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A B S T R A C T   

Background: The detection and quantification of changes in white matter lesions in the brain is important to 
monitor treatment effects in patients with multiple sclerosis (MS). Existing automatic tools predominantly 
require FLAIR images as input which are not always available, or only focus on new/enlarging activity. 
Therefore, we developed and validated a semi-automated method to quantify lesion volume changes based on 2D 
proton-density (PD)-weighted images and image subtraction. This semi-automated method provides insight in 
both “positive” activity (defined as new and enlarging lesions) and “negative” activity (disappearing and 
shrinking lesions). 
Methods: Yearly MRI scans of patients with early MS from the REFLEX/REFLEXION studies were used. The 
maximum follow-up period was 5 years. Two PD-weighted images were normalized, registered to a common 
halfway-space, intensity-matched, and subsequently subtracted. Within manual lesion masks, lesion changes 
were quantified using a subtraction intensity threshold and total lesion volume change (TLVC) was calculated. 
Reproducibility was measured by assessing transitivity, specifically, we calculated the intraclass correlation 
coefficient for the absolute agreement (ICCtrans) and the difference (Δtrans) between the direct one-step and in
direct multi-step measurements of TLVC between two visits. Accuracy was assessed by calculating both the 
intraclass correlation coefficient for absolute agreement (ICCacc) and the difference (Δacc) between the one-step 
semi-automated TLVC and manually measured lesion volume change (numerical difference) between two visits. 
Spearman’s correlations (rs) were used to assess the relation of global and central atrophy, manually measured 
T2 lesion volume, and lesion volume change with the method’s performance as reflected by the difference 
measures |Δtrans| and Δacc. An alpha of 0.05 was used as the cut-off for significance. 
Results: Reproducibility was excellent, with ICCtrans values ranging from 0.90 to 0.96. Accuracy was good overall, 
with ICCacc values ranging from 0.67 to 0.86. The standard deviation of Δtrans ranged from 0.25 to 0.86 mL. The 
mean of Δacc ranged from 0.11 to 0.37 mL and was significantly different from zero. Both global and central 
atrophy significantly correlated with lower reproducibility (correlation of |Δtrans| with global atrophy, rs = − 0.19 
to − 0.28, and correlation of |Δtrans| with central atrophy, rs = 0.22 to 0.34). There was generally no significant 
correlation between global/central atrophy and accuracy. Higher lesion volume was significantly correlated with 
lower reproducibility (rs = 0.62). Higher lesion volume change was significantly correlated with lower repro
ducibility (rs = 0.22) and lower accuracy (correlation of Δacc with lesion volume change, rs = − 0.52). 

Abbreviations: ICC, intraclass correlation coefficient for the absolute agreement; FLAIR, fluid-attenuated inversion recovery; LVC, lesion volume change; MRI, 
magnetic resonance imaging; MS, multiple sclerosis; PBVC, percentage brain volume change; PD, proton-density; PVVC, percentage ventricular volume change; SD, 
standard deviation; TLVC, total lesion volume change; WM, white matter. 
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Discussion: The semi-automated method to quantify lesion volume changes has excellent reproducibility and 
overall good accuracy. The amount of atrophy and especially lesion volume (change) should be taken into ac
count when applying this method, as an increase in these variables might affect the quality of the results. 
Conclusion: Overall, the semi-automated subtraction method allows a valid and reliable quantitative investigation 
of lesion volume changes over time in (early) MS for follow-up periods up to 5 years.   

1. Introduction 

In multiple sclerosis (MS), magnetic resonance imaging (MRI) is 
widely used to detect and monitor the evolution of white matter (WM) 
abnormalities (lesions) in the brain. More specifically, T2 lesions are 
part of the MRI features that are commonly assessed. T2 lesions appear 
hyperintense on proton-density (PD)-/T2-weighted images, and on 
fluid-attenuated inversion recovery (FLAIR) images. The total volume of 
T2 lesions is used in clinical trials to evaluate the effects of disease 
modifying treatments on disease activity. 

To quantify changes in lesion volume over time, a series of images 
has to be segmented. Performing this manually requires a lot of expertise 
and is a labor-intensive process. Therefore, automated change detection 
methods such as the lesion segmentation tool (Schmidt et al., 2019) have 
been developed. Existing tools predominantly require FLAIR images. 
However, these images are not always available in clinical practice and 
in many trials in which dual-echo PD/T2 images are commonly ac
quired. For this reason, we developed a semi-automated lesion change 
quantification method that is based on 2D PD-/T2-weighted images and 
image subtraction. 

Subtraction images are obtained by subtracting two registered serial 
MRI scans after image intensity matching. This cancels out stable non- 
active lesions, which leads to an enhanced contrast between active le
sions and the background (Moraal et al., 2009, 2010) allowing detection 
of changes in lesion load and quantifying positive and negative disease 
activity. 

Few automated methods based on image subtraction exist (e.g., 
Battaglini et al., 2014; Ganiler et al., 2014). However, these methods 
focus on lesion numbers and/or new/enlarging lesions only. The 
currently proposed method also localizes and quantifies disappearing 
and shrinking lesions. 

The aim of the current study was to validate a semi-automated lesion 
change quantification method for a one-year time interval between MR 
imaging. The performance was assessed by quantifying the reproduc
ibility and accuracy of the proposed method when using shorter periods 
between serial MRI scans. The limits of the method were also tested, by 
investigating its performance when applied to longer intervals (up to 5 
years). Finally, the potential influence of brain atrophy and lesion vol
ume (change) on the reproducibility and accuracy were investigated. 

2. Methods 

2.1. Description of the study and dataset 

Five-yearly imaging data from the REFLEX/REFLEXION (REbif 
FLEXible dosing in early MS/extensION; NCT00404352/NCT00813709) 
studies were used. REFLEXION was a preplanned extension of the RE
FLEX study to evaluate the effects of early and delayed treatment with 
subcutaneous interferon beta-1a in patients with early MS over a long- 
term follow-up period (Comi et al., 2017). Table 1 provides an over
view of the different time intervals that were investigated in the current 
study and the corresponding demographics of the included patients. 

All study sites (N = 70) were required to follow an MRI acquisition 
protocol that specified a preference for 1.5 T scanners. The yearly MRI 
scans consisted of 1 × 1 × 3 mm3 axial 2D dual-echo PD-/T2- (which 
means both sequences were generated in a single acquisition; TR, 
2000–3000 ms; TE1/TE2, 20–30 ms/80–100 ms), and T1-weighted (TR, 
400–600 ms; TE, 10–16 ms) spin echo images with full brain coverage 
(number of slices, 46). Manual delineations of the lesions on the PD- 
weighed images and manually edited brain extraction masks originally 
obtained by using the FMRIB software library (FSL) (Smith et al., 2004) 
brain extraction tool (Smith, 2002) with the T1-weighted image as 
input, were previously created in the context of the REFLEX/RE
FLEXION studies by the Image Analysis Center of Amsterdam UMC 
(Location VUmc, Amsterdam, the Netherlands). 

Ethics approval 

This study used data from the REFLEX and REFLEXION studies, 
which were undertaken in compliance with the Declaration of Helsinki 
and standards of Good Clinical Practice according to the International 
Conference on Harmonization of Technical Requirements for Registra
tion of Pharmaceuticals for Human Use. Before initiation of the studies 
at each center, the relevant institutional review board or independent 
ethics committee reviewed and approved the study protocols, patient 
information leaflets, informed consent forms, and investigator bro
chures. All patients provided written informed consent at the screening 
visit of REFLEX, and before enrollment to REFLEXION. 

2.2. Description of the semi-automated method 

2.2.1. Brief overview 
Figs. 1 and 2 summarize the analysis pipeline. Briefly, substantial 

differences in signal intensity between odd and even slices of the PD- 

Table 1 
Demographics of the included patients for each interval.  

Years Interval Number of patients Age, years (range, mean ± SD) Female, n (%) 

1 BSLN-M12 328 17-51 (31.60 ± 8.30) 210 (64%) 
1 M12-M24 338 17-51 (31.66 ± 8.32) 214 (63.3%) 
1 M24-M36 290 17-51 (31.60 ± 8.43) 177 (61%) 
1 M36-M48 281 17-51 (31.78 ± 8.47) 170 (60.5%) 
1 M48-M60 275 17-51 (31.85 ± 8.44) 164 (59.6%) 
2 M36-M60 235 17-51 (31.88 ± 8.48) 136 (57.9%) 
3 M24-M60 220 17-51 (31.70 ± 8.26) 128 (58.2%) 
4 M12-M60 207 17-51 (31.94 ± 8.27) 122 (58.9%) 
5 BSLN-M60 196 17-51 (32.06 ± 8.25) 118 (60.2%) 

BSLN = baseline, M = month, SD = standard deviation. 
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weighted images were corrected for each visit. Then, after bias field 
correction, the PD-weighted images were registered to a common 
halfway space. The intensity distributions of the two halfway PD images 
were matched and subsequently these images were subtracted. The 
subtraction image intensities were transformed into Z-scores. Based on 
the manually created lesion masks as a reference and a threshold of |Z| >
1.5, the voxels inside the manual lesion masks were classified according 
to different categories of lesion change. The total lesion volume change 
was calculated by subtracting the negative activity (disappearing +
shrinking voxels) from the positive activity (new + enlarging voxels). 

2.2.2. Pre-processing and creation of subtraction images 
The processing pipeline as illustrated in Fig. 1 was implemented 

using several tools of FSL (version 5.0.6). As the T1- and PD-/T2- 
weighted images were acquired using different sequences, registration 
was necessary. For this purpose, the registration of the native T1- 
weighted image to the native T2-weighted image was first calculated. 
T2-weighted images were chosen because these provide better contrast 
between cerebrospinal fluid and brain tissue compared to the PD- 
weighted images (which provide better contrast between cerebrospi
nal fluid and lesions) that were generated in the same dual-echo 
acquisition, which is beneficial to the registration accuracy. The regis
tration of the T1-weighted image to the T2-weighted image was calcu
lated using FSL-FLIRT (Jenkinson et al., 2002). A normalized mutual 
information cost function, suitable for images with different types of 
tissue contrast, was used. As these two different sequences originate 
from the same subject within the same session, rigid body registration (6 
degrees of freedom) was optimal. Then, the obtained transformation was 
applied with nearest neighbor interpolation to bring the existing 
T1-weighted brain mask to the T2-weighted image matrix. This resulted 
in a PD-/T2-weighted brain mask. Next, the PD-weighted images were 
pre-processed. The first preprocessing step consisted of removal of signal 
intensity differences between the odd and even slices in the PD-weighted 
images. Such difference may arise from an interleaved slice acquisition 
order. This intensity correction was performed by matching, within the 
PD-/T2-weighted brain mask, the average signal of the odd slices and of 
the even slices. Subsequently, the tool fsl_anat (https://fsl.fmrib.ox.ac. 
uk/fsl/fslwiki/fsl_anat) was used for bias field correction. FSL-FLIRT 
was used with default options (correlation ratio cost function and 12 
degrees of freedom), T2 images of both visits as input, and brain masks 
as weights, to calculate the registration between both visits in both di
rections. These two transforms were used to calculate a halfway space 
following the procedures applied in FSL-SIENA (Smith et al., 2001, 
2002), except that in this case the registration is based on the brain 
images alone without using the skull. Then the PD- and T2-weighted 

images, PD-/T2-weighted brain masks, and lesion masks from two 
time-points were treated in a symmetrical way by registering these to 
the common halfway space using sinc (images), nearest neighbor (brain 
masks), and trilinear (lesion masks) interpolation. In the next step, the 
signal intensity distributions of the two PD halfway images were 
matched. This matching of histograms was achieved by the following 
steps. First, the intensity range of each PD halfway image was normal
ized to the interval 0–1 by linear scaling. Then the T2 halfway images 
were brain masked and the resulting image was segmented into two 
classes (brain and cerebrospinal fluid) by running FSL-FAST (Zhang 
et al., 2001). To prevent exclusions of lesions from brain tissue, the 
halfway-registered lesion masks were added to the brain tissue class. The 
corresponding PD halfway image was masked by this “brain tissue +
lesions” mask and then the itkHistogramFilter tool was used on the 
resulting PD halfway images to determine the required histogram 
changes. These histogram changes were then applied to the full halfway 
PD images (i.e., including the skull, meninges etc.) by using the 
itkHistogramFilter tool again. Finally, to create the subtraction image, 
the image of the first visit was subtracted from that of the second visit. 

2.2.3. Quantification of lesion change 
To quantify the lesion volume change, the following steps were 

applied. In order to account for the differences between sites and 
scanners, the subtraction image intensities were converted into Z-scores 
based on the mean and standard deviation (SD) within the brain tissue 
mask (as described in the previous section) excluding the lesions. The 
resulting Z-score maps were used to classify the activity of all voxels in 
categories “positive”, “negative”, or “none”. This was performed by 
applying a uniform threshold of Z > 1.5 for positive activity and Z <
− 1.5 for negative activity, which was determined through heuristic 
optimization on a subset of cases. To refine this classification based on 
the Z-scores, the change analysis was restricted to the manual lesion 
masks in order to avoid false positive lesion change measurements on 
the subtraction images due to noise or image artifacts. Trilinear inter
polation was used to register these manual lesion masks from both visits 
to the halfway space and then to ensure the inclusion of lesion bound
aries a relatively low threshold of 0.25 was applied. Isolated single 
voxels in an image slice were removed. 

Three different situations were then distinguished based on the 
presence or absence of a manual lesion mask at the two visits, for each 
individual lesion. 1) In case of a newly appearing lesion on visit 2, the 
manual lesion mask for that lesion did not overlap with any manual 
lesion mask from visit 1, and the voxels with Z > 1.5 within this manual 
lesion mask were defined as “new activity”. 2) In the case of a dis
appearing lesion that was present on visit 1, a manual lesion mask for 

Fig. 1. Schematic depiction of the processing pipeline of the semi-automated method. *based on mean and standard deviation within brain tissue mask excluding 
lesions, PD = proton-density. 
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that lesion did not overlap with any manual lesion mask from visit 2, and 
the voxels with Z < − 1.5 within this manual lesion mask were defined as 
“disappearing activity”. 3) In the case of a changing lesion that was 
present at both visit 1 and 2, the manual lesion masks from both visits 
(partially) overlapped. Voxels within this “combined” manual lesion 
mask with an intensity Z > 1.5 were defined as “enlarging activity” and 
Z < − 1.5 as “shrinking activity”. An additional restriction was that 
enlarging or shrinking activity could not occur in the eroded manual 
lesion mask of visit 1 or visit 2, respectively. The total lesion volume 
change (TLVC) was calculated by subtracting the volume of the voxels 
categorized as negative lesion activity (disappearing and shrinking) 
from the volume of voxels with positive activity (new and enlarging). 
See Fig. 2 for an example of the classification of lesion changes. 

We performed a quality check on the output for all intervals (i.e., 
visual inspection of errors in the registration to halfway space and ar
tifacts in the subtraction image such as described by Duan et al. (2008)). 
An interval of a subject was excluded if, due to incomplete brain 
coverage, the anatomical location of a lesion was inside the field of view 
in one visit but not in the other. Furthermore, an interval of a subject was 
included only if all corresponding lesion and atrophy measurements 
were available. 

2.3. Atrophy measures 

Yearly global and central atrophy were measured by estimating the 
percentage brain volume change (PBVC) and percentage ventricular 
volume change (PVVC) respectively, by using SIENA and its extension 
VIENA (Vrenken et al., 2014) both part of FSL (version 6.0.3). A more 
negative and more positive value are indicative of more atrophy for 
PBVC and PVVC respectively. The PBVC and PVVC for intervals longer 
than 1 year were calculated by: 
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2.4. Validation procedure and statistical analyses 

Statistical analyses were performed with IBM SPSS Statistics (version 
28). For our validation purposes, month 60 was used as the reference 
instead of the baseline visit because of the design of the REFLEXION 
trial, where patients are recruited just after a first attack. For this reason, 
we expect the early treatment group to suffer from pseudo-atrophy, i.e., 
shifts in fluid caused by the initiation of anti-inflammatory medication 
leading to a reduction in brain volume without actual cell loss in the first 
6 months to 1 year (De Stefano et al., 2014; Zivadinov et al., 2008), 
which might disturb the measurements in the first year of the study. 

The performance of the semi-automated method was evaluated for 
three different situations.  

1. The performance for the intended use, i.e., yearly lesion volume 
change quantification. All five yearly intervals were pooled to assess 
the accuracy and the two-yearly interval month (M)36-M60 was used 
to assess the reproducibility and accuracy.  

2. The reproducibility and accuracy was assessed for “longer intervals”, 
namely: M24-M60 (3 years), M12-M60 (4 years), and BSLN-M60 (5 
years).  

3. The relation of several factors with the method’s performance, 
namely:  
a Global atrophy (PBVC) and central atrophy (PVVC).  
b Lesion volume, defined as the average lesion volume of two 

manual lesion volume assessments and lesion volume change, 
defined as the numerical difference between two manual lesion 
volume assessments. 

For atrophy, the two-yearly (M36-M60) and longer intervals (M24- 
M60, M12-M60, and BSLN-M60) were assessed. For lesion volume 
(change) only the M36-M60 interval was assessed to minimize the in
fluence of other factors such as (pseudo)atrophy. 

The reproducibility of the semi-automated method was evaluated 
through a transitivity error analysis. This was performed by calculating 
the intraclass correlation coefficient for the absolute agreement (ICC) 
between an indirect multi-step TLVC and direct one-step TLVC. The one- 
step TLVC was calculated directly from the subtracted images of visit 1 
and visit N. The indirect multi-step TLVC was determined by: 

TLVCmulti− step =
∑N

year=1
TLVCyear 

Additionally, the SD of the difference between the multi-step and 

Fig. 2. Quantification of different categories of lesion change based on manual lesion masks and the subtraction image converted in Z-scores. PD = proton-density.  
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one-step TLVC was calculated. To assess the relation of the different 
factors (PBVC, PVVC, and lesion volume (change)) with the reproduc
ibility of the method, the absolute difference between the multi-step and 
one-step TLVC was calculated as well. Then the Spearman’s correlation 
coefficients between this absolute difference and atrophy/lesion volume 
(change) were calculated. 

The accuracy was assessed by calculating the ICC between the one- 
step TLVC and the manually measured lesion volume change (LVC). 
The mean difference between the one-step TLVC and manual LVC was 
also reported together with the results of a paired t-test. To assess the 
relation of the different factors with the accuracy of the method, the 
Spearman’s correlation coefficients (rs) between this difference and at
rophy/lesion volume (change) were calculated. An alpha of 0.05 was 
used as the cut-off for significance for all analyses. 

2.5. Data and code availability statement 

Any requests for data by qualified scientific and medical researchers 
for legitimate research purposes will be subject to the Data Sharing 
Policy of the healthcare business of Merck KGaA, Darmstadt, Germany. 
All requests should be submitted in writing to the data sharing portal for 
the healthcare business of Merck KGaA, Darmstadt, Germany https: 
//www.emdgroup.com/en/research/our-approach-to-research-and-de 
velopment/healthcare/clinical-trials/commitment-responsible-data-sha 
ring.html. When the healthcare business of Merck KGaA has a co- 
research, co-development, or co-marketing or co-promotion 

agreement, or when the product has been out-licensed, the re
sponsibility for disclosure might be dependent on the agreement be
tween parties. Under these circumstances, the healthcare business of 
Merck KGaA will endeavor to gain agreement to share data in response 
to requests. The source code to perform the different steps as described 
in section 2.2 is available at the following link: https://gitlab.com/sbig/ 
lesionchange. 

3. Results 

3.1. Performance during intended use 

The reproducibility, assessed as ICC between the direct one-step and 
indirect multi-step TLVC for the two-yearly M36-M60 interval was 
excellent with ICC = 0.96, 95% CI [0.95, 0.97]. See also Fig. 3 panel A 
for a scatterplot. The SD of the difference between one-step and multi- 
step TLVC was 0.25 mL. 

The accuracy, assessed as ICC between yearly semi-automatically 
measured one-step TLVC and manually measured LVC was good with 
ICC = 0.86, 95% CI [0.85, 0.88]. The absolute agreement was moderate 
for the two-yearly M36-M60 interval (ICC = 0.67, 95% CI [0.59, 0.74]). 
See also Fig. 3 panel B for a scatterplot. The mean difference of 0.11 mL 
between one-step TLVC and manual LVC was the same for both intervals 
and significantly different from zero (pooled yearly intervals: p < 0.001; 
M36-M60: p = 0.019). 

Fig. 3. Scatterplots showing the agreement between the one-step and multi-step measurements of total lesion volume change (TLVC; in mL). The reproducibility in 
the two-yearly interval month 36-month 60 (M36-M60; panel A) and four-yearly interval month 12-month 60 (M12-M60; panel C) is shown. The agreement between 
the one-step semi-automated measurement and manually measured lesion volume change (LVC; in mL) as an indication of accuracy in the two-yearly interval M36- 
M60 (panel B) and four-yearly interval M12-M60 (panel D) is also shown. Identity lines, reflecting perfect agreement, are shown for reference. 
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3.2. Limits of performance 

The semi-automated method showed good to excellent reproduc
ibility, with an ICC range of 0.90–0.94 between the one-step and multi- 
step TLVC for a follow-up period from 3 up to 5 years. The SD of the 
difference between one-step and multi-step TLVC ranged from 0.55 to 
0.86 mL. See Table 2 for more detailed results and Fig. 3 panel C for a 
scatterplot displaying the reproducibility of M12-M60. 

The accuracy was good, with the ICC between the one-step TLVC and 
manual LVC ranging from 0.75 to 0.85. The mean difference was 
significantly different from zero and ranged from 0.13 to 0.37 mL. See 
Table 2 for more detailed results and Fig. 3 panel D for a scatterplot 
displaying the accuracy of M12-M60. 

3.3. Relation between atrophy and performance 

Both global (PBVC) and central (PVVC) atrophy were significantly 
correlated with the reproducibility. More atrophy was associated with a 
larger absolute difference between one-step and multi-step TLVC (PBVC: 
rs range = − 0.19 to − 0.28; PVVC: rs range = 0.22 to 0.34). There was 
generally no significant correlation between global/central atrophy and 
the accuracy. See Table 3 for more details and Fig. 4 for the scatterplots 
of M36-M60 (panel A and B) and M12-M60 (panel C and D). 

3.4. Relation between manually measured lesion volume (change) and 
performance 

A higher manually measured (average) lesion volume was related to 
a lower reproducibility of the semi-automated method as indicated by a 
significant positive correlation between lesion volume and the absolute 
difference between the one-step and multi-step TLVC (rs = 0.62, p <
0.001, see Table 4). A higher manual LVC was related to a lower per
formance of the method as the manual LVC was significantly positively 
correlated with the absolute difference between one-step and multi-step 
TLVC (reproducibility: rs = 0.22, p < 0.001) and a higher manual LVC 
was significantly negatively correlated with the difference between one- 
step TLVC and manual LVC (accuracy: rs = − 0.52, p < 0.001). The 
scatterplot in Fig. 5 panel D shows that the latter result indicates that for 

a positive manual LVC the one-step TLVC is systematically lower than 
the manual LVC and vice versa for a negative manual LVC. 

4. Discussion 

The results of the current study indicate that the proposed subtrac
tion method is a valid and robust approach to semi-automatically 
quantify lesion volume changes over time in (early) multiple sclerosis. 
The reproducibility was excellent and the overall accuracy was good for 
follow-up periods between 1 and 5 years. More atrophy and higher 
lesion volume have a limited negative impact on the reproducibility and 
higher lesion volume change on both the reproducibility and accuracy. 

The semi-automated method provides an insight into the lesion 
volume changes using serial PD-weighted MRI scans as input. We could 
not assess the scan-rescan reproducibility because only one set of scans 
was performed per visit for the REFLEX/REFLEXION studies. For this 
reason, we chose to assess the reproducibility by measuring the absolute 
agreement between the direct one-step and indirect multi-step mea
surement of TLVC. A similar approach of performing a transitivity error 
analysis as part of a validation study has been performed in other studies 
as well (e.g., Smith et al., 2001; Smith et al., 2002). The reproducibility 
of the current semi-automated method was excellent with ICC values 
ranging from 0.90 to 0.96 across all intervals, which indicates that the 
method is very precise for follow-up periods between 1 and 5 years. 

There was, overall, good agreement between the TLVC as quantified 
by the one-step semi-automated method and the LVC as calculated by 
numerically subtracting two manually measured lesion volume assess
ments. The ICC ranged from 0.67 to 0.86. Hence, the measurements 
resulting from these two different approaches were comparable but not 
directly interchangeable. A potential explanation for these differences is 
that the manually measured lesion volume change requires two separate 
measurements of a patient, which introduces two occasions where 
measurement errors (e.g., missed voxels) could occur. In the proposed 
semi-automated method, the longitudinal aspect is taken into account 
by implementing a registration to halfway space and the use of sub
traction images, which reduces the effect of repositioning errors, and 
active disease is enhanced against the background (Moraal et al., 2009). 
Conversely, the semi-automated method could fail to quantify small 

Table 2 
Assessment of reproducibility and accuracy for longer intervals.  

Years Interval Reproducibility Accuracy 

ICC [95% CI] between one-step and 
multi-step TLVC 

SD of transitivity 
error 

ICC [95% CI] between one-step TLVC 
and manual LVC 

Mean difference between one-step TLVC and 
manual LVC (p-value) 

3 M24-M60 0.90 [0.87, 0.92] 0.55 mL 0.77 [0.70, 0.82] 0.13 mL (0.017) 
4 M12-M60 0.94 [0.92, 0.95] 0.58 mL 0.75 [0.65, 0.81] 0.37 mL (< 0.001) 
5 BSLN-M60 0.93 [0.90, 0.95] 0.86 mL 0.85 [0.80, 0.89] 0.34 mL (< 0.001) 

Bold font indicates statistical significance (p < 0.05). BSLN = baseline, CI = confidence interval, ICC = intraclass correlation coefficient, LVC = lesion volume change, 
M = month, SD = standard deviation, TLVC = total lesion volume change. 

Table 3 
Correlations to assess the relation between global (PBVC)/central atrophy (PVVC) and the reproducibility/accuracy.  

Years Interval PBVC PVVC 

Absolute deviation one-step and 
multi-step TLVC 

Deviation one-step TLVC and 
manual LVC 

Absolute deviation one-step and 
multi-step TLVC 

Deviation one-step TLVC and 
manual LVC 

2 M36-M60 rs = − 0.19 rs = − 0.04 rs ¼ 0.25 rs = 0.04 
p ¼ 0.004 p = 0.522 p < 0.001 p = 0.547 

3 M24-M60 rs ¼ − 0.28 rs = − 0.01 rs ¼ 0.32 rs = − 0.01 
p < 0.001 p = 0.936 p < 0.001 p = 0.941 

4 M12-M60 rs ¼ − 0.28 rs = − 0.12 rs ¼ 0.34 rs = 0.13 
p < 0.001 p = 0.096 p < 0.001 p = 0.072 

5 BSLN-M60 rs ¼ − 0.20 rs ¼ − 0.14 rs ¼ 0.22 rs = 0.14 
p ¼ 0.005 p ¼ 0.049 p ¼ 0.002 p = 0.050 

Bold font indicates statistical significance (p < 0.05). BSLN = baseline, LVC = lesion volume change, M = month, PBVC = percentage brain volume change, PVVC =
percentage ventricular volume change, rs = Spearman’s correlation coefficient, TLVC = total lesion volume change. 
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subtle changes if a voxel does not reach the threshold of Z > |1.5| after 
all the (pre)processing steps or if a voxel falls outside the registered 
manual lesion masks which are used as a reference. 

The median lesion volume at the start of the REFLEXION study 
(month 24) was 1.9 mL. The estimated yearly change in lesion volume is 
about 10% in untreated patients (Paty et al., 1994). Considering this, the 
estimated yearly change in lesion volume would be 0.19 mL. The SD of 
the difference between the one-step and multi-step TLVC reflecting the 
reproducibility, and especially the mean difference between the 
one-step TLVC and manual LVC reflecting the accuracy, fall below the 
estimated yearly lesion volume change extrapolated to the corre
sponding intervals listed in Table 2. This indicates that the error in the 
performance of the semi-automated method is not as high as the actual 

lesion volume change that it aims to detect, which provides further 
support for the reliability of the method. 

Both global and central atrophy seemed to have a limited negative 
impact on the reproducibility of the method only, that is, the higher the 
atrophy rate, the lower the reproducibility. A potential explanation for 
this could be that faster atrophy between visits might increase misreg
istration. However, the Spearman correlation coefficients were gener
ally small and if we look at Fig. 4 panels A and C this relationship does 
not seem to be very prominent and clearly interpretable. Given that the 
annual brain volume loss is estimated to be between 0.5 and 1.35% in 
patients with MS (De Stefano et al., 2014) most data points around this 
atrophy value for the reproducibility fall within the 0.19 mL estimated 
yearly lesion volume change (note that panels A and C refer to a 
two-yearly and four-yearly interval, respectively). The patient popula
tion for the current study concerns patients with early MS. How well the 
method performs in more advanced stages of the disease and progressive 
disease types of MS needs to be investigated in future studies. 

A higher (manually measured) average lesion volume seemed to 
have a negative impact on the reproducibility. A higher lesion volume 
change was related to both lower reproducibility and accuracy. Espe
cially the regression coefficients of the relation between lesion volume 
and reproducibility, and the relation between lesion volume change and 
accuracy, were strong. A positive change in the lesion volume seemed to 
be related to an underestimation in the one-step TLVC as compared to 
the manual LVC, and a negative change to an overestimation as shown in 
Fig. 5 panel D. 

In the current study, we assessed the validity of the semi-automated 

Fig. 4. Scatterplots showing the relation between reproducibility/accuracy and global atrophy. Panel A shows the scatterplot for the absolute difference between the 
one-step and multi-step measurements of total lesion volume change (TLVC; in mL) as an indication of reproducibility and its relation with percentage brain volume 
change (PBVC; global atrophy) for the two-yearly interval month 36-month 60 (M36-M60). Panel C shows this for the four-yearly interval month 12-month 60 (M12- 
M60). Panel B shows the scatterplot for the difference between the one-step TLVC and manual lesion volume change (LVC; in mL) as an indication of accuracy and its 
relation with PBVC for the two-yearly interval M36-M60. Panel D shows this for the four-yearly interval M12-M60. 

Table 4 
Correlations to assess the relation between manual lesion volume/manual lesion 
volume change and reproducibility/accuracy.  

Manual lesion volume Manual LVC 

Absolute deviation 
one-step and 
multi-step TLVC 

Deviation one- 
step TLVC and 
manual LVC 

Absolute deviation 
one-step and 
multi-step TLVC 

Deviation one- 
step TLVC and 
manual LVC 

rs ¼ 0.62 rs = 0.08 rs ¼ 0.22 rs ¼ − 0.52 
p < 0.001 p = 0.214 p < 0.001 p < 0.001 

Bold font indicates statistical significance (p < 0.05). LVC = lesion volume 
change, rs = Spearman’s correlation coefficient, TLVC = total lesion volume 
change. 
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method by using the TLVC metric, while this method can also, more 
specifically, provide an insight into the negative and positive lesion 
volume changes and, even more specifically, the different lesion cate
gories (i.e., disappearing, shrinking, new, and enlarging). Because of the 
approach we used to validate the method, we could only do this for the 
TLVC and not the different categories. However, since the TLVC is a 
combined measure of all possible lesion changes and would not be 
reliable if the underlying categories were measured incorrectly, this can 
be considered as indirect evidence for the validity of the different cat
egories of lesion change. It is an advantage of the current method that it 
can provide quantitative information about the whole spectrum of 
changes, both positive (new and enlarging) and negative (disappearing 
and shrinking), as the latter is an underexposed topic and metric, 
because in clinical practice new (breakthrough) disease activity is 
considered as very important (Kaunzner and Gauthier, 2017). 

A disadvantage of the current method is that it requires pre-existing 
lesion masks as a reference region, and these are often not available as 
this is very labor-intensive. However, this method could be combined 
with existing (semi-)automated methods such as the method by Storelli 
et al. (2016) which can semi-automatically segment lesions on 
PD-weighted images. A comprehensive review of the developments in 
methods concerning the segmentation of lesions and lesion dynamics is 
provided by Lladó et al. (2012). 

Currently there is a tendency to move towards (3D) FLAIR imaging 
because of the consensus recommendations on the use of MRI in patients 
with MS (Wattjes et al., 2021). However, PD/T2 dual-echo imaging is 
still acquired and has been used in many large clinical trials. In order to 

analyze legacy data, methods that are able to use these more “old 
fashioned” conventional MR images as input are needed. Historical 
datasets such as the REFLEX/REFLEXION studies can provide a lot of 
useful insights, given that there was a placebo group which would 
nowadays not be ethically feasible given the proven effectiveness of 
disease-modifying treatments. 

In conclusion, the current proposed semi-automated method to 
quantify lesion volume changes has excellent reproducibility and overall 
good accuracy. When applying this method, the amount of atrophy and 
especially lesion volume (change) should be taken into account, as an 
increase in these variables might affect the quality of the results. Overall, 
the semi-automated subtraction method can reliably quantify lesion 
volume changes over time in (early) multiple sclerosis for follow-up 
periods up to 5 years. 
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Sastre-Garriga, J., Tintoré, M., Traboulsee, A., Vrenken, H., Yousry, T., Barkhof, F., 
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