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Hyperpolarization of nuclear spins: Polarization blockade
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Efficient hyperpolarization of nuclear spins via optically active defect centers, such as the nitrogen vacancy
(NV) center in diamond, has great potential for enhancing NMR-based quantum information processing and
nanoscale magnetic resonance imaging. Recently, pulse-based protocols have been shown to efficiently transfer
optically induced polarization of the electron defect spin to surrounding nuclear spins—at particular resonant
pulse intervals. In this work, we investigate the performance of these protocols, both analytically and experimen-
tally, with the electronic spin of a single NV defect. We find that whenever polarization resonances of nuclear
spins are near degenerate with a “blocking” spin, which is single spin with stronger off-diagonal coupling to
the electronic central spin, they are displaced out of the central resonant region—without, in general, significant
weakening in the rate of polarization. We analyze the underlying physical mechanism and obtain a closed-form
expression for the displacement. We propose that spin blocking represents a common but overlooked effect in
hyperpolarization of nuclear spins and suggest solutions for improved protocol performance in the presence of
(naturally occurring) blocking nuclear spins.
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I. INTRODUCTION

There is significant current interest in techniques for the
control of nuclear spins using solid-state defects such as
nitrogen vacancy (NV) centers in diamond [1,2]. Many of
these techniques rely on protocols of periodically applied mi-
crowave pulses. Although they were originally developed to
dynamically decouple the electron spin from the environment
[3–5], it was subsequently found that when pulses are applied
at intervals resonant with surrounding nuclear spin precession
frequencies, the resulting entanglement between the individ-
ual nuclear spin and the electronic spin of the defect offers a
very effective technique for sensing and controlling nuclear
spin states [1,6,7].

Such pulse-based control has been exploited for nuclear
polarization and state initialization with applications rang-
ing from quantum error correction and quantum information
[6–11], to nanoscale nuclear magnetic resonance (NMR) and
other sensing applications [12,13]. Dynamical nuclear po-
larization (DNP) [14], i.e., the transfer of polarization from
electrons to nuclear spins, originally developed for NMR, is
also being developed in this context. Recently proposed pulse-
based DNP protocols explicitly aimed at nuclear polarization
with NVs, i.e., PulsePol [15] and PolCPMG [16], have been
demonstrated to polarize 13C nuclei in diamond. Polarization
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of spins external to a diamond sample using PulsePol has been
achieved using an ensemble of NV centers [17].

However, while these protocols were designed in the set-
ting of polarization transfer to a single nuclear spin, in a
realistic setting, the central electronic spin couples to multiple
spins. Here we investigate polarization transfer from a central
spin to several environmental nuclear spins simultaneously.
Polarization transfer to a given nuclear spin occurs efficiently
when the DNP protocol period T is near a resonant value

FIG. 1. Illustration of nuclear spin polarization in the presence
of a blocking spin. (a) An NV center in diamond. A pulse-based po-
larization protocol, characterized by a pulse interval τ , is applied to
polarize a distant cluster of nuclear spins (in light green). (b) Efficient
polarization of the weakly coupled spins (green dots) is expected
near the resonant pulse period T = Tr . However, in the presence of a
nuclear spin that is near degenerate but interacts more strongly with
the NV (blocking spin B), the cluster’s resonances are displaced,
to T � T B

r (solid green line). The resonance of spin B (red line) is
unperturbed. We term this effect “polarization blockade,” in analogy
to blockade effects encountered in other fields of physics [18].
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T � Tr , where the nuclear precession frequency becomes res-
onant with a corresponding protocol frequency. We find such
resonant transfer can be suppressed by a blocking spin, i.e.,
a nuclear spin with similar precession frequency but stronger
off-diagonal coupling. This effect is illustrated in Fig. 1: the
presence of the blocking spin expels the polarization reso-
nances of the weaker-coupled nuclear spins from the central
T ≈ Tr region. We analyze the underlying physical mecha-
nism and clarify its relation to dark states, which are known to
suppress the polarization of nuclear spins [19,20]. Spin block-
ing is quite distinct and, to our knowledge, not previously
investigated: while dark states suppress polarization by decou-
pling a subspace of states from the dynamics, spin blocking
acts by shifting a subset of spins off resonance. We exper-
imentally verify this analysis using a single NV whose mi-
croscopic spin environment has been precisely characterized
[21,22].

In Sec. II, we review pulse-based control of nuclear spins
and introduce the theoretical Floquet-based models used to
analyze the joint dynamics of a central spin and nuclear
spins and simulate the experiments. In Sec. III, we present
our results in the context of an NV center, including theory-
experimental comparisons as well as an expression for the
resonance displacement, given by Eq. (6), a key result of
the work. In Sec. IV, we discuss the implications for nuclear
polarization and more efficient control of nuclear registers.

II. METHODS: PULSE-BASED CONTROL

A central electronic spin surrounded by Nnuc nuclear spins
may be described by the pure dephasing Hamiltonian, Ĥ (t ) =
Ĥp(t ) + Ĥ0, where

Ĥ0 = ωL

Nnuc∑
n=1

Î (n)
z + Ŝz

Nnuc∑
n=1

A(n) · Î(n). (1)

The operators for the electronic spin in a qubit subspace
{|u〉, |d〉} and the nuclear spins are labeled Ŝ and Î , respec-
tively. ωL is the nuclear Larmor frequency; the hyperfine field
A(n) acting on the nuclear spin has components A(n)

⊥ , A(n)
z

relative to the z axis; and we take A(n)
⊥ ≡ A(n)

x , without loss
of generality. Ĥp(t ) = �(t )Ŝk is the pulse control Hamilto-
nian in the rotating frame of the microwave field. �(t ) is set
by the microwave control field, while k ≡ x, y for common
protocols.

For pulse-based control, there is a resonant pulse spacing
τ = τr for which the central spin and nuclear spins selec-
tively interact, allowing efficient control of the nuclear states.
For example, in the well-known Carr-Purcell-Meiboom-Gill
(CPMG) sequence [23], microwave pulses are applied along
the x axis at regular intervals, τ ; the resonant pulse spacing
with a nuclear spin is at τ (n)

r = kπ/ω
(n)
I , where k is an odd

integer and ω
(n)
I � ωL − A(n)

z /2 for a NV center. For common
protocols, the full protocol period T is an integer multiple of
τ . For CPMG specifically, it is Tr = 2τr . Note that we omit
the n superscript for single nuclear spin calculations.

Polarization protocols. Recently, new pulse-based pro-
tocols were identified [15,16] which split the electron-
nuclear resonance, such that each component selectively
addresses one nuclear spin state, allowing polarization. In the

present work, we focus on the DNP protocol PulsePol (see
Appendix for further details), commonly used due to its
robustness to detuning [15]. PulsePol combines a series of
x- and y-directional microwave (MW) pulses to map the
central spin state onto a nuclear spin. It has pulse period
T = 4τ , where τ is the pulse interval. The pulse interval is
resonant with a nuclear spin when τr � kπ/(4ωL ), for k =
1, 3 . . . , where the third harmonic (k = 3) is often selected
for its effectiveness [15]. By averaging over the period, an
effective, time-independent single nuclear-spin Hamiltonian
Ĥ (n) ≡ g(n)(Ŝ+ Î (n)

− + Ŝ− Î (n)
+ ) can be obtained, corresponding

to a flip-flop-type interaction between the central spin (S) and
the nth nuclear spin (I). The corresponding flip-flop rate at this
pulse spacing was found to be g(n) = A(n)

x (
√

2 + 2)/(6π ) [15].
Repetitions. In general, in order to achieve high levels of

polarization, repetitions of the polarization protocol are re-
quired. For each repetition, Np cycles are applied a value of
τ . This is the periodic component, where the electron-nuclear
evolution is largely coherent. However, the central electronic
spin is reinitialized after Np cycles to the |u〉 state. The re-
duced nuclear bath evolution is (ideally) uninterrupted. The
Np sequence is then repeated.

A series of central spin reinitializations, interspersed with
Np protocol cycles, is repeated R times. Typically, protocols
employ a short run of Np = 2–8 that yields appreciable po-
larization for strongly coupled nuclear spins with large Ax; if
this is followed by many R � 1 repetitions, polarization of
nuclear spins even with weak coupling is gradually achieved.
Corresponding theoretical simulations involve R sets of co-
herent Hamiltonian evolution for t = 2NpT interspersed with
calculation steps where the central spin states are traced out in
order to simulate reinitialization.

A. Theoretical methods: Floquet methods

We analyze the coherent dynamics with Floquet theory, a
general framework for periodically driven physical systems
that has found wide applicability, ranging from NMR con-
tinuous driving [24] to pulse-based control of NV centers
[25]. However, Floquet theory encompasses several different
analytical tools. Floquet engineering (FE) [26] is where a
system driven by a typically strong or high-frequency (non-
resonant) field can be shown to correspond to an effective,
static Hamiltonian with renormalized parameters, by averag-
ing over the period of the driving. Varying the amplitude of
the nonresonant drive, one may tune over the effective Hamil-
tonian to induce bath polarization [27]. A common and widely
used approach is the Fourier series decomposition of the one-
period Hamiltonian, in a suitable rotating frame, which has
also been employed for pulse-based control of a nuclear spin
bath via a central spin such as an NV center [28]. Floquet
spectroscopy [25] has been introduced in this context: reso-
nances for pulse-based protocols were shown to correspond
to avoided crossings of the underlying Floquet quasienergies
of the pulse-protocol unitary. Thus the morphology of these
single or multiple avoided crossings has proved insightful for
analysis of electron-nuclear entanglement and polarization in
terms of Landau-Zener dynamics [29].

Here we employed both Fourier analysis and Floquet spec-
troscopy to analyze our results.
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Floquet spectroscopy. For a system with a temporally
periodic Hamiltonian, Ĥ (t + T ) = Ĥ (t ), Floquet’s theorem
allows one to write solutions of the Schrödinger equation in
terms of quasienergy states, |ψl (t )〉 = exp (−iεl t )|�l〉, where
εl is the quasienergy. |�l (t )〉 = |�l (t + T )〉, where T is the
period while l = 1, . . . , D (D is the dimension of the state
space).

One may also obtain eigenstates of the one-period unitary
evolution operator Û (T ) ≡ Û (T, 0). The Floquet states |�l〉
obey the eigenvalue equation,

Û (T )|�l〉 = λl |�l〉 ≡ exp (−iEl )|�l〉, (2)

where El (T ) ≡ tan−1 Im λl/ Re λl is the eigenphase (the
Floquet phase). For Floquet spectroscopy numerics, we diag-
onalize the full state space of the central spin plus a cluster of
Nnuc ∼ 1–7 nuclear spins. Thus we can readily calculate and
plot El (T ) as a function of period T to investigate resonances
and gain insight into the role played here by overlapping
avoided crossings.

For Fourier series analysis, a transformation to the toggling
frame (the frame of the pulses; see Appendix for details) is
widely used, including for analysis of polarization protocols
[15,16] and their resonances; a key step is to average over a
single period. However, in order to understand experimental
traces as a function of τ , we must in addition consider off-
resonant behavior (away from τ = τr), as shown below.

The theoretical methods above are applied in the context of
a NV center in diamond coupled via the hyperfine interaction
to multiple spin-1/2 13C impurities, although the concepts we
present are general. The spin-1 NV is taken in the subspace
{|u = 0〉, |d = −1〉}.

B. Experimental setup

We study the polarization dynamics of nuclear spins sur-
rounding a single NV center at cryogenic temperatures (4 K).
The NV electron spin is initialized and read out via reso-
nant optical excitation. The NV sample employed here was
previously characterized in detail, allowing for accurate mod-
eling of the microscopic nuclear environment [21,22]. The
individual nuclear spins are labeled as C1, C2...,Cn and their
hyperfine coupling strengths A(n)

x , A(n)
z , taken from [21], are

tabulated in the Appendix. The nuclear spin expectation val-
ues are read out by applying a combination of nuclear-nuclear
and electron-nuclear gates, and subsequently reading out the
electron spin state as detailed in [20]. As in previous work
[20], we systematically correct for pulse errors and amplitude
damping during the readout pulse sequences in order to get a
best estimate for the spin expectation values.

III. RESULTS

A. Single-spin polarization: Off-resonant behavior

Details of our analysis are given in the Appendix and here
we summarize the key steps. Away from τ = τr , we introduce
a small nuclear detuning, slightly altering the PulsePol Hamil-
tonian to

Ĥ ≡
Nnuc∑
n=1

g(n)(Ŝ+ Î (n)
− + Ŝ− Î (n)

+ ) + (ω(n)
I − ω

)
Î (n)
z , (3)

where the detuning of each nucleus corresponds to δn(τ ) =
ω

(n)
I − ω 
 ωL and the protocol frequency ω = 3π/T =

3π/(4τ ). The resonant nuclear precession frequency is ω
(n)
I =√

(ωL − A(n)
z /2)2 + (A(n)

x /2)2 . For coherent evolution over Np

pulses, we can readily show that the polarization 2〈Î (n)
z 〉 of a

single nuclear spin, for moderate detuning, takes the simple
form

P (NpT ) =
(

2g

�r

)2

sin2 (�rNpT
)
, (4)

where the generalized Rabi frequency �r =
√

δ2 + (2g)2.
Hence, the maximum population transfer into this state is
Pmax = 1/[1 + (δ/2g)2] at the integer closest to the pulse
number Np = π/(�rT ). At resonance, δ = 0 and the maxi-
mum saturation Pmax = 1. For Np greater than this maximal
value, the polarization oscillates cyclically with Rabi fre-
quency �r = 2g. Here, by convention, P ∈ [−1, 1]. We adopt
P ∈ [−1/2, 1/2], where results can be recovered with the
appropriate rescaling.

Asymptotic behavior. We note the above result is for a
single repetition, R = 1, and experimental results are in the
range R ∼ 102–104. One may show that single-spin polariza-
tion behavior tends to an asymptotic envelope in the R →
∞ limit. This is illustrated in Fig. 1 (right panel, red solid
line). Stronger-coupled spins attain the asymptotic form after
a few repetitions. For some weaker-coupled blocked spins,
simulations indicate that even R = 10 000 may be insufficient
to reach the asymptotic limit. A notable feature of the po-
larization traces is that they exhibit sharp “dips” at period
T = Tdip, seen in Fig. 1 (red solid line) and also seen in the
experiments. Here we show that these dips (see Appendix for
further details) occur for

Tdip � Tr

(1 + μ2)

⎡
⎢⎣1 ± n

3Np

√√√√1 + μ2

(
9N2

p

n2
− 1

)⎤⎥⎦, (5)

where n ∈ Z+, Tr = 6π/ωI , and μ = 2g/ωI 
 1; thus Tdip �
Tr[1 ± n

3Np
]. The experimental traces also contain additional

fine structure due to dephasing arising from the instrumental
waiting time ∼10 µs in between repetitions.

B. Blockade spins: Theory and experiment

If an NV center has a proximate 13C nuclear spin at a
relative orientation, such that the spin has AB

z ∼ 0 but rea-
sonably strong off-diagonal coupling AB

x , then the resonances
of weakly coupled spins (with As

z ∼ 0, where s = 1, 2, . . . )
are expelled from the expected resonance region around Tr =
4τ (B)

r . We label this spin [see Fig. 1(a)] with superscript B for
“blocking” spin. The resonance of the more strongly coupled
blocking spin is unperturbed and remains at T = Tr , as illus-
trated in Fig. 1.

Although full numerical simulation of clusters of 5–8 nu-
clei is feasible, for insight, our analysis of spin blockade
requires consideration of the NV electron spin as well as
the nuclear spin pair comprised of B and one more nuclear
spin. This pair dynamics involves the study of an eight-
state space. However, two states are largely decoupled and
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FIG. 2. Comparisons with experiment and spectral analysis. (a) Polarization of weakly coupled nuclear spin C21 with (Ax, Az ) ≡
(≈5.0, −9.7) kHz × 2π employing the PulsePol protocol, with Np = 2, R = 500. The NV environment contains a blocking spin C3 with
(AB

x , AB
z ) ≡ (59., −11.3) kHz × 2π . Nuclear spin C21 shows the asymmetric displaced resonance expected for Np = 2. Lower panels show

experiment (blue), single-spin simulation of C21 (black dashed line), and simulation of C21 and C3 (orange line). The upper panel shows
the corresponding Floquet spectra and offers an intuitive spectroscopic understanding of spin blocking. The wide, broad avoided crossing is
associated primarily with C3. It overlaps with the much narrower avoided crossing corresponding to the polarization resonance of C21. This
means the narrow C21 crossing is pushed away from Tr to lower T ′

r < Tr . (b) For C16, with (Ax, Az ) ≡ (5.3,−19.8) kHz × 2π and R = 100,
the overlap with the strong C3 avoided crossing results in the narrow C16 crossing being pushed towards larger T ′

r > Tr . Equation (6) quantifies
the magnitude and clarifies that the sign of the displacement depends on AB

z − Az.

analysis reduces to two triplets of coupled states (numerics
involve full diagonalization but, for insight, a simpler model is
analyzed).

From Floquet spectroscopy, this scenario corresponds to
two sets of avoided crossings in the Floquet eigenphases. One
set is illustrated in the upper panels of Fig. 2. It shows the pair
of avoided crossings: a very broad crossing of width ∼AB

x for
the case of a strong-coupled spin and, within it, a very narrow
crossing due to the weaker-coupled spin since AB

x � As
x. In

other words, the strong avoided crossing involves a pair of
states which mostly overlap with states of the single-spin
avoided crossing of spin B, while the overlapping narrow
crossing involves states that mostly overlap with the weaker
spin states.

The lower panels show the corresponding experimen-
tal profiles for the weakly coupled nuclear spins C21,
with (Ax, Az ) ≡ (≈5.0,−9.7) kHz × 2π , and C16, with
(Ax, Az ) ≡ (5.3,−19.8) kHz × 2π , respectively. Their res-
onances are displaced by the stronger blockade spin C3,
which has experimentally measured couplings (AB

z , AB
x ) =

(−11,−59) kHz × 2π . There is excellent agreement with
simulations. As Np = 2, the resonance takes a characteristic
wedge shape, whereas for Np = 4, it is predicted to be fully
displaced.

A striking result is that while the C21 resonance is dis-
placed to lower T , for the C16 resonance, the converse is true.
Analysis of the three state matrix and its eigenvalues gives
the position of the weak spin resonance and magnitude of the

displacement (see Appendix for derivation),

�Tr/Tr � −
(
AB

x

)2
ω

(s)
I

(
ω

(B)
I − ω

(s)
I

) . (6)

Equation (6) is a key result of this work. Figure 3 tests
this expression against numerics and experimental data. In the
upper panel, the numerical color map shows polarization as
a function of T and detuning ω

(B)
I − ω

(s)
I ≡ δ−. The overlaid

white dots are from Eq. (6) and demonstrate that it provides a
robust estimate of the magnitude of the displacement of the
polarization resonance peak. The lower panel illustrates an
example of the displacement for Np = 4 and spin C16.

In contrast to the observed resonance displacement �Tr ,
the Rabi frequency, or width of the avoided Floquet crossing,
is not strongly affected by the blockade spin provided that
|ω(B)

I − ω
(s)
I |/AB

x 
 1 (see the Appendix for details). In gen-
eral, the measured polarization is not significantly reduced,
but rather shifted to a different period Tr + �Tr . There are
particular exceptions, such as the case of experimental data
for a spin simultaneously perturbed by two blockade spins
(discussed in the Appendix).

IV. DISCUSSION

As natural diamond contains of the order of 1.1% of 13C,
we estimate that of the order of 20% of NV defects will
have a nuclear spin with reasonably strong Ax coupling, but
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FIG. 3. Upper panel tests the analytical expression for the posi-
tion of the resonance given by Eq. (6) against numerical simulations,
as a function of ω

(B)
I − ω

(s)
I ≡ δ−. Simulations for this color map

use C3 as a blockade spin and spin with Ax/(2π ) = 5 kHz and a
variable Az. Although agreement with the displaced peak is not exact,
the expression tracks the displacement quite well. The lower panel
compares experimental polarization of C16 (blue) in the presence of
blockade spin C3, demonstrating good agreement with simulation
(orange) of C3 and C16. For comparison, the undisplaced single
C16 simulation is shown (black dashed line). Equation (6) is shown
to give reasonable agreement with the displaced peak position. All
simulations and experiments in this figure use parameters Np = 4,
R = 100, which results in a displaced resonance rather than the
“wedge” profile obtained for Np = 2.

with Az ∼ 0, and thus is able to produce a blocking effect on
distant, weakly coupled nuclear spins.

However, Eq. (6) makes clear that the blocking effect is
more generic and will occur wherever a weaker-coupled spin
is near degenerate with a stronger-coupled spin, and thus can
occur for arbitrary Ax, Az, provided A(B)

x � Ax and A(B)
z ∼ Az.

Thus it should be a relatively common feature in such studies
and spin blocking is identifiable via its distinctive spectral
profiles, such as the “wedge” shape for Np = 2. The scenario
of two blocking spins acting simultaneously on a weaker spin
is less common; but in the present data, we observed the case
where two blocking spins act to provide displacements of
opposite signs (presented in the Appendix). The result is a sort
of destructive cancellation that fully suppresses the resonance
peak of the weaker spin. While the present study considered
PulsePol, our simulations show that similar behavior also
occurs for PolCPMG.

An understanding of the blocking spin mechanism allows
one to propose approaches to improve the polarization of
weak spins. Figure 4 demonstrates a method for drastically

FIG. 4. Compares the conventional polarization method of ap-
plying PulsePol at a constant T (or τ ) to our proposed adaptation of
applying two different regimes of T in the presence of blocking spin
C3. (a) Simulated polarization against periodicity of PulsePol, T ,
with parameters Np = 4, R = 100 of both C3 in blue and C16 in red.
The two regimes are highlighted as T1 � Tr + �Tr � 3.70 µs, which
is a periodicity at the displaced resonance, and T2 � Tr � 3.48 µs
near the original resonance. (b) Simulations of the polarization of
both spins as a function of increasing total time. The solid line is the
application of 200 repetitions (gray region) at T1, followed by 200
repetitions at T2; the dashed line is the application of 400 repetitions
at T2. A higher level of polarization in less time is achieved for C16.
For the polarization of C3, although polarization rises rapidly for
both values of T , driving close to its resonant value at T = T2, rather
than far off resonance at T = T1, is important for ensuring robust
polarization, to the 0.5 limit.

improving the polarization efficiency by employing two dif-
ferent T . The upper panel highlights the shifted resonance of
spin C16 in the presence of blockade spin C3. First, PulsePol
is applied with T � Tr + �Tr in the region with the shifted
resonance to polarize weak spins. Following this, PulsePol
with T � Tr is applied to maximize polarization: the asymp-
totic, saturated polarization is maximal for T � Tr . The lower
panel compares the effectiveness of the two T methods com-
pared to the standard technique of applying the protocol at
T = Tr only. The two-spin system of C16 (weak spin) and
C3 (blocking spin) was used. The initial stage (gray region)
with T � Tr + �Tr shows rapid polarization of both spins
(solid lines); the second stage with T � Tr then yields an
improvement on overall polarization relative to the single T ,
on-resonance polarization (dashed line).
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Spin-blocking effects are relevant to DNP of 13C in the
diamond crystal and, potentially, external nuclear spins as
well. Even for different spin species with different Larmor
frequencies, accidental resonances [30] such as those that
occur between harmonics for 1H and 13C might come into
play, but this has not been investigated here.

Spin blocking versus dark modes. Dark-bright modes are
an ubiquitous effect occurring in the physics of three-level
systems [31,32]: if we consider two degenerate modes, with
eigenvalues ε1,2 ≈ ε, independently interacting with a third
mode ε3 ∼ ε with finite coupling strengths g1 = g2 ≡ g, but
not with each other, then modes 1,2 hybridize such that one of
the hybrid modes fully decouples from mode 3 (dark mode,
effective g = 0) while the others acquire enhanced coupling√

2g (bright modes). The spectral signature is generic [31]:
instead of two independent avoided crossings of width g1 and
g2, the mixing/hybridization produces a single wider avoided
crossing of width

√
2g and a completely decoupled state. The

role of dark states in impeding polarization has been noted
[20] and investigated in a many-body context [27].

Spin blocking is a distinct polarization suppression mech-
anism. It occurs for similar regimes, but for the case where
the coupling is highly anisotropic, g1 � g2. The spectral sig-
nature is also generic. There are, once again, two separate
crossings, of width not far from the unperturbed widths g1

and ∼g2, like the unhybridized case. However, only mode 1
remains at ε � ε1. The weaker-coupled mode has its crossing
pushed out of the ε ≈ ε1,2 region. For the polarization proto-
cols, the weaker spin in effect is pushed off resonance, which
is different from having the effective coupling suppressed, as
is the case for a dark state.

Off-resonant driving, in general, does not fully suppress
polarization and, in principle, all spins should eventually tend
to the R → ∞ limit, which is only maximal on resonance.
However, it may make it extremely inefficient and slow, po-
tentially allowing imprecisions and decoherent processes to
perturb the protocol in a real experiment. However, unlike
dark-mode suppression, the effect may be mitigated by adjust-
ing the protocol period to account for the shifted resonance.

V. CONCLUSIONS

In conclusion, in the present work, we introduce, and the-
oretically and experimentally investigate, the spin-blockade
effect, thus named in analogy to blockade effects [18] en-
countered in other fields of physics. We show that nuclear
spins with strong interactions to the central spin can block
polarization transfer by detuning weaker-coupled spins away
from resonance. This many-body effect, detrimental for polar-
ization efficiency, can be mitigated by pulse sequences that are
tailored to the microscopic configuration of the spin system.
Polarization transfer to a complex spin system can be highly
dependent on the microscopic configuration of the spins and
our results thus provide an opportunity for optimization of
dynamical nuclear polarization in various settings.
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APPENDIX A: NUCLEAR SPIN PARAMETERS

1. PulsePol polarization protocol

In this Appendix, we briefly review the well-studied Pulse-
Pol protocol. Consider a nitrogen vacancy (NV) defect in
diamond coupled to Nnuc

13C spins in a global magnetic
field, B0. Under a microwave control field, the pure dephasing
Hamiltonian in the rotating frame of the NV is

Ĥ (t ) = [ωLÎ (n)
z + Ŝz

(
A(n)

z Î (n)
z + A(n)

x Î (n)
x

)]+ �(t )Ŝϕ(t ), (A1)

for a single (nth) nuclear spin and where ωL = −γCB0 with a
nuclear gyromagnetic ratio γC , A(n)

i are ith components of the
hyperfine coupling strength relative to the z axis between the
n th nuclei to the NV, �(t ) is the waveform of the microwave
control field, Ŝi are in the qubit basis ms = {0,−1}, Î (n)

i
are the nth nuclear spin-1/2 operators, and Ŝϕ(t ) =
cos[ϕ(t )]Ŝx + sin[ϕ(t )]Ŝy. The experimental external mag-
netic field strength is aligned with the NV z axis and measured
to be B0 = 403 G. The derivation of this Hamiltonian has
assumed the rotating wave approximation. For brevity, we as-
sume h̄ = 1 in this Appendix, unless considering experimental
results in SI units.

The waveform of the microwave control field is dependent
on the dynamical decoupling (DD) protocol that is applied.
PulsePol is a DD protocol used for dynamic nuclear polariza-
tion (DNP), as it is state selective. The form of this pulse pro-
tocol is [( π

2 )Y τ (π )−X τ ( π
2 )Y ( π

2 )X τ (π )Y τ ( π
2 )X ]2Np , where

(θ )ϕ is a pulse with duration Tp = θ/� with phase ϕ, and
pulse spacing τ is free evolution. The Rabi frequency due
to the microwave drive is denoted �. This protocol is peri-
odic with period T = 4τ and it is applied for a total time of
Ttot = 8Npτ . Using the waveform of the DD control field, the
system can be transformed into the frame of the microwave
control field, also known as the toggling frame, such that the
Hamiltonian in this frame is

Ĥ (t ) = {ω(n)
I Î (n)

z + [ f1(t )Ŝx + f2(t )Ŝy](A(n)
z Î (n)

z + A(n)
x Î (n)

x )
}
,

(A2)
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where fi(t ) are known as the modulation functions with period
fi(t + 2T ) = fi(t ) and are step functions of the form

f1(t ) =
⎧⎨
⎩

1 for 0 < t < τ and 5τ < t < 6τ

−1 for τ < t < 2τ and 4τ < t < 5τ

0 otherwise
(A3)

and

f2(t ) =
⎧⎨
⎩

1 for τ < t < 3τ and 7τ < t < 8τ

−1 for 3τ < t < 4τ and 6τ < t < 7τ

0 otherwise.
(A4)

These functions are periodic and so a Fourier decomposi-
tion can be used, where, for f1(t ),

f1(t ) =
∞∑

k=0

[
a(1)

k cos

(
kπt

4τ

)
+ b(1)

k sin

(
kπt

4τ

)]
, (A5)

where

a(1)
k = 1

kπ

1 − (−1)k

2

[
4 sin

(
kπ

4

)
− 2 sin

(
kπ

2

)]
,

b(1)
k = 1

kπ

1 − (−1)k

2

[
−4 cos

(
kπ

4

)
+ 2

]
, (A6)

and the remaining modulation function f2(t ) can be found in
a similar fashion, only with coefficients a(2)

k = −(−1)
2k−2

4 b(1)
k

and b(2)
k = (−1)

2k−2
4 a(1)

k due to the shift of t − 2τ in their time
dependence. If it is assumed that Ax << π/τ , then the time
dependence of the Hamiltonian can be resolved in a perturba-
tive fashion using the Magnus expansion. To first order, the
evolution operator is Û (2T ) = exp[−i2ĤavgT ], where Ĥavg is
the time period averaged Hamiltonian constructed as

Ĥavg = 1

2T

∫ 2T

0
Ĥ (t ) dt, (A7)

hence removing the time dependence in place of time av-
eraged field strengths. This assumption of small timescales
is fulfilled by transforming into the interaction frame of the
nuclear spin of interest and assuming that Ax 
 1/T . Choos-
ing the resonance τr � 3π/(4ωL ) or k = 3, and taking the
time average for the first-order perturbation, the first-order
Hamiltonian can be found to be

Ĥavg =
Nnuc∑
n=1

[
g(n)(Ŝ+ Î (n)

− + Ŝ− Î (n)
+ ) + δ(n) Î (n)

z

]
, (A8)

where we assume the Hamiltonian is an independent sum of
Nnuc spins, with all interactions mediated by the central elec-
tronic spin. We define g(n) = A(n)

x α/4, α = 2(
√

2 + 2)/3π ,
and δ(n) = ω

(n)
I − ωp (� A(n)

z /2 for ωp = 3π/T � ωL) and
resonance harmonic k. For simplicity, as stated previously,
k = 3 is chosen and will be absorbed into the relation-
ship between protocol frequency and period, such that ωp =
kπ/T = 3π/T . The nuclear precession frequency is ω

(n)
I =√

(ωL − A(n)
z /2)2 + (A(n)

x /2)2. This Hamiltonian is appropri-
ate for small detuning from the nuclear precession frequency,
or that |δ| 
 ωL. If this is not satisfied, higher-order terms
may be needed.

APPENDIX B: SINGLE-SPIN POLARIZATION

We now review the simplest case of a NV center and a
single nuclear spin. While this is well known, it is important
for our study to keep track of the detuning δ as we are in-
terested in the behavior away from the resonant pulse period.
Equation (A8), for the case of a single spin, takes the matrix
form

Ĥavg =
|↑↑〉
|↓↑〉
|↑↓〉
|↓↓〉

⎛
⎜⎜⎝

δ/2 0 0 0
0 δ/2 g 0
0 g −δ/2 0
0 0 0 −δ/2

⎞
⎟⎟⎠, (B1)

where the superscript in the previous section is removed in
the single-spin case for simplicity. For ease of notation, the
NV states are relabelled as |0/ − 1〉 = |↑/↓〉.

From this, we see that the stretched states are decoupled as
follows:

|�1〉 = |↑↑〉, ε1 = δ/2, (B2)

|�2〉 = |↓↓〉, ε2 = −δ/2, (B3)

while the antialigned states form a 2 × 2 subspace of
{|↑↓〉, |↓↑〉}, or a pseudospin-1/2 Hamiltonian of the form

Ĥ = δÎz + 2gÎx = h · Î, (B4)

where h = ω(sin θp, 0, cos θp) with eigenstates and eigenval-
ues,

|�3〉 = cos

(
θp

2

)
|↓↑〉 + sin

(
θp

2

)
|↑↓〉, ε3 = ω

2
,

|�4〉 = sin

(
θp

2

)
|↓↑〉 − cos

(
θp

2

)
|↑↓〉, ε4 = −ω

2
,

(B5)

defining ω =
√

δ2 + 4g2 and tan θp = 2g/δ. The detuning
from the nuclear resonance creates an effective magnetic field
in this subspace which is not aligned with the x axis. This
misalignment reduces the maximum transfer between these
two states. To see this, consider an initial state of |ψ (0)〉 =
|↑↓〉. With the unitary Û (t ) = exp(−iĤavgt ) and |ψ (t )〉 =
Û (t )|ψ (0)〉, we readily obtain

|ψ (Ttot = 2NpT )〉 = {cos[ϕ(Ttot )] + i cos(θp) sin[ϕ(Ttot )]}
× |↑↓〉 − i sin(θp) sin[ϕ(Ttot )]|↓↑〉,

(B6)

where ϕ(t ) = ωt/2. The population from the |↑↓〉 state will
transfer into the corresponding flip-flop state |↓↑〉. The popu-
lation in this state is then

P↓↑(Ttot ) = |〈↓↑|ψ (Ttot )〉|2 = sin2(θp) sin2 (ωNpT
)
, (B7)

and hence the maximum population transfer into this state
is Pmax

↓↑ = sin2 θp = 1/[1 + (δ/2g)2] at Np = π/(ωT ). On
resonance, or δ = 0, the maximum saturation Pmax

↓↑ = 1, as ex-
pected. The system undergoes oscillations between these two
states characterized by the frequency �r = ω =

√
δ2 + 4g2,

the generalized Rabi frequency.
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1. Mixed states and repetitions

In general, nuclear spins such as 13C are not naturally in
a pure state, but instead are in a thermal mixture of equal
parts |↑〉 and |↓〉. This is often represented as a density matrix,
where the thermal mixture is initially

ρI (0) = 1

2
|↑〉
|↓〉
(

1 0
0 1

)
= ρ↑

2
+ ρ↓

2
. (B8)

However, the NV is initialized into one of the basis states,
where here it is taken that the NV is initialized into the |↑〉
state such that ρNV(0) = ρ↑. As with the state representation,
the density matrix of the product space of NV-C is con-
structed through the tensor product ρ(0) = ρNV(0) ⊗ ρI(0).
The initial density matrix then evolves in time according to the
transformation

ρ(Ttot ) = Û (Ttot ) ρ(0) Û †(Ttot ). (B9)

For this system, the evolved density matrix is found to be

ρ(Ttot ) = 1
2

|↑↑〉
|↓↑〉
|↑↓〉
|↓↓〉

⎛
⎜⎜⎜⎝

1 0 0 0

0 |β(Ttot )|2 α∗(Ttot )β(Ttot ) 0

0 α(Ttot )β∗(Ttot ) |α(Ttot )|2 0

0 0 0 0

⎞
⎟⎟⎟⎠, (B10)

where α(t ) = cos[ϕ(t )] + i cos(θp) sin[ϕ(t )] and β(t ) =
−i sin(θp) sin[ϕ(t )]. In order to simplify this and explicitly
show the evolution of the 13C spin, a partial trace can be
performed on this density matrix in order to reduce the 4 × 4
matrix to a 2 × 2 matrix and trace out the NV states. A partial
trace over one subspace, HB, with basis states {|bl〉} in a dual
system between this subspace and HA with basis states {|ai〉}
is defined as

ρA = trB(ρAB) =
∑
i jlk

ci jlk|ai〉〈a j |〈bl |bk〉, (B11)

where the dual-space density matrix is decomposed as ρAB =∑
i jlk ci jlk|ai〉〈a j | ⊗ |bl〉〈bk|. By performing this operation

over the NV basis states on the full density matrix in
Eq. (B10), the dynamics of the nuclear spin can be reduced to

ρI (Ttot ) = 1

2
|↑〉
|↓〉
(

1 + P (Ttot ) 0
0 1 − P (Ttot )

)
, (B12)

where P (t ) = |β(t )|2 = sin2(θp) sin2(�rt/2). This
density matrix can be represented in the Pauli basis
as ρ(t ) = [I + P (t )σ̂z]/2. The polarization, defined as
〈σ̂z(t )〉/2 = tr[ρ(t )σ̂z]/2, is found to be

〈Îz(Ttot = 2NpT )〉 = P (Ttot )

2
= 1

2
sin2(θp) sin2

(
�rNpT

)
,

(B13)

and completely equivalent to the result of the previous section.
However, in the experiment, the NV is repeatedly optically

reinitialized into the ms = 0 state, with a repetition number R.
All single-spin simulations saturate to an asymptotic envelope
as R → ∞, although the rate at which the limit is approached
differs significantly, as illustrated in Fig. 5. Weaker spins
evidently polarize more slowly, even in the isolated spin case.
In addition, there are the many-body effects, such as dark-state

formation and the “spin blocking” that we investigated here
that can significantly reduce the polarization rate.

Even in the single-spin case, both the simulated and ex-
perimental polarization traces show a detailed structure of
“polarization dips.” In the following sections, we analyze a
key mechanism which causes sharp polarization dips, prior to
discussing many-spin effects.

2. Polarization envelope side dips

In Fig. 5 and other figures, one sees extremely large “side
dips,” symmetrically distributed about the resonant Tr where
the average Hamiltonian model predicts zero polarization, but
full numerics allow even negative polarization.

Within the average Hamiltonian model, the polarization in
Eq. (B13) is zero when the condition

sin(�rNpT ) = 0 (B14)

is met. Solving this equation for T yields the position for a
series of such side dips, Tdip, to be

Tdip = Tr

(1 + μ2)

⎡
⎢⎣1 ± n

kNp

√√√√1 + μ2

(
k2N2

p

n2
− 1

)⎤⎥⎦

� Tr

[
1 ± n

kNp

]
, (B15)

where n ∈ Z+, n > 0 is the nth side dip.
Here, k is the resonance harmonic and Tr = kπ/ωI ,

while μ = 2g/ωI . For harmonic k = 3, the side dips are
approximately

Tdip � Tr

(
1 ± n

3Np

)
, (B16)

assuming μ 
 1 since the nuclear spins and magnetic field
used here are g 
 ωI .

APPENDIX C: TWO-SPIN POLARIZATION

The average Hamiltonian for the two-spin system is a
straightforward extension of the single-spin case,

Ĥavg = g1(Ŝ+Î (1)
− + Ŝ− Î (1)

+ )

+ δ1 Î (1)
z + g2(Ŝ+Î (2)

− + Ŝ− Î (2)
+ ) + δ2 Î (2)

z , (C1)

and corresponds to an 8 × 8 matrix that may be decomposed
into four independent subspaces. As with the single-spin
model, the stretched states |↑↑↑〉 and |↓↓↓〉 are eigenstates
of Ĥavg, with

|�1〉 = |↑↑↑〉, ε1 = δ1 + δ2

2
= δ+

2
, (C2)

|�2〉 = |↓↓↓〉, ε2 = −δ1 + δ2

2
= −δ+

2
. (C3)

The remaining states form two decoupled subspaces
of {|↑↓↑〉, |↓↑↑〉, |↑↑↓〉} with overall magnetization Mj =
1/2 and {|↓↓↑〉, |↑↓↓〉, |↓↑↓〉} with overall magnetization
Mj = −1/2. For the case of the Mj = 1/2 subspace, the
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FIG. 5. (a) Simulation showing that with increasing repetitions R of the polarization sequence, in principle, all spins tend to an asymptotic
polarization envelope. Isolated strong spins attain the R → ∞ limit for R ∼ 10, while isolated very weak-coupled spins may require R � 1000.
Comparisons of single-spin simulations of polarization (red) to experimental data (blue) for three weak-coupled spins in a cluster (b) C6, (c) C8,
and (d) C21. The parameters used here are R = 1000 and Np = 2. The modest-coupling strength C6 is close to asymptotic. The weak-coupled
spins C8 and C21 are far from the limit, not only because of the weak coupling, but also because of the many-body spin blocking investigated
here.

Hamiltonian matrix takes the form

Ĥavg =
|↑↓↑〉
|↓↑↑〉
|↑↑↓〉

⎛
⎝−δ−/2 g1 0

g1 δ+/2 g2

0 g2 δ−/2

⎞
⎠, (C4)

where δ− = δ1 − δ2.

1. Dark and Bright States

For the degenerate on-resonant nuclear detuning case, δ1 =
δ2 = 0,

Ĥavg ≡
|↑↓↑〉
|↓↑↑〉
|↑↑↓〉

⎛
⎝ 0 g1 0

g1 0 g2

0 g2 0

⎞
⎠. (C5)

There are well-studied eigenstates,

|ψB−〉 = |↑〉NV[cos ϕ|↓↑〉 + sin ϕ|↑↓〉 − |↓↑↑〉],
|ψB+〉 = |↑〉NV[cos ϕ|↓↑〉 + sin ϕ|↑↓〉 + |↓↑↑〉],
|ψD〉 = |↑〉NV[cos ϕ|↑↓〉 − sin ϕ|↓↑〉], (C6)

where |ψD〉 is termed a “dark state,” with eigenvalue ε = 0,
and |ψB±〉 the so-called bright states with ε± = ±grms/2 =√

g2
1 + g2

2/2, defining cos ϕ = g1/grms, sin ϕ = g2/grms.
The dark state |ψD〉 has no overlap with the fully polarized

state |↓↑↑〉, and thus any state that acquires a significant
dark-state component may not polarize. For the bright states,
the converse is true. For the case g1 = g2 = g, the problem is

even simpler as the matrix reduces to gŜx, the spin-1 angular
momentum x matrix.

However, we need to consider the behavior in the presence
of detuning, hence away from resonance, as well as spins that
are not perfectly degenerate. Neither the uncoupled Zeeman
states nor the dark-bright states are eigenstates of the general
Ĥavg case. For insight, we represent Ĥavg in a slightly modified
alternative “dark-bright” basis {|ψpol〉, |ψ (1)

B 〉, |ψ (1)
D 〉}, where

|ψpol〉 = |↓↑↑〉, (C7)∣∣ψ (1)
B

〉 = |↑〉NV[cos ϕ|↓↑〉 + sin ϕ|↑↓〉], (C8)∣∣ψ (1)
D

〉 = |↑〉NV[cos ϕ|↑↓〉 − sin ϕ|↓↑〉], (C9)

for tan ϕ = g2/g1. In this basis,

Ĥ ′
avg =

|ψpol〉
|ψ (1)

B 〉
|ψ (1)

D 〉

⎛
⎜⎝

δ+/2 grms 0

grms −δ− cos(2ϕ)/2 δ− sin(2ϕ)/2

0 δ− sin(2ϕ)/2 δ− cos(2ϕ)/2

⎞
⎟⎠

(C10)

that we use to analyze two important cases.

2. Dark-Bright States in the Presence of Detuning

First we consider the case where the two nuclear spins
are degenerate (A(1)

z = A(2)
z ) so δ− = 0 and δ+ = 2δ1 = 2δ, a
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detuning which varies as the experiment sweeps T through
the resonance T = Tr . In practice, we require |δ−| 
 grms.
The dark state |ψ (1)

D 〉 decouples from the other bright states.
The other two states form a separate subspace {|ψpol〉|ψ (1)

B 〉},
such that the Hamiltonian is Ĥ = δ/2I + δÎz + 2grms Îx. This
Hamiltonian is similar to the single-spin model with g → grms

and an extra global energy shift. Hence,

|�(1)
+ 〉 = cos

(
θ

2

)
|ψpol〉 + sin

(
θ

2

)
|ψ (1)

B 〉, ε
(1)
+ = δ + ω

2
,

|�(1)
− 〉 = sin

(
θ

2

)
|ψpol〉 − cos

(
θ

2

)
|ψ (1)

B 〉, ε
(1)
− = δ − ω

2
,

∣∣�(1)
D

〉 = ∣∣ψ (1)
D

〉
, ε0 = 0, (C11)

where tan θ = 2grms/δ and ω = √δ2 + 4g2
rms are dependent

on the detuning. The dark state is δ independent and is fully
decoupled (effective zero coupling to the polarization state),
even for g1 = g2. As δ is varied, |�(1)

± 〉 sweep through a single
avoided crossing with enhanced coupling grms.

If we take the initial state of the system to be |↑〉 for the
NV and an initial state |ψ (0)〉 = |↑↓↑〉, temporal evolution
will yield

|ψ (Ttot )〉 = e−iδTtot/2 cos ϕ
[
α(Ttot )

∣∣ψ (1)
B

〉+ β(Ttot )|ψpol〉
]

− sin ϕ
∣∣ψ (1)

D

〉
, (C12)

where α(t ) = cos(ωt/2) + i cos(θ ) sin(ωt/2), β(t ) =
−i sin(θ ) sin(ωt/2), and cos ϕ = g1/grms. This is similar
to a single spin only with an extra, time-independent term
involving the dark state. The population of the state in the
polarized state is then

Ppol(Ttot = 2NpT ) = cos2 ϕ sin2 θ sin2(ωNpT ). (C13)

This population has the same off-resonance envelope with
sin θ blocking population transfer if δ �= 0, but also has an
extra term involving ϕ, which quantifies overlap with the dark
state and suppresses population transfer to the polarized state,
as cos2 ϕ � 1. This is seen in Eq. (C13) at arbitrary δ(τ ). An
equivalent approach can be used to analyze the Mj = −1/2
subspace {|↓ ↓↑〉, |↑ ↓ ↓〉, |↓ ↑ ↓〉}.

In summary, for degenerate spins, dark states cause a pro-
portion of the spin’s population to remain unpolarized, even
for a large number of repetitions R. Perfect degeneracy is not
typical in a realistic setting, and in most cases slow mixing
between dark and bright states allows slow polarization. An
example of dark-state polarization suppression is shown in
Fig. 6 between C8 and C4, which are almost degenerate, as
in Table I. There is a significant reduction in polarization
between the single-spin simulation of C8 and a two-spin
simulation with only C8 and C4, which better captures the
experimental behavior.

3. Spin Blockade

In this section, we present the details of the spin-blocking
effect which is introduced in this work. We consider the
case of anisotropic coupling strengths g1 � g2. We relabel
g1 ≡ G and g2 ≡ g, and hence G � g, to clearly distin-
guish the strong- from the weak-coupling spin. However,
the spins are not fully degenerate or δ− �= 0, but we assume

FIG. 6. Illustration of polarization saturation for spin C8 due
to spin-pair dark states formed with a nearly degenerate spin C4.
Simulations of single spin C8 (dashed line) are shown to fully po-
larize after R = 1000 of PulsePol with Np = 2. This is not seen in
experiment (blue), which only reaches a polarization of 0.2. This
experimental saturation is reproduced to good effect by simulation
of the spin pair C8 and C4 (orange).

|δ−| 
 G. Such a scenario may be common when using NV
centers to polarize a cluster of distant nuclear spins. There
is typically a small number of proximate or near-proximate

TABLE I. List of parallel and perpendicular couplings between
the 13C spins and the NV. In [21], the same spins are labeled under
a different numbering; the numbering system is included in the table
for consistency.

Label Az/2π (kHz) Ax/2π (kHz) ω
(i)
I (rad/µs) M Label

C0 213.153 3 2.04 C9
C1 −36.308 26.62 2.83 C18
C2 20.569 41.51 2.65 C12
C3 −11.346 59.21 2.75 C5
C4 8.029 21.0 2.69 C13
C5 24.399 24.81 2.64 C19
C6 −48.58 9.0 2.86 C6
C7 14.58 10 2.67 C11
C8 7.683 4 2.69 C22
C9 −20.72 12 2.78 C1
C10 −23.22 13 2.78 C2
C11 −13.961 9 2.75 C15
C12 −31.25 8 2.81 C3
C13 −14.07 13 2.76 C4
C15 −5.62 5 2.73 C17
C16 −19.815 5.3 2.77 C14
C17 −4.66 7 2.73 C16
C18 17.643 8.6 2.66 C10
C20 −8.32 3 2.74 C7
C21 −9.79 5.0 2.74 C8
C22 1.212 13 2.71 C21
C23 2.69 11 2.70 C20
C24 −3.177 2 2.72 C23
C25 −4.039 0.5 2.72 C27
C26 −4.225 0.771 2.72 C24
C27 −3.873 1.247 2.72 C25
C28 −3.618 9.472 2.72 C26
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FIG. 7. Polarization of C6 displaced by blocking spin C3. Sim-
ulations of C6 polarization with C3 (orange line) after R = 100 of
PulsePol with Np = 2 have a slightly displaced polarization peak
from the single C6 spin (dashed black line) despite having a stronger
perpendicular coupling of Ax = 7.68 kHz × 2π . This displacement
is seen in the experimental data for C6 polarization (blue).

spins such as spin C3 where this condition is satisfied by a
larger number of weaker-coupled spins such as C16, C21,
C25, etc. The anisotropy requirement is not too stringent:
blockade spins can displace the resonance of “local” spins
with moderate perpendicular coupling, an effect which may
need to be considered when using local clusters as memory
registers. Figure 7 demonstrates an example: spin C6 has
reasonable coupling Ax/(2π ) = 9 kHz, but still experiences a
small resonance shift from blockade spin C3, suggesting that
the blocking effect is quite common.

For this case, we write the effective Hamiltonian in
Eq. (C4) Ĥavg = Ĥ0 + V̂ as a zeroth-order Hamiltonian plus
perturbation matrix, where

Ĥ0 + V̂ =
|↑↓↑〉
|↓↑↑〉
|↑↑↓〉

⎛
⎝−δ−/2 G 0

G δ+/2 0
0 0 δ−/2

⎞
⎠

+
⎛
⎝0 0 0

0 0 g
0 g 0

⎞
⎠. (C14)

The detunings are relabeled to δ1 → δB and δ2 → δs for a
blockade spin and “small” spin, respectively. The unperturbed
Hamiltonian Ĥ0 can be reduced into two subspaces. One
subspace only contains the state {|↑↑↓〉} which decouples
from the others. Therefore, the eigenstate and eigenvalue can
be read from the matrix to be |�(0)

3 〉 = |↑↑↓〉, ε
(0)
3 = δ−/2.

The remaining states form their own subspace {|↑↓↑〉, |↓↑↑〉}
with Hamiltonian

ˆ̃H0 = |↓↑↑〉
|↑↓↑〉

(
δ+/2 G

G −δ−/2

)
= δs

2
I + δBÎz + 2GÎx.

(C15)

As expected, this takes the same form as the single-spin
case with an extra global energy term from the second spin.

The corresponding eigenstates and eigenvalues are

∣∣�(0)
1

〉 = cos

(
θp

2

)
|↓↑↑〉 + sin

(
θp

2

)
|↑↓↑〉,

ε
(0)
1 = δs + ω

2
,

∣∣�(0)
2

〉 = sin

(
θp

2

)
|↓↑↑〉 − cos

(
θp

2

)
|↑↓↑〉,

ε
(0)
2 = δs − ω

2
,

∣∣�(0)
3

〉 = |↑↑↓〉, ε
(0)
3 = δ−

2
, (C16)

where ω =
√

δ2
B + 4G2 and tan θp = 2G/δB. The superscript

(0) is used to denote that these are the unperturbed eigenstates
and eigenvalues of Ĥ0. In the basis of Ĥ0 eigenstates, the full
Hamiltonian is Ĥ ′

avg = Ĥ ′
0 + V̂ ′, with

Ĥ ′
0 =

∣∣�(0)
1

〉
∣∣�(0)

2

〉
∣∣�(0)

3

〉
⎛
⎜⎝

(δs + ω)/2 0 0

0 (δs − ω)/2 0

0 0 δ−/2

⎞
⎟⎠, (C17)

and the perturbation

V̂ ′ =
⎛
⎝ 0 0 gcp

0 0 gsp

gcp gsp 0

⎞
⎠, (C18)

where sp = sin(θp/2) and cp = cos(θp/2). For a 2 × 2 single-
spin system, PulsePol is resonant with the spin when the
eigenvalues of Ĥ0 are degenerate, allowing g to lift the degen-
eracy and couple the two eigenstates. Ignoring the blockade
spin (G = 0), the resonance of the second spin occurs when
δ+ = δ−, or δs = 0. This is satisfied when the frequency of
the PulsePol protocol ωp is resonant with the spin’s precession
frequency, or

ωp = ω
(s)
I . (C19)

Using the definition of the protocol frequency ωp = 3π/T ,
the period of PulsePol, which is resonant with the nuclear
spin, is Tr = 3π/ω

(s)
I .

The same principle can be applied to the blockade spin
system, where the degeneracy is lifted by the perturbation,
V̂ ′, when two eigenvalues of the 3 × 3 Hamiltonian Ĥ ′

0 are
degenerate. Explicitly, V̂ ′ weakly couples the state |�(0)

3 〉 to
either |�(0)

1 〉 or |�(0)
2 〉. The eigenvalues of Ĥ ′

0 are different
depending on the sign of δ−. For example, if δ− < 0, then the
eigenvalues ε

(0)
1 and ε

(0)
3 are never degenerate, and V̂ ′ is not

strong enough to couple the corresponding states. However,
there is a value of detuning in which ε

(0)
2 = ε

(0)
3 , giving an up-

dated condition for the weaker spin’s resonance. For δ− > 0,
this is reversed and, instead, ε (0)

1 = ε
(0)
3 . We will only consider

systems where δ− < 0, although the results are identical. The
resonance satisfies δs −

√
δ2

B + 4G2 = δB − δs. Using the def-
inition that δi = ω

(i)
I − ωp, then

ωp = ω̃
(s)
I = ω

(s)
I + G2

δ−
, (C20)
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FIG. 8. Effect of two competing blockade spins: the polarization of C8 at a higher harmonic (k = 11). (a) The Floquet phases and
polarization for a two-spin system of C4 and C8. A displaced avoided crossing for C8 is present in the Floquet phases and a corresponding
displaced polarization peak from the single spin (black) to the two spin (orange). However, experimental data (blue) instead simply have
significantly lower polarization. (b) Floquet phases and polarization for a three-spin system of C3, C4, and C8. The original displaced avoided
crossing of C8 from (b) is now nearly degenerate with the avoided crossing of C3, which now acts as a blockade spin, pushing the crossing
back towards its original position. This three-spin simulation (green) demonstrates the flattening of the two-spin peak and fits the experimental
data better, showing the effect of higher-order multispin effects. Simulations and data here are for R = 1000 repetitions of Np = 4 PulsePol
cycles.

which is shifted by G2/δ− from the original single-spin res-
onant frequency ω

(s)
I . Assuming that the coupling g 
 G 


ωL, then the relative displacement of the resonant period is

�Tr

Tr
� − G2

ω
(s)
I

(
ω

(B)
I − ω

(s)
I

) , (C21)

where the new resonance is at T ′
r � Tr + �Tr . The robustness

of Eq. (C21) is tested against both two-spin simulations and
experimental polarization of C21 in Fig. 3 of the main paper.

Furthermore, degenerate perturbation theory can be used to
find the Rabi frequency of this resonance by solving the 2 × 2
matrix in the subspace {|�(0)

2 〉, |�(0)
3 〉}, which is of the form

ˆ̃H ′ = εI + 2gspÎx, where ε = ε
(0)
2 = ε

(0)
3 . The corresponding

Rabi frequency is found to be

�r � 2g sin

(
θp

2

)
. (C22)

This Rabi frequency is attenuated by a factor sin θ/2 relative
to the one-spin case. In fact, if |�Tr/Tr | � 1, then the cou-
pling between the two states will be completely suppressed
and �r = 0. However, for the typical scenarios studied here,
the displacement is less drastic and �r ∼ 2g. We note that
in the δ− → 0 limit, the shift tends to infinity. In this scenario,
the second small crossing vanishes and the dark-mode behav-
ior is regained.

4. Competing Blockade Spins

While the focus here was primarily on the case of a single
spin (e.g., C3), simultaneously and independently blocking
multiple weaker-coupled spins, we can consider the case
where two blockade spins affect the same weaker-coupled
spin. This results in a competing or combined blockade effect.
Such a scenario is identifiable in the experimental cluster here,
when looking at higher harmonic resonances of PulsePol at
larger T .

In previous sections, a PulsePol resonance of harmonic
k = 3 was studied. Consider now a higher harmonic, k = 11,
at a much greater periodicity T . At higher harmonics, single-
spin resonances have a greater spacing, meaning that C8 and
C4 are relatively close but no longer degenerate. Hence, the
polarization of C8 no longer saturates due to dark states and
is displaced by �Tr � −0.64 µs. A simulation of this higher
harmonic displacement of C8 due to C4 is shown in the first
panel of Fig. 8. However, this is not seen in the experimental
data, where there is significantly less polarization than ex-
pected in this region of T . In fact, by considering the initial
blockade spin C3 in simulations, as is done in the second panel
of Fig. 8, polarization levels closer to the experimental data
are obtained.

As in the Floquet states in Fig. 8, the expected displace-
ment of the avoided crossing for C8 due to blockade spin C4
is nearly degenerate with the avoided crossing of C3, which
was previously shown to act as a blockade spin for others
with small Ax. Therefore, this shift closer to C3 causes a
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secondary blockade effect on C8, displacing the resonance
back towards its original position and “smearing” the po-
larization across T . This double-blockade effect on C8 is a

three-spin effect, further highlighting the importance of con-
sidering many-body effects when performing polarization of
clusters.
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