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Abstract—A desired characteristic of future communication
networks is the notion of reconfigurability. For a wireless device,
this can be realized through the employment of the so-called
fluid antennas (FAs). An FA consists of a dielectric holder, in
which a radiating liquid moves between pre-defined locations
(called ports) that serve as the device’s antennas. Therefore,
due to the nature of liquids, an FA can essentially take any
size and shape, making them both flexible and reconfigurable.
In this paper, we study the outage probability of FAs where
the scheduled port, based on selection combining, is subject to
scheduling delays. An analytical framework is provided for the
performance with and without estimation errors, as a result of
post-scheduling delays. We show that even though FAs achieve
maximum channel (spatial) diversity, this cannot be attained in
the presence of delays.

Index Terms—Fluid antennas, outage probability, outdated
channels, diversity.

I. INTRODUCTION

The various advances in antenna technology and antenna
arrays have been important in the evolution of communication
systems towards 5G and beyond 5G networks [1]. Indeed,
the implementation of multiple-input multiple-output (MIMO)
antenna architectures has been an essential element in wireless
networks for the realization of high data rates and spectral
efficiency due to beamforming and spatial multiplexing. Such
antennas are usually made of metal and are designed in
such a way so as to meet specific network requirements.
Furthermore, their design is subject to physical constraints,
the most significant being the spacing between two antennas,
which needs to be at least as half as the carrier’s wavelength
to avoid electromagnetic coupling [2]. Naturally, this metallic
structure makes them static (i.e., inflexible), impractical and
too costly for very small devices to have many antennas.

Recently, there has been several efforts to introduce recon-
figurability in wireless networks. On one hand, reconfigurable
intelligent surfaces were proposed to control the propagation
environment via software-controlled metasurfaces [3]. On the
other hand, from a device’s point-of-view, the concept of fluid
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antennas (FAs) has been recently proposed in order to add
both flexibility and reconfigurability at the radio frequency
(RF) front-end [4]. Specifically, FAs consist of radiating liquid
elements (e.g. Mercury, eutectic gallium-indium (EGaIn)) in a
dielectric holder [5]. The holder contains several pre-defined
positions, known as ports, where the employed liquid can
be moved towards a selected port in a programmable and
controllable manner. Moreover, the FA uses just one RF chain
and so the spacing constraint does not apply in this case,
making it a suitable technology for very small devices [6].
Therefore, compared to conventional static metallic anten-
nas, FAs can adjust their physical configuration (e.g., shape,
feeding) but also their electrical properties (e.g., resonant
frequency, radiation pattern) [7]. It follows that this technology
provides a new degree of freedom in the design of wireless
communication systems.

Despite the fact that FAs have been studied from an
RF/microwave engineering perspective and several early pro-
totypes exist in the literature, see for example [4], [5], [8],
the theoretical foundations of FAs and the investigation of
communication techniques that unlock their liquid dimension
are still not understood. Indeed, the exploitation of the liquid
dimension associated with the FAs will open new design
opportunities and establish a new communication paradigm
[6], [9], [10]. In [6], the authors study the performance of
an FA system in terms of outage probability and show that
an FA can outperform a maximum ratio combining (MRC)
system with conventional antennas, when the number of ports
is sufficiently large. The work in [9] extends the study with
respect to the ergodic capacity, where it is demonstrated that
FAs can match the capacity of MRC systems. Finally, the
performance of FAs with multiuser interference is studied in
[10]; it is shown that with a large enough number of ports,
the FA attains a relatively low outage probability.

The aforementioned studies assume that the performance is
not affected by any imperfections as a result of the channel
estimation and selection process. However, due to the sequen-
tial nature of FAs, estimation and selection will be affected
by delays between the pre-scheduling and the post-scheduling
of a port, especially for a large number of ports. Therefore,
a proper analysis considering processing imperfections is of
great importance. Motivated by this, in this paper, we study



the outage probability of an FA system, where the channel at
the selected port is subject to practical delays. Specifically, the
contributions of this paper are as follows. We study the perfor-
mance of FA systems by taking into account estimation errors
due to delays and we present an analytical framework for the
outage probability of outdated channels. Moreover, asymptotic
expressions are provided that quantify the system’s diversity
and outage gain. We show that an FA achieves full channel
(spatial) diversity when no estimation errors exist, which is
independent of correlation, whereas its outage gain depends
on the correlation pattern. However, as a result of the post-
scheduling errors, the performance deteriorates significantly
both in diversity as well as in outage gain; indeed, in some
cases, the performance is inversely proportional to the number
of ports.

Notation: P{X} and E{X} represent the probability and
expectation of X , respectively; Γ(·), Γ(·, ·) and γ(·, ·) denote
the complete, upper, and lower incomplete gamma function,
respectively; Q1(·, ·) denotes the Marcum-Q function of the
first order; Jn(·) and In(·) are the Bessel function and the
modified Bessel function, respectively, of the first kind and
order n [11]; ȷ =

√
−1 is the imaginary unit; 1X is the

indicator function of X with 1X = 1, if X is true, and
1X = 0, otherwise.

II. SYSTEM MODEL

A. Network Model

Consider a simple point-to-point network, consisting of
a conventional single-antenna transmitter and a single-FA
receiver. The transmitter utilizes a fixed transmission power
P . The receiver’s FA is connected to a single RF chain
and consists of N ports, evenly distributed over a dielectric
holder of linear space, i.e., a uniform linear array [2], [6], as
illustrated in Fig. 1.

The length of the FA is characterized by the value Wλ,
where λ is the wavelength of the transmitted signals and
W > 0. We assume that the FA can switch on a single
port by displacing the employed liquid to its location with
a mechanical pump [4]. Therefore, the displacement (i.e. the
Euclidean distance) between the n-th port and the first one
can be written as [6]

dn =
n− 1

N − 1
Wλ. (1)

Clearly, the displacement increases with n and decreases with
the number of ports N . Moreover, all N displacements are
distinct, i.e. d1 ̸= d2 ̸= · · · ̸= dN and the maximum
displacement is unique and equal to dN (see Fig. 1).

B. Channel Model

All wireless links are assumed to exhibit Rayleigh fading
and we model the correlated fading channels at the N ports
as follows [6]

g1 = σ(x1 + ȷy1), (2)

gn = σ
(√

1− ρ2nxn + ρnx1

Fig. 1: The FA receiver with N ports.

+ ȷ
(√

1− ρ2nyn + ρny1
))

, (3)

for n = 2, . . . , N , σ > 0, where xn and yn are independent
Gaussian random variables with zero mean and variance 1/2,
i.e. xn, yn ∼ N (0, 1/2); throughout this paper, we will
consider σ = 1 for simplicity but the generalization to any
σ is straightforward.

Therefore, by having the first port as the reference point,
the correlation coefficient between hn and h1 can be modeled
by1

ρn = J0

(
2π

dn
λ

)
, (4)

where dn is defined above. Finally, we assume that the
channel coefficients are known to the FA receiver, but not
the transmitter.

III. FAS WITH OUTDATED CHANNEL ESTIMATES

In this section, we study the performance of the FA system
with port selection. We assume that the FA employs a selection
combiner and thus chooses the port with the strongest received
signal, that is, the port with

h = max{h1, h2, . . . , hN}, (5)

where hi = |gi|2. We consider the case where the estimated
(pre-scheduling) channel at any port is subject to delays [13].
Since the estimation is done sequentially at each port, these
delays correspond to the duration needed for the liquid to be
displaced at each port and estimate the received channels. As
such, by the time the port with the best estimate is scheduled
(i.e. switched on), that estimation could be outdated. We first
focus on the performance of the estimated channels and then
the one of the outdated channels.

A. Estimated Channels

To facilitate the analysis, we let ĥn denote the estimated re-
ceived channel at the n-th port and ĥ = max{ĥ1, ĥ2, . . . , ĥN}.
The theorem below provides the cumulative distribution func-
tion (CDF) of the estimated ĥ.

Theorem 1 ([6]). The CDF of the estimated ĥ is given by

Fĥ(x) =

∫ x

0

exp(−z)

N∏
n=2

ϕn(z, x)dz, (6)

1Note that an alternative spatial correlation model was recently proposed
in [12] which differs slightly from the one used in this paper. It would be an
interesting future work to extend the work of this paper using the new model.



where

ϕn(z, x) = 1−Q1

(√
2zρ2n
1− ρ2n

,

√
2x

1− ρ2n

)
, (7)

and ρn is given by (4).

It is important to point out that the performance of the FA
improves as the correlation coefficients get smaller. To better
show this behavior, we take an asymptotic approach and derive
the achieved diversity order and outage gain [14]. Firstly, we
provide a closed-form series representation of the CDF, to
assist with the analysis. For the sake of convenience, we will
denote

S ≜ 1 +

N∑
n=2

ρ2n
1− ρ2n

. (8)

Proposition 1. A series representation of the CDF of the
estimated ĥ can be written as

Fĥ(x) =

∞∑
k=0

ck
Sk+1

γ (k + 1, Sx) , (9)

where

ck =
∑

l2,l3,...,lN≥0
l2+l3+···+lN=k

α2,l2α3,l3 · · ·αN,lN , (10)

and

αn,l =

(
ρ2n

1− ρ2n

)l γ
(
l + 1, x

1−ρ2
n

)
Γ(l + 1)2

. (11)

Proof. See Appendix A.

Obviously, for ρn = 0, ∀n, (9) reduces to the independent
case as

Fĥ(x) = γ (1, x)
N

= (1− exp(−x))N , (12)

by keeping only the k = 0 term of the series and since S = 1.
Now, the estimated signal-to-noise ratio (SNR) at the n-th port
is given by

η̂n =
P

ν2
ĥn, (13)

with average SNR η̄ = E[ηn] = P/ν2, where ν2 is the
variance of the additive white Gaussian noise (AWGN). Let
η̂ be the largest estimated SNR, i.e. η̂ = max{η̂1, . . . , η̂n}.
Then, the outage probability can be written as

Po(θ) = P{log2(1 + η̂) < θ} = Fĥ

(
1

η̄
(2θ − 1)

)
, (14)

where θ is a pre-defined rate threshold. Therefore, from
Proposition 1, one can easily obtain an asymptotic expression
for the outage probability.

Corollary 1. For high SNR values, the outage probability of
the estimated η̂ is approximated by

lim
η̄→∞

Po(θ) ≈
(
1

η̄
(2θ − 1)

)N
1∏N

n=2(1− ρ2n)
. (15)

Proof. See Appendix B.

Based on Corollary 1, the diversity order of the considered
FA system is Gd = N and the outage gain is equal to

Go =
(2θ − 1)N∏N
n=2(1− ρ2n)

. (16)

It is well-known that the diversity defines the slope of the
outage probability’s curve and the outage gain represents the
“distance” to the vertical axis [14], i.e., the smaller the value
Go, the better. From (16), we can observe that correlation
negatively effects the outage gain. As such, the minimum
outage gain is obtained by the independent case, that is, when
ρn = 0, ∀n.

B. Outdated Channels

In what follows, we turn our attention to the outdated
scenario. Thus, we will focus on the performance of h, given
by (5), conditioned on the outdated estimation ĥ. In this case,
the instantaneous outdated fading channels can be written as

g1 =
√
1− µ2

1q1 + µ1ĝ1, (17)

gn =
√
1− µ2

nqn + µnĝn, (18)

where ĝ1 = x̂1 + ȷŷ1 and ĝn =
√
1− ρ2n(x̂n + ȷŷn) + ρnĝ1

are the estimated channels with x̂n, ŷn ∼ N (0, σ2/2) and
qn ∼ CN (0, σ2) for n = 1, . . . , N ; as before, we assume
σ = 1. As such, the estimation error between ĥn and hn is
captured by the correlation parameter µn modeled by [13]

µn = J0(2πfTn), (19)

where f is the Doppler frequency and Tn is the delay between
the estimation and the activation of the n-th port. Obviously,
the delay Tn is proportional to the time it needs to estimate the
channel at a port [13], the size of the topology, the liquid’s
chemical properties but also the efficiency of the employed
pump mechanism [4], [5]. In this work, we will focus on the
first two even though the model could essentially capture all
deficiencies. Let τe be the duration for estimating the channel
at a port. Then, we assume that

Tn =

(
N − n+ 1

N

)
τeW. (20)

Now, let En denote the event that the n-th port has been
activated. Then, the CDF of the outdated channel h is given
by

Fh(x) =

N∑
n=1

∫ ∞

0

Fhn|ĥn
(x|ĥn)fĥn|En

(y|En)dy, (21)

where Fh|ĥ(·|ĥ) is the conditional CDF and fĥn|En
(·|En) is

the probability distribution function (PDF) of ĥ conditioned on
the n-th port being selected, given in the following proposition.

Proposition 2. The conditional PDF of the estimated ĥn is

fĥ1|E1
(x|E1) = exp(−x)

N∏
k=2

ϕk(x, x)dz, (22)



for n = 1, and

fĥn|En
(x|En) =

1

1− ρ2n

∫ x

0

exp

(
− x+ z

1− ρ2n

)
I0

(
2
√
xzρ2n

1− ρ2n

)

×
N∏

k=2
k ̸=n

ϕk(z, x)dz, (23)

for n = 2, 3, . . . , N .

Proof. See Appendix C.

The result in Proposition 2 quantifies the effect of each
port on the FA’s overall performance. Indeed, one can easily
evaluate the CDF of the estimated ĥ by taking the sum of the
conditional CDFs, that is,

Fĥ(x) =

N∑
n=1

Fĥn|En
(x|En), (24)

where Fĥn|En
(x|En) are given in Appendix C; so (24) corre-

sponds to Theorem 1, albeit in a more complex form. We can
now state the final result.

Theorem 2. The CDF of the outdated h can be written as

Fh(x) = 1−
N∑

n=1

∫ ∞

0

Q1

(√
2yµ2

n

1− µ2
n

,

√
2x

1− µ2
n

)
× fy|En

(y|En)dy, (25)

where fy|En
(y|En) is given by Proposition 2.

Proof. By substituting the expressions of Proposition 2 in (21)
and since hn | ĥn is a non-central chi-square random vari-
able with 2 degrees of freedom and non-centrality parameter
2ĥnµ

2
n/(1− µ2

n), the result follows.

Note that the above expression is valid for 0 ≤ µn < 1.
If for a specific n we have µn = 1 (no delays), then the
integral for the n-th term in (25) is reduced to (36) or (40),
accordingly. Obviously, if µn = 1, ∀n, the performance is
given by Theorem 1 (or by (24)). On the other hand, if
µn = 0, ∀n, i.e. when the estimates are completely outdated
(independent), Fh(x) gives the performance of a randomly
selected port, that is,

Fh(x) = 1− Γ(1, x) = 1− exp(−x), (26)

since Q1(0, z) = Γ(1, z2/2). We should also remark that
a closed-form series representation of Theorem 2 could be
derived by following the same methodology as in Proposition
1, but we omit it for the sake of brevity. Nevertheless, we
will provide a simplified asymptotic expression for high SNRs.
Let η denote the outdated SNR, so the outage probability is
Po(θ) = Fh

(
1
η̄ (2

θ − 1)
)
.

Corollary 2. For high SNR values, the outage probability for
the outdated η simplifies to

lim
η̄→∞

Po(θ) ≈
(2θ − 1)Γ(N)

η̄
∏N

n=2(1− ρ2n)

(
(1− µ2

1)
N−1

(µ2
1 + (1− µ2

1)S)
N
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Fig. 2: Outage probability versus SNR for W = 0.2.

+

N∑
n=2

(1− µ2
n)

N−1

(
1− ρ2n

1− µ2
nρ

2
n

)N
)
. (27)

Proof. See Appendix D.

As expected, when the channels are outdated, the system
is dispossessed of the channel diversity and the achieved
diversity is reduced to one. Attaining full channel diversity
would require µn → 1, which could be realized with extremely
small FAs, i.e. W → 0. Still, this may be impractical and so, in
most cases, post-scheduling error due to delays is an inherent
characteristic of FAs.

IV. NUMERICAL RESULTS

We now validate our theoretical analysis with computer
simulations. For the sake of presentation and, unless otherwise
stated, we consider the following parameters: θ = 2 bps,
f = 100 Hz, and τe = 1/(10f) s.

Fig. 2 illustrates the outage probability achieved by the
considered FA system in terms of the SNR for W = 0.2 and
N = 5, 30. The performance of both estimated and outdated
channels is depicted. It is obvious that at low SNR, both cases
achieve the same performance. However, as the SNR increases,
the performance of the outdated channels deteriorates. As
shown in Corollary 1, FA realizes full channel diversity gains
with the estimated channels, i.e., when there are no delays. On
the other hand, in the outdated scenario, the channel diversity
is lost and the achieved diversity becomes one. The change in
diversity is obvious from the asymptotic curves (η̄ → ∞) for
N = 5.

In Fig. 3, we look at the performance for a larger FA
(W = 0.8). Similar observations to Fig. 2 can be deduced.
However, the negative effect of delays is more severe in this
case, due to the FA’s larger size. Indeed, the performance gap
between the two scenarios exists even at low SNR. Moreover,
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Fig. 3: Outage probability versus SNR for W = 0.8.

the “shift” towards the y-axis (i.e. the outage gain), differs
due to the fact that it depends on the spatial correlation.
Specifically, for a small FA size (W = 0.2), the spatial
correlation is relatively larger, which in turn gives a larger
outage gain (as can be evaluated by (16)). Finally, in both
figures, our analytical expressions (lines) perfectly match the
simulation results (markers), which validates our theoretical
methodology.

V. CONCLUSIONS

In this paper, we focused on the outage probability and
diversity of FA systems subject to scheduling delays. Analyt-
ical expressions were provided for the performance with and
without post-scheduling errors. It was shown that despite FAs
achieving maximum channel diversity, equal to the number of
ports, this diversity is dispossessed due to scheduling delays.
Our result exhibit the potentials of FA in communication
systems but also their limitations. Future directions include
the consideration of prediction methods in order to avoid
scheduling delays but also other more intelligent port com-
bining techniques.

APPENDIX

A. Proof of Proposition 1

In order to simplify (6), we use the following series repre-
sentation of the Marcum-Q function

Q1(a, b) = 1− exp

(
−a2

2

) ∞∑
k=0

1

k!

γ(k + 1, b2/2)

Γ(k + 1)

(
a2

2

)k

.

(28)

Therefore, we can write

Fĥ(x) =

∫ x

0

exp(−z)

N∏
n=2

exp

(
− zρ2n
1− ρ2n

)

×
∞∑
k=0

1

k!

γ
(
k + 1, x

1−ρ2
n

)
Γ(k + 1)

(
zρ2n

1− ρ2n

)k

dz

=

∫ x

0

exp (−Sz)

N∏
n=2

∞∑
k=0

1

k!

γ
(
k + 1, x

1−ρ2
n

)
Γ(k + 1)

×
(

zρ2n
1− ρ2n

)k

dz, (29)

where S has been defined in (8). The above expression
involves the Cauchy product of N − 1 power series. Hence, it
follows that

Fĥ(x) =

∫ x

0

exp (−Sz)

∞∑
k=0

ckz
kdz

=

∞∑
k=0

ck

∫ x

0

exp (−Sz) zkdz, (30)

where the coefficients ck are given by (10). Finally, the
proposition is proven by using the transformation z → S/t

and the fact that
∫ b

0
exp(−t)ta−1dt = γ(a, b) [11].

B. Proof of Corollary 1

By using (9), we can write the outage probability, defined
in (14), as

Po(θ) =

∞∑
k=0

ck
Sk+1

γ

(
k + 1,

S

η̄
(2θ − 1)

)
. (31)

Thus, for η̄ → ∞,

lim
η̄→∞

Po(θ) →
∞∑
k=0

ck
(k + 1)Sk+1

(
S

η̄
(2θ − 1)

)k+1

, (32)

which follows from the fact that γ(a, b) → ba/a for x → 0.
In this case, the term k = 0 dominates and so

lim
η̄→∞

Po(θ) →
c0
η̄
(2θ − 1), (33)

with

c0 =

N∏
n=2

2θ − 1

η̄(1− ρ2n)
, (34)

and the result follows after several algebraic manipulations.

C. Proof of Proposition 2

We start by deriving the conditional CDF Fĥn|En
(x|En).

Therefore, the CDF given that the first port is selected is given
by

Fĥ1|E1
(x|E1) = P{h1 < x|h1 > max{h2, . . . , hN}}

= P{h1 < x|h1 > h2, . . . , h1 > hN}. (35)

By fixing h1, the events above are independent and so we can
write

Fĥ1|E1
(x|E1) = Eh1

{
N∏

n=2

P{hn < h1|h1}
∣∣∣∣h1 < x

}



= Eh1

{
N∏

n=2

ϕn(h1, h1)

∣∣∣∣h1 < x

}
,

=

∫ x

0

exp(−z)

N∏
k=2

ϕk(z, z)dz, (36)

which follows as h1 is a central chi-square random variable
with 2 degrees of freedom. Similarly, for the n-th port, 1 <
n ≤ N , we have

Fĥn|En
(x|En) = P{hn < x|hn > h1, . . . , hn > hn−1,

hn > hn+1, . . . , hn > hN}.
(37)

In this case, conditioning on both h1 and hn, we get

Fĥn|En
(x|En) = Eh1,hn


N∏

k=2
k ̸=n

ϕk(h1, hn)

∣∣∣∣∣ h1 < hn < x


=

∫ x

0

∫ y

0

fh1,hn
(z, y)

N∏
k=2
k ̸=n

ϕk(z, y)dzdy,

(38)

where fh1,hn
(·, ·) is the joint PDF of h1 and hn, which can

be obtained with Bayes’s rule as

fh1,hn
(z, y) = fhn|h1

(z|y)fh1
(y)

=
1

1− ρ2n
exp

(
− y + z

1− ρ2n

)
I0

(
2
√
yzρ2n

1− ρ2n

)
,

(39)

where fhn|h1
(z|y) is the conditional PDF of a non-central chi-

square random variable and fh1
(y) is the PDF of a central

chi-square random, both of 2 degrees of freedom. Then, we
can write

Fĥn|En
(x|En) =

1

1− ρ2n

∫ x

0

∫ y

0

exp

(
− y + z

1− ρ2n

)
× I0

(
2
√
yzρ2n

1− ρ2n

)
N∏

k=2
k ̸=n

ϕk(z, y)dzdy.

(40)

Finally, the proposition is proven by taking the derivative of
the CDFs with respect to x.

D. Proof of Corollary 2

To assist with the simplification of the outage probability,
we first apply the transformation y → t/η̄ to (25). In other
words, we obtain the CDF in terms of SNRs. Therefore, we
can simplify the PDF fĥn|En

(y|En), n ̸= 1 (Eq. (23)), as
follows

lim
η̄→∞

ft|En
(t|En)

(a)
≈ 1∏N

k=2(1− ρ2k)
exp

(
− t

η̄(1− ρ2n)

)
×
(
t

η̄

)N−2 ∫ t
η̄

0

exp(−Sz)dz

(b)
=

1∏N
k=2(1− ρ2k)

exp

(
− t

η̄(1− ρ2n)

)
×
(
t

η̄

)N−2
1

S
γ

(
1,

S

η̄
t

)
, (41)

where (a) follows by using (28) and keeping the sum’s first
term as well as from the fact I0(x) ≈ (x/2)2 for x ≈ 0;
(b) follows from

∫ b

0
exp(−t)ta−1dt = γ(a, b) [11]. Finally, as

γ(a, b) ≈ ba/a for x ≈ 0, we end up with

lim
η̄→∞

ft|En
(t|En) ≈

1∏N
k=2(1− ρ2k)

exp

(
− t

η̄(1− ρ2n)

)
×
(
t

η̄

)N−1

. (42)

The approximation for n = 1 (Eq. (22)) can be derived in
a similar manner. Then, by approximating the Marcum-Q
function in (25) as before and substituting the PDFs, the final
expression follows after several algebraic operations.
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