
Timbre Transfer with Variational Auto Encoding and
Cycle-Consistent Adversarial Networks

Russell Sammut Bonnici
School of Electronic Engineering and Computer Science

Queen Mary University of London
United Kingdom, E14NS
ec20074@qmul.ac.uk

Martin Benning
School of Mathematical Sciences

Queen Mary University of London
United Kingdom, E14NS
m.benning@qmul.ac.uk

Charalampos Saitis
School of Electronic Engineering and Computer Science

Queen Mary University of London
United Kingdom, E14NS
c.saitis@qmul.ac.uk

Abstract

This research project investigates the application of deep learning to timbre transfer,
where the timbre of source audio can be converted to the timbre of target audio with
minimal loss in quality. The adopted approach combines Variational Autoencoders
with Generative Adversarial Networks to construct meaningful representations of
source audio and produce realistic generations of target audio and is applied to
the Flickr 8k Audio dataset for transferring the vocal timbre between speakers
and the URMP dataset for transferring the musical timbre between instruments.
Furthermore, variations of the adopted approach are trained, and generalised perfor-
mance is compared using the metrics SSIM (Structural Similarity Index) and FAD
(Frechét Audio Distance). It was found that a many-to-many approach supersedes
a one-to-one approach in terms of reconstructive capabilities, while one-to-one
showed better results in terms of adversarial translation. The adoption of a basic
over a bottleneck residual block design is more suitable for enriching content
information about a latent space. It was also found that the decision on whether
cyclic loss takes on a variational autoencoder or vanilla autoencoder approach does
not have a significant impact on reconstructive and adversarial translation aspects
of the model.
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1 Introduction

Timbre transfer is a task concerned with modifying audio samples such that their timbre is reformed
while their semantic content is persisted. Through this, utterances of a speaker (referred to as the
source) can be changed such that they sound like they were spoken by another speaker (referred to as
the target). Recordings of a source instrument can be manipulated in a similar way such that they
sound like another target instrument played them. Applications of effective timbre transfer would
benefit areas such as voice anonymisation, music production, and data augmentation. The challenge
in making the modification take place first lies in how exactly timbre can be captured.

Timbre is formally defined as the quality of an audio stimulus in which a listener can distinguish two
sounds with a factor separate from loudness and pitch [1]. As reflected by how its definition describes
what it is not, timbre is highly abstract and hard to determine concisely. Despite sometimes getting
referred to as tone colour, it is harder to quantify than visual colour. Visual colour is commonly
defined in three dimensions with an RGB model, and though previous research has determined a
three-dimensional model for timbre [2], it is still not as clear cut.

Explicit characteristics such as spectral envelope and time envelope help determine timbre for
instruments, but there are still implicit characteristics that contribute to painting the complete picture.
Also, musicians with more exposure to instruments of varying timbre are better at identifying them
[3], indicating a direct proportionality between exposure and timbral understanding. These points
motivate the use of deep learning, where from data, hard-to-define patterns of timbre can be learnt by
models non-linearly, and such models can be applied for related discriminative and generative tasks.

Generative modelling is a task that has been increasingly getting more attention in recent years.
Like discriminative modelling, intrinsic patterns about a collection of samples are learnt. Unlike
discriminative modelling, it does not deduce conclusive information about the samples but uses the
learnt patterns to generate new samples for a target sample distribution. From the research field of
computer vision, a variety of performant generative models have been proposed for tasks such as
data generation and style transfer. Most recent models extend from Variational Autoencoders [4] and
Generative Adversarial Networks [5].

Generative Adversarial Networks (GANs) are an approach to generative modelling that aim to
achieve realistic results with a discriminative overseer. GANs consist of two networks referred to as a
generator and discriminator. The generator is concerned with generating sufficiently realistic data
such that when it is compared to target data by the discriminator, it is indistinguishable. Meanwhile,
Variational Autoencoders (VAEs [4]) take on a reconstructive approach. VAEs are split into two
networks referred to as the encoder and decoder. Together, they compose a unified hourglass-like
architecture. The encoder learns to compress input data into a highly abstract latent space at a
bottleneck central to the model. Since the autoencoder is variational, it learns to model latent data
such that it resembles a specified data distribution (typically Gaussian) for a better consistency in
description at the bottleneck. For this, Kullback Leibler divergence is used to estimate the log
difference between the probability of data in the predicted distribution and the probability of data in
the desired distribution. Lastly, the decoder learns to decompress latent data from the bottleneck to
the dimensional space of input data.

In training, VAEs are more stable than GANs. Since VAEs have weights tuned with respect to
loss computations of their own output, their optimal state lies within a local minimum. Like most
deep learning models, the loss minimises asymptotically. Meanwhile, GANs tune the generative
component based on loss computations from a separate adversarial discriminator network. This
makes their loss function non-linear, making it more challenging for an optimiser to works out the
optimal state of loss.

The instability of GANs makes them sensitive to data and design decisions, as well as susceptible to
mode collapse. This is a typical failure case where the generator learns to “cheat” the discriminator
by mapping more than one input sample to the same output. Despite their notorious instability,
when configured right, GANs can achieve significantly realistic results. Their vulnerability to mode
collapse suggests that they would benefit from architectural decisions in the generator that better
capture the latent meaning of input samples. An approach to this would be to remodel the generator
into a VAE, yielding a VAE-GAN model design. This approach is the focal point of this work where
by combining the two generative techniques, the adversarial aspect becomes more stabilised, while
the reconstructive aspect benefits from more motivation for realism.
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2 Related Work

2.1 Image Style Transfer

UNIT [6] is a notable model that motivates the adoption of a VAE-GAN approach for style transfer. It
focuses on transferring styles of a source image to that of a target image. For a pair of style domains,
they train the transfer in both directions. For each transfer direction, they use an encoder-decoder-
discriminator pathway. The encoder-decoder section follows the reconstructive objective of VAEs
(motivating content persistence). Meanwhile, the whole path with the discriminator included follows
the adversarial objective of GANs (motivating style transfer). At the bottleneck, they enforce a shared
latent space by computing the VAE objective in both directions. They also share weights of the last
layer of the encoders and share the weights of the first layer of the decoders for motivating a shared
latent space.

The reconstructive component of the VAE objective in UNIT was computed using an error criterion
L1, which computes the total difference between the absolute magnitudes of a reconstructed image
and its original version. Similarly, CycleGAN [7] trains in both directions and uses L1 for comparing
the quality of a reconstruction to the original input. Both models are cyclically consistent since
the cyclic L1 loss acts as a prior that allows the applicability of style transfer to unpaired data,
where the content between two images is different. The main difference is that CycleGAN does not
assign a VAE objective to the generator section, and so in the cyclic loss, there is no inclusion of
Kullback–Leibler divergence alongside the L1 reconstructive component. As a result, CycleGAN
learns how to transfer styles from a lower level.

The shared latent space of UNIT aims to address style transfer from a probabilistic modelling
perspective. They reason that the goal is to capture the joint distribution of two style domains in
order to transfer between them. It is tough to do this when data is unpaired and not captured at a high
enough level. The shared latent space aims to better capture the joint distribution by emphasising
source content and deemphasising source style. Intuitively, it represents content with less individuality
at the bottleneck so that it becomes easier for the decoder to introduce target style to it.

2.2 Timbre Transfer

A number of works concerned with audio style transfer burrow intuition from image style transfer
models. Timbre transfer is a subset of audio style transfer, for which timbre is taken as the style of
interest in the audio domain. Here, there are typically two different design paradigms that researchers
follow. They either follow a time-domain approach, where an end-to-end deep learning model deals
with audio directly and at a low level. Alternatively, they may follow a time-frequency procedure,
where audio is handled more indirectly but at a higher level. In this approach, the data is further
processed for less complexity, with two deep learning models used for a high-quality transfer. The
first model is concerned with performing style transfer on spectrogram representations of the audio,
and the second model is concerned with vocoding the results of generated spectrograms back to
realistic audio.

AutoVC [8] deals with utterances of speakers in the time-frequency domain and proposes a style
transfer model that follows a vanilla autoencoder architecture. Like UNIT, they motivate content
persistence in the bottleneck and style adaptation in the decoder but achieve it without an adversarial
component. Their model consists of two encoders; a content encoder and a style encoder. The content
encoder focuses on embedding the content of source utterances, whereas the style encoder focuses
on embedding the style of target utterances. The decoder then accepts both content and style codes
as input so that its transferred output is the amalgamation of source content and target style. The
purpose of the style encoder replaces the purpose of the adversarial component in UNIT for target
motivation. Furthermore, they focus on mel-spectrogram representations and use WaveNet [9] to
convert generated mel-spectrograms to audio.

TimbreTron [10] focuses on recordings of instruments in the time-frequency domain. They also
use WaveNet for vocoding and follow the approach of CycleGAN for their style transfer model.
Initially, they perform the style transfer on vanilla spectrograms computed using a Short Time Fourier
Transform (STFT) but report issues with correctly transferring low pitches as well as having output
pitches generally randomly vary to a degree. To overcome these issues, they apply the style transfer to
CQT spectrogram representations instead, where a higher resolution for lower frequencies is captured
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and pitch equivariance is maintained. Though an improvement, their generated results still lack in
quality. Their change of focus to CQT spectrograms likely tries to make up for the lack of latent
representation capabilities in CycleGAN. Rather than adopting a different spectrogram representation,
it may be better to adopt a VAE-GAN approach such as UNIT that still involves cyclic consistency
but can also embed content at a higher level.

Mor et al [11] proposed a model in the time domain for universal music translation. Their style of
interest involves timbre but also extends to a broader aspect, inclusive of composition style. They use
a denoising autoencoder architecture, where input data is augmented and learnt to be reconstructed
with respect to non-augmented data. The encoding and decoding components are designed following
the principles of WaveNet since it excels at generation in the time domain. For the augmentation,
pitch is randomly varied within a deviation of 0.5 half-steps. They motivate this so as to capture
content representations at a higher level in the bottleneck. Though it yields an improvement in content
generalisation, the augmentation may contribute to off-key pitch in the output, which is especially
undesirable in musical contexts. With respect to the bottleneck, they apply an efficient shared latent
space constraint by using the same encoder for all source domains. Motivating the generalisability
of a universal encoder, they achieve applicability to source domains that were unseen from training.
They also use a domain confusion loss to discourage the inclusion of style elements in the content
embeddings.

AlBadawy and Lyu [12] proposed a model for voice conversion in the time-frequency domain. Their
style transfer model serves as an extension of UNIT, where a shared latent space is encouraged with a
universal encoder (much like Mor et al). They also introduce a latent loss to penalise significantly
different averages of latent codes originating from other style domains (also similar to the purpose
of the domain confusion loss in Mor et al). It encourages embeddings to be more independent of
style by making content distributions align closer in the bottleneck. Their adaptation of Mor et al’s
intuition to the time-frequency domain eases training expenses as well as architectural complexity. A
more semantically rich content embedding may also be achieved with the variational autoencoding
elements of UNIT. Much like other related works, they apply their style transfer to mel-spectrograms
and use WaveNet for vocoding back into audio.

This project adopts the VAE-GAN approach taken by AlBadawy and Lyu as their work demonstrates
highly realistic results for the voice conversion between two speakers. Investigating potential model
improvements as well as extending its applicability to the context of instruments poses an interesting
study case. Like speech conversion, timbre remains the main style of interest, but for instruments, the
content of interest becomes melodic sequences rather than linguistic sentences. Their time-frequency
approach also makes the training and comparing of experiments more feasible both in terms of time
and resource requirements. By decoupling the audio generation process (spectrogram vocoder) from
the style transfer process, different style transfer experiments may be trained without having to retrain
the audio generation process each time. Also, this design is not limited to a specific approach for
audio generation, making it easily applicable to a variety of vocoders.

3 Method

3.1 Data Preprocessing

Prior to computing mel-spectrograms for the style transfer model, the input audio is preprocessed in
a number of steps. Firstly, the audio is ensured to match a specified sample rate of 16,000 Hz. If not,
then the audio is resampled accordingly. The volume is then subtly equalised with root mean square
normalisation, where if the root mean square amplitude of the audio is lower than a target amplitude
of -30dB, then the audio is normalised to that amplitude. Lastly, long silences from the audio are
masked out to remove background noise at segments where no sound events are present. Note that
the low amplitude of -30dB was chosen arbitrarily, subtly equalising low segments of the audio as
a result. Higher amplitudes such as -10db may be set in future work. For each of the processed
audio samples, mel-spectrograms are then computed with 128 mel frequency bins, a hop size of 200
samples, and a Hanning window of size 800 samples for each frame. Also, magnitude values for
each mel-spectrogram are logarithmically scaled and normalised with min-max normalisation for a
faster convergence in training. For each audio source (whether speaker or instrument), whole audio
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and corresponding mel-spectrogram samples are organised into subsets of 80% for training, 10% for
validation, and 10% for testing.

3.2 Components and Data Input

Figure 1: The design of a single path in the implemented VAE-GAN model, where the transfer of one
timbre to another is learnt in a mel-spectrogram format. In training, two paths allow a one-to-one
style transfer between timbres in both directions. For each transfer direction, the encoder aims to
extract the content of the source audio regardless of timbre, whereas the decoder aims to introduce
the timbre of the target audio to the content as motivated by the discriminator.

The style transfer model involves one encoder, a shared residual block for decoding at a shallow level,
and multiple decoder-discriminator pairs specific to target domains. An illustration of a single path
within this model is presented in Figure 1. Only two paths are utilised for a one-to-one style transfer
in the initial implementation, where for a forward path that converts timbre A to timbre B, there also
exists an inverse path that converts B to A. This is necessary for cyclic consistency. For each source,
only one decoder-discriminator pair is trained for a target. This design may be extended to many-to-
many style transfer by having each source simultaneously train different decoder-discriminator pairs
for multiple targets. Not only would this make it easier to extend the model to numerous examples of
timbre transfer, but the shared encoder would further benefit in terms of generalisation.

The input mel-spectrograms are subsamples of the full mel-spectrograms such that their width
corresponds to a length of 128 frames (1.6 seconds), making the input mel-spectrograms of a
resolution size of 128x128. This was necessary to have a standardised input size since the model
largely depends on convolutional operations. For each of the domains, a combination of samples was
randomly selected from the training set. From each sample, a 128 frame excerpt is extracted between
random frame indices. This achieves a random data selection across domains and in terms of time
localisation within each mel-spectrogram.

3.3 Architecture

The architectural details of the model’s components are primarily congruent to the design choices
initially proposed by UNIT [6]. The shared encoder involves two principal stages; a convolutional
stage and a residual stage. It firstly pads input with a 3x3 reflection padding. After which, padded
information is passed through 3 convolutional blocks that each downsample feature maps by a factor
of 2. The first input channel is set to 1 to correspond to the loudness dimension of the mel-spectrogram.
The 3 convolutional blocks then have output channels set at 32, 64, and 128 consecutively such that
the feature map dimensions are stretched in-depth and compressed in width and height (leading to a
compressed latent space). Each convolutional layer is followed by a LeakyReLu activation with an
0.2 negative slope and followed by an instance normalisation layer. The first convolutional layer has
a kernel size of 7x7 whereas the following two have 4x4 kernel sizes. Following the convolutional
blocks are 3 residual blocks.

The residual blocks involve skip connections that enrich the representation of data leading to the
bottleneck with residual priors. The skip connections are implemented such that for each block, the
input feature map is connected to the output feature map via a summation operation. The initially
implemented blocks correspond to the basic residual block design proposed by ResNet [13], where
each block consists of two convolutional layers of a 3x3 kernel size and only the first layer has ReLu
applied after it. Unlike the ResNet design, here input is padded with a reflection padding of 1x1 and
instance normalisation is applied after the convolutional layers instead of batch normalisation.

Instead of using basic residual blocks, bottleneck residual blocks (also proposed by ResNet) may be
considered. Bottleneck residual blocks contain 3 convolutional layers of kernel sizes 1x1, 3x3, and
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1x1. Due to the compression that their 3x3 convolutional layer provides, feature maps are reduced
in size and so the operations required by a forward pass are reduced. This would benefit the model
in terms of easing training expenses, but it may also make training more susceptible to vanishing
gradients since the feature maps around the main bottleneck are already at a sufficiently compressed
depth.

The output of the last encoder residual block is taken as a latent mean µ. The reparameterisation trick
is then ensued where a random sample is selected from a zero-mean Gaussian distribution with a unit
variance of 1. The sum of the random sample and the latent mean is computed to achieve a latent
code z, which aims to represent the content of the input mel-spectrogram at the bottleneck.

The latent code z is taken as input to the decoder. The decoder follows the exact same architecture
as the universal encoder but in a mirrored manner so that a 128x128 mel-spectrogram can be
reconstructed as output. The 3 residual blocks follow the same setup as in the encoder, without much
need for a reordering since each block has its output dimensions correspond to their input dimensions.
The only difference is that instead of all residual blocks being shared across different source domains,
only the first one is. The other two are specific to the target domain. This is meant to help motivate
content abstraction, where content is decoded once in a similar manner before getting decoded further
with respect to the target. The following 3 convolution blocks are also specific to the target and utilise
transposed convolutional layers that consecutively follow kernel sizes 4x4, 4x4 and 7x7 with output
channels 64, 32, and 1, respectively.

The discriminator accepts generated mel-spectrograms from the corresponding target decoder and
compares them with real mel-spectrograms of the target domain. Its design is similar to the discrimi-
nator proposed by DCGAN [14]. It consists of five convolutional layers, each with a stride of 2x2
so that pooling is performed implicitly and optimally. The first four convolutional layers have a
kernel size of 4x4 and the last has a kernel size of 3x3. All layers except the last are followed by a
LeakyRelu of 0.2, and the second to fourth layers are each followed by instance normalisation.

3.4 Overall Objective and Loss Functions

The overall loss function L that we aim to minimise is additively composed of four individual loss
functions, i.e.

L = LGAN + LVAE + LCC + LLatent , (1)

where the individual loss functions LGAN, LVAE, LCC and LLatent will be defined throughout the
remainder of this section. For each training step, the weights of the generator sub-paths (encoder-
decoder) are first updated and then the weights of the discriminators are updated. The generators are
tuned with respect to reconstructive losses for content embedding (LVAE, LCC and LLatent), and an
adversarial loss for trying to generate realistic mel-spectrograms in the target domain. Meanwhile,
discriminators depend on an adversarial loss but from the perspective that opposes the generators,
where weights are tuned to distinguish generated mel-spectrograms from real mel-spectrograms in
the target domain. From these objectives, an overall objective is implied as described by Equation 1.

The adversarial loss LGAN is defined as

LGAN = λ0Ex∼X‖D(x)‖2 + λ0Ez∼Z‖1−D(G(z))‖2 . (2)

In this notation, D(x) refers to the classification output of the discriminator and λ0 is a constant,
positive hyperparameter for directing the priority of this loss component. More description on
constant hyperparameters of each loss component can be found at the end of this section. For each
discriminator, an error is minimised such that a mel-spectrogram x (whether fake or real) is correctly
identified as belonging to their prior distribution X . Meanwhile, for each generator, an error is
minimised such that a mel-spectrogram G(z) generated via a latent code z (with a prior of the latent
distribution Z) is identified as real. The discriminators are assessed on classifying mel-spectrograms
of the target timbre to enforce realistic target motivation.

As opposed to the initial definition proposed by Goodfellow et al [5], LGAN does not use Binary
Cross-Entropy (BCE) for the error criterion but instead uses Mean Squared Error (MSE) as motivated
by LSGAN [15]. Between the predicted classifications and ground truth labels, BCE computes
the logarithmic difference of probabilities, whereas MSE computes the total difference of squared
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magnitudes. MSE is typically used in recent style transfer models as this seems to empirically
stabilise the adversarial aspect of the training process. From adopting MSE over BCE, it is worth
noting that no sigmoid activation is required as a final layer in the discriminator.

The variational encoding loss LVAE, i.e.

LVAE = λ1KL(Z, p(z))− λ2Ez∼Z(log pD(x|z)) (3)

consists of two terms. The first term is Kullback Leibler (KL) divergence between the latent
distribution Z and a zero-mean Gaussian distribution p(z). The latent distribution Z is defined by the
output µ of the encoder. The second term is the reconstructive component that aims to successfully
recover a mel-spectrogram x from a corresponding latent code z through a probabilistic decoder
pD(x|z). For this, L1 is used as an error criterion as it encourages sparsity which is suitable for
mel-spectrograms. L1 is computed between the input source mel-spectrogram and the reconstructed
source mel-spectrogram (recovered by feeding z to a decoder from an inverse path).

The cyclic consistency loss LCC, i.e.

LCC = λ3KL(Zcc, p(zcc))− λ4Ezcc∼Zcc(log pD(x|zcc)) , (4)

is computed with the same loss components as LVAE but the estimated latent distribution ZCC

and latent code zcc are taken from a cyclic reconstruction. Here, a generated mel-spectrogram is
encoded again to obtain ZCC and zcc, and by using the decoder from an inverse path, the source
mel-spectrogram is reconstructed. The right term ensures cyclic consistency. Meanwhile, the left term
makes it so that the latent space distribution gets modelled with respect to generated mel-spectrograms.
Since the encoder is shared and the same weights are tuned for both Z and ZCC , this may serve as an
obstacle in modelling a latent space distribution at the bottleneck specific to real mel-spectrograms. It
may be worth investigating a model variation where the KL divergence is omitted in LCC .

LLatent = λ5‖µA − µB‖1 (5)

The latent loss LLatent is the `1 error between a pair latent means µA and µB from different source
mel-spectrograms A and B respectively. This makes it so that a focus on embedding content is further
encouraged at the bottleneck. In the case that a many-to-many variation of this model is pursued,
LLatent would have to be calculated between each possible pairing of latent means.

The constant hyperparameters for the loss functions were set such that λ0 = 10, λ1 = 0.1, λ2 =
100, λ3 = 0.1, λ4 = 100, λ5 = 10. Here, the reconstructive loss components are favoured over the
rest to provide more stability in loss minimisation and to prioritise encoding content before focusing
on decoding target mel-spectrograms. Moreover, Adam optimisers [16] were used with a set learning
rate of α = 0.0001 and running average coefficients β0 = 0.5 and β1 = 0.999. Learning rate
schedules were used to start decaying the learning rate from halfway through the maximum epochs
for a given dataset. For training, the batch size was set to 4 samples per timbre domain.

3.5 Inference

After the model is trained, an inference procedure is set up such that it can be applied to input audio
of an arbitrary length (provided a length longer than 1.6 seconds). The audio is first preprocessed
and a mel-spectrogram is computed with the same method used for training. Since the model only
accepts 128x128 mel-spectrograms, a sliding window of a 128 frame length is set to traverse the
audio with an overlap count of 4. With each slide, a mel-spectrogram is inferred with the timbre of
the target audio. An average of the magnitude values is then taken between the overlapping regions
of the transferred mel-spectrograms, resulting in the timbre transfer of a full-length sample.

After the inference, the Fast Griffin Lim algorithm [17] is used to convert the inferred mel-spectrogram
to an audio format. Since Griffin Lim is susceptible to phase artefacts, the reconstructed audio will be
taken as input to the mel-spectrogram-to-audio vocoder model (in this case, WaveNet) for quality
improvement. Here, the reconstructed audio would be preprocessed back to mel-spectrograms with
respect to the foreign vocoder’s preprocessing steps, then reconstructed once more back to audio but
with much fewer phase artefacts. This makes it so that it is not a requirement for the preprocessing
specifications of the style transfer model to match that of the vocoder.
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3.6 WaveNet Vocoding

An open-source implementation for WaveNet was utilised [18] and separately trained for each of
the datasets. One was trained for converting timbres between speakers, and another for converting
between instruments. Each vocoder was trained on all timbres per dataset since intonations that may
only be present in the source domain and not the target domain should still be considered for style
transfer. With dilated convolutions and causal filters, the vocoders successfully learn to generate
audio from preprocessed mel-spectrograms and minimise the loss in the audio reconstruction. This
results in models of different weights for audio generation general to the timbres from each task
domain, which are then used for inferring high-quality audio reconstructions of the target audio
generations from the style transfer model.

4 Experiments and Evaluation

4.1 Datasets

The model was trained separately on two datasets; the Flickr 8k Audio dataset [19], and the URMP
dataset [20]. From the Flickr dataset, audio files of male and female speakers with the most recordings
were used for investigating model variations in the same context as AlBadawy & Lyu [12]. Here,
speakers utter a variety of short sentences. Meanwhile, from the URMP dataset, audio files of
instruments with the most to least recordings were used for extending the model’s application to the
context of musical timbre. To mirror the application of voice conversion, only solo recordings of
instruments were considered where timbre is monophonic and not polyphonic, though experiments
with polyphonic timbre (like in Mor et al [11]) may be worth investigating in the future.

Table 1: Dataset information with respect to each timbre of interest

Dataset Source Samples Total Time Avg. Time
(per sample)

Flickr

Female 1 1686 1 hrs, 48 mins, 1 s 3.6 s
Male 1 2965 2 hrs, 46 mins, 36 s 3.6 s
Female 2 1058 58 mins, 9 s 3.6 s
Male 2 2461 2 hrs, 30 mins, 43 s 3.6 s

URMP

Trumpet 22 35 mins, 36 s 1 min, 32.4 s
Violin 34 51 mins, 1 s 1 min, 20.4 s
Flute 18 28 mins, 30 s 1 min, 50 s
Cello 11 16 mins, 50 s 1 min, 57 s

The number of samples per timbre and time length information were summarised in Table 1. Speakers
from Flickr have much more samples than instruments from URMP. On the other hand, the average
time per sample is much shorter for Flickr than URMP. Still, the total time recorded of URMP
instruments still amounts to significantly less than Flickr speakers. As a result, the URMP experiments
should be trained for more epochs such that the total number of steps better match the amount
computed for Flickr. Furthermore in Flickr, male 1 has the largest amount of samples whereas female
2 has the smallest. Meanwhile in URMP, violin has the most samples, whereas cello has the least.

4.2 Metrics

Two metrics were utilised for evaluating the two main aspects of the model; SSIM (Structural
Similarity Index [21]) for the reconstructive aspect, and FAD (Frechét Audio Distance [22]) for
the adversarial translation aspect. Here, SSIM focuses on judging reconstruction in terms of mel-
spectrograms of the style transfer model and FAD focuses on comparing generated target audio (after
WaveNet) with real target audio.

SSIM is a similarity metric that compares the perceptual quality between an original image and its
reconstructed counterpart. This is typically used for assessing image compression algorithms. This is
applicable here since mel-spectrograms are two-dimensional and VAEs depend on reconstructing
samples post-compression. SSIM is more suitable over other metrics such as PSNR (Peak Signal
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Noise Ratio) or MSE as it better considers structure [23] which is especially important in time-
frequency representations. By using SSIM to compare a reconstructed mel-spectrogram with its
original (after one encoding pass) and separately a cyclic reconstruction with its original (after two
encoding passes), the two reconstructive processes of the model are assessed.

FAD takes the approach of FID (Frechét Inception Distance [24]) and adapts it from the context of
images to audio. It uses a VGGish model [25] (a variant of the discriminative model VGG [26])
that is pre-trained on a large-scale audio event dataset called AudioSet [27]. Due to the dataset it is
trained on, its weights are able to produce semantically rich embeddings of audio. FAD estimates the
multivariate Gaussians of VGGish embeddings of real audio samples and separately generated audio
samples, then computes the Frechét Distance between them. This effectively estimates the difference
between the two data distributions where the smaller the distance, the more realistic the generated set
of samples are. As a computed metric, FAD is found more favourable over person dependent metrics
such as MOS (Mean Opinion Score) since it is more objective and better replicable.

4.3 Model Experiments

Four versions of the style transfer model were trained for evaluation. The initial version follows the
proposed specifications of AlBadawy and Lyu [12]. Meanwhile, the no KLD cyclic version makes it
so that KL divergence is not included in the cyclic loss component, making the model focus more on
real input for modelling the distribution of the shared latent space. The bottleneck residual version
replaces all basic residual blocks with bottleneck residual blocks to investigate the effectiveness of
an alternate design with fewer parameters. And finally, the many-to-many version introduces more
pathways in training for cyclically transferring between more timbre domains (in this case four)
which should further enforce and generalise a shared latent space.

For the Flickr dataset, most style transfer models were trained for 100 epochs and for the URMP
dataset, they were trained for 500 epochs (due to the difference in dataset size). Epochs for training
the many-to-many experiments were reduced to 17 for Flickr and 84 for URMP since 6 times the
amount of steps were pursued per epoch by each network. For each dataset, a WaveNet vocoder was
trained for 450,000 steps since plots seemed to feasibly align with input audio plots at this point (as
demonstrated in the Appendix Section C). Most of the experiments were one-to-one where the source
domain was taken as the timbre opposing the target. Due to time limitations for training, one-to-one
experiments were only pursued for the first two selected timbres of each dataset (between female 1
and male 1 for speakers, and trumpet and violin for instruments). For the many-to-many experiments,
metrics were calculated in pairs between the first two selected timbres and separately between the last
two selected timbres. Unlike in training, timbres were not exhaustively pursued for the evaluation
due to the expensive time requirements posed by the inference procedure of WaveNet. Either with
more time or another vocoder with a less time costly inference procedure, more timbre pairings may
be investigated for further evaluation.

Table 2: SSIM of Reconstructions

Dataset Target Model Experiments

Initial No KLD
Cyclic

Bottleneck
Residual

Many to
Many

Flickr

Female 1 0.87 0.87 0.79 0.86
Male 1 0.89 0.88 0.76 0.91
Female 2 0.86 0.85 0.75 0.89
Male 2 0.82 0.83 0.71 0.87

URMP

Trumpet 0.93 0.93 0.85 0.94
Violin 0.91 0.91 0.82 0.92
Flute 0.87 0.87 0.73 0.90
Cello 0.86 0.86 0.75 0.91

As shown across a variety of timbres, the reconstruction quality of the first reconstruction (Table 2) is
consistently higher than the cyclic reconstruction (Table 3). This indicates a subtle loss of information
with each transfer since the cyclic reconstruction goes through one more encoding pass and decoding
pass than the first reconstruction. As shown in both tables, most of the investigated VAE-GAN
variations do not supersede the SSIM of the initial version, but a majority of the many-to-many
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Table 3: SSIM of Cyclic Reconstructions

Dataset Target Model Experiments

Initial No KLD
Cyclic

Bottleneck
Residual

Many to
Many

Flickr

Female 1 0.73 0.74 0.73 0.77
Male 1 0.80 0.78 0.68 0.82
Female 2 0.76 0.76 0.66 0.78
Male 2 0.70 0.70 0.57 0.77

URMP

Trumpet 0.83 0.83 0.78 0.89
Violin 0.81 0.81 0.78 0.88
Flute 0.64 0.65 0.62 0.82
Cello 0.86 0.86 0.66 0.91

experiments do. This validates the hypothesis that content-encoding benefits from having a larger
variety of source domains and indicates that with more timbres considered, less information is lost in
encoding content.

The bottleneck residual experiments demonstrate a considerable lack in reconstruction quality, and
so basic residual blocks are more suitable for enriching content information to and from the latent
space. The no KLD cyclic experiments achieve reconstruction performance on par with the initial
experiments, showing that its inclusion or exclusion does not hold a significant impact on the results.
This may be due to the adversarial aspect sufficiently motivating translated data to resemble real data
such that no obstructions are made when modelling the bottleneck data distribution for the real data.

Inspecting the many-to-many experiments with respect to each dataset, male 1 achieved the best
SSIM for both types of reconstructions. This could likely be attributed to male 1 having the largest
data size out of all other timbres (Table 1). Meanwhile for URMP, trumpet achieved the best SSIM for
both types of reconstructions. Across the other one-to-one experiments, it is also found that trumpet
still achieves the highest SSIM (if not the equivalent). The fact that trumpet has a higher SSIM than
violin is surprising since violin has a larger data size than the other instrument timbres. This may
indicate that trumpet has a less complex timbre than violin.

Table 4: Frechét Audio Distance (General Vocoding)

Dataset Target Model Experiments

Initial No KLD
Cyclic

Bottleneck
Residual

Many to
Many

Flickr

Female 1 2.96 2.77 9.10 4.31
Male 1 1.65 2.48 6.97 1.40
Female 2 2.35 2.35 8.04 2.64
Male 2 1.82 1.95 7.03 2.90

URMP

Trumpet 5.26 5.52 6.06 5.85
Violin 4.50 5.52 12.68 4.99
Flute 4.37 4.40 6.39 5.64
Cello 20.53 18.20 16.70 16.21

FADs computed between the generated audio and real audio of each timbre are presented in Table 4.
For each computation, the target timbre’s training set was taken as real audio, whereas the transferred
audio (post-processed with WaveNet) was taken as the generated audio to test. Contrasting the SSIM
results, it shows that the initial experiment performed best for a majority of the transfers. However,
for male 1 and cello, the many-to-many experiment performed best. For cello, this suggests that in
the case of limited target data, it assists the transfer by using other targets as an assisting resource.
For male 1, female 1 was used as the source audio. It is likely that the many-to-many training helped
work through the noise present in the recordings of female 1.

Generally, FAD values are worse for instruments than they are for speakers. Also after training the
WaveNet vocoders, intonations from mel-spectrograms were reconstructed to less of an accurate
degree for instruments. This could be largely attributed to the lack of instrument data relative to the
speaker data (Table 1). Griffin Lim reconstructions of cello audio were surprisingly found to sound
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more audibly realistic than WaveNet reconstructions. Reflecting the lack of quality, the FAD for cello
is significantly worse than the FADs of other timbres. The fact that cello was the timbre with the least
data and that no other timbres sounded as bad post-WaveNet implies that WaveNet is sensitive to
data size and would greatly benefit from more data for training. Audio signals of instruments can
be more complex than speaker signals, and so mel-spectrograms may not capture information as
well as possible for instruments. Even though results are audibly more realistic than TimbreTron
[10], it could be worth investigating a VAE-GAN design for CQT spectrograms at least for subtle
FAD improvements. Another possible future direction would be to investigate other mel-spectrogram
vocoders since WaveNet seems better suited for vocoding the audio of speakers than instruments.

4.4 Target Visualisations

Figure 2: A target visualisation from the many-to-many experiment of female 1, with male 1 as the
source input.

Input and output mel-spectrograms of targets female 1 and trumpet were plotted to demonstrate the
timbre transfer capabilities of the VAE-GAN model as seen in Figures 2 and 3 (visualisations of other
targets may be found in the Appendix Section B). The model retains the content as demonstrated by
the vertical spectral features yet modifies the horizontal formants such that they are better suited to
the target timbre. From male 1 to female 1, formants are modified such that they are more spaced
out and exist less sparsely in a higher range of frequency. From violin to trumpet, formants are
introduced at low frequencies, more sparsity is introduced at higher frequencies, and the spacing
of formats is modified in a particular way (as can be seen between frames 3,000 and 5,000). These
modifications are specific to the target timbres such that their real spectral structure is replicated (of
which descriptions and visualisations can be found in Appendix Section A).
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Figure 3: A target visualisation from the many-to-many experiment of trumpet, with violin as the
source input.

5 Conclusion and Future Work

In conclusion, a VAE-GAN approach to timbre transfer was not only shown viable in the context of
speakers (for voice conversion [12]) but also musical instruments. The instrument timbre transfer
results achieved a sufficient audible quality with a relatively simple model working in the time-
frequency domain. This model may also be applicable to the transfer of polyphonic timbre in the
future since it does not depend on a monophonic pitch transcriptions such as works like [28]. The lack
of a dependence on a monophonic pitch transcription likely hurts the quality for instrument timbre
transfer (as the audible quality of [28] is evidently higher), but at least this allows the approach to be
general enough for application to more than just one type of audio style transfer problem. With more
data as well as further design considerations, the audio quality of this approach may be improved.

From the VAE-GAN model experiments, a number of indications were deducted across speakers and
instruments; that basic residual blocks supersede bottleneck residual blocks around the bottleneck for
enriching content information, that the presence of KL divergence for the cyclic loss component does
not significantly impact performance, and finally, that the many-to-many extension outperforms the
initial one-to-one version in terms of reconstructive capabilities due to the increased variation of data
passed through the universal encoder. Though many-to-many improves the reconstructive aspect of
the model, improvements on the adversarial translation aspect were inconclusive. More clarity may
be produced by training WaveNet with a more balanced dataset and with more data, or by adopting a
different time-frequency vocoder with less sensitivity to data quantity.
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A Appendix

A.1 Dataset Visualisations

A variety of 128x128 mel-spectrogram excerpts were plotted from the selected speakers and instru-
ments to illustrate differences in timbre from the time-frequency perspective of the model (as shown
in Figures 4 and 5 respectively). As presented in Figure 4, the horizontal features of females are more
vertically spaced out and less compressed to lower regions than that of males. This is reflective of
how female voices are higher than males, where the frequency bands exist more prominently over a
wider and higher frequency range. There are not many significantly noticeable differences within sex,
but female 2 seems to have less intensity in their utterances than female 1.

In comparison to utterances (Figure 4), the horizontal features of the solo musical performances
(Figure 5) are much longer due to the slower pace of the audio content. The horizontal features of
violin are more prominent in the upper region than that of the other instruments, indicating a higher
voicing. The trumpet has an evident sparseness in the upper area, and so does the flute but to slightly
less of a degree. The cello has a dense organisation of horizontal features compressed to the lower
region. Similar to how features of males were from Flickr, this is indicative of a lower voicing. At
a closer inspection, it is also noticeable that the violin and cello sometimes have subtly oscillating
frequency bands. This is indicative of vibrato, a technique commonly used in string instruments.

A.2 Extra Target Visualisations

Examples of inferred targets not shown in the main text are presented here in Figures 6-11. By
comparing the generated target output to the corresponding mel-spectrograms of real data in Figures
4-5, it can be seen that the VAE-GAN modifies the nature of the spectral bands such that they better
match the specified target.
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(a) Female 1 (b) Male 1

(c) Female 2 (d) Male 2

Figure 4: A variety of real mel-spectrogram excerpts per speaker from the Flickr dataset.

A.3 WaveNet Vocoding Visualisations

As presented in Figures 12-13, after 450,000 steps two WaveNet vocoders are able to sufficiently
reconstruct audio signals from mel-spectrograms for speakers and instruments, respectively. It is
worth highlighting that the WaveNet vocoder for instruments reconstructs to less of an accurate
degree for attacks and decays than the WaveNet vocoder for speakers as noticable at 0.05s and 0.4s
of Figure 13. If this is due to the expressive complexity of the instruments, more steps or data per
instrument would be appropriate for training in future experiments. For training with more steps, a
faster time-frequency vocoder could also be considered.

A.4 Hardware Specifications

The three most expensive parts of the project from least to most expensive were; the VAE-GAN, the
WaveNet vocoder, and the FAD evaluation. In order to execute this project it is recommended to work
with NVIDIA GPUs with VRAM as enlisted in Table 5.
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(a) Trumpet (b) Violin

(c) Flute (d) Cello

Figure 5: A variety of real mel-spectrogram excerpts per instrument from the URMP dataset.

Table 5: GPU Specifications
Stage Recommended VRAM (GB)

VAE-GAN 2
WaveNet 8

FAD 24
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Figure 6: A target visualisation from the many-to-many experiment of male 1, with female 1 as the
source input.

Figure 7: A target visualisation from the many-to-many experiment of female 2, with male 2 as the
source input.
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Figure 8: A target visualisation from the many-to-many experiment of male 2, with female 2 as the
source input.

Figure 9: A target visualisation from the many-to-many experiment of violin, with trumpet as the
source input.
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Figure 10: A target visualisation from the many-to-many experiment of flute, with cello as the source
input.

Figure 11: A target visualisation from the many-to-many experiment of cello, with flute as the source
input.
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Figure 12: A vocoded reconstruction (bottom) of a real utterance (top) after training on speakers for
450,000 steps.

Figure 13: A vocoded reconstruction (bottom) of a real musical recording (top) after training on
instruments for 450,000 steps.
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