0 years, with 46.3% females.

AGDS Study: Mean age is 44.1 years (SD=15.1), with 75.1% females.

IHS Study: Mean age is 55.2 years (SD=12.2), with 63.6% females.

DCHS Study: Mean age is 26.4 years (SD=5.6), with an entirely female cohort.

HCHS/SOL Study: Mean age is 46 years (SD=14), with 59% females.

DNHS Study: Mean age is 53.2 years (SD=16.6), with 58.3% females.

PIRC Study: Mean age is 29 years, with 58.5% females.

MAMHS Study: Mean age is 14.28 years, with 68.8% females.

ProMIS Study: Mean age is 28.2 years (SD=6.3), with an entirely female cohort.

Further details on population characteristics are provided in Supplementary Table 1, titled "Cohort Summary."

Recruitment We provide detailed descriptions of the 21 cohorts included in this study in the supplementary material.
Ethics oversight Each of the cohorts included was approved by a relevant ethics review board and we have listed the details in the
manuscript.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

>
Q
Q
(e
=
)
§o;
o)
=
o
=
_
D)
§o)
o)
=
S
Q
wv
(e
=
S}
QD
<L




Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size To determine sample size we added up the number of participants of each study that was included in a given analysis.

Data exclusions  We restricted the downstream analysis to genetic variants with imputation accuracy info score of 0.7 or higher and effective allele count
(2*maf*(1-maf)*N*R2) of 50 or higher. For study of small sample size, we instead required a minor allele frequency of no less than 0.05. The
alleles for indels were re-coded as “I” for the longer allele and “D” for the shorter one. Indels of different patterns at the same position were
removed.

Replication All available cohorts of major depression cases and controls were included in the primary multi-ancestry meta-analysis and therefore we do
not perform replication for significant loci we identified from the multi-ancestry meta-analysis in independent cohorts.
We tested replication of previously identified loci linked to depression from European ancestry across non-European ancestry groups and this
is described in the manuscript as transferability. Add some more information as requested by editors.

Randomization  This was a genetic association study. Allocation by genotype.

Blinding This was a genetic association study, ie observational design. So no blinding was used.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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