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Abstract

I present a mathematical framework to model echo chambers in social networks, and

steer their impact. Digital communication is ever so pervasive in our societies, as the

online and offline worlds become increasingly entangled. In online social platforms,

similar-minded users tend to gather, and form strongly opinionated communities.

These so-called echo chambers are particularly salient in polarised debates regarding

politics, societal issues or conspiracy theories, and tend to foster animosity between

opposite sides and fuel reinforcement of pre-existing beliefs. The political and

informational landscapes are significantly affected, turning the regulation of echo

chambers into a crucial matter of cybersecurity. This calls for a more informed

analysis and understanding of this phenomenon.

Whether an echo chamber is actually desirable or not is context-specific: my

framework is agnostic and able to accommodate both. In the last few years, echo

chambers have become a primary focus of research on opinion dynamics and in-

formation diffusion, with a plethora of models amenable to shed light on empirical

studies. There is however a lack of principled methods to efficiently steer the echo

chamber effect.

In this PhD thesis I develop two mathematical models to describe, quantify and

control the echo chamber effect: a macroscopic one based on group-level dynamics,

and a microscopic one incorporating user-level features. For each model, I present

algorithms which significantly impact the diversity of content users are exposed to,

while accounting for individual preferences to avoid backfire effects. The accuracy

of the models and the effectiveness of the recommendation algorithms are illustrated

through applications on real-world data. This PhD thesis contributes insights to the
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benefit of the growing debate on regulation of online social platforms.
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Chapter 1

Introduction

1.1 Motivation

The advent of Online Social Platforms (OSPs) in the last decade has irremediably

changed our societies by allowing us to communicate on an unprecedented scale.

This has not come without drawbacks, and concerns are rising about potentially

nefarious consequences (Haidt, 2022). Amidst the COVID-19 pandemic, online

misinformation related to the disease has spread like wildfire. It is a never-ending

stream of far-fetched theories, with millions of voices claiming that the virus is a

hoax, is transmitted by 5G towers or that Bill Gates created the vaccine to implant

chip in people’s bodies (Cuthbertson, 2020; OSoMe, 2020; Zarocostas, 2020). A

US engineer even purposely derailed a train over Coronavirus conspiracy theories

concerns (Spocchia, 2020). Although difficult to quantify exactly, the large spread of

such theories probably had a non-negligible impact on compliance with health safety

policies and thus with the virus diffusion. All of this is especially concerning when

we know that 68% of adults ever get news on Social Media and 42% take them for

largely accurate, at least in the US (Shearer and Matsa, 2018).

OSPs have also significantly impacted democratic processes around the world.

In the infamous Cambridge Analytica case, the Brexit and the Trump campaigning

teams used illegally harvested personal data in order to increase their vote share via

strategic targeting of potential “swing” voters (Kaiser, 2019). In the wake of the 2020

United States presidential elections, the 4chan born and bred QAnon conspiracy
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theory has gained such support in the United States (OSoMe, 2020; Sabin, 2020) that

Twitter, Facebook and Youtube ended up banning from the platform major groups of

users that were spreading it (Collins and Zadrozny, 2020a,b,c). After the results of

the election, online groups have been continuously relaying and amplifying claims

of election fraud (Beckett and Wong, 2020), to the point where the social platform

Parler is currently under investigation for hosting the organisation of the Capitol riot

on the 6th of January 2021 (The Guardian, 2021).

These phenomenons may have been facilitated by the so-called echo chambers,

that have sparked a growing interest in the scientific community. Echo chambers are

clusters of like-minded users, that foster a continuous reinforcement of prior beliefs

and strongly reject opposing ideas. In turn, their presence hinders democratic debate

and provides a fertile breeding ground for extremism and conspiracy theories. Oc-

currences of this phenomenon have been observed in online discussions surrounding

various political and controversial topics (Cinelli et al., 2021; Kirdemir and Agarwal,

2022; Williams et al., 2015), although the amount of users they impact and the extent

to which they do so is still up to debate (De Francisci Morales et al., 2021; Dubois

and Blank, 2018).

Multiple factors have been advanced as explanations for the existence of echo

chambers, such as homophily, confirmation bias, negativity or information overload

(Bronner, 2021; Chavalarias, 2022; Hills, 2019; McPherson et al., 2001a). These

natural biases are exacerbated by the personalisation algorithms used by the plat-

forms: to sort through the enormous mass of information constantly flowing online,

OSPs carefully filter, select and rank only the most relevant content to show to

their users, to maximise their engagement. These algorithms tend to hide under the

rug anything that supports different views, leading to the entrapment of users into

their own personalised filter bubble (Pariser, 2011), which perpetually echoes their

pre-established opinions.

While they were originally mostly free from legal constraints, the responsibility

of OSPs is being increasingly discussed. Governmental bodies have started to step

in, envisioning regulatory policies to thwart these nefarious phenomenons. The
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European Union has recently decided to take unprecedented action in this regard,

with the Digital Service Act (EU, 2022). Amongst other measures, this legislation

will force OSPs to make public their personalisation algorithms and allow users

to opt out of them. The United Kingdom is also discussing its own Online Safety

Bill (UK, 2023). Twitter has already made public their newsfeed algorithm, but it

is difficult to fully understand without access to the underlying data that it feeds

onto. Even more so, as they have recently restricted access to their API (Weatherbed,

2023).

Major platforms have started taking action against misinformation and the

communities that spread it (Bickert, 2020; Blake, 2021; Collins and Zadrozny,

2020a,b,c; Culliford and Paul, 2020). Although effective on the short term, these

efforts feel like cutting the head of a Hydra, which will eventually grow back as long

as the core body is alive. Indeed the ostracised users can always find new platforms

and online groups to welcome them, as we have seen with QAnon conspiracists

massively joining the platform Voat after Reddit banned many of their subreddits in

2018 (Monti et al., 2023; Papasavva et al., 2021). Debunking false information is

also rarely effective at best (Chan and Albarracı́n, 2023), and counter-productive at

worst (Betsch and Sachse, 2013; Zollo et al., 2017).

Despite the best efforts to improve, it seems like the very way OSPs are built,

coupled with human biases, will always entail these nefarious side effects (Bron-

ner, 2021; Chavalarias, 2022; Pariser, 2011; Thaler and Sunstein, 2009; Vosoughi

et al., 2018). To support better informed policies regarding the regulation of social

platforms, and to gain a deeper understanding of how we communicate as humans,

I argue that any long-term attempt to fight these phenomenons shall start with a

thorough study of the roots that anchor them into the ground. This is why I am

interested in how opinions evolve in social networks, as I now detail my objectives.

1.2 Research objectives

This PhD thesis is two-pronged: it connects fundamental research on opinion dynam-

ics, and the urgent need for an adequate regulation of OSPs. As I extend and improve
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pre-existing theoretical models of opinion dynamics, I contribute significantly to the

former. Moreover, I demonstrate the real-world applicability of my framework in

dealing with the phenomenon of echo chambers. Doing so, I lay fundamental stones

to the benefit of the latter, in establishing general leads towards a healthily regulated

online environment.

Objective 1. Describe through mathematical models the echo chamber effect

and the impact of recommender systems in OSPs. Our first objective is theoretical:

to propose novel models of opinion dynamics, particularly adapted to the description

and measurement of echo chambers. Recently empowered by the access to data

from OSPs—e.g. Peralta et al. (2022), research on opinion dynamics is concerned

with the study of mathematical frameworks to describe the evolution of opinions,

beliefs, views or political leanings in a population. It is particularly adapted to gain

a theoretical understanding of the aforementioned phenomenons that take place on

OSPs.

For the sake of simplicity, I wish to limit my parameter space to core, essential

mechanisms. Thus, my models shall account for peer influence, inner biases, and

the presence of personalisation algorithms. Thus, they will provide an accessible,

simplified way to evaluate their impact. Formal models are always an approximation

of reality, and they will never be perfectly accurate Fernandez-Gracia et al. (2014).

However, they can give us valuable insight on the mechanisms at play, and help us

build a more precise view of the highly complex world that surrounds us.

Objective 2. Develop efficient algorithmic methods to steer the echo chamber

effect via content recommendation. Second, and as an illustration of the effec-

tiveness of the models I developed to pursue the first objective, I want to propose

novel algorithms to find optimal content recommendation methods to steer the echo

chamber effect. I will solve optimisation problems to maximise the diversity of

content that users of an OSP are exposed to, hence opening up the bubbles of

congenial information. Importantly, I account for potential backfire effects, where ex-

posure to uncongenial information can have the adverse consequence of reinforcing

pre-existing beliefs.
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Our framework is agnostic and can accommodate different goals regarding the

control of echo chambers, and more broadly the control of opinion and information

diffusion online. How and why should the platforms be regulated is a complex issue

that I do not delve into in this manuscript. Neither is addressed the questions of

whether or not it is desirable that people have access to wide variety of opinions

and information. I merely provide tools that can be used for a wide variety of

goals pertaining to the control of opinion and information diffusion online. I neither

encourage nor discourage any specific goal that these tools may be wielded to achieve.

However, as a proof of concept, I demonstrate the ability of my methods to decrease

the echo chamber effect by increasing the diversity of opinions online users OSP

have access to.

1.3 Research contributions

Our contribution is multi-fold. It is mainly theoretical, and the models I develop

are useful in a variety of contexts. Their generalisability is the first and foremost

strength of my work. The application to the problem of steering the echo chamber

effect is thought as a study case to demonstrate the value of the methodology.

Contribution 1. Generalisation of the Voter Model with analysis of discord

probabilities. I propose the Enhanced Voter Model (EV Model), that generalises the

Voter Model for opinion dynamics to directed, weighted networks with exogenous

influence (zealots), any finite number of possible opinions, and individual update

rates. I demonstrate how to compute probabilities of discord between agents, and

extend the traditional definition of active links density to account for long-range,

weighted interactions. I explore the equilibrium states of the model on synthetic

networks divided into antagonistic communities, and uncover a rich landscape of

varied behaviours. The advantage of the EV Model is its generality, as it is not

limited to the analysis of OSP: uses of the model range from offline social networks

(Fernandez-Gracia et al., 2014) to particle interactions (Clifford and Sudbury, 1973;

Holley and Liggett, 1975).



1.3. Research contributions 21

Contribution 2. Extension of the Newsfeed Model to describe opinion flow. The

Newsfeed Model was recently introduced to describe the flow of content throughout

an OSP. I propose the Extended Newsfeed Model (EN Model) to incorporate the

notion of opinions in the Newsfeed Model. This lets me quantify how political views

spread throughout the network. Importantly, I am able to compute the distribution of

opinions that users are exposed to on the platforms. I show how the model can be

further improved by performing simulations with preferential reposting behaviour.

The EN Model is specifically designed to describe OSPs, and this specialisation is its

advantage: it allows for an easy modelling of real-life features of OSPs (newsfeeds,

walls, likes, mentions, etc.).

Contribution 3. Introduction of metrics to measure the echo chamber effect and

the diversity of content on OSPs. I propose to measure the echo chamber effect by

the proportion of congruent opinions that users of an OSP are exposed to. I develop

formulas to compute this proportion in the EV Model and the EN Model. I also

demonstrate formulas to calculate the diversity of opinions that users are exposed

to in the EV Model and the EN Model. The two metrics are closely related, and in

some cases equivalent. I calculate these values and analyse the results on synthetic

networks (EV Model) and a Twitter dataset (EN Model).

Contribution 4. Empirical evaluation of the models. I compare the theoretical

equilibrium states predicted by the EV Model and the EN Model to real-world data.

The effectiveness of the EV Model is evaluated through its ability to forecast the

outcome of democratic elections in the US and the UK. The effectiveness of the EN

Model is evaluated through its ability to predict the distribution of content that users

are exposed to, in a dataset from Twitter.

Contribution 5. Introduction of methods to compute optimal recommendation

rates to steer the echo chamber effect. I show how the EN Model and the EV

Model can be used to find optimal content recommendation rates, that maximise

the diversity of content that users are exposed to in an OSP. Doing so, I am able

to effectively steer the echo chamber effect. I adopt both a macroscopical and a

microscopical point of view, via respectively the EV Model and the EN Model.
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I account for possible backfire effects, as I assume that users are susceptible to

reinforce their pre-existing beliefs when exposed to incongruent opinions.

1.4 Thesis outline
Chapter 2 lays the foundations for my research. I define online social platforms,

and echo chambers within. I also introduce the basics of scientific research on

social networks, specifically graph theory and opinion dynamics. In Chapter 3 I

present recent advances on the theoretical and empirical empirical analyses of echo

chambers, the control of opinions in social networks, and the mitigation of opinion

polarisation and echo chamber effects. The method of my research is presented

in Chapter 4, where I introduce my models, highlight the dual macroscopical-

microscopical approach, and present the real-life datasets I use in my applications.

Chapter 5 and Chapter 6 are devoted to the mathematical analysis of the EV Model

and the EN Model, respectively. The methods for steering the echo chamber effect

and the obtained results are found in Chapter 7. Finally, a general discussion of

my results, as well as limitations and avenues for future research, are provided in

Chapter 8.

All programs were coded with Python. Tables of notations are available in

Appendix A.



Chapter 2

Background

In this chapter, I introduce the main objects of my study. I define the notions of

social networks and online social platforms. I briefly summarise the history of the

latter, as well as their main characteristics. I introduce the concept of echo chambers,

and the underlying mechanisms that are thought to foster the phenomenon. Finally,

I introduce the bases of the mathematical study of social networks and opinion

dynamics. Traditional models and fundamental results that stemmed the field are

presented.

2.1 Social networks and online social platforms

According to the Oxford English Dictionary1, a social network is either (i) a network

of social interactions and personal relationships, or (ii) a dedicated website or

other application which enables users to communicate with each other by posting

information, comments, messages, images, etc. While the first meaning dates back to

the origin of mankind, the second is way more recent. Both will be used throughout

this manuscript, and to avoid any confusion I reserve the term “social network” to

refer to the first one. The second will be designated by “Online Social Platform”,

or OSP for short. As an OSP often relies on an underlying social network, the two

terms can often become entangled.

1https://www.oed.com/

https://www.oed.com/
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2.1.1 History

The first mainstream OSP is commonly agreed to be Six Degrees, launched in

1997. The platform reached a few million users at its peak, but its popularity was

limited by the scarcity of internet access at the time (Ngak, 2011). The name of

the platform is a reference to a well-known, and somewhat surprising, fact about

social networks—I come back to it later. With the growing use of internet, multiple

different websites have waxed and waned over the years. Nowadays, there exists

a plethora of very popular OSPs with each their own particularities. Some focus

on short text communication (Twitter, Sina Weibo), others on pictures (Instagram,

Pinterest), others on video (TikTok, YouTube), etc. The most popular ones total

billions of monthly active users. The top spot is thrusted by Facebook, boasting

nearly 3 billion monthly active users in 20232.

2.1.2 Structure and functionalities

Most OSPs share a common basis of structural features and functionalities. The

fundamental utility of these platforms is to provide a way for people to exchange

online with others. Users are able to post content—e.g. messages, pictures, videos,

links to external websites—and engage with content posted by others: liking a post

to signal approval, reposting to spread the piece of content further, commenting to

discuss, express an emotion or opinion. To received updates about content posted

by another, one must follow them. Doing so, they become a follower of the other

user, who becomes their leader. The newsfeed (equivalently, timeline) of a user

contains content created or propagated by their leaders. There exists a variety of

policies about how a user is allowed to create a connection with another: Twitter

for example allows anyone to instantly connect with anyone else, while Facebook

requires mutual consent. As I will mostly work with data from Twitter (now X), I

will often refer to the action of creating a new post as tweeting, and the reaction of

reposting as retweeting.

A significant characteristics of OSPs is their ability to personalise the user

experience. Namely, the newsfeeds are usually not a simple chronological list of

2https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/

https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
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content. Rather, platforms have developed advanced personalisation algorithms to

propose the most relevant content possible to the users at any time. What items are

presented or hidden, in which order do they appear, in what form exactly: all of this

and many more details are carefully curated to ensure that users are most likely to

engage with the content they are presented with. In addition, the newsfeeds often

contain advertisement, and recommended content: items not necessarily created

by the leaders of the user, but that they may be interested in. Most platforms also

recommend users to one another (“You may know this person...”).

2.1.3 The phenomenon of echo chambers

There exists a concordance of social, psychological and algorithmic mechanisms that

has fostered the emergence of hermetic clusters of users in OSPs: the so-called echo

chambers. This phenomenon has attracted more and more attention in recent years.

An echo chamber is a segregated community of like-minded users, wherein

shared prior beliefs are continuously reinforced while opposite opinions are vigor-

ously rejected. Content spread within almost exclusively fits a single narrative, and

any opposing voice is promptly swept away. As members of such a group become

more and more entrenched in their beliefs, users of different mindsets slowly drift

further and further away from one another. This entails the polarisation of opinions,

and is especially concerning given that OSPs are becoming primary platforms for

political discussion. Despite a lack of consensus on a formal characterisation of echo

chambers, groups of users showing such behaviour have been repeatedly observed

in a variety of OSPs, covering a wide range of topics—see amongst others, Bakshy

et al. (2015); Grömping (2014); Hosseinmardi et al. (2020); Phadke et al. (2020);

Williams et al. (2015).

Phenomena underlying the formation of echo chambers are not precisely known,

and several mechanisms have been proposed as potential enablers throughout the

years. First and foremost, human beings have always had a tendency to homophily,

that is associating with others of similar views and beliefs (McPherson et al., 2001b).

It is thus natural that online, we prefer to communicate with like-minded others and

avoid those of different opinion. This effect is further reinforced by what Pariser
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(2011) coined as the filter bubble in his celebrated book. OSPs usually perform

algorithmic filtering in order to suggest the most bespoke content to its users and

hide what is less relevant. They offer to each of their members a personalised list

of curated content often in the form of their newsfeed. Because as humans we can

only spend a finite amount of time online, it seems natural to resort to automatic

methods that can quickly filter for us the gigantic amount of new information being

continuously produced. And because we are naturally more likely to click on

congenial content (Bakshy et al., 2015; Nikolov et al., 2015), it makes sense to filter

out cross-cutting posts. However by selecting content that fits our profile the best,

these recommendation algorithms tend to hide under the rug anything that support

different views, thus promoting confirmation bias (Lord et al., 1979). Hence they

have the adverse consequence of reinforcing prior beliefs and inhibit the evolution

of ideas (Dandekar et al., 2013; Spohr, 2017).

As put by Bogost (2021), there is no reason to believe that everyone should

have immediate and constant access to everyone else in the world at all times. The

possibility to reach anyone in the world, coupled with the immediate availability

of massive amount of information might have turned out to be a bane rather than a

boon (Bogost, 2021; Hills, 2019). Under the constant-raging storm of new content,

psychological factors affect our absorption of information in a subjectively biased

way, for example favouring more alarming and extreme news or skewing their

meaning to fit our pre-existing views (Bronner, 2021; Chavalarias, 2022; Liao and

Fu, 2013). The context surrounding a tweet as well as the intentions of its poster are

often unknown, while they are essential to fully grasp the meaning of the conveyed

message.

Propagation of information also tends to alter its meaning, often amplifying

perceived risk and negativity (Moussaı̈d et al., 2015). As radical rhetoric employed

by extremist parties often relies on threatening information to draw in more voters, it

was observed that extremism increases with online engagement (Bessi et al., 2016;

Hosseinmardi et al., 2020; Vaccari et al., 2016; Wojcieszak, 2010). Consequently,

the most active people online are often the most radical (Arugute et al., 2023; Weber
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et al., 2020), creating a vicious circle where a rise in radicalism in inherent from the

ever-growing use of OSPs. Extremist parties have indeed shown the biggest increase

in online activity in recent years (Hong, 2013; Hosseinmardi et al., 2020). They have

adopted the web as a platform of expression quicker than moderate people have, and

occupy a proportionally bigger share of online than offline space (Hong and Kim,

2016; Takikawa and Nagayoshi, 2017). Moreover, they also often act as breeding

pools for misinformation and conspiracist content, which tends to propagate more

easily and more widely than verified news (Osho et al., 2020; Zhang et al., 2020).

So how does this phenomenon persist? Because confirmation bias affects our

interpretation of content, neutral pieces of information are easily understood as a

support for pre-existing beliefs (Nickerson, 1998). A very telling example of this

was given by Lord et al. (1979), in an experiment where participants against or in

favour of death penalty became more convinced of their position after all reading

the same essay on the matter. The unilateral rejection of opposite views makes it

even harder to make people reevaluate their opinion. Even more so than rejection,

exposure to opposite views often entails the so-called backfire effect of reinforcing

the prior opinion (Betsch and Sachse, 2013; Nyhan and Reifler, 2010). Thorough

scrutiny should then be applied to content exposing polarised users to cross-cutting

views in order not to exacerbate the situation even further (Cook and Lewandowsky,

2012; Schaewitz and Krämer, 2020).

2.2 The mathematics of social networks
OSPs are closely related to social networks. The study of the latter has not waited for

the former to thrive, and I now present the basic mathematical framework scholars

rely upon: graph theory.

2.2.1 Basic definitions and properties

A convenient way of representing a social network is via a graph. Graphs have

been studied since the XVIIIth century and have a wide variety of applications,

from protein interactions to internet topology and routing systems (Barabasi, 2016;

Newman, 2010). A graph is a set of nodes linked to one another by the means of
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edges. A graph is said to be complete if each node is connected to all others. In our

context, the nodes are users and edges represent follower-leader relationships. I will

use without distinction the words node, user or agent, and edge, link, or connection.

A graph is said to be undirected if all of its edges are reciprocal, otherwise

it is called directed. If one wants to attribute different levels of importance to

different edges, it is convenient to assign a weight to each of them. In a network

of acquaintances for example, the edge between my best friend and I might carry

a heavier weight than the one linking me with a distant relative. The absence of

connection is signified by a weight of zero. Weights are usually positive real numbers,

but there is a whole theory dedicated to the study of signed graphs that incorporate

negative connections, usually to represent enmity—see the seminal papers of Harary

(1953); Heider (1946). For the purpose of my work I restrain myself to positive

weights, but negative ones can be a powerful tool for the study of social networks. In

the literature survey I mention promising research based on this notion.

Given a graph G, let N = {1, . . . ,N} denote the set of its nodes. N is the total

number of nodes. E will be the set of edges and E their number. The density of a

graph is the ratio of E over the total possible number of edges, which is N(N−1)/2

for undirected graphs and N(N−1) for directed ones. The structure of a graph is

encoded in an adjacency matrix that I denote by W . Its (i, j)th coordinate wi j is the

weight of the edge j→ i. The adjacency matrix of an undirected graph is symmetric.

In an unweighted graph, wi j is either 0 (absence of edge) or 1 (presence of an edge).

Let Li = { j ∈N : wi j > 0} denote the set of leader of user i. In an undirected

graph, leaders and followers of i are the same, and often referred to as neighbours

of i. The degree (resp. in-degree, out-degree) of a node is its number of neighbours

(resp. leaders, followers). The distribution of degrees in a graph gives important

insight on its topology.

2.2.2 Communities

A path from user j to user i is a succession of nodes where each one is a leader

of the next. Hence, it gives a way to reach i starting from j. If there exists a path

from j to i and one from i to k, then there is a path from j to k. In an undirected
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graph, if there is a path from j to i then there is a path from i to j. Thus, we can

group together nodes that are able to reach each other. Doing so, we obtain the

connected components of the graph. An undirected graph is said to be connected if

it has only one connected component, meaning every node can reach every other.

For directed graphs, a strongly connected component contains nodes that can reach

each other both ways, and a weakly connected component contains nodes that can

reach each other if we discard the directionality of links—i.e. considering the graph

as undirected.

The notion of community is central to the study of social networks. Although no

precise definition is universally admitted, it designates a group of users with many

connections amongst them, and fewer connections with the outside. A complete,

isolated component of a graph is a perfect community. In practice however, the

topology is rarely that extreme. There are many ways to quantify intermediate

levels of community structure, the most widely used being perhaps the notion of

modularity (Newman, 2006). Given knowledge of the graph topology and community

memberships, the modularity is calculated by comparing the number of edges within

communities, with their expected number were all edges of the graph rewired at

random. Formally, the modularity of an undirected, unweighted graph G with two

communities and adjacency matrix A is defined as follows.

Q =
1

4m ∑
i, j

Ai j−
did j

2m
εi j. (2.1)

Here, εi j = 1 if i and j are in the same community, and −1 otherwise. m is the

total number of edges in the graph, and di the degree of node i. Thus, the term

Ai j− did j/2m measures the difference between the effective presence of an edge,

and the probability of its existence were all edges rewired at random. When Q is

high, there are both (i) more edges within communities, and (ii) less edges between

communities, than expected by chance.

Another way of measuring community structure is the clustering coefficient.

It quantifies how much nodes in a network tend to form triangles, which is social

networks for example means that “the friend of my friend is my friend”. The local
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clustering coefficient at node i is defined by

Ci =
2ei

di(di−1)
, (2.2)

where ei is the number of edges that exist between neighbours of i. Hence, Ci

is the ratio of the number of edges between neighbours of i, and their maximum

possible number. If two of them j,k are also connected, the summand is 1 and

Ci increases. This means that the three nodes form a triangle. The average local

clustering coefficient is then computed as ∑iCi/N. There exists another definition of

the clustering coefficient at the global level, often referred to as transitivity ratio:

C =
∑i, j,k Ai jAikA jk

∑i di(di−1)
. (2.3)

In that case, C measures the proportion of triangles that exist in the graph. While

closely related, C and ∑iCi/N can give close but also widely different results de-

pending on the considered graph. I refer the interested reader to Schank and Wagner

(2005) for an in-depth analysis and comparison of the two definitions.

It has been found that the network of follow-leader connections is not necessarily

the best way to describe relationships in OSPs (Huberman et al., 2009; Leskovec and

Horvitz, 2008). Indeed users tend to follow a lot of people they never interact with,

and it might be more realistic to consider an interaction network, where relations are

based on actual communication. I call retweet network a graph where there is an

edge from j to i if i has reposted content from j, and follow network a graph where

there is an edge from j to i if i follows j. I will also evoke mention networks, with

an edge from j to i if i has mentioned j in a post—done via the @ symbol on Twitter

or Instagram, for example.

2.2.3 Graph models for social networks

Many types of graphs have interested researchers over the years. In the second half

of the XXth century, a particular one has started to spark interest in the scientific

community. Driven by the seminal and famous work of Erdös and Rényi (1959),

graphs with random topology have become ubiquitous. An undirected Erdös-Rényi
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(ER) random graph with N nodes is built as follows: given N isolated nodes and

a link probability p ∈ [0,1], connect each pair of nodes with probability p. The

graph is almost surely connected as soon as p > lnN/N. ER graphs also have the

advantage to exhibit the small-world property: the path between any two nodes is

rather short, mirroring empirical findings in social networks. This was observed as

soon as in 1967 in a real-life experiment conducted by Stanley Milgram (Milgram,

1967). He observed that the median number of hops needed to go from any American

person to any other is six, which was lower than expected. This property has been

frequently verified in OSPs (Kurka et al., 2016).

Another typical property of social networks is clustering: the friend of my

friend is likely to be my friend (Kurka et al., 2016; Mislove et al., 2007). The

Watts-Strogatz (WS) model considers a ring of nodes, each connected to its k nearest

neighbours. Then each link is rewired randomly with probability p. For p = 1, we

recover the ER graph. For low p, this process generates graphs with high a number

of triangles, meaning that two friends of a same third person are often connected

with each other.

The ER and WS model generate graphs with binomial degree distributions,

which for social networks does not corresponds to empirical observations. Rather,

we often observe a power-law distribution: the probability of having degree k is

proportional to k−α with α > 1, meaning that most nodes have a small number

connections, and a select few have them in large numbers (Huberman et al., 2009;

Mislove et al., 2007). Those are celebrities, political figures, media outlets... This

scale-free property is reproduced by the Barabasi-Albert (BA) model: starting with a

small number of connected nodes, add new nodes one at the time. Each new node

connects to a fixed number m of others, the probability of connection to i being

proportional to the degree of i. This “rich-get-richer” process accentuates inequalities

in degrees, resulting in the aforementioned power-law distribution.

None of the ER, WS or BA graphs exhibit significant community structure.

A remedy is to use the Stochastic Block Model (SBM): attribute a community

membership to each node, and chose a connection probability pab for any two
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communities a,b (not necessarily distinct). Then, draw an edge between any two

nodes from communities (a,b) with probability pab. By tuning the probabilities, we

can obtain more or less significant community structures. However, this also creates

networks with binomial degree distributions. Extensions that generate power-law

distributed SBM graphs have been studied (Karrer and Newman, 2011; Qiao et al.,

2019).

2.3 Opinion dynamics

The graph theory laid above is a simple yet powerful tool to describe the structure of

social networks. I have, however, not said anything about the dynamics of interactions

between users. Throughout the years, many models have been built to try and explain

the dynamics of opinions on social networks. Perhaps the earliest well-known works

in this area are from French (1956) and DeGroot (1974), who studied how a society

of individuals may or may not come to agreement on some given topic. Assuming

people repeatedly update their belief by taking weighted averages of those of their

acquaintances, they showed that if the society is not divided in isolated components,

consensus is reached. That is, everyone will eventually agree—provided the process

runs for a sufficiently long time. This is a fundamental concept in the study of

opinion dynamics, although consensus may not happen that often in practice. We

shall see that others have built on the works of French (1956) and DeGroot (1974) to

study the fragmentation, divergence, and polarisation of opinions.

2.3.1 General concepts

Most models of opinion dynamics share a common basis of features and principles.

Consider a social network of N agents, each with opinions x1, . . . ,xN in some opinion

space S . For a binary divide between two stances on a topic, e.g. Labour versus Con-

servative, take S = {0,1} or {−1,+1}. For a continuous, more nuanced spectrum

of leanings, it is often S = [0,1] or [−1,+1]. Opinions may also be vectors, either

to represent multi-dimensional opinions, or to describe a probability distribution

over multiple possible views on a single subject. The state of the system at time t is
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described by

x(t) = (x1(t), . . . ,xN(t)) ∈ SN . (2.4)

Unless stated otherwise, I assume edge weights to be normalised, so that ∑ j∈N wi j =

1 for all i ∈ N . The matrix W is then said to be row-stochastic. I will denote the

N×N identity matrix, with ones on the diagonal and zeros everywhere else. I assume

the user graph to be static, but we shall see that some works incorporate dynamical

changes of connections.

Opinions are bound to evolve due to multiple factors. Most models choose an

update rule, through which agents repeatedly re-evaluate their opinions. Updates

may be continuous or discrete in time, and synchronous (everyone re-evaluates

their beliefs simultaneously) or asynchronous. Almost all of the models have in

common one feature as part of their update rule: influence of peers. If most of

my acquaintances hold a certain opinion, it is more likely that I adopt it as well.

Other features influencing opinions have been studied over the years, such as inner

biases, exogenous influences, or external shocks—i.e. real-world events that may

dramatically affect the opinion landscape. Remark that recommender systems present

in OSPs can be seen as a form of exogenous influence. This is a point of view I will

adopt in my methodology.

Zealots An important concept here is that of zealots. I call zealot, any one-sided

source of influence. This includes inner biases, some external sources of influence,

and stubborn agents who never change opinion—that may be politicians, lobbyists,

or journalists. These are widely different concepts, however for modeling purposes

they are described the same way. Indeed, zealots impact the system without being

impacted by it: their influence is exogenous to the system. Masuda (2015) and

Moreno et al. (2021) think of zealots as pinning controllers, tunable quantities

through which some objective function (in their case, the average opinion of agents)

can be optimised. The notion of zealots is thus amenable to model many different

phenomenons. I call s-zealot a zealot defending opinion s ∈ S . If a user is subject to

an inner bias towards opinion s, I say that i is influenced by the s-zealot.

The study of opinion dynamics is mainly concerned with the long-term proper-



2.3. Opinion dynamics 34

ties of the system. Whether or not the system eventually reaches an equilibrium, or

steady state, is a central question. I say that the system is in equilibrium after t > 0

if the distribution of x(t ′) is the same for all t ′ > t.

2.3.2 The French-DeGroot model

The seminal works of French (1956) and DeGroot (1974) (FD) make no hypothesis

about S other than being a vector space. For DeGroot (1974), xi is a distribution

over all possible value of some unobserved parameter θ . The process described in

Equation 2.5 corresponds to users pooling their knowledge to try and discover the

true value of θ . Incidentally, this idea is at the root of social learning models—see

Section 2.3.5. Opinions are repeatedly updated via

x(t +1) =Wx(t). (2.5)

This is often referred to as linear consensus dynamics. According to Eq. 2.5,

each user changes their opinion by taking a weighted average of others’ opinions—

possibly including their own. The value wi j quantifies the influence of user j on

user i. If wi j = 0 then i does not take j’s opinion into account, if wi j = 1 then j’s

opinion is the only that matters to i. Diagonal entries measure the self-confidence of

the users. The larger wii, the lower wi j for j ̸= i and thus the lower influence from

others on i. If wii = 1 then i puts no weight on others’ beliefs and will always keep

the same opinion.

We have the following fundamental convergence result.

Theorem 1 (DeGroot, 1974). The dynamics described by Eq. 2.5 are those of a

Markov chain with transition matrix W T . Thus, the system converges if and only if 1

is a right eigenvalue of W. Any eigenvector of W corresponding to eigenvalue 1 is

then an equilibrium solution. There is a unique solution if and only if W is aperiodic.

Consensus is reached if and only if there exists a user who can reach every other.

Confer Section 4.3.1 in the appendix for a brief introduction to Markov chains.

The requirement of a “super-user” who can reach every other as a necessary condition

for consensus is recurrent in opinion dynamics. This is the case in particular when



2.3. Opinion dynamics 35

de network is connected, i.e. each agent can reach every other. If the condition of

aperiodicity is violated, we find ourselves in a situation where individual opinions

are cyclically repeated but never settle to a particular value. For example, consider a

directed graph connecting two users {1,2} with initial opinions x(0) = (x1,x2) and

connected by edges with weights w1,2 = w2,1 = 1,w1,1 = w2,2 = 0. In this setting,

users 1 and 2 simply switch opinions at each step, so that x(t) indefinitely oscillates

between (x1,x2) and (x2,x1).

An example realisation leading to consensus is shown in Figure 2.1. I generated

an ER network (cf. Section 2.2.3) with N = 1,000 agents and edge probability

p = 0.008. Because lnN/N ≃ 0.007, the generated ER network is connected with

probability one. I simulated the DeGroot dynamics, starting from random uniform

values in [0,1]. We observe convergence to a consensus, which is explained by the

fact that the network is connected.

In the case where there is convergence but no consensus, there exists pairs of

users whose opinions are completely independent. Consensus might be reached

in each of the strongly connected components of the graph taken individually, but

nothing guarantees that limiting opinions will be the same across all of them.

2.3.3 The Friedkin-Johnsen model

In their seminal paper, Friedkin and Johnsen (1990) (FJ) extend the FD paradigm to

introduce inner biases. Let y be a vector of size N that lies in the same space as x

and whose i-th entry quantifies the inner bias of user i. Let β ∈ [0,1] be a tunable

parameter. Opinions are updated via

x(t +1) = βWx(t)+(1−β )y. (2.6)

Hence β quantifies the susceptibility of users, that is the relative importance of

opinion pooling in the presence of innate preferences. If β = 1 then those are

unaccounted for and Equation 2.6 reduces to the FD update (2.5). If β = 0 on the

other hand, everyone is stubborn and opinions are set in stone, with values y.

We have the following fundamental convergence result.
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Figure 2.1: Example realisation of the FD model with convergence to consensus. Each line
represents the evolution of the opinion of a single user. The social network was
generated under the Erdös-Rényi model with N = 1,000 nodes and connection
probability p = 0.008. The opinion space is S = [0,1]. Initial opinions were
drawn uniformly at random in S.

Theorem 2 (Friedkin and Johnsen, 1990). If β is not an eigenvalue of W then the

dynamics described by Eq. 2.6 converge and we have

x(t)−→
t→∞

(1−β )(I−βW )−1y. (2.7)

Thus, each user ends up settling on one constant opinion, but there is not

necessarily consensus as this limiting opinion can vary from one user to another.

It is calculated as an average of everyone’s inner biases, weighted by the matrix

(1−β )(I−βW )−1. The condition on β assures that (I−βW ) is invertible. Note

that it is not a necessary condition, as in the FD model β = 1 is an eigenvalue of W .

Everyone might not necessarily attach the same importance to their innate

preferences versus pooling the group’s opinions. Parsegov et al. (2017) generalise

the FJ model by replacing β with a N×N diagonal matrix B with all entries smaller

than 1. The update equation is then given by

x(t +1) = BWx(t)+(I−B)y. (2.8)
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Thus user i puts weight Bi jwi j on the opinion of user j and 1−Bii on their innate

preferences. The authors prove the following convergence result.

Theorem 3 (Parsegov et al., 2017). If W is irreducible and B ̸= I then the model is

convergent and we have

x(t)−→
t→∞

(I−BW )−1(I−B)y. (2.9)

The hypothesis on B guarantees the invertibility of (I−BW ). Once again, note that

this theorem gives a sufficient condition for convergence that is not necessary—in

the FD paradigm B = I and yet opinions converge in irreducible, aperiodic settings.

The more general following theorem provides a sufficient and necessary condition

for convergence that accounts for such cases.

Theorem 4 (Parsegov et al., 2017). The model is convergent if and only if

U⋆ := lim
k→∞

(BW )k (2.10)

exists, and in that case we have

x(t)−→
t→∞

U⋆y+
∞

∑
k=0

(BW )k(I−B)y. (2.11)

2.3.4 Bounded confidence

Early works on opinion dynamics were particularly concerned with the question

of consensus, i.e. whether or not the population would eventually agree. With the

advent of opinion polarisation and the emergence of echo chambers online, the

focus of research has shifted towards models able to explain these phenomena rather

than produce the rarely-observed consensus. Perhaps an important milestone in

this direction is the apparition of the so-called “bounded confidence” models, that

incorporate homophily in their dynamics. The fundamental idea is that users only

interact with others holding opinions close enough to theirs.

In their seminal paper, Deffuant et al. (2000) propose the following process: at

each time step, two agents are selected uniformly at random. If they are too far apart
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ideologically, constructed debate cannot take place and their opinions stay the same.

But if they are sufficiently like-minded, they influence each other so that the gap

between their opinions tightens. Formally, say agents i and j are randomly selected

at time t +1. Then if |xi(t)− x j(t)|< ε , their opinions are updated via

xi(t +1) = xi(t)+µ(x j(t)− xi(t))

x j(t +1) = x j(t)+µ(xi(t)− x j(t)).
(2.12)

If |xi(t)− x j(t)| ≥ ε however, nothing happens. The model parameters ε and µ

respectively quantify the strength of the homophily effect and the susceptibility of

agents to other’s opinions. In the case µ = 1/2, both new opinions are the same and

lie in the exact middle of the two previous open.

The model is analytically intractable in most cases. Numerical simulations

reveal the possibility of both consensus and clustering of opinions depending on the

parameters. It is believed that 1/2ε is a good approximation for the limiting number

of clusters, so that consensus is reached when ε > εc = 1/2 (Castellano et al., 2009).

Hegselmann and Krause (2002) incorporate ideas from both the Deffuant and

the FD model. At each time step, every agent updates their opinions to the average

amongst all their like-minded neighbours:

xi(t +1) =
∑ j,|xi(t)−x j(t)|<ε wi jx j(t)

∑ j,|xi(t)−x j(t)|<ε wi j
(2.13)

where wi j is the weight of edge j→ i. Here the long-term behaviour depends not

only on ε but also on the average degree of the underlying graph model. If the

average degree is constant in the limit N→ ∞ (e.g. Erdös-Rényi random graph) then

the threshold for the emergence of clusters is εc = 1/2; otherwise if the average

degree diverges as N → ∞ (e.g. complete graph) then εc ≈ 0.2 (Castellano et al.,

2009).

These works were perhaps inspired by the celebrated paper of Axelrod (1997),

who studies a multi-dimensional, discretised counterpart of Deffuant et al. (2000).

Users hold opinions on F different features, with q possible traits, or values, for
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each. Think of the features as different society issues—e.g. immigration, climate

change—and the opinions as the various positions one may hold on each issue—e.g.

pro or against, sceptic or not. At each time step, a user i and one of its leaders j are

selected at random. With probability proportional to the number of features on which

they agree, i adopts the opinion of j on a random feature on which they disagree.

Depending on q and F , the system may either end up in consensus or in a

configuration where different stable clusters coexist, within each all users share the

same trait on every feature. Most of the literature devoted to the model studied it

on regular lattices. Castellano et al. (2000) found that the system exhibits a phase

transition at F = 2, so that:

• the relative size of the largest cluster depends only on q for F = 2, but also on

the size of the lattice for F > 2;

• the distribution of the size of clusters follows a power-law with exponent≈ 1.6

for F = 2, and a power-law with exponent ≈ 2.6 for any F > 2.

The relative size of the largest cluster goes to one as q goes to zero, meaning

the smaller the number of traits, the closer to consensus the system gets. For

(F,q) = (15,10) for example, consensus is reached (Axelrod, 1997).

2.3.5 Social learning

Models of social learning introduce the idea of rationality in the behaviour of agents

by proposing Bayesian updates of opinions (Acemoglu et al., 2011; Banerjee and

Fudenberg, 2004; Bikhchandani et al., 1992). Consider a group of agents trying to

guess the true value θ ⋆ of some underlying state of the world θ . For example, they

might be trying to decide if vaccination is safe or not. We assume they proceed one

at a time, each making a single guess. To inform their decision, they are aware of

previous guesses made by their peers, and in addition they receive an independent

private signal from the external world. These signals may represent any outside

information independent of the social network, such as newspaper articles. Their

distribution is conditioned by θ and known to the users. Agents then form their
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guesses via Bayesian inference based on this signal and previous guesses made by

others.

In term, the population may or may not correctly learn the true value of θ . The

interested reader may refer to Acemoglu et al. (2011) for a very complete description

and analysis of such a model. I mention the following convergence result.

Theorem 5 (Acemoglu et al., 2011). Consider an infinite network of agents. Under

mild conditions on the distribution of signals, guesses almost surely converge to θ ⋆

when
⋃

i∈NLi is of infinite size.

The condition on the union of leaders sets prevents the presence of a finite set of

agents upon whom everyone else relies to make their guess. Such agents can easily

hinder convergence to the truth when promoting a wrong value of θ .

An interesting variant on this idea is from Jadbabaie (2012): agents repeatedly

receive independent signals, and update their beliefs by combining a Bayesian update

based on the latest signal, with a FD-style pooling of their leaders’ beliefs. Instead of

taking once-in-a-lifetime guesses, all users shape their beliefs over time. The belief

of agent i at time t is described by a private probability distribution µi,t . At each

time step, every agent i receives a new, independent private signal si,t+1. That signal

is generated by a time-independent, conditional distribution ℓi(·|θ) known by user

i—and only them. Beliefs are then updated via

µi,t+1 = wiiBU(µi,t |si,t+1)+ ∑
j∈vi

wi jµ j,t . (2.14)

Here again, wi j quantifies the influence of agent j on agent i. Hence the second

term is a weighted average of neighbours’ beliefs, reminiscent of the FD and FJ

paradigms. BU(µi,t |si,t+1) is a Bayesian update based on the observed signal si,t+1

at time t +1. Formally:

BU(µi,t |si,t+1) =
ℓi(si,t+1|θ)µi,t(θ)∫

θ∈Θ
ℓi(si,t+1|θ)dµi,t(θ)

. (2.15)

The following convergence result holds.
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Theorem 6 (Jadbabaie, 2012). Assume that

1. the network is strongly-connected,

2. aii > 0 for all i,

3. there exists i such that µi,0(θ
⋆)> 0,

4. there is no θ̃ ∈Θ such that ℓi(·|θ̃) = ℓi(·|θ ⋆) for all i.

Then all agents eventually learn the truth, i.e. almost surely µi,t(θ
⋆)−→

t→∞
1 for all i.

With assumption 3. we require that at least one user initially assigns a positive

probability to the true state: the population cannot get convinced of something that is

initially deemed rigorously impossible by everyone. If assumption 4. does not hold,

then signals cannot help distinguish between states θ̃ and θ ⋆. Users might then be

lead to wrong conclusions without any way of knowing it.

2.3.6 The Voter Model

I am particularly interested in the Voter Model (VM), introduced by Clifford and

Sudbury (1973) and Holley and Liggett (1975) in the context of particles interaction.

It is one of the most widely studied models of binary opinion dynamics. Consider

a network with users holding opinions in {0,1}. Given an initial distribution of

states, each agent is endowed with an independent exponential clock of parameter

1: whenever it rings, the user selects a leader uniformly at random and adopts their

opinion. Equivalently, at the times of a Poisson process of parameter N, an agent

is drawn uniformly at random and samples a new opinion under the distribution of

their leaders’. We have the following consensus result.

Theorem 7. Consensus is reached if there is a user who can reach everyone else.

The interested reader may refer to Yildiz et al. (2010, Theorem 2.2) for a proof

using Markov Chain modelling. The intuitive idea is that no matter the current

number of 0 and 1 nodes, there exists a succession of individual state changes with

strictly positive probability that results in everyone holding the same opinion. I refer

the interested reader to the study of Vazquez and Eguı́luz (2008) for a very complete
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description of the model on uncorrelated networks. Many variants of the model have

been proposed over the years—see the review from Redner (2019).

A particularly interesting one is the addition of zealots into the graph, which

finds its source in a celebrated work from (Mobilia, 2003). In this study, zealots

are stubborn agents who never change opinion. If zealots all defend the same

opinion, then everyone will eventually adopt it. In the presence of zealots with

different opinions however, consensus is usually not reachable (Mobilia, 2003; Sood

et al., 2008). Instead, opinions converge to a steady-state in which they fluctuate

indefinitely (Mobilia et al., 2007; Yildiz et al., 2013). This is illustrated in Figure 2.2.

2.3.6.1 Voter model on general networks

Most works on the VM only analysed certain chosen topologies (complete graph, ER

graph, BA graph...), and few have proven results valid for any network. The works

of Yildiz et al. (2013) and Masuda (2015) are important milestones in this regard, as

they provide a way to calculate individual opinion distributions at equilibrium on any

weighted, directed network with stubborn agents. Yildiz et al. (2013) proved that the

probability of i holding opinion 0 at equilibrium was equal to the probability that a

backward random walk starting in i reaches a stubborn agent supporting opinion 0

before one supporting opinion 1. They did not give an exact formula for this value,

but it was later proven by Masuda (2015) that this is expressed by

xi =
∑ j∈N wi jx j + z(0)i

∑ j∈N wi j + z(0)i + z(1)i

. (2.16)

Here, xi is the probability for user i to have opinion 0 and z(s)i is the influence of the

s-zealot on user i.

2.3.6.2 Active links density

To study the evolution of a system under voting dynamics, researchers have mostly

used the magnetisation, that is the average opinion of the population at equilibrium.

Another quantity has attracted attention in the last few years, the active links density.

A link is said to be active if the two nodes it joins have different opinions. Links
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may switch between active and inactive over time, and a recurrent question is to find

the average proportion of such links in the network (Avena et al., 2022; Caridi et al.,

2019; Suchecki et al., 2005; Vazquez and Eguı́luz, 2008). Usually, this proportion

decreases exponentially with time, until it reaches zero in a state of consensus.

Ramirez et al. (2022) initiated the study of active links density in the VM with

zealots, through simulations, for complete and Erdös-Rényi networks.

In Chapter 5, I demonstrate a general formula to compute the probability to

find two nodes holding different opinions for any directed, weighted network, with

zealots, any (finite) number of possible opinions, and different update rates across

agents. This probabilities can then be used to calculate the generalised active links

density, which I introduce to extend the active links density to account for long-range,

weighted interactions.

t=0 t=5 t=10 t=15

0-zealot

opinion-0

opinion-1

t=0 t=5 t=10 t=12

0-zealot

1-zealot

opinion-0

opinion-1

Figure 2.2: Example realisation of the Voter Model on a complete graph at different times
with N = 50 nodes. Left: zealots only defend opinion 0, and everyone eventually
adopts opinion 0. Right: with zealots in both sides, the system reaches a state
of equilibrium where no opinion takes over.

2.3.7 Simple and complex contagion

In the Voter Model, agents change their opinions through a single contact with a

neighbour of them. This is also the case in the Deffuant Model for example. These

two models fall into a broader category: Simple Contagion models (Pastor-Satorras
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et al., 2015). These are mostly used in epidemic spreading, but can also be applied

to describe opinion dynamics and information diffusion. To model the diffusion

of social behaviours in general however, models of Complex Contagion are often

preferred: they assume that multiple exposures are required for an individual to

become infected or to adopt a certain opinion (Centola, 2018). They were originally

introduced by Granovetter (1978) via the threshold model, in which individuals

change their opinion or behaviour when a high enough number of acquaintances of

them have done so.

It is generally agreed upon that Complex Contagion models are more effective to

describe the diffusion of social behaviour or opinions (Cencetti et al., 2023; Lerman,

2016; Mønsted et al., 2017; Notarmuzi et al., 2022; Sprague and House, 2017).

However, these models rely on nonlinear dynamics, which makes their theoretical

analysis difficult. I choose to mostly focus on Simple Contagion models in this

thesis. First, to take greatest advantage of my background in the analytical study

of mathematical models. Second, and most importantly, this allows me to propose

efficient optimisation methods for the steering of the echo chamber effect. Having

access to analytical formulas lets me wield optimisation algorithms to obtain quickly

exact solutions for a wide range of model parameters. Without such formulas, I

would have had to rely on heuristics such as greedy optimisation, which are not only

much slower but also much less likely to find global optimums.

The trade-off between analytical tractability of Simple Contagion and accuracy

of Complex Contagion is well illustrated by the Extended Newsfeed Model, that I

also study in this thesis. The basic model corresponds to a Simple Contagion process,

and I find a good correspondence between the opinion distributions predicted by

the (tractable) model equations, and observations in a real-life OSP. I then propose

a preferential reposting mechanism that introduces nonlinearities in the models

equations, and corresponds to a Complex Contagion process. As expected, it exhibit

a better fit with the data but can only be studied in simulations. Additionally, I find

that optimisation results obtained for the base model can still be applied and perform

well in the nonlinear version with preferential reposting. This is a good illustration
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of the advantages and drawbacks of both categories of models.



Chapter 3

Literature Review

3.1 Empirical studies of echo chambers

The exact nature of echo chambers, and the extent to which they foster opinion

polarisation, have attracted a lot of attention from the scientific community. Perhaps

the earliest well-known work in that area is that of Adamic and Glance (2005), who

found out that US political blogs mostly referred to others of similar leaning during

the presidential election of 2004. A similar observation was made by Conover et al.

(2011), who found that the retweet patterns within the US Twittersphere shows

very high levels of political homophily. That is, users retweet others with similar

political views way more often than opposite-minded ones. This result has been

replicated multiple times since then in various contexts of North American politics,

highlighting the Democrat-Republican divide (Barberá, 2015; Barberá et al., 2015;

Garimella et al., 2017a; Garimella and Weber, 2017; Halberstam and Knight, 2016;

Himelboim et al., 2013; Liu and Weber, 2014). For example Barberá et al. (2015)

observed cross-cutting retweet rates two to five times lower than in-group ones, and

during the election of House representatives in 2012, more than 90% of retweets of

candidates’ tweets were emitted by users of corresponding leaning (Halberstam and

Knight, 2016).

Homophily is however not limited to retweeting behaviour nor to the United

States, and has also been observed in the retweet and follow patterns of various

other platforms and countries (Bakshy et al., 2015; Bright, 2018; Cinelli et al., 2020;
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Cota et al., 2019; Garimella and Weber, 2017; Gruzd and Roy, 2014; Grömping,

2014; Halberstam and Knight, 2016; Himelboim et al., 2013; Hosseinmardi et al.,

2020). In the Facebook friendship network studied by Bakshy et al. (2015), cross-

cutting friendships only accounted for 20% of all connections. Bright (2018) did a

transnational study covering all major European political parties, showing homophily

even across borders when looking at the retweeting behaviour of partisans. Global

controversial topics such as climate change and conspiracy theories have also been

found to exhibit homophily across borders, in both their retweet and follow patterns

(Bessi et al., 2016; Del Vicario et al., 2016; Weber et al., 2020; Williams et al.,

2015). Halberstam and Knight (2016) also explored the relation between group size

and homophily. They found that homophily increases with group size, and so does

exposure to congenial content. Finally, the production and consumption behaviours

often show homophilic patterns, in that most users create content aligned with what

they consume (Garimella et al., 2018; Himelboim et al., 2013).

Echo chambers are characterised not only by a concentration of like-minded

users, but also by a rejection of opposite ideas. On Twitter, this second feature

is best expressed in the mention network. Halberstam and Knight (2016); Liu

and Weber (2014); Williams et al. (2015) highlighted the existence of a “fighting

bridge” between different communities, as a significant part of cross-cutting mentions

were found to be aggressive and insulting messages. In the contexts of both North

American politics and the Israel-Palestine debate, Liu and Weber (2014) found that

more than 40% of cross-cutting mentions disagreements, and between a third and

a half of the others were insults. The effect was most pronounced in the work of

Williams et al. (2015), who studied the debate surrounding climate change. Almost

100% of cross-cutting mentions carried a negative sentiment, while this number

ranges between 20 and 35% for in-group mentions. Negative relations might be

more prevalent than we believe for a lot of users, especially journalists (Tacchi et al.,

2022).

Because information spreads further amongst like-minded users (Del Vicario

et al., 2016), the homophilic nature of the Twitter network favourises partisan content
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when it comes to virality (Xia et al., 2020). This echoes the findings of Garimella

et al. (2018), where the authors make an interesting distinction between different

types of users. Partisans are the most polarised, well-embedded into their community,

producing and consuming content aligned with their ideology. Gatekeepers only

produce one-sided content but might consume from both groups. Bi-partisans, akin

to what are often referred to as “moderate” users or “centrists”, may produce and

consume content from both sides: they are not “trapped” in an echo chamber. A

major result from this work is that partisans benefit from the highest social reward,

as they are significantly more popular, central, and embedded in their community

than others, especially bi-partisans. Thus it seems like the “purest” users are the

most popular and influential within their sphere, encouraging further the creation

and diffusion of partisan content. Using bots to probe the US political Twittersphere,

Chen et al. (2021) established further evidence of this phenomenon and found that

partisan accounts received more followers than others.

Social reward mechanisms might also incentivise users to join conspiracy com-

munities. In a study of Reddit, Phadke et al. (2020) found that people joining

conspiracy communities were beforehand ostracized by mainstream users and com-

munities. They often had low “karma”, the platform’s public measurement of one’s

popularity based on appreciation shown by others on your posts and comments.

Rejected by the majority of the platform,1 they are lured in conspiracy communities

by their users and once in, they have most of their contact with other members of

these groups.

Interestingly, this goes hand in hand with the idea that online activity and

polarisation are positively correlated. There is strong evidence that more a user is

active on an OSP, the more polarised they get and vice-versa (Bessi et al., 2016;

Hosseinmardi et al., 2020; Vaccari et al., 2016; Weber et al., 2020; Wojcieszak, 2010).

When posting and sharing more and more polarised content keeps increases your

popularity more and more, there is no incentive to stop doing so. The very existence

of feedback from your peers precludes any willingness for concessions with regards

1Reddit has been found to harbour mostly left-leaning and non-conspiracist users (Cinelli et al.,
2020).
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to diverging beliefs, unveiling a vicious circle of polarisation reinforcement and

increase in activity. The more polarised a user is, the less they will interact with

different-minded others, even on their political side — Bright (2018) found that

moderate users were more likely to interact with other moderates across the left-right

divide than with extremists on their side. This finding is supported by Conover et al.

(2011) who showed that the more moderate a user is, the more they will mention and

be mentioned by ideologically opposite users. However, several studies underline

that centrist users might constitute but a minority of the online population, or perhaps

a silent majority — especially when it comes to conspiracist content (Bessi et al.,

2016; Cota et al., 2019; Del Vicario et al., 2017b; Zollo et al., 2017).

Further supporting this link between activity and polarisation, Garimella et al.

(2017a) found that polarisation is at its strongest during heated debates. Through a

long-term analysis of the US political Twittersphere, Garimella and Weber (2017)

showed that polarisation is at its highest (resp. lowest) right before an election (resp.

right after). Controversy thus acts as a driver for polarisation, and topics that are

exempt from it such as sports show remarkably little polarisation (Barberá et al.,

2015; Garimella et al., 2017a, 2018; Liu and Weber, 2014).

High polarisation on the US political Twittersphere is not that surprising, as

several studies point out that partisanship has been steadily increasing in the country

for longer than OSPs have existed (Andris et al., 2015; Dimock et al., 2014; Gentzkow

et al., 2016; Lelkes, 2016). Because it is known that partisanship is correlated with

attitude towards science (Dunlap et al., 2016; Funk and Tyson, 2020; Gauchat, 2012;

Shi et al., 2017), it should be no surprise that conspiracy theories—which already

existed before OSPs—are thriving as well. However, not only are these phenomenons

not limited to the US, they also have exploded in intensity through social media

(Peralta et al., 2023). They have reached a larger part of the world population and

have been put to the forefront of today’s news, for example affecting in a negative

way our response to the global pandemic of CoVID-19.

Finally, several works provide evidence of the backfire effect. Debunking

false information is not only ineffective on average Chan and Albarracı́n (2023),
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it can often lead to an increase in the misplaced belief Betsch and Sachse (2013).

On Facebook, Zollo et al. (2017) found that members of conspiracy groups often

became more active within their community right after being exposed to debunking

content. In a study by Bail et al. (2018), US Republican and Democrat partisans

were (willingly) to cross-cutting content and were even more polarised afterwards.

Similar results were obtained by Nyhan and Reifler (2010). Thus, any attempt to

mitigate the echo chamber effect, or lessen polarisation, should take that into account

and be careful when exposing users to uncongenial information.

3.2 Recent advances in opinion dynamics
With the advent of OSPs, there has been a surge of research on opinion dynamics.

Mathematical models have proven a fertile ground to gain theoretical insight on

online phenomenons such as echo chambers and opinion polarisation. These models

have also allowed for an exploration of the consequences entailed by recommender

systems. I expose some recent advances on these subjects. There exists a plethora of

opinion dynamics models in the literature, and for the sake of brevity I only present

a couple major axes of recent research on the topic.

As empirical works have highlighted, there is a wide variety of mechanisms that

contribute to the emergence of echo chambers and opinion polarisation. Many novel

models that incorporate these various social and psychological features have emerged

in the past few years. For example, in the French-Degroot paradigm, simply pooling

opinions of others may seem quite unrealistic. Dandekar et al. (2013) showed that

averaging dynamics of the sort never yield polarised structures. Hence, they are

invalid when it comes to an accurate description of opinions dynamics. It is not

too surprising, as we know that people are subject to various other forces such as

homophily or confirmation bias, amongst others. Dandekar et al. (2013) found that

if the FD model is modified to account for confirmation bias, polarisation can occur.

3.2.1 Effect of stubborn agents

We have seen in Section 2.3 that inner biases (in the FJ model for example) and

bounded confidence are simple mechanisms precluding consensus. They do not
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necessarily imply the existence of echo chambers of opinion polarisation however,

as a population of disagreeing agents may be well mixed and their opinions well

spread over the opinion space. When most users are completely permeable to the

opinions of others, the presence of stubborn agents favourising one opinion over the

others is also determinant in the convergence process and the possibility of reaching

a consensus. In the Voter Model for example, if there are stubborn agents promoting

different opinions, consensus is not reachable (Mobilia et al., 2007; Yildiz et al.,

2013).

Recently, Sikder et al. (2020) studied the impact of stubborn agents on opinion

polarisation and echo chamber effect in social learning frameworks. They assumed

that stubborn agents replace incongruent signals by congruent ones with a certain

probability q. As the authors say, this models both active bias (deliberately choosing

not to believe the information) and passive bias induced by the recommender system

(proposing congenial content to the user in order to generate clicks/likes). The

authors then explore the relation between quantity of stubborn agents and diversity

of opinions, polarisation, and echo chambers. The authors notably find that the more

connected the network is, the more it can absorb confirmation bias without affecting

accuracy. Finally the authors make empirical verification with survey data, finding

correlations between access to internet and belief in climate change conspiracies.

3.2.2 Private and public opinions

The difference between private and public opinion has been studied as a driver

of polarisation. Indeed, expressed opinions may often diverge from genuine inner

ones, as social context might push individuals to alter views they share with others.

Duggins (2017) proposed a model that includes several social and psychological

features such as conformity (i.e. tendency to seek positive feedback), homophily,

and (in)tolerance. Depending on the exact balance between those effects, the author

observed a wide array of situation. For example, in absence of psychological

forces other than intolerance and homophily, the society either converges to total

consensus or total polarisation. In settings otherwise favourable to polarisation (resp.

consensus), conformity entails consensus (resp. distinctiveness entails polarisation).
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The results were validated with empirical data: the author took opinions survey

responses in the US, inferred the most likely model parameters, and showed that the

output distributions matched those observed from the data.

Banisch and Olbrich (2019) also studied the idea that opinion polarisation

stems from social feedback. Their model uses reinforcement learning and does not

account for any other effect such as homophily, confirmation bias or backfire effect.

Users express the opinions publicly and receive a reward in the form approval or

disapproval from their peers. In this context, agents adjust what they express based

on the feedback they are expecting. This feedback then leads to a re-evaluation that

will affect future behaviour of the user. The authors show that in some networks

with sufficiently high modularity, this will inevitably lead to polarisation. Densely

connected groups with intial inclination for an opinion will drift more and more

towards more extreme views.

Those results do not hold for Erdös-Rényi graphs however, which do not exhibit

community structures. This shows that such structures are needed for polarisation to

emerge. A phenomenon of gatekeeping is also observed, where beliefs are unable to

spread across bridges between different communities. Indeed, picture a node at the

fringe of a community, who communicates with other adjacent communities via their

own fringe nodes. Despite connections outside the cluster, the considered agent’s

payoff is still slightly higher for him to try and adopt the opinion of the group to

which it belongs. Because such nodes are the only bridge between communities,

when they can’t change opinions we immediately see that clusters will remain

indefinitely entrenched in their views.

3.2.3 Negative influence

In order to account for antagonism, and potential backfire effects, Keuchenius et al.

(2021) argue that it is necessary to consider negative ties when studying polarisation

in social networks. Negative edge weights imply that interactions with foes are

repulsive, and tend to widen the gap between discordant opinions. Thus, they

are a convenient and simple way of modeling the backfire effect. Some works

have extended models to incorporate negative ties, such as Li et al. (2013) for the
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Voter Model, and Shi et al. (2016) for the DeGroot model. The works of Altafini

(2012, 2013) have also explored the problem of consensus with negative connections.

Interestingly, the author proves that dynamics on balanced networks2 are exactly the

same whether or not the network is a single all-positive cluster or two antagonistic

clusters, if we consider the absolute value of opinions.

The idea of negative influence is also at the core of the model proposed by Hazla

et al. (2020). In this framework, opinions are reinforced by both interactions with

congruent and incongruent information. The authors consider multi-dimensional

opinions in Rd describing users’ views on several different topics, which are af-

fected by scalar product with other vectors. Those can model contact with external

influences such as advertising campaigns, newspaper articles, political debates on

television... A positive (resp. negative) scalar product indicates positive (resp. neg-

ative) influence, nudging the users’ opinion in the direction of (resp. opposite of)

the applied vector. Interestingly, the authors show that if d ≥ 2, polarisation occurs

with probability one. Thus, it is the unavoidable fate of any system of agents who

re-evaluate their opinions solely through the lenses of positive and negative influence.

This antagonisation of opposite-minded individuals in the form of a backfire effect

has been a recurring explanation for the existence of echo chambers, however studies

like the one from Takács et al. (2016) showed that it is not necessarily observed in

practice. Many models are amenable to reproduce polarisation of opinions without

negative influence—e.g. Axelrod (1997); Friedkin and Johnsen (1990); Mäs and

Flache (2013) amongst others.

Another appeal of the work of Hazla et al. (2020) is that they consider multi-

dimensional opinions, while most work in the field consider uni-dimensional

debates—e.g. left-wing vs. right-wing. It might however often be the case that

opinions are better represented in higher dimensions. The left-right divide for exam-

ple does not sufficiently explain the ideological differences between French political

parties (Ramaciotti Morales et al., 2022). There has been an increase of research

in multi-dimensional contexts (Baumann et al., 2021; Bizyaeva et al., 2023; Macy

2A signed network is said to be balanced if either all links are positive, or it is split into antagonistic
clusters so that all intra-cluster edges are positive, and all inter-cluster edges are negative.
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et al., 2021; Parsegov et al., 2017; Ye et al., 2020; Zafeiris, 2022).

3.2.4 Polarisation as a runaway process

Recently, Axelrod et al. (2021) raised the crucial question of the existence of levels of

polarisation at which, no return is possible and polarisation will inexorably increase.

They proposed a very exhaustive model, which includes many features: social

influence, backfire effect, tolerance, exposure, self-interest and external shocks. They

do not use negative links, but via an extended form of bounded confidence dynamics,

they incorporate the possibility for interactions between different-minded agents to

be repulsive. The authors find that intolerance is the key parameter. For example with

highly intolerant populations the increase of exposure only leads to more polarisation.

This is perhaps part of the reason why polarisation has increased with globalisation

and OSPs, as a consequence of free, long-range, borderless communication—as put

by Bogost (2021). Contrary to the results of the FJ model or the VM with zealots,

Axelrod et al. (2021) find that even a small quantity of self-interest—i.e. attraction

to a static innate opinion, is very effective at preventing polarisation.

The fact that polarisation can become a runaway, unstoppable process beyond

a certain threshold also posits the questions of identifying this tipping point. This

is at the core of the study from Macy et al. (2021), who provide an extensive study

of the hysteresis of a multi-dimensional opinion dynamics model that includes

influence, homophily, (in)tolerance and exogenous shocks. Hysteresis is a physical

phenomenon, when changes in a system induced by the evolution of a parameter,

are not symmetrically cancelled when tuning the parameter back to its initial value.

Thus, passed a certain point, it might be very difficult to go back to previous states.

The authors observe hysteresis on most of the parameter of the system, reinforcing

the conclusions of Axelrod et al. (2021).

3.2.5 Evolving networks

All the works I have evoked so far are only concerned with the evolution of beliefs on

a static social network. However, some may argue that the evolution of connections

is almost as important, if not more. Taking into account dynamical networks, where
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edges appear and fade, is of particular interest. Holme and Newman (2006) explored

the idea of co-evolution between network structure and opinions evolution. They

proposed a model in which (i) individuals form their opinions based on those of their

neighbours and (ii) individuals with similar beliefs connect with each other. Both

are repeatedly applied, with relative frequency controlled by a tunable parameter.

It appears that there exists a transition phase depending on the value of this

parameter. When the parameter favourises (i) then users will form communities of

pre-existing acquaintances with similar opinions. When it favourises (ii), as it is the

case with recommendation algorithms, users will connect with similar-minded others

and break ties with pre-existing acquaintances with different opinions. This leads to

the formation of echo chambers. Extensions of classical opinion models to include

evolution of links have been studied (Del Vicario et al., 2017a; Grabisch et al., 2023;

Kan et al., 2023; Klamser et al., 2017; Minh Pham et al., 2020; Proskurnikov et al.,

2014; Sasahara et al., 2020). Often, connection rewiring based on homophily fosters

the emergence of echo chambers.

Individuals may form and break connections based on their preferences, but

these connections are also often suggested by the OSP’s personalisation algorithm.

Moreover, as the platform’s algorithm controls what appears or not on the newsfeeds,

it might reduce or augment the visibility of certain leaders, thus practicality adjusting

the weights of connections, or even rewiring them. It is also common for the

algorithms to incorporate features recommending users to one another (“People you

may know”). I now present recent findings on the impact of such recommendations.

3.2.6 Impact of recommender systems

Rewiring connections based on similarity, be it of opinion or common acquaintances,

tends to foster the emergence of echo chambers (Cinus et al., 2021; Ferraz de

Arruda et al., 2022; Santos et al., 2021). Notably, Cinus et al. (2021) propose a

framework to study the impact of recommending either social connections or content

on any opinion dynamics model. Encouraging homophilic connections, as well as

presenting too much congenial information to users, often leads to a feedback loop

as both opinions and recommendations get more extreme (Rossi et al., 2021; Yi
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and Patterson, 2019). Perra and Rocha (2019) find that the presence of triangles in

the graph is a key driver of the emergence of echo chambers under various content

recommendation policies. However note that under certain conditions, the OSP

algorithm may actually reduce polarisation (Cinus et al., 2021; Ferraz de Arruda

et al., 2022; Ramaciotti Morales and Cointet, 2021; Santos et al., 2021).

An early work by Daly et al. (2010) proposed an empirical study of impact of

various types of friends recommendation algorithms on a social network’s structure.

The considered algorithms were: content-based (similarity of interests), topology-

based (friend-of-a-friend), and mix of both. They apply these algorithms on IBM’s

SocialBlue, an intranet social networking platform dedicated to the company. Users

were split into different groups, and each group was assigned a different recommen-

dation algorithm. All algorithms were found to reduce the modularity of the network.

The topology based (friend-of-friend) algorithm yielded a “rich get richer” effect.

Content matching helped connect distant communities, but at the price of a lower

acceptance rate. This goes against the idea that recommendation creates isolated

communities—although there is no edge removal involved, and the data does not

involve discussions on a controversial topic.

The work of Ferraz de Arruda et al. (2022) examines the influence of social

network algorithms on echo chambers and polarisation, via a theoretical approach

compared with real-world data. The author develop a model to analyse the dissemina-

tion of content within a social platform, and investigate potential algorithmic biases

in the evolution of opinions. The findings indicate that the rewiring of friendships

contributes to the formation of echo chambers. In some circumstances however,

recommender system may lead to consensus. This nuance is also found in the works

of Ramaciotti Morales and Cointet (2021); Santos et al. (2021). The former model

the impact of different state-of-the-art recommender algorithms on the FD dynamics,

applied to a Twitter network of users discussing French politics. The latter study

the impact of structural link recommendation on polarisation. Namely, users are

recommended others who share many neighbours with them—ideology of users and

content is not taken into account. Although this type of recommendation is amenable
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to polarisation—quantified as the deviation of opinions from the mean, sometimes

recommending others with not many common friends moderates polarisation, even

in the presence of a backfire effect.

Cinus et al. (2021) develop an interesting framework to study the effect of

recommending connections. It allows for the use of any opinion dynamics model

and any recommendation algorithm—the authors use 4 different ones, based either

on topology or similarity of opinions. They consider various initial networks, with

varying levels of modularity and opinion homophily. Results are then compared

with a control experiment, where users are not subject to recommendations. The

presence of an echo chamber effect is assess with the NCI and the polarisation of

opinions with RWC—cf. Section 3.3 for definitions of these metrics. The authors

find that recommender systems accentuate initial biases in the echo chamber effect:

if homophily is initially high then NCI will increase, if it’s low then then NCI will

decrease. RWC almost always increases. However if modularity is too high, NCI

and RWC decrease in most cases. Results are robust across the two different opinion

dynamics models. Finally, the authors also suggests intervention strategies to reduce

NCI and RWC.

Perra and Rocha (2019) propose a model similar to the one I develop in Chap-

ter 6. Users have the ability to post their opinions on the newsfeeds of their followers,

which have a limited size. To update their opinions, users randomly select from

their newsfeeds at regular intervals. The opinions in the newsfeeds are subjected

to various eviction policies, including random, oldest, most recent, preferential (re-

moving diverging opinions), and nudging (prioritizing a selected opinion). The main

findings of their study suggest that high clustering, characterized by a substantial

number of triangles in the network, is the primary factor leading to the formation of

echo chambers, regardless of the eviction policy employed. The preferential eviction

policy demonstrates a higher tendency to induce echo chambers compared to other

eviction policies. Additionally, the authors observe that the random eviction policy,

which involves no filtering, is the least resilient against attempts to control opinions.
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3.2.7 Empirical evaluations

While research on opinion dynamics is mainly theoretical, more and more efforts

have been devoted to confronting the models with real-life data. A convenient

way to do so is to use public records of votes or opinions, to avoid the problem

of estimating political leanings from online communication networks. Liu et al.

(2010) shows that the zero-temperature Ising model is a good predictor of opinion

dynamics in the US congress. This is a powerful result, as this model is solely

based on positive and negative peer influence without any additional psychological

or social mechanisms. This demonstrates how peer influence can explain real-life

dynamics of opinions. Leonard et al. (2021) study the polarisation of political elites

in the US. They propose a nonlinear model of opinion polarisation that accounts for

the mood of the population. They find that the model is able to explain precisely

the level of polarisation amongst Republican Elites and Democratic Elites since

1960. Notably, they highlight a threshold effect: Republicans have passed a “non-

return point”, beyond which polarisation becomes a self-feeding mechanism and is

thus very difficult to reduce. Duggins (2017) argue that total consensus or extreme

polarisation are not to be seen in the real world and that opinions distributions are

actually smoother and continuous, with pockets of extreme opinions to be observed

within. The authors take opinions survey responses in the US, infer the most likely

model parameters, and show that the output distributions match those observed from

the data.

As mentioned, using data from OSPs is more difficult, in that it requires some

knowledge of users opinions or political leanings, which are rarely accessible directly.

Scholars have developed algorithms to infer them—e.g. Martin-Gutierrez et al.

(2023); Pougué-Biyong et al. (2023); Ramaciotti Morales et al. (2022). A recent

overview of available methods can be found in Aldayel and Magdy (2021). I mention

a few interesting works on empirical validation of opinion dynamics in OSPs below,

and refer the interested reader to Peralta et al. (2022) for an in-depth survey of the

domain.

Drawing from the analysis of US political data extracted from Twitter, Halber-
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stam and Knight (2016) develop a formula that quantifies homophily as a function of

group size. As they observe that larger groups present higher degrees of homophily

and higher exposure to like-minded content, the authors argue that “homophily

generates a built-in advantage in knowledge for voters belonging to the majority

group”. Application on real data yields encouraging results, close with the theory.

Sasahara et al. (2020) study the emergence of polarised communities through the

lenses of influence and unfriending. They develop a new model taking these into

account and show that even with very low value for the parameters, polarisation

happens. They notably suggest that discouraging the formation of triadic closure with

the recommendation algorithms could help against polarisation. Most importantly,

they also validate their model’s predictions against Twitter data from Conover et al.

(2011). Sikder et al. (2020) show, via a Bayesian learning model, that access to

internet impacts the belief in climate change conspiracies as it increases polarisation

around the topic. Fernandez-Gracia et al. (2014) introduce a noisy voter model,

with mobility of agents, to study the results of presidential elections in the United

States. They find that model is able to capture statistical fluctuations, and long-range

correlations, in the vote shares per county, for presidential elections in the United

States.

Finally, the Newsfeed Model, that I extend later in this thesis, was tested against

empirical data in a work of mine prior to this PhD research (Giovanidis et al., 2021).

The model equations were able to capture the top influencers in both a Twitter and a

Weibo dataset with a good accuracy, when compared to empirically evaluated values

of influence.

3.3 Measuring the echo chamber effect

There is no consensus on how to measure the echo chamber effect, or polarisation,

in social networks. A straightforward method is to use traditional measures of

communities in networks, such as the modularity—cf. Section 2.2.2. This metric is

purely topological however, and does not account for dynamics taking place on the

graph, be it the evolution of opinions or the diffusion of information.



3.3. Measuring the echo chamber effect 60

A metric more adapted in this regard was proposed by Garimella et al. (2016).

They define the Random Walk Controversy (RWC) as the probability than a random

walk initiated in one community ends up in another. Thus, while still based on topo-

logical features, it has a dynamical interpretation. The random walk could represent

a piece of content spreading throughout a network, and thus a low probability of

reaching a community when emitted from another could signify the presence of

a echo chamber effect. Similar to this is the metric proposed by Diaz-Diaz et al.

(2022), who use the the probability that information diffused from a community

reaches another one, assuming it spreads according to a hybrid contagion model.

Other topology-based metrics include Grabisch et al. (2023); Guerra et al. (2013).

The former focuses on boundary nodes between communities, and the latter on the

disappearance of connections between communities, in a model of opinion dynamics

with evolving links.

A polarised distribution of opinions is generally defined as a two-peak distribu-

tion, with its mean roughly in between. In that vein, Musco et al. (2018) calculate

polarisation as the sum of squared, mean-centered, opinions. Thus, it is higher as

opinions are further from the mean. Martin-Gutierrez et al. (2023) propose a similar

approach to treat multi-dimensional opinions, with a general measure of polarisation

based on total variance of opinions. Interestingly, they show how to quantify how

topics or groups of topics contribute to polarisation, via the eigen-decomposition of

the covariance matrix. Sikder et al. (2020) define polarisation as the proportion of

agents with the minority opinion, and echo chambers as sets of agents with connec-

tions only to like-minded others or to stubborn agents. The latter form the boundary

of the chamber and have the power to filter the information that goes in and out,

reminiscent of the definition of gatekeepers from Garimella et al. (2018). In the same

vein, neighbourhoods with heavily skewed opinions are used by Perra and Rocha

(2019) as a measure of echo chambers, and Chitra and Musco (2020) considers

neighbourhoods with no disagreement between users.

The diversity of opinions, or content, that users are exposed to is also a good

way to quantify the echo chamber effect. It is often expressed as a Gini coefficient
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(Ramaciotti Morales and Cointet, 2021) or an Shannon entropy (Mackin and Pat-

terson, 2019). I will use a similar approach. In a binary setting, Garimella et al.

(2017c) are interested in the number of users reached by only one of two opinions.

To quantify the diversity of information that user i is exposed to, Matakos et al.

(2020) use

∑
(i, j)∈E

wi j(si− s j)
2, (3.1)

where si is the average leaning of information that i is exposed to. Thus, it is a

weighted average of the distance between the opinion of a user and that of their

leaders. A similar idea was proposed by Cinus et al. (2021), who defined the

Neighbours Correlation Index (NCI) for a user i as the Pearson correlation coefficient

between their opinion and the average one of their neighbours.

3.4 Control of opinion dynamics
The problem of controlling spreading processes, in particular information diffusion

or opinion dynamics, has received a lot of attention since the early 2000s. Our

objective to steer the echo chamber effect inscribes itself in the wake of this research.

3.4.1 Influence maximisation

Early works were concerned with influence maximisation, that is finding optimal

sets of nodes who exert the most total influence over a network. In the example of a

social network, we would expect that convincing these actors to promote a certain

product, or to share a certain piece of content, will reach the most users and therefore

yield the highest return on investment.

3.4.1.1 Seminal works

The work of Kempe et al. (2003) is foundational in this regard. They consider the

following setting: start at t0 with a set of initially active nodes, called the seeds.

Others are inactive. At each time step, some inactive nodes may become active, and

if none do, the process stops. The central question the authors try to answer is: how

to find the smallest possible seed set so that a maximal number of nodes are active at

the end of the process?
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They propose two possible processes to model the activation of nodes, the

Independent Cascade (IC) and Linear Threshold (LT) models. At each step of the

process in the IC, each active node tries to activate each of his inactive neighbors

independently and succeeds with a certain probability, fixed beforehand and that

may depend on the considered nodes. For the LTM, a node will become active if a

sufficient proportion of their neighbours are active—the threshold is fixed beforehand

and may vary between nodes.

Kempe et al. (2003) found that although finding optimal seed sets is NP-hard,

greedy algorithms can yield very good results. Both the IC and the LT models

have inspired many subsequential works on the topic, e.g. Chen et al. (2010); Hu

et al. (2014); Tong et al. (2017); Wang and Wang (2023) amongst others. I refer the

interested reader to Banerjee et al. (2020); Zareie and Sakellariou (2023) for two

recent reviews of the domain.

3.4.1.2 Recent advances

Yi et al. (2021) provide algorithms for selecting an optimal sets of stubborn nodes in

order to push opinions in a chosen direction in the FD model. The work of Goyal

et al. (2019) is similar but concerned with the FJ model, over a finite time horizon.

Still for the FJ model, Abebe et al. (2021) seek to control opinions by acting on

the exogenous influence received by users. The effectiveness of their method is

demonstrated on several real-life graphs.

Liu et al. (2010) introduce a greedy algorithm to select seed nodes in order

to maximise the magnetisation (i.e. share of one opinion) in the zero-temperature

Ising model3, on any graph. The optimisation procedure comes down to a min-cut

problem, and outperforms the baseline that consists in choosing seed nodes according

to degree. A similar problem is studied by Lynn and Lee (2016), who search for

optimal external fields to apply on nodes in the Ising model in order to maximise the

magnetisation. These fields can represent the recommender system for example. If

the temperature is low, then the magnetisation is maximised by focusing the external

3The Ising model is ubiquitous in statistical mechanics. See for example https://www.damtp.
cam.ac.uk/user/tong/statphys.html for an introduction.

https://www.damtp.cam.ac.uk/user/tong/statphys.html
https://www.damtp.cam.ac.uk/user/tong/statphys.html
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field on the nodes with highest out-degree. If the temperature is high and the network

strongly connected, the magnetisation is maximised when focusing on low-in-degree

nodes.

Recently, Hazla et al. (2020) gave a necessary and sufficient condition to be able

to make any number of multi-dimensional opinions converge to a chosen vector and

provide a precise strategy to do so. They also discussed strategies for maximising

proximity of opinions with a chosen vector using a limited number of interventions.

While most early works focused on IC and LT, the problem of influence max-

imisation is easily adapted to other models. One is of particular interest to us, the

Voter Model.

3.4.1.3 In the Voter model

Even-Dar and Shapira (2007) study the problem of selecting seed nodes so as to

maximise the share of opinion 0 at a finite time t. They found that the heuristic

of selecting highest-degree nodes yielded optimal results. Yildiz et al. (2013) and

Masuda (2015) push the idea further, integrating exogenous influence in the form of

two external controllers (zealots) A and B. They develop a greedy algorithm to solve

the following problem: knowing what nodes are influenced by B, what nodes should

A target in order to hold a maximum influence on the network? Yildiz et al. (2013)

provide a closed-form expression for the optimal solution in terms in the case where

both zealots control a single node. Otherwise, they propose a greedy algorithm.

Masuda (2015) looks at two different cases. In the first, each zealot controls a single

node with the same budget. In the second case, it is ten nodes and A optimises the set

of nodes to control, via stochastic hill-climbing algorithm. In undirected networks,

the nodes selected are close to the highest-degree ones but on directed networks, this

correlation vanishes.

This problem was studied further by Moreno et al. (2021), from both a continu-

ous and discrete optimisation perspective. Namely, B’s targets being given, A has to

optimise theirs either by continuously distributing their budget, or by targeting a cer-

tain number of nodes each with the same intensity. The authors show that continuous

optimisation performs better than discrete. Indeed, there is a small number of nodes
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that are heavily targeted, a very small number that are not targeted at all, and the vast

majority that are mildly targeted, with similar values. The authors also compare the

results with several heuristics, namely degree-based allocation, shadowing (targeting

the same nodes as B), shielding (targeting direct neighbours of B’s targets), and

random allocation. In the discrete regime, degree-based choice of nodes performs the

best of all the heuristics. For the continuous case it is a combination of shadowing

and shielding. Finally, the authors also show that if both A and B can react to each

other’s move, the Nash equilibrium of the game consists of equal allocation amongst

all nodes for both controllers.

Other works with the voter model include that of Li et al. (2013), who demon-

strate the utility of taking edge signs into account for the purpose influence max-

imisation. The voter model is modified so that some edges are negative and others

positive. When a node copies their neighbour, if the edge is negative, they adopt

the opposite opinion of theirs. The authors find that, greedy algorithms for finding

optimal seed nodes to maximise the spread of one opinion, always perform better

when edge signs are taken into account.

3.4.2 Mitigation of echo chamber effects and polarisation

With the increasing importance of social networks in the political debate and infor-

mation diffusion, there has been a recent surge in research on methods to disrupt

echo chambers and reduce polarisation. Thus, rather than trying to maximise the

spread of an opinion, scholars have gained interest in the problem of seeking con-

sensus (reduction of polarisation), or a maximal diversity of opinions in the network

(reduction of the echo chamber effect). I am mainly interested in the latter, but

mention some interesting works regarding the former.

Part of the research I evoke in this section is concerned with link rewiring.

While the platforms do not alter the leader set of a user in theory, the personalisation

algorithm does so in practice, as it may hinder or promote visibility for certain leaders.

This will often have an impact on echo chambers, as platforms usually favourise

homophilic connections. Thus, studying link rewiring policies is a fundamental

aspect of research on the topic.
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Musco et al. (2018) seek to minimise polarisation in the FJ model, while at

the same time minimising disagreement between neighbours. Doing so, users are

not exposed to too much cross-cutting content, reducing the risk of backfire effects.

They define polarisation as the variance of equilibrium opinions, and disagreement

as the average distance between the opinion of two neighbours. The authors consider

(i) a method via control of link weights, and (ii) a method via control of users

exogenous influence. These can be thought of as the action of a recommender

system, (i) adjusting the exposition to content based on its source, and (ii) adjusting

the exposition to content based on the opinion it conveys.

The work of Chitra and Musco (2020) is in the same vein. They consider the

problem of minimising disagreement by acting on links, on both the FD and FJ

models. Interestingly, the authors show that the FJ update rule is equivalent to users

looking to minimize disagreement and internal conflict—defined as the distance

between a user’s innate preferences and their opinion. Through both theoretical

developments and real-world data analysis from Reddit and Twitter, the authors give

evidence that changes in edge weights induced by the OSP algorithm can lead to the

formation of echo chambers—i.e. neighbourhoods with no disagreement between

users. To try and correct this, they propose to add an penalization term to the rewiring

dynamics orchestrated by the platform’s algorithm, incentivising the platform to

make many small modifications instead a few important ones. Under this new rule,

the echo-chamber effect is mitigated while the platform’s objective of reducing

disagreement between neighbors is still fairly respected. Similarly, Yi et al. (2021)

and Mackin and Patterson (2019) provide algorithms for selecting an optimal sets of

stubborn nodes in order to minimise polarisation and disagreement (resp. diversity

of opinions) in the FJ and FD models.

Recently, Grabisch et al. (2023) studied a FJ-like model with evolving connec-

tions. They assume that opinions in [−1,+1] evolve under

x(t +1) =
[
β

tW (t)+(1−β
t)I
]

x(t), (3.2)

where β ∈ [0,1] quantifies the persistence of pre-existing opinions. Connections
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are described by a time-evolving adjacency matrix W (t): at each step, agents with

opinions closer than a threshold σ create a connection—if not already existing, and

agents with opinions further apart than a threshold τ break their connection—if it

exists. At some point, β t becomes too small for opinions to keep evolving, and they

are crystallised in place.

The authors find that the diameter of the final distribution of opinions decreases

with β , meaning that higher speed of crystallisation entails less variability in opinions.

The risk of polarisation, quantified by the probability for the final network to become

disconnected into several components, also increases with β . The authors then study

optimal strategies for a social planner who would be able to select β , in order to

minimise both the variability of opinions and the probability of polarisation. They

also study strategies for two adverse political campaigns that seek to maximise their

respective share of the electorate—one tries to maximise the number of negative

opinions, and the other the number of positive ones.

Reminiscent of works on influence maximisation, Garimella et al. (2017c) and

Matakos et al. (2020) study the problem of minimising the echo chamber effect

by trying to find seed nodes that maximise the diversity of information users are

exposed to. Both prove to be NP-hard, and the authors present greedy algorithms to

find suboptimal solutions. Garimella et al. (2017c) considers the IC model with two

competing campaigns, each modeled by a single propagation episode. They look

for choices of seed nodes that minimise the number of nodes reached by only one

campaign.

Close to what I present in Section 7.2, Matakos et al. (2020) seek to max-

imise the average weighted difference between opinions of neighbours—similar to

disagreement in Chitra and Musco (2020); Musco et al. (2018); Yi and Patterson

(2019). Interestingly however, they do not assume any underlying dynamics, but

rather hypothesise that exposure vectors are already known. Thus, it is applicable to

any model of opinion dynamics or information spreading.

Garimella et al. (2017b) propose a method to reduce polarisation as defined by

the RWC (cf. Section 3.3) through addition of edges in the network. The focus is put
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on which nodes to connect in order to get the best reduction in polarisation, while

being sure that the edge is “accepted”. Doing so, they avoid potential backfire effects.

Four important points are taken into account: (i) it is possible to nudge people by

recommending content from an opposing side, (ii) extreme recommendations might

not work (backfire effect), (iii) moderate users are easier to convince, (iv) expert

users and hubs are often less biased and can play a role in convincing others. The

third point recalls findings from Banisch and Olbrich (2019) about gatekeeping users

on the border of communities.

Perhaps the most interesting in the work of Garimella et al. (2017b) is the edge-

acceptance mechanism: the authors consider that even though the recommendation

algorithm may show contents from a specific node to another, we do not know for

sure that this newly created link will properly function and not become a canal of

antagonisation between users. The acceptance probability is computed as a function

of the extremism of the concerned nodes, measured using the RWC. The authors

show that their method is able to significantly reduce controversy on real-life Twitter

datasets, and works best when connecting high-degree nodes with each other.

An interesting perspective brought by Cen and Shah (2020) highlight the fact

that there are several actors at play, between the platform administrators, influencers

and advertisers. This makes it delicate to regulate algorithmic personalisation without

affecting the interests of these stakeholders, and any proposed solution to the problem

should take their interests into account. The authors model the opinion of a user

as a random variable conditioned by the content appearing on their personalised

newsfeed, and are interested in detecting learning divergence: the emergence of a

significant difference between this variable and the opinion conditioned on a neutral

newsfeed without algorithmic personalisation. They propose a data-driven procedure

to moderate learning divergence, and importantly show that this can be done even

without knowledge of the process through which opinions are derived from the

newsfeed.

Finally, it may be useful to inject some randomness into the recommender

system. Rossi et al. (2021) model the interaction between a user’s opinion and
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the personalised recommendation, and show that it often leads to a feedback loop

and more extreme opinions and recommendations. They find that adding some

randomness into the recommender can help mitigate the phenomenon, while still

preserving a minimal amount of relevance for the content shown to users.

Empirical attempts Finally, I mention two interesting empirical works. A heuristic

study from Grevet et al. (2014), based on survey answers, echoes some of the results

presented above. They suggest that online political polarisation could be reduced by,

(i) slightly increasing exposure to weak connections and reducing exposure to strong

connections—cf. Chitra and Musco (2020); Musco et al. (2018); Yi and Patterson

(2019), (ii) striving to highlight common interests that may exist between opposite

communities to bring them closer—cf. Garimella et al. (2017b).

Using bots, Yang et al. (2022) introduce a promising method to break open echo

chambers in the presence of a backfire effect. In the context of anti-immigration

discourse in European Twitter, they deploy three bots. The first one doesn’t post

and doesn’t interact, the second one applies the arguing method: just posting pro-

immigration content, the third one applies pacing and leading: starts by posting

anti-immigration content then slowly shifts towards pro-immigration. Pacing and

leading outperforms arguing, and contact with users, i.e. interaction, makes it even

better. Interacting with users via the arguing bot however just makes it even worse.

Thus, it is possible to slowly pull people out of echo chambers.

3.5 Limitations of existing works

Research on the Voter Model have mostly focused on undirected networks described

by specific degree distributions, such as classical random graph topologies (Sood

et al., 2008; Vazquez and Eguı́luz, 2008; Yildiz et al., 2010). Few works have

derived results valid for any given topology (Masuda, 2015; Yildiz et al., 2013).

Moreover, while some have included additional features such as zealots, or larger

opinion spaces, no general model that can account for many different features has

been proposed. The evolution of active links in particular, an order parameter of

great interest (Caridi et al., 2019; Ramirez et al., 2022), has not been yet generalised
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to general settings. This is why I propose the Enhanced Voter Model, valid on any

given directed, weighted network with zealots, multiple opinions and individual

update rates.

The field of opinion dynamics has also mostly focused on social networks as

a general concept, but often do not incorporate the mechanisms features by OSPs.

The modelling of walls and newsfeeds for example, and how information flows

between, has been scarcely studied (Cen and Shah, 2020; Perra and Rocha, 2019).

The Newsfeed model, a work of ours started before this PhD project (Giovanidis

et al., 2019), tackled this problem. I extend it further to account for opinion labelling,

to describe the echo chamber effect, and to improve the correspondence between its

theoretical predictions and empirical observations.

Most of the works on opinion control are heuristic or suboptimal algorithms

due to the NP-hardness of the problem at hand. The principle of seed node selection

is somewhat difficult to apply in practice: it means convincing some users of the

networks to defend one and only one opinion, all the time. The practicalities of such

endeavour, and most importantly its ethical implications, seem obstacles difficult

to overcome if one wishes to put some of these methods into application. The vast

majority of existing works focuses on edge recommendation, or link adjusting. The

problem of content recommendation, that is what opinions should the content recom-

mended to each user support, has barely been touched. Moreover, besides Garimella

et al. (2017b); Musco et al. (2018); Yang et al. (2022), existing works do not account

for potential backfire effects. Finally, most works consider uni-dimensional opinions,

while it is not always an accurate reflection of reality (Ramaciotti Morales et al.,

2022).

I address these limitations by proposing a global framework that benefits from

analytical tractability, is effective at both the macroscopical and microscopical levels,

can treat multi-dimensional opinions, accounts for backfire effects, is evaluated on

real-life data, and is adaptable to various others problems such as reinforcing echo

chambers or favourising one opinion versus the others. Indeed echo chambers, or

consensus on a single opinion, might in some context be a phenomenon to wish for—
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e.g. consensus on the reality of climate change, or the effectiveness of vaccines. As

methods based on link recommendations have been widely treated in the literature, I

focus on content recommendation, but my framework can easily accommodate other

methods. The optimisation problems I treat also benefit from having computable

exact solutions—as opposed to heuristic ones, or those based on greedy algorithms

that usually return suboptimal solutions.



Chapter 4

Methodology

I now detail the methodology that will be used in the following chapters, containing

the results obtained during the PhD.

4.1 Theoretical models and metrics of interest
In Chapter 5 and Chapter 6, I develop and analyse two mathematical models adequate

for the description of echo chambers. The Enhanced Voter Model (EV Model)

describes the evolution of opinions in a population subject to social influence. The

Extended Newsfeed Model (EN Model) describes diffusion of content in an OSP,

and includes labelling of items with the opinion they support. Notably, the EV Model

is applicable to social networks in general, while the latter is specifically dedicated

to the study of OSPs. To gain confidence in their viability, the models are confronted

with empirical data. The datasets are described at the end of this chapter.

Towards my application to the steering of the echo chamber effect I demonstrate

how to compute, for each model, two closely related quantities:

echo chamber effect (ECE) the proportion of congruent opinions users are ex-

posed to,

accessible opinion diversity (AOD) the variance of opinions users are exposed to.

The ECE experienced by user n is denoted by Γn, and the average ECE over the

whole population considered is ⟨Γ⟩. For the AOD I use Φn and ⟨Φ⟩.
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4.2 Steering the echo chamber effect at two levels
In Chapter 7 I demonstrate the applicability of my models to the benefit of steering

the echo chamber effect. More precisely, I demonstrate how to compute optimal

recommendation rates to effectively shift the average AOD. I deliberately choose not

to act directly on the ECE. Indeed if a user supports opinion 0 and is entrapped in an

echo chamber where all they see is opinion 0, the ECE can be minimised by simply

recommending only opinion 1 to the user. But doing so, we risk to create a novel

echo chambers—simply with opinion 1 instead of 0. This is why I choose to act on

diversity, and as we will see, it positively impacts the echo chamber effect as wanted.

I account for users preferences so as to avoid any backfire effect.

I propose two different, complementary approaches to the steering problem:

a macroscopical one and a microscopical one. Each takes advantage of one of the

two models I develop. In both cases, I consider a finite, discrete number of possible

opinions and assume a known, fixed social network of interacting agents subject to

inner biases. Importantly, I assume no pre-existing recommendation algorithm.

Not that, in the application, I use global averages when computing the ECE

and the AOD over the whole network. This is not optimal in scale-free graphs for

example, where nodes with thousands of connections are more important than those

with just a few. Thus, when using the methods I develop, depending on the context

it might be useful to consider weighted averages to reflect the different relative

importances of nodes.

4.2.1 Macroscopical approach

The first approach is based on the EV Model, and adequate for a global perspective.

In particular, it is applicable to social networks in general, beyond the precise set-

tings of OSPs. I make the mean-field assumption of a fully-connected population of

like-minded users, with the same inner biases and no individual features differen-

tiating one from the others. This is particularly relevant for homogeneous groups

of users sharing the same beliefs, where everyone is exposed to the opinion of all

others. Facebook groups or Reddit subs fit this description quite well, as all the

content posted therein is presented to everyone, with no regards for the potential
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heterogeneity of connections between users. For that I leverage the EV Model, which

extends the traditional voter model. Belonging in the field of statistical physics, it is

well suited for a macroscopical point of view.

4.2.2 Microscopical approach

The second approach is based on the EN Model. It incorporates user-level fea-

tures, befitting a local perspective. The model describes the propagation of content

throughout the newsfeeds of users in an OSP, and lets me quantify precisely the

distribution of content, and thus opinions, on the newsfeeds of users. Importantly, it

features high analytical tractability, meaning I can propose fine-grained optimisation

problems to steer the echo chamber effect at the user-level. This approach allows for

individually targeted action, provided availability of low-level information regarding

users characteristics and connections between them. However, one does not always

have access to such information—perhaps because of the limitation of the data at

hand, or the difficulty to infer from it, and the uncertainty that would result from such

inference process. Hence the necessity for the higher level, macroscopical approach,

that only requires some broad knowledge about the system of interest.

4.3 Mathematical tools

I briefly introduce some mathematical tools and results that will be useful in the

analysis or my models.

4.3.1 Markov chains

A discrete, homogeneous Markov Chain is a infinite sequence X1,X2, . . . of random

variables. They are all valued in some common discrete set called the state space, its

elements called the states of the system. They satisfy the Markov property, that is

each one only depends on the precedent:

P(Xk = xk|X1 = x1, . . . ,Xk−1 = xk−1) = P(Xk = xk|X1 = x1). (4.1)
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These probabilities are supposed invariant over time: they do not depend on k. They

are encoded in a transition matrix P, whose (i, j)th element is defined by

Pi j = P(Xk = j|Xk−1 = i), ∀k ≥ 1. (4.2)

If πk is a horizontal vector encoding the distribution of Xk, it holds that πk = πk−1P.

The matrix transpose PT can be seeen as the adjacency matrix of a graph G. The

chain is said to be irreducible is G is strongly connected, and aperiodic if there is no

integer k > 1 so that Pk = P. An irreducible, aperiodic Markov chain is said to be

ergodic.

Steady-state Eventually, the chain may reach a state of equilibrium, or steady-state.

Any left eigenvector of P characterises a state of equilibrium. If the chain is ergodic,

there exists such a state, and it is unique—up to multiplication by a constant. If

not, there may exist no steady-state, or there may exist multiple ones. A normalised

left eigenvector of P is called a stationary distribution of the chain, and gives the

probabilities of finding the system in each state when making a punctual observation

at equilibrium.

4.3.2 Simulations

To simulate equilibrium distributions, or estimate them empirically, I will need to

perform time averages. Indeed, ensemble averages are (i) unavailable for datasets

that only cover a single realisation of a process, and (ii) too costly to compute with

sufficient precision. The ergodic theorem assures us that time averages and ensemble

averages correspond, under mild conditions that are always verified in this work.

Theorem 8 (Ergodic theorem). Let (Xt)t≥0 be a continuous-time Markov chain over

some state-space I. Assume X is irreducible, positive recurrent and denote by π its

invariant distribution. Then for any bounded function f : I 7→ R we have almost

surely
1
T

∫ T

0
f (Xt)dt −→ ∑

k∈I
πk f (k), as T → ∞. (4.3)

I refer the interested reader to Norris (1997) for a proof. This theorem can
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be seen as the law of large numbers for Markov chains; it expresses that means

computed over time converge towards expectations under the invariant distribution.

Consider a simulation of X with jumps at times t1, . . . , tm. The process is

constant between them. Consider also a dataset with a finite number of datapoints,

corresponding to observations of X at different times, that I also denote by t1, . . . , tm

for simplicity. The system might evolve in-between these points, but we would not

know, and I assume that it did not. The left-hand side of Eq. 4.3 becomes

(t2− t1) f (X1)+ . . .+(tn− tn−1) f (Xn)

tn− t1
. (4.4)

This is the formula I use to compute time averages for simulations and empirical

evaluations.

4.4 Datasets

I now introduce and briefly describe the various datasets I am going to use in my

analysis.

4.4.1 UK and US elections

This is used in Section 5.5 to evaluate the performance of the EV Model. I use

the official database of the United Kingdom general elections results, published by

the House of Commons (Audickas et al., 2020), as well as results for presidential

elections in the United States manually collected from Wikipedia1. Each time I

am interested in the percentage of popular votes won by the two major parties. In

the UK dataset, the quantity of interest is the percentage of popular votes won by

the Conservative2 and Labour parties in each general elections from 1922 onwards.

In the US dataset, it is the number of popular votes gathered by Republicans and

Democrats in each presidential elections from 1912 onwards.

1https://en.wikipedia.org/wiki/United_States_presidential_election#

Popular_vote_results
2The dataset also includes in Conservative results: National, National Liberal and National Labour

candidates for 1931-1935; National and National Liberal candidates for 1945; National Liberal
candidates from 1945 to 1970.

https://en.wikipedia.org/wiki/United_States_presidential_election#Popular_vote_results
https://en.wikipedia.org/wiki/United_States_presidential_election#Popular_vote_results
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4.4.2 The Elysée2017 dataset

I evaluate the EN Model on a Twitter dataset, published by Fraisier et al. (2018)

and relating to the 2017 French presidential campaign. It includes 2,414,584 tweets

and 7,763,931 retweets from 22,853 Twitter users discussing the election. For each

tweet I have: [PostID, TimeStamp, UserID, RePostID]. Users have been manually

annotated by experts with political affiliations describing support for one or two of

the main competing parties:

FI France Insoumise, far-left party (candidate Jean-Luc Mélenchon),

PS Parti Socialiste, left-wing party (candidate Benoit Hamon),

EM En Marche, centre party (candidate Emmanuel Macron),

LR Les Républicains, right-wing party (candidate François Fillon),

FN Front National, far-right party (candidate Marine Le Pen).

For some users the affiliation is unknown and I remove those from my study.

Amongst remaining users, a small percentage are affiliated to two different par-

ties (e.g. “PS/EM”). In addition, Papanastasiou and Giovanidis (2023) collected the

follow graph, which was not part of the original dataset. I removed users who did

not tweet nor retweeted anything and restricted myself to the largest strongly con-

nected component of the followers graph. Finally some profiles were not available

anymore and I end up with an anonymised dataset D that features N = 8,277 users

and E = 975,168 edges. In Figure 4.1 I show the follow graph, the retweet graph,

and the proportion of users supporting each party. Basic statistics for the dataset are

summarized in Table 4.1.

4.4.3 Toy datasets

In Chapter 5, I will use four toy datasets to study the correlation between certain

topological metrics and discord probabilities in the EV Model. Basic statistics of

these datasets are presented in Table 4.2. Note that I only kept the largest weakly

connected component of each network.
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Figure 4.1: Top left: Follow graph of #Elysée2017fr. There is an edge from i to j if i is
a leader of j. Colors indicate the 5 main parties. Top right: Retweet graph of
#Elysée2017fr. There is an edge from i to j with weight equal to the number
of times j retweeted i. Bottom: Proportion of users supporting each party.
‘multi’ stands for users with more two affiliations.

The first is the celebrated Karate Club dataset from Zachary (1977), that rep-

resents the social interactions among members of a university karate club. The

edges in the dataset indicate friendships or interactions between the members, while

the absence of an edge between two nodes implies the lack of a direct connection.

During the study, a conflict arose within the club, leading to its later division into

two separate clubs. Nodes are labeled by which of these two clubs they adhered to.

The football dataset comes from Girvan and Newman (2002). It describes the

network of American football games between Division IA colleges during the regular

season of fall 2000. Nodes are clubs, and there is an edge between two if they played

each other. Nodes are labeled by the conference to which they belong (Atlantic Coast,
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Table 4.1: Descriptive statistics on the #Elysée2017fr dataset (“#” means “number of”).

#Elysée2017fr

Time window 168 days
# users 8,277
# tweets 920,520
# retweets 2,934,830
Mean #tweet/user 111.2
Mean #retweets/user 355.6
Max #tweet 22,833
Max #retweet 23,171
% users with #tweet > 0 72.93
% users with #retweet > 0 98.94
# edges 975,168
Mean # followers 117.8
Max # followers 3,729
Max # leaders 1,551

Table 4.2: Descriptive statistics on the toy datasets.

zachary football email polblogs

# nodes 34 115 986 1,222
# edges 156 1,226 25,552 19,021
Density 0.14 0.09 0.03 0.01
# communities 2 12 42 2
Directed - - ✓ ✓
Self-loops - - - ✓
Modularity 0.42 0.53 0.43 0.43

Big East, Big Ten, Big Twelve, Conference USA, Independents, Mid-American,

Mountain Wes, Pacific Ten, Southeastern, Sun Belt, Western Athletic).

The email dataset is taken from Leskovec et al. (2007). It was generated using

email data from a large European research institution. The presence of an edge from

one node to another indicates that the first person sent at least one email to the other.

Nodes are labeled by the department to which the corresponding person belongs.

The poblogs dataset is another famous dataset, taken from Adamic and Glance

(2005). It represents the directed network of hyperlinks between political blogs

during the period leading up to the 2004 United States presidential election. Each

blog is labeled by its political leaning, ‘liberal’ or ‘conservative’. It is one of the first

and most cited examples of online social network exhibiting homophily.
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The Enhanced Voter Model for

opinion evolution in social networks

The Voter Model has been widely studied in the context of opinion dynamics. I

develop a highly general framework, the Enhanced Voter Model, that encompasses

many important extensions of the traditional Voter Model, and is applicable to any

given directed, weighted network, without any requirement regarding the topology

or the degree distribution of the network. Doing so, I contribute to the literature by

extending important concept and results to a very general setting, while their study

had until now mostly relied on approximations and strong assumptions regarding the

degree distribution. My framework can accomodate any finite number of opinions

(Starnini et al., 2012; Yildiz et al., 2010), zealots (Chinellato et al., 2015; Mobilia

et al., 2007), and individual update rates (Masuda et al., 2010). In this context, I

derive probabilities of discord between agents, and propose a new way to compute the

active links density that accounts for weighted, long-range interactions. Importantly,

I make no approximation and the results are exact.

In my application to steering echo chambers I will be interested in complete

networks of identical agents, and I characterise my results in this precise settings.

Except Section 5.5, the results presented here have been submitted to Physical

Review E and are currently under review (Vendeville et al., 2023b). In Section 5.5 I

assess the model’s performance in forecasting the results of elections in the US and

the UK, solely based on previous ones. This study was published in Vendeville et al.
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(2021).

5.1 General setting
Consider a group of agents interacting through a social network and holding discrete

opinions (σi)i valued in some set S = {1, . . . ,S}. Opinions are bound to evolve due

to influence from peers, and I let wi j ≥ 0 denote the strength of influence that agent

j exerts on i.

5.1.1 Zealots

To model exogenous sources of influences, I assume that for each opinion s there

exists an entity external to the agent graph that promotes it. This entity is called

the s-zealot, and exerts an influence of strength z(s)i on agent i. This influence is

an aggregate of all forces other than interactions within the graph, that may push i

towards opinion s. In this chapter, I mostly think of it as representing an inner bias

of agent i. For the later purpose of steering the echo chamber effect, it will also

conveniently model the influence of the recommender system. I call zealousness

of agent i, and denote by z(s)i , the total amount of influence exerted on them by the

s-zealot.

5.1.2 Agent graph

Let Li := { j ∈N : wi j > 0} be the set of all (non-zealots) agents with influence on

i, called leaders of i. I allow self-loops, i.e. i ∈ Li. For the sake of simplicity and

without loss of generality, I consider values of influence to be normalised: for any

agent i ∈N ,

∑
j∈Li

wi j + ∑
s∈S

z(s)i = 1. (5.1)

The directed, weighted graph of all agents will be denoted by G, where wi j is the

weight of edge j→ i. I assume G to be weakly connected—if it is not, one can apply

the results to each component of the graph separately. I let W denote the weighted

adjacency matrix of the graph. I do not consider zealots to be part of the agent graph,

but without ambiguity I allow myself to say that agent i can be “reached” by the

s-zealot if either z(s)i > 0 or there exists an agent j with z(s)j > 0 and a path from j to
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i.

5.1.3 Dynamics

Each agent is endowed with an exponential clock of parameter 1. When their clock

rings, agent i updates their opinion in one the two following way.

Influence of peers agent i adopts the opinion of a leader chosen at random, with

probability wi j for leader j.

Exogenous influence agent i adopts the opinion of a zealot, with probability z(s)i

for the s-zealot.

Thus, with rate wi j agent i copies the opinion of j, and with rate z(s)i they adopt

opinion s via the s-zealot.

5.2 Echo chamber effect and opinion diversity
As said in Chapter 4, I am interested by two metrics: the ECE and the AOD. The

first quantifies the amount of congruent opinions that users are exposed to. Let ρi j

denote the discord probability for users i and j, that is the probability that they hold

two different opinions. I define the echo chamber effect experienced by user i as

Γi =
∑ j∈Li wi j(1−ρi j)

∑ j∈Li wi j
. (5.2)

I demonstrate below how to compute values of ρ . In the application I consider

complete, unweighted networks so that both the weighted and unweighted definitions

are equivalent. I denote by ⟨Γ⟩ the average ECE over all users.

My second quantity of interest is the AOD, or the variance of opinions that

users are exposed to. I first define the S-sized exposure vector of user i:

yi =
∑ j∈Li wi jx j

∑ j∈Li wi j
. (5.3)

The entry of yi with coordinate s is the average proportion of opinion s amongst the
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leaders of i. The AOD for user i is then

Φi =
S

S−1 ∑
s∈S

y(s)i (1− y(s)i ). (5.4)

This is akin to an entropy of yi. The constant in front ensures that it ranges from 0

(all leaders are fixed on one single, common opinion) and 1 (perfect mix of opinions).

I let ⟨Φ⟩ denote the average AOD over all users.

5.3 Mathematical analysis
I now detail how to derive individual opinion distributions and discord probabilities

between agents. I let x(s)i denote the probability for agent i to hold opinion s. The

vector xi is the opinion distribution of i. Discord probabilities are defined by

ρi j = P(σi ̸= σ j), (5.5)

and quantify how often i and j can be found holding different opinions. The quantity

1−ρi j is called probability of harmony. Both x and ρ are time-dependent quantities,

but I omit the time parameter to avoid cumbersome notations.

5.3.1 Evolution of opinions

A straightforward extension of Masuda (2015, eq. 3) gives

dx(s)i
dt

= (1− x(s)i )

[
∑
j∈Li

wi jx
(s)
j + z(s)i

]
− x(s)i

[
∑
j∈Li

wi j(1− x(s)j )+ ∑
r ̸=s

z(r)i

]
. (5.6)

This reduces to

dx(s)i
dt

= ∑
j∈Li

wi jx
(s)
j + z(s)i − x(s)i . (5.7)

Hence, at equilibrium we have

x(s)i = ∑
j∈Li

wi jx
(s)
j + z(s)i . (5.8)
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As expressed by Yildiz et al. (2013, Prop. 3.2), x(s)i is the probability that a backward

random walk initiated at i reaches the s-zealot before another zealot. Hence, x(s)i > 0

if and only if i can be reached by the s-zealot.

The dynamics correspond to those of a continuous-time Friedkin-Johnsen model

(Section 2.3.3). The number of distinct equilibrium states depends on the topology

of the agent graph and the influence of zealots. Assuming that every agent can be

reached by at least one zealot, Eq. 5.1 and Lemma 1 (Section B.1 in Appendix)

imply that the spectral radius of W is strictly less than 1, and there is a unique

equilibrium state. If z(s)i = 0 for all i,s, we uncover a continuous-time DeGroot

model (Section 2.3.2). In that case, consensus is reached if there exists an agent able

to reach every other.

5.3.2 Discord probabilities

I now turn to the study of discord probabilities, defined by Equation 5.5. Trivially

ρii = 0 and ρi j = ρ ji. The discord probability between i and the s-zealot is simply

1−x(s)i . To enhance readability I denote without distinction by i j or ji the unordered

agent pair {i, j}. It is tempting to simply write

ρi j = P(σi ̸= σ j) (5.9)

= ∑
s∈S

P(σi = s,σ j ̸= s) (5.10)

= ∑
s∈S

P(σi = s)P(σ j ̸= s). (5.11)

= ∑
s∈S

x(s)i (1− x(s)j ). (5.12)

However this assumes that the opinions σi and σ j are independent, which is not

guaranteed. This assumption is for example violated if i and j are neighbours, as

illustrated in Figure 5.1. Let me first focus on the general case, valid for any i, j.

Later on I characterise cases where Eq. 5.12 holds.

5.3.2.1 General case

There are two types of events that lead to i adopting an opinion different than j’s:
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1. i copies agent k ̸= j, who holds another opinion than j’s. This happens at rate

wikρ jk.

2. i copies an s-zealot while j holds an opinion different than s. This happens at

rate z(s)i (1− x(s)j ).

Hence i adopts another opinion than j’s at rate

∑
k∈Li

wikρ jk + ∑
s∈S

z(s)i (1− x(s)j ). (5.13)

The same reasoning gives the rate at which j adopts another opinion than i’s, and the

pair i j switches from harmony to discord at rate:

∆
−
i j = (1−ρi j)

[
∑

k∈Li

wikρ jk + ∑
s∈S

z(s)i (1− x(s)j )+ ∑
k∈L j

w jkρik + ∑
s∈S

z(s)j (1− x(s)i )

]
,

(5.14)

and from discord to harmony at rate

∆
+
i j = ρi j

[
∑

k∈Li

wik(1−ρ jk)+ ∑
s∈S

z(s)i x(s)j + ∑
k∈L j

w jk(1−ρik)+ ∑
s∈S

z(s)j x(s)i

]
.

(5.15)

Subtracting ∆
−
i j from ∆

+
i j , we obtain the master equation

dρi j

dt
= ∑

k∈Li

wikρ jk + ∑
k∈L j

w jkρik + ∑
s∈S

z(s)i (1− x(s)j )+ ∑
s∈S

z(s)j (1− x(s)i )−2ρi j.

(5.16)
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The evolution of discord probabilities is thus governed by a system of linear differ-

ential equations. Setting the left-hand side to zero gives us the equilibrium discord

probability for the pair i j:

ρi j =
1
2

[
∑

k∈Li

wikρ jk + ∑
k∈L j

w jkρik + ∑
s∈S

z(s)i (1− x(s)j )+ ∑
s∈S

z(s)j (1− x(s)i )

]
.

(5.17)

Let me write this in matrix form as

ρ =V ρ +u. (5.18)

If there are no zealots, Eq. 5.16 becomes

dρi j

dt
= ∑

k∈Li

wikρ jk + ∑
k∈L j

w jkρik−2ρi j, (5.19)

and at equilibrium,

ρi j =
1
2

(
∑

k∈Li

wikρ jk + ∑
k∈L j

w jkρik

)
. (5.20)

In a state of consensus all discord probabilities are 0. Otherwise, the various equilib-

rium states are given by the leading eigenvectors of V .

In the case with zealots, I show in Section B.1 (Appendix) that the spectral

radius of V is strictly less than, assuming every agent can be reached by a zealot.

Hence, the system has a unique solution, which can be efficiently computed by

iterating

ρ(k) =V ρ(k−1)+u (5.21)

for any initialisation ρ(0) with values in ]0,1[, and the convergence rate depends on

the spectral radius of V . The proof of that statement can be found in Giovanidis et al.

(2021, Thm. 4). In practice, I choose to stop when no element of ρ(k) changes more
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Figure 5.1: Dependency between opinions. Nodes 0 and 1 are the 0- and 1-zealot respec-
tively. Numbers along the arrows denote edge weights. On the left, there is a
path from i to j. On the right, there is none but i and j have a common ancestor
k. In both cases, the correct formula (5.17) gives ρi j = 1/4, while (5.12) yields
ρi j = 1/2.

than 0.1% in a single step, i.e. when

max
i, j

|ρi j(k)−ρi j(k−1)|
ρi j(k)

< 10−4. (5.22)

Agent pairs with ρi j = 0 are excluded from the calculation.

Finally, note that all the equations I derived are easily adapted to account for

various update rates r1, . . . ,rN across agents. It suffices to scale each edge weight wi j

by ri, to replace 2ρi j by (ri + r j)ρi j in Eq. 5.16 and 1/2 by 1/(ri + r j) in Eq. 5.17.

Unless stated otherwise, I stick to the traditional setting ri = 1 for all i.

5.3.2.2 Independent pairs

There are some cases where the opinions σi and σ j are independent, and one can

use Eq. 5.12 to calculate ρi j without having to solve a possibly large linear system.

Independence holds if one of the following is verified:

1. σi or σ j is constant, or

2. there is no path from i to j nor from j to i, and i and j have no common

ancestor.

The first comes from the fact that a constant is independent from any other random

variable. In particular, it is verified if i or j is a zealot. The second assures us that

i and j do not influence each other, and that they are exposed to strictly different

sources of influence: their opinions evolve in total independence. As illustrated in



5.3. Mathematical analysis 87

Figure 5.1, if one of these assumptions is violated then (5.12) gives an incorrect

result.

When i and j have the same opinion distribution x, (5.12) is akin to the entropy

of x. Hence the more uniform x is, the higher the discord. Equation 5.12 is also

exactly 1 minus the cosine similarity between xi and x j. While for dependent agent

pairs the discord probabilities are given by (5.16) and (5.17), Eq. 5.12 may still be

used for the purpose of measuring dissimilarity of opinion distributions.

5.3.2.3 Generalised active links density

The active links density is the average discord between all neighboring agents.

While convenient for regular, unweighted graphs, this definition suffers from two

shortcomings when it comes to general networks.

First, not all edges are created equal: if wi j = 0.80 and wik = 0.01, then j holds

a strong power of influence over i, while k barely has any at all. Discord ρi j between

i and j will thus often be much more relevant to the analysis than ρik, a difference not

accounted for when taking a simple unweighted average. Second, two agents may be

closer than they appear: if wi j = 0 but wik = wk j = 0.9, agent j exerts non-negligible

influence on i via k, despite them not being directly connected by an edge.

This is why I introduce a novel metric for the study of discord, better suited for

complex networks: the generalised active links density, defined over all agent pairs

by

⟨ρ⟩= ∑i< j(w∞
i j +w∞

ji)ρi j

∑i< j(w∞
i j +w∞

ji)
. (5.23)

Inspired by Estrada and Benzi (2014), w∞
i j is the (i, j)-th component of the matrix

exponential

eW =
∞

∑
k=1

1
k!

W k. (5.24)

Scaling by the inverse of the path length factorial attributes a rapidly decaying

importance to longer path, as a way to account for all the combinatorial possibilities

that j’s opinion is overwritten on its route towards i. The sum w∞
i j +w∞

ji is then a

measure of long-range, weighted influence between i and j. The quantity ⟨ρ⟩ as

defined by Eq. 5.23 is akin to ⟨Γ⟩ but incorporates long-range interactions.
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Note that zero entries in the ith row w∞
i correspond to users unable to reach i,

and non-zero entries correspond to ancestors of i. The cosine similarity

cos(w∞
i ,w

∞
j ) =

w∞
i ·w∞

j

∥w∞
i ∥∥w∞

j ∥
(5.25)

informs us on the similarity of i and j’s ancestry, meaning the extent to which they

are exposed to the same channels of influence.

5.3.3 Echo chambers and opinion diversity in the complete

network

Laying the ground for my applications in Section 5.5 and Section 7.1, I now precise

the values of the AOD and ECE in the particular case of a complete network of

N identical agents with two opinions S = {0,1}. All links have the same weight

w. Each agent receives the same influence from zealots (z(1), . . . ,z(S)) and I let

z = ∑s∈S z(s). Via Eq. 5.1 this entails

w =
1− z
N−1

. (5.26)

5.3.3.1 Opinion diversity

Every agent has the same distribution of opinions x, and Eq. 5.8 becomes

x(s) = (N−1)wx(s)+ z(s), (5.27)

so that

x(s) = z(s)/z. (5.28)

This was already proven by Mobilia et al. (2007). In the case S = 2, I call x(1) the

average equilibrium opinion of the network. Its value is closer to 0 when agents

favour opinion 0, and closer to 1 otherwise. As all agents and links are identical, its
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average value is immediately given by z(1)/z as per Eq. 5.28. The (AOD) is then

⟨Φ⟩= 1
N ∑

i∈N
Φi (5.29)

=
S

S−1 ∑
s∈S

x(s)(1− x(s)), (5.30)

=
2S

S−1 ∑
r<s

z(r)z(s)

z2 . (5.31)

This AOD is then maximised when all z(s) = 1/S for all s ∈ S . For S = 2, it becomes

⟨Φ⟩= 4z(0)z(1)

z2 . (5.32)

5.3.3.2 Echo chamber effect

Discord probabilities are all equal to the same value ρ which is also the GALD ⟨ρ⟩,
and Eq. 5.17 reduces to

ρ =
1
2

[
2(N−2)wρ +2 ∑

s∈S
z(s)(1− x(s))

]
(5.33)

= (N−2)wρ + ∑
s∈S

z(s)
[

1− z(s)

z

]
(5.34)

= (1− z−w)ρ + ∑
s∈S

z(s)
[

∑
r∈S\{s}

z(r)

z

]
(5.35)

because of Eq. 5.26. Thus,

ρ = 2 ∑
r<s

z(r)z(s)

z(z+w)
. (5.36)

This is very similar to (5.32), and again it is maximised when z(r) = 1/S for all s ∈ S .

Assuming it is the case, both ρ and the entropy of (x(s))s∈S converge to 1 as the size

S of the opinion space goes to infinity: discord and diversity of opinion go hand in

hand in this example. For S = 2 we have

ρ =
2z(0)z(1)

z(z+w)
. (5.37)
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Then, the ECE ⟨Γ⟩ is simply given by

⟨Γ⟩= 1−ρ. (5.38)

5.3.3.3 Comparison between the metrics

When z≫ w, i.e. z≫ 1/N, ρ becomes equivalent to S−1
S ⟨Φ⟩. In this case, discord

and opinion diversity is the same. This is not too surprising. Indeed (5.30) is a

rescaled version of the discord between independent agent pairs (5.12), which as I

remarked earlier as akin to an entropy of x.

The equilibrium opinions only depend on the relative values of z(0), . . . ,z(S)

versus one another. Discord depends on those as well, but also on the total amount

of zealots present in the system. Multiplying each z(s) by the same amount c will not

impact ⟨Φ⟩, while the new discord is given by

⟨ρ⟩= 2c(N−1)z(r)z(s)

z(1+(N−2)cz)
. (5.39)

This effect vanishes in the large z regime, where scaling it up begins to show

diminishing returns.

5.3.3.4 Markov chain dynamics with stubborn agents

In Section 5.5 I use a description of the voting dynamics based on Markov chain

modelling. This requires the computation of the exponential of the transition rate

matrix, an operation that can be costly. This work was done in the first year of the

PhD, and I have encountered since other strategies which in retrospect would have

been more efficient. The method proposed here can be improved for more efficiency

by using the voting dynamics as described in Section 5.3.3.1.

Consider a complete network of size N, and S = {0,1}. Let N1(t) denote the

number of nodes with opinion 1 at time t; it will be the quantity of interest. I fix

n1 := N1(0). I assume that some agents are stubborn and never change opinions.

They form an inflexible core of partisans within a group who bear great power of

persuasion over the whole population: politicians, journalists, lobbyists... These
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agents impact the dynamics in a similar way as zealots do. Thus, when working in

this context, I let z(0) denote the number of stubborn agents promoting opinion 0,

and z(1) the number of stubborn agents promoting opinion 1.

Because z(0) and z(1) nodes will always be in respective states 0 and 1 no

matter what, N1(t) is comprised between z(1) and N− z(0) for all t. The idea behind

my analysis is that it describes a birth-and-death process over the opinion-space

{z(1), . . . ,N− z(0)} with transition rates, for all z(1) ≤ k ≤ N− z(0),
qk,k−1 = (k− z(1))(N− k)/(N−1)

qk,k+1 = k(N− k− z(0))/(N−1)

qk,k =−qk,k−1−qk,k+1.

(5.40)

Here, qk,l is the transition rate from state {N1(t) = k} to state {N1(t) = l}. To

move from state k to k− 1 we need a non stubborn opinion-1 node to adopt the

state of an opinion-0 node. There are k− z(1) non stubborn opinion-1 nodes and

for each of these, a proportion (N− k)/(N− 1) of the others is in state 0, hence

qk,k−1 = (k− z(1))(N− k)/(N−1). I obtain qk,k+1 via an analogous reasoning and

define qk,k =−qk,k+1−qk,k−1. Since the process only evolves by unit increments or

decrements, qk, j = 0 if j /∈ {k−1,k,k+1}. As expected we have qz(1),z(1)−1 = 0 and

qN−z(0),N−z(0)+1 = 0. Finally I let Q = [qi j]i, j denote the transition rate matrix.

From there I am able to compute the distribution of N1(t) and its expected value

at any point in time. Indeed, the probability for N1 to equal k at time t is

pn1,k(t) := [etQ]n1,k. (5.41)

Hence,

EN1(t) =
N−z(0)

∑
k=z(1)

k pn1,k(t). (5.42)

is the expected number of opinion-1 nodes at time t.
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5.4 Experiments on synthetic networks

I now provide a first insight on the behaviour of discord probabilities on synthetic

networks. I analyse empirically how it depends upon both the topology of the

network and the influence exerted by zealots. I also study social networks split

between two antagonistic factions supporting different opinions.

5.4.1 Dependency between opinions

One may be interested only in certain values of ρi j, and wishing to avoid the burden

of computing them all. In this case it may be tempting to use

ρ̃i j = ∑
s∈S

x(s)i (1− x(s)j ), (5.43)

as given by Eq. 5.12, even if σi and σ j are not independent. While sometimes

effective, this approximation does not always fare well—cf. Figure 5.1. As the

dependency of i and j’s opinions relies on the strength of paths joining them and the

similarity of their ancestry, I expect ρi j to decrease with those, and the error made

by ρ̃i j to increase. I verify this at equilibrium on the four toy datasets introduced in

Section 4.4.3. Ground-truth communities being given, I set z(s)i to a random uniform

value if s is i’s community, and to zero otherwise. To quantify path strength and

ancestry similarity I use respectively w∞
i j +w∞

ji and cos(w∞
i ,w

∞
j ).

Results are shown in Figure 5.2, and confirm my hypotheses: ρi j decreases with

the strength of paths joining (i, j) and the similarity of their ancestry, while the error

made by ρ̃i j increases. Moreover, the error decreases with the total zealousness of i

and j. This is not surprising, as higher values of ∥zi + z j∥ mean lighter weights on

inter-agent edges and thus less influence from peers. I also show the distribution of

errors in Figure 5.3. The errors are quite low on average, but can peak very high

for certain agent pairs (maximum error ranges from 15% for football to 187% for

polblogs). The least accurate ρ̃i j is on zachary, probably because of the higher

path strengths due to its smaller size.
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Figure 5.2: Comparison of ρi j and ρ̃i j on real-life datasets at equilibrium. X-axis, log

scale: path strength w∞
i j +w∞

ji, ancestry similarity cos(w∞
i ,w

∞
j ), total zealousness

∥zi + z j∥. Y-axis, linear scale: moving average for ρi j (dotted blue line) and
relative approximation error |ρi j− ρ̃i j|/ρi j (orange line) for all dependent agent
pairs.

5.4.2 Echo chambers and opinion diversity with communities

I now analyse the ECE and the AOD in polarised networks split into antagonistic

factions. I generate SBM graphs (cf. Section 2.2.3) with two communities C0 and C1,

supporting opinion 0 and 1, respectively. I then calculate the equilibrium values of

⟨Γ⟩ and ⟨Φ⟩, for various values of the model parameters. Namely, I fix the in-group

link probability to pin = 0.1 and vary the out-group link probability pout. I consider

different values for the zealousness of each community. I compute ⟨Γ⟩ and ⟨Φ⟩
over the whole network and within each community, i.e. only considering in-group
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Figure 5.3: Distribution of the relative approximation error |ρi j − ρ̃i j|/ρi j on real-life
datasets at equilibrium, obtained via kernel density estimation. Averages are
indicated in the legend.

edges. Results are illustrated in Figure 5.4. In the submission to Physical Review E I

focused on the generalised active links density, for which some plots are shown in

Appendix C.

When reinforcing connections between different-minded communities, the

novel paths of influence create more diverse information flows, and thus a higher

exposition to contradicting beliefs. There are two main consequences one could

expect from this. Agents may revise their viewpoint to incorporate adverse ideas,

leading the system towards a more consensual state with higher ECE and lower

AOD. Alternatively, they may fiercely cling onto their preexisting opinions, resulting

in lower ECE and higher AOD—the so-called backfire effect (Bail et al., 2018;

Schaewitz and Krämer, 2020). As we see now, both scenarios can happen.

Overall, when one community is much more zealous than the other z =

(0.1,0.5),(0.1,0.9), higher connectivity between them means higher echo chamber

effect, and lower diversity of opinions (Figure 5.4, left plots). In other cases, the ECE

tends to decrease as more incongruent connections are introduced. The behaviour of

the AOD is interesting. For larger values of zealousness, it goes up until pin = pout,

then goes back down. Thus in these cases, while it might be a good idea to create

more links between communities, it is crucial to not overdo it. The only case where it
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is guaranteed for opinion diversity to increase as I add more out-group links is when

z = (0.1,0.1), that is when both communities are equally—and only lightly—biased.

The evolution of ECE within C0 exhibits the same trends (Figure 5.4, upper

middle plot). When C0 is much less zealous than C1, for z = (0.1,0.5) and z =

(0.1,0.9), adding out-group links can surprisingly increase the ECE within C0. While

adding too few of them will reduce ECE in the community, once they reach a

critical mass we observe an increase in ⟨Γ⟩. This stems from the fact that C1 has

fiercer partisans, meaning opinion 1 gets more and more prevalent in the network as

connectivity between the two communities goes up. Thus even within C0, holding

opinion 1 guarantees more agreement with peers. This is also why, in community C1,

the ECE always decreases and the AOD mostly increases—except for high values of

z and of pout (Figure 5.4, right plots).

However, this prevalence of opinion 1 negatively impacts the AOD in C0, as it

mostly decreases when there are too much out-group links (Figure 5.4, lower middle

plot). Thus, again, it is important to not add too many out-group links if we are

looking to increase AOD and reduce ECE. We can have low ECE and low AOD at

the same time, which highlights the importance of distinguishing between the two

in general settings. Indeed for complete graphs, as I prove in Section 5.3.3 below,

AOD is the opposite of ECE and such phenomenons cannot take place.
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Figure 5.4: Network of N = 100 agents with two communities C0 and C1. The s-zealot
exert a total influence z(s) on each agent in Cs and none on others. In-group
link probability is fixed at pin = 0.1, while the out-group link probability pout
and zealousness z = (z(0),z(1)) vary. Results are averaged over 20 agent graphs
generated under the Stochastic Block Model, for the whole network (top) and
within each community (middle, bottom). Left: ECE. Right: AOD. The plots
have different scales for clarity, but the purpose is to focus on the qualitative
dynamics rather than exact values.

5.5 Predicting elections results with the EV Model

My goal is to forecast the results of general elections in the UK and presidential

elections in the US, via the theory developed in Section 5.3.3.4 for the EV Model.
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I am interested in the percentage of popular votes won by the two major parties –

Conservative and Labour in the UK, Republicans and Democrats in the US. The

datasets are presented in Section 4.4.1. I assume these quantities correspond to

pointwise observations of independent realisations of the EV Model on a complete

network with N = 100 nodes. I assume some of the voters are stubborn and always

vote for the same party, there are z(s) such partisans for party s. The result of each

election can then be forecast via Eq. 5.42, provided I have an estimate of the quantity

of stubborn nodes z := (z(0),z(1)). Thus, my analysis is done in two steps: first I

make for each elections an estimate of z based on previous results, then Eq. 5.42

gives me the expected value for the coming election that I use as a predictor.

5.5.1 Setting

I present my method in the UK case, but note that it directly translates to the US case

by replacing Conservative and Labour with Republicans and Democrats. Because

the model does not account for decimal values values I round the percentages to

the nearest integer. Different parties are present, but because my model applies to

a two-sided situation only, I cannot consider all of them at once. Thus, I aggregate

all non-Conservative parties under the label 0 while Conservatives are attributed

label 1. I let xi denote the number of seats won by Conservatives on the ith elections

and ti the elapsed time, in years, since the starting point 1922. There have been

M = 27 elections total, with the last one taking place in 2019. Thus t1 = 0 and tM =

2019−1922 = 97. I let xM denote the percentage of votes won by the conservatives

in 2019. To concur with my theoretical framework I consider one seat won by the

Conservatives (resp. non-Conservatives) as the observation of an node being in

state 1 (resp. 0) amongst N = 100 of them. The xi’s then correspond to pointwise

observations at times ti’s of a realisation of the process N1(t). All the reasoning

described here and in the following will also be applied independently in the cases

Labour versus non-Labour, Republican versus non-Republican (US) and Democrat

versus non-Democrat (US).
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5.5.2 Estimation of z and forecast

To be able to use Eq. 5.42 to make predictions, I first need to estimate the proportion

of potential stubborn nodes in the population, that is the percentage of votes which

are guaranteed for or against Conservatives. Let z(0) denote the number of stubborn

opinion-0 (non-Conservative) nodes and z(1) that of opinion-1 (Conservative) ones. I

look for the values (z(0)⋆ ,z(1)⋆ ) that maximise the log-likelihood of the observed data.

Let’s say I want to predict results for the ith election. Because I need at least two

datapoints to make an estimation, I require 3≤ i≤M+1. Let p(z
(0),z(1))

k,l (t) denote

the theoretical probability for N1(t) to go from k to l in t units of time when there

are respectively z(0) and z(1) opinion-0 and opinion-1 stubborn nodes. I seek to solve

argmax
z(0),z(1)

i−2

∑
j=1

log
(

p(z
(0),z(1))

x j,x j+1 (t j+1− t j)
)

(5.44)

Indeed, p(z
(0),z(1))

x j,x j+1 (t j+1− t j) is by definition the probability for Conservatives to win

x j+1 percent of the votes in the ( j+1)th election knowing they won x j percent in the

jth one. Thus I seek to simultaneously maximise the likelihood of all past elections

results. Let Q(z(0),z(1)) be the matrix with entries calculated via (5.40). By Eq. 5.42,

we have that (5.44) is equivalent to

argmax
z(0),z(1)

i−2

∑
j=1

log
[
exp
(
(t j+1− t j)Q(z(0),z(1))

)]
x j,x j+1

(5.45)

The computation of the matrix exponential is typically done in cubic time and

quickly becomes intractable as the size of the matrix increases. Here however,

because N = 100, the number of possible couples (z(0),z(1)) is small enough here

that (5.45) can be solved by directly computing the sum for each of these couples

individually. The optimal value z(1)⋆ for z(1) then gives me an estimation of the

percentage of votes “locked” by the Conservative party, proportion of the population

that will always root for them. The optimal value z(0)⋆ for z(0) is an estimate of the

quantity of such votes for all other parties aggregated.

To make a forecast for the ith election, I just have to apply Eq. 5.42 with
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Q = Q(z(0)⋆ ,z(1)⋆ ), n1 = xi−1 and t = ti− ti−1. Eq. 5.42 then gives me the expected

percentage x̃i of votes gathered by Conservatives on that occasion. This can then

be compared to the actual value xi to assess the efficacy of my approach. I also

calculate the standard deviation, to see how far the datapoints fall from the theoretical

predictions.

5.5.3 Notes on the methodology

I set the number of agents to N = 100, meaning that a result of 54.7% in the data is

translated to N1(t) = 55. Thus, I lose in precision, and would probably obtain better

results with a higher value of N. However, this would significantly slow down the

optimisation process described by Eq. 5.44-5.45. For each possible pair of (z(0),z(1))

I must compute the matrix exponential of Q(z(0),z(1)), which is done in cubic time.

This is still manageable with N = 100, but would become way too long with higher

values. Future research could look into ways to accelerate this process.

I set the time scale such that one time unit in the Voter Model corresponds to

one year in real life. Thus, each agent is supposed to update their opinion once each

year, on average. I did try a few other values in the range [10−1,101], but obtained

worse results. There is no reason to believe that the chosen value is optimal however,

and a more thorough search might reveal more adapted values.

My prediction relies on the use of stubborn agents. I assume some of the N

agents are strongly in favour of one party against the other. The first step in my

prediction method, that is the optimisation described by Eq. 5.44-5.45, is dedicated

to inferring the number of stubborn agents. The inference process is dynamical,

that is after each election I adjust my estimation of (z(0),z(1)). That is because, I

believe this quantity can evolve over time, especially as the results of elections often

reshape the political landscape of a country. Moreover, the results of this inference

not only serves the prediction, it is also by itself a valuable information. Knowing

the “non-swing” voters, that is the proportion of the population backing each party

no matter what, gives precious insights on the political landscape of the country.

Future research could also discard the possibility of stubborn agents, and use Eq. 5.7

to predict the evolution.
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To summarise, Table 5.1 describes the correspondence between the model

features and reality.

Table 5.1: Correspondence between model features and reality, and chosen values for the
parameters.

Model Reality Value
Number of agents N Size of the voting population 100

Time unit
Average number of opinion changes
per voter per year 1

Stubbornness values z(0),z(1)
Number of unconditional supporters
for party 0, for party 1 -

Evolution of z(0),z(1)
The result of elections affects the
number of unconditional supporters -

5.5.4 Results for the UK

I show in Table D.1 (Appendix D, left) the estimated values for (z(0)⋆ ,z(1)⋆ ), updated

with each new election. They seem to globally stabilise between 15 and 25 for both

parties. Look at the last value in the Labour case for example, which is (24,15).

According to my model, this means there is an estimated proportion of 15% of

voters that will always vote Labour. On the other side, 24% of voters are found

to be stubborn “anti-Labour” – by that I don’t mean that they are fundamentally

against the Labour party but rather that they will never vote for it. Note that these

estimates fluctuate according to the variability of the data. For example in 1922

and 1923 there were twice in a row 38% votes for Conservative1 and as a result it

was estimated that 38% of all voters are stubborn pro-Conservative and the 62% are

stubborn against the party. This is indeed what maximises the likelihood, with this

configuration yielding a probability of one for the observed values. On the other

hand, with pro-Conservative votes jumping from 38% to 61% in 1935, estimated

values of z(0) and z(1) dropped significantly to account for the wide range covered by

the data.

In Figure 5.5 (top plots) I compare my predictions, that is the expectations

x̃i, with the real outcomes xi. I plot both values for each election starting with the

1Remember that those value are rounded to the nearest integer to fit the needs of my model—the
actual results were 38.5% and 38%.
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third one that took place in 1924, because the optimisation problem (5.45) requires

i ≥ 3. For both parties, most values seem to fluctuate around the 40% mark. The

global tendency of the real outcomes looks respected by the predictions, albeit with

less variability. Also note that most real values appear to fall within one standard

deviation from the predictions.

To get a better insight I look at the absolute errors |x̃i− xi| of my predictions.

I plot running averages over the last 5 elections in Figure 5.6 (top). After a few

erratic first years they seem to stabilise between 2% and 8%. More precisely, if I

discard the first few years up until 1960 where the model lacks sufficient amount

of data to properly calibrate, I get MAEs of respectively 4.63% and 5.23% for

Conservative and Labour. Minimal values of 0.06% for Conservatives in 1979 and

0.40% for Labour in 2001 are observed, showing that my method was able to make

very accurate predictions in these cases. Surprisingly however, the errors do not

seem to monotonically decrease over time, but rather fluctuate. As a matter of facts,

peak absolute errors were observed in 1983 (Labour, 13.0%) and 1997 (Conservative,

13.6%).

5.5.5 Results for the US

I apply the exact method described above to the case of presidential elections in the

United States. As before I independently consider two cases, Republicans versus

non-Republicans and Democrats versus non-Democrats. Presidential elections in

the US take place every four years and I start with the year 1912, then 1920, 1924,

and so on. Here again, keep in mind that due to how the American system work,

the party with the most popular votes does not necessarily win the elections. The

first estimation I am able to make is based on the first two elections and thus my first

prediction is for 1924.

I observe similar results as in the UK case. Stubborn values (Appendix D,

right) estimated (z(0)⋆ ,z(1)⋆ ) are close, albeit a little bit lower – stabilising at (18,17)

for Republicans and (16,14) for Democrats. Again, a majority of the real values

fall within one standard deviation of the prediction (Figure 5.5, bottom plots). The

prediction curves also looks more stable than the slightly spiky ones with real
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values. Note that because of the two-party system in place in the United States, both

Republicans and Democrats see their share of popular votes fluctuate around the 50%

mark. In the previous case, it was rather around 40% because of the space occupied

by smaller parties such as Liberal Democrats or Scottish National Party amongst

others. The two-sided aspect of my model – always one party versus another – may

thus be more adapted to the study of the US system.

As for the errors, running averages over the last 5 elections are shown in

Figure 5.6 (bottom). Here again after a few erratic first years values appear to be

comprised between 2% and 8%. However, where errors in the UK case seemed to

increase in the last few years, here they to are dropping down. In fact, my most

accurate forecast regarding Democrat votes is for 2016, with only 0.04% error. For

Republicans it is in 1940 with 0.10%. Peak errors were again around 13% for both

parties, in 1972 (Republicans, 14.0%) and 1964 (Democrats, 12.3%). The MAE

over all elections, starting in 1940 when forecasts start to stabilise, is 4.27% for

Republicans and 4.83% for Democrats. This is slightly better than in the UK case

(4.63% and 5.23%). The MAE error over both cases is then 4.74%.

5.5.6 Comparison with other methods

I compare these errors with those obtained using a naı̈ve prediction method, and a

baseline. The naı̈ve method predicts for an election the same result as the previous

one. The baseline method predicts a random results amongst all past ones.

For the UK, The naı̈ve method yields an average errors 4.75% and 3.44% for

Labour and Conservative, respectively. It is thus more effective than my method in

this case. The baseline fared worse, with average errors of 7.53% and 7.24%. For

the US, both alternatives yielded worse results than my method, with errors of 5.35%

(naı̈ve, democrats), 6.60% (naı̈ve, republicans), 8.58% (baseline, democrats) and

9.48% (baseline, republicans).
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Figure 5.5: Percentage of votes for each party over years, prediction and reality. The
prediction is computed as the average of the distribution of N1(t), obtained via
Equations 5.45 and 5.42. Shaded areas cover one standard deviation from the
mean. Top: United Kingdeom. Bottom: United States.
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Figure 5.6: Absolute error made by the model, running average over the last 5 elections.
Left: UK. Right: US.

5.6 Discussion

In this chapter, I analysed the Enhanced Voter Model, that generalises the traditional

voter model. I first provided some novel theoretical results in a general context,

applicable to many complex settings. Then, I evaluated the accuracy of the model

prediction in a basic case of elections forecasting.
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5.6.1 Theoretical findings

I expressed the metrics of interest, the ECE and the AOD, in this context. Importantly,

I demonstrated how to compute discord probability between any two agents. In some

cases the opinion distributions are independent and the calculation is straightforward.

Otherwise, these probabilities are solution of a large linear system of differential

equations. Laying the ground for my method to steer the echo chamber effect, I

computed the exact ECE and AOD in complete networks.

Knowing discord probabilities allows for a precise computation of the active

links density, a widely studied order parameter of the voter model for which no

general formula was known. I extended its definition and proposed the generalised

active links density, to account for long-range, weighted interactions.

Through experiments on toy datasets, I showed that, when agents are closely

connected or share ancestors, (i) discord probabilities diminish, and (ii) the ap-

proximation errors made by assuming independent distributions augment. Highly

zealous pairs of agents were also more forgiving in the second case, yielding low

approximation errors.

I also analysed the evolution of the ECE and the AOD in polarised networks

split into antagonistic factions. Interestingly, I observed that adding links between

groups can sometimes reduce ECE and increase AOD, and sometimes the opposite.

Using such strategies in real life should thus be met with precautions, in order to

not entail adverse effects. Moreover, except for simple cases such as the complete

graph, the behaviour of ECE and AOD is not always symmetrical. This highlights

the importance of using both metrics in complex settings.

5.6.2 Empirical evaluation

To predict election results, I considered official results of past elections as observa-

tions of independent realisations of the voter model on a complete network. From

there I was able to perform time-evolving estimates of the model parameters and

use them to forecast an outcome. My model yielded an MAE of 4.74%, reaching

absolute errors as low as 0.04% and as high as 14%.

In their review, Gayo-Avello (2013) suggest that any model used to predict
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the elections outcome should not have an MAE higher than 1% or 2%. This is

because the result of an election is more often than not the matter of just a few

percents. According to this standard, my MAE is not low enough to reliably predict

the outcome of an election. Moreover, my method performed worse than both a

naı̈ve and a baseline method in the case of the UK. The results were better for the

US however, which might be due to the stricter two-party nature of the system.

Although my method did not yield significant enough results here, I believe

it is an interesting step in a novel direction. First of all, it only relies on official

data. Second, my model does not only forecast the elections results, it also gives me

estimates of the proportion stubborn voters, that is the proportion of individuals who

will always—or never—vote for the considered parties. This provides meaningful

insight on the political landscape of the considered areas.

Several extensions of the model could be considered to improve its accuracy.

First of all, the number of agents N and the time unit could be adjusted for better

precision. Second, dynamical estimates could be made without accounting for the

presence of stubborn agents. Third, adding in-between election polls to the data

would go a long way in improving the estimates. With a few years gap from one

election to another, it is too wide a range of possibilities for the model to account for.

Fourth, one could take a deeper look into the past of a country’s results and try to

detect tendencies about landslide victories, incumbency reelection and so forth. I

believe that having a deeper understanding of the specific country one is working

with could substantially improve the model calibration process. Finally, combining

my method with Twitter data-based estimations may lead to higher accuracy.



Chapter 6

The Extended Newsfeed Model for

opinion diffusion in online social

platforms

I extend a previous model from Giovanidis et al. (2021, 2019), that describes the

diffusion of content throughout an OSP. The original works were interested in user-

to-user influence. Here, I introduce opinions and calculate the AOD and ECE, as

described in Section 4.1. I also propose a novel feature, preferential reposting,

that improves the accuracy of the model when compared with real data. I perform

an empirical evaluation of the #Elysée2017fr dataset. This was published in

Vendeville et al. (2023a). Except from Section 6.1 where I introduce the original

model, all the material in this chapter is a novel contribution from this PhD.

6.1 General setting
I now briefly describe the general setting, as proposed in the original model. Consider

N users who interact on a social platform. I let Li denote the set of all leaders of user

i, that is users that i follows. Each user repeatedly creates new content (self-posts) or

spread content created by others (reposts). The newsfeed of a user contains posts

propagated by their leaders. All newsfeeds are of finite size M. I make the following

fundamental modelling assumptions:

Markovian activity User n is endowed with two exponential clocks of respective
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parameters λn and µn. Whenever the first one rings they create a new self-post,

while the second one prompts them to visit their newsfeed and select an item

to repost amongst all content available there.

Random selection The selection of an item to repost when visiting the newsfeed is

made uniformly at random.

Random eviction Any new entry into a full newsfeed will evict an older one chosen

uniformly at random.

These assumptions are made for the sake of analytical tractability, and it is shown in

Giovanidis et al. (2021) that they can be relaxed.

6.2 Introducing opinions
In the present extension, I add the labelling of posts by the opinion they express.

To do so, I assume that user n produces self-posts expressing opinion s at rate λ
(s)
n ,

so that ∑s∈S λ
(s)
n = λn. In other words a proportion λ

(s)
n /λn of all self-posts from n

expresses opinion s. I call s-post a post expressing opinion s.

Let p(s)n denote the average proportion of s-posts on the newsfeed of n at

equilibrium. It is obtained via

p(s)n ∑
k∈Ln

(λk +µk) = ∑
k∈Ln

(λ
(s)
k +µk p(s)k ). (6.1)

Assuming the user graph is strongly connected and at least one user has λ > 0, the

system has a unique solution (Giovanidis et al., 2021). Equation 6.1 is a balance

equation that equates the input and output rates of s-posts on the newsfeed of n

induced by the activity of its leaders. On the left-hand side is the rate at which

s-posts are evicted at random from the newsfeed to be replaced by fresher content.

On the right-hand side is the rate at which s-posts propagated by the leaders of n

enter the newsfeed. It decomposes in the self-posting rates of leaders of n about party

s, and the reposting rates of content s from leaders of n, through their newsfeeds.

Note that p(s)n is the probability to uniformly select an s-post at equilibrium.
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To efficiently compute (6.1), I rely on the same iterative algorithm as for (5.21)

in the previous chapter. The convergence rate depends on the spectral radius of the

matrix defining the linear system. A proof of convergence is found in (Giovanidis

et al., 2021, Thm. 4).

6.2.1 Echo chamber effect and opinion diversity

Let me define for every user i,

Si = {s ∈ S : λ
(s)
i > 0}. (6.2)

It is the set of all opinions that user i agrees with and posts about. I let Si denote its

size. To quantify the ECE for i I use:

Γi =
1
Si

∑
s∈Si

p(s)i , (6.3)

which is the average proportion of opinions on the newsfeed of i that they can agree

with. I let ⟨Γ⟩ denote the average of this quantity over all users.

I quantify the AOD via the Φ-score:

Φi =
S

S−1

S

∑
s=1

p(s)i (1− p(s)i ). (6.4)

A value of 0 indicates that the newsfeed of i only contains a single opinion, describing

a perfect echo chamber. On the other hand when Φi = 1 all opinions are equally

represented on the newsfeed with the same average proportion of 1/S. Again, ⟨Φ⟩
will denote the average of (6.4) over all users.

Note that I could have chosen to measure opinion diversity via the entropy

−∑
(s) p(s)i log p(s)i of the newsfeed of i—and similarly for the EVM. Its use is ubiq-

uitous and its extrema lie in the same place as Φi. However the latter has the

nice property of being quadratic in pi which allows for considerably more efficient

optimisation.
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6.2.2 Reposting preferences

For higher accuracy, Vendeville et al. (2023a) introduces reposting preferences: when

user n visits their newsfeed, they choose what to repost not uniformly at random

but with certain probabilities, that describe their preferences towards certain type of

content. This seems like a natural feature to incorporate, and indeed the retweet graph

exhibits sparser connections between parties than the follow graph (Figure 4.1).

The probability for n to repost an s-post is set to ν
(s)
n = λ

(s)
n /λn. Unfortunately,

this makes the mathematical analysis more complicated, and I am not able to derive

analytical formulas for the steady-state. Indeed, Eq. 6.1 becomes

p(s)n ∑
k∈Ln

(λk +µk) = ∑
k∈Ln

(
λ
(s)
k +µk

ν
(s)
k p(s)k

∑r∈S ν
(r)
k p(r)k

)
, ∀n,s. (6.5)

The system is not linear anymore, and it will be more difficult to solve optimisation

problems that rely on it. It is also not obvious how to treat the case where the denom-

inator in the right-hand side is zero, i.e. the user has no interest for items that appear

on their newsfeed. This is why, I restrict myself to the case with non-preferential

reposting. I will however present some results obtained with preferential reposting

via simulations. Note that, as we see in Figure 6.1, with reposting preferences the

size M of the newsfeeds has an impact on the steady-state of the system. This impact

is salient for M = 1,2 but diminishes with higer values. In my experiments with

reposting preferences I usually set M = 5 or M = 10.
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Figure 6.1: Impact of the newsfeed size M on the steady-state of the system when using
preferential reposting. Complete network with N = 5 and two opinions 0 and
1. Activity rates are chosen uniformly at random in [0,1]. For each M I run a
simulation with 105 events and compute estimates of p(0) by averaging over
the last 9× 104 events. I skip a reposting event by user n if no item on their
newsfeed has ν

(s)
n > 0. I plot p(0) per user.
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6.3 Simulating the model

I describe how to obtain values of p(s)n for all n,s via a single simulation. To simulate

the model, I start with newsfeeds and walls filled with content labeled uniformly at

random. Let news(n) be a S-size vector, that contains the initial proportion of posts

with each label on the newsfeed of n. I initialise pn as a zero vector of size S.

6.3.1 Base algorithm

At each step, I draw 2N random exponential variates X1, . . .XN ,Y1, . . . ,YN with pa-

rameters λ1, . . . ,λN ,µ1, . . . ,µN . The waiting time before the next self-post of user n

is given by Xn (resp. repost, Yn). Overall, the next event will happen in

dt := min {X1, . . .XN ,Y1, . . . ,YN} (6.6)

time units. If dt = Xn, I create a new post. The label of this post is s with probability

λ
(s)
n /λn. If dt = Yn, I select a post at random from the newsfeed of n to be reposted.

The freshly created or reposted piece of content is then inserted in the newsfeeds of

all followers of n. Each insertion replaces an older post, chosen uniformly at random,

and I update news accordingly. Then I update p as follows:

pn← pn +dt×news(n). (6.7)

At the end, I divide pn by the total simulation time to obtain its final value. The

simulation must be long enough for the system to reach equilibrium, and earlier

steps must be discarded from the computation. Typically I simulate N×10k steps

and discard the first N×10k−1.

I do not study the convergence time here, however given the form of Equa-

tion 6.1, I believe it must be related to the spectral radius of the matrix describing

the linear system. Simulations for the original model (Giovanidis et al., 2021) exhib-

ited a difference between simulated averages and equilibrium values that decreases

exponentially with time, and was about 1.5% after N×107 simulation steps.
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6.3.2 Extensions

The algorithm is straightforwardly adapted to account for other selection and eviction

policies, such as studied in Giovanidis et al. (2021). With preferential reposting, I do

not use a uniform distribution when selecting an item to repost amongst those on a

newsfeed. Instead I choose to repost an item labeled s with probability νs. When n

visits their newsfeed and find no item labeled s such that ν
(s)
n = 0, they do not repost

anything. In Section 7.2.3 I will need to account for personalised recommendations.

To simulate user n receiving recommendations supporting party s at rate y(s)n , I simply

draw an additional exponential variable of parameter y(s)n at each iteration. When it

realises the minimum, I insert a post labeled s in the newsfeed of n.

6.3.3 Memory-less property

Each of X1, . . .XN ,Y1, . . . ,YN gives me the waiting time before a future event. Storing

them all in memory, and rearranging the list every time a new event is drawn,

is computationally cumbersome. The memory-less property of the exponential

distribution provides a work-around, allowing me to simply draw 2N values, keep

the minimum, and re-draw at the next iteration. Indeed, if X is distributed under the

exponential law, it holds that:

P(X > s+ t|X > s) = P(X > t). (6.8)

This memory-less property means that the past of X does not affect its future be-

haviour. The time we expect to wait before the occurrence of an exponentially

distributed event is independent of how long we have already been waiting. In our

context, the occurrence of the next posting or reposting event is not influenced by

the previous ones. I refer the interested reader to Norris (1997, Theorem 2.3.1 and

Section 5.2) for a proof of Eq. 6.8, and a deeper analysis of how this property applies

to the simulation of stochastic processes.

6.3.4 Example dynamics

To observe the evolution of the system in a simple case, I simulate the model
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dynamics on the Zachary dataset—cf. Section 4.4.3. Each user is assigned activity

rates at random. There are two ground-truth communities, I set λ
(s)
n to a random

uniform number in [0.5,1] is n is in community s, and to a random uniform number

in [0,0.5] otherwise. I set the newsfeed size to M = 10 and perform two simulations:

one without preferential reposting, and the other with. I plot the evolution of p(0) for

each user in Figure 6.2.

Unsurprisingly, in both cases users in community 0 almost always have a higher

p(0) than those in community 1. This effect is more pronounced in the preferential

reposting scenario, are users are even less likely to propagate outside content in

their community. Moreover, users with more outside connections have values of p(0)

closer to 0.5, which reflects the fact that they are exposed to more diverse content.
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Figure 6.2: Simulation of the Zachary dataset. I perform 104 simulation steps and compute
running averages of p(0) for each user, with a window size of 2,000. Red lines
show the running averages for users of community 0, and blue ones for users of
community 1. Thicker lines indicate users with a higher number of connections
with the other community. Left: without reposting preferences. Final average
p(0) in community 0: 0.65, in community 1: 0.36. Right: with reposting
preferences. Final average p(0) in community 0: 0.73, in community 1: 0.16.

6.4 The Newsfeed model on OSP data
I now compare the equilibrium the system as predicted by the model with empirical

estimates made on the #Elysée2017fr dataset. I refer to Section 4.4.2 for a descrip-

tion of the dataset. Are given the follow graph, and a list of posts and reposts with

timestamps and user ids (the trace). This allows me to infer the values of λ and µ .
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For the Φ-score I am concerned with opinions, thus I additionally require knowledge

of the political leanings of users, which is given in #Elysée2017fr. First I explain

how to infer the model parameters, that can be used to derive theoretical values

of p. Then I explain how to make empirical estimates of p. These theoretical and

empirical values are then compared, and I derive corresponding values of Φ.

6.4.1 Parameters inference

To compute the p I need, for every user n: posting rate λn, reposting rate µn, and the

list of leaders Ln. The latter is given by the follow graph. I estimate λn (resp. µn)

as the total number of tweets (resp. retweets) posted by n divided by the duration

covered by the dataset. To compute the Φ-score I additionally need to know how

is λn distributed over the parties S. How to estimate this distribution may differ

depending on the precision level of political leanings available. In #Elysée2017fr

I am provided with the set Sn for each user, of size one or two. Then, I set

λ
(s)
n = 0 if s /∈ Sn, else 1/|Sn|. (6.9)

In practice people may post about other parties than those they support, and I leave to

future research the estimation of more precise labels based on richer features. Once

the parameters are known, one can use (6.1) to compute the newsfeed distributions

p.

Most of the time, the data I have access to is incomplete. It only covers a certain

period of time, and some tweets and retweets might be missing. In consequence, the

estimated parameters are error-prone and most of the time would not match those

obtained with an extended or reduced version of the dataset. Ideally, I would like

to know how high these errors are. To evaluate them and thus have an idea of the

accuracy of the parameters I estimate, I can perform several parameter estimations

on different subsets of the data and compare the results. I did not do so here because

of time constraints, but further research shall take that into account.
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6.4.2 Empirical estimation of Φ-score

In order to estimate empirical values of Φ, I use a method (hereafter, the emulator)

developed in Giovanidis et al. (2021, 2019) that uses the trace to estimate p. I first

label each tweet by the affiliation of its creator. If this information is not available

I label by ‘?’. Because the size of the newsfeeds does not matter according to the

model (Giovanidis et al., 2021), I assume for simplicity that all users have newsfeeds

of size 1. I do not know the initial content of each newsfeed and assume they all

contain a post of unknown origin, labelled ‘?’. As soon as a user tweets or retweets

something, the post is inserted into the newsfeeds of their followers, evicting any

previous post that was there. Some users are affiliated to two different parties, so that

the corresponding label is two-sized: (s,s′). If during a period of time the newsfeed

of n contained a post with such a label, I assume that half the time the newsfeed

contains a post labeled s and the other half a post labeled s′. Finally to obtain p(s)n I

compute for each user n and label s the proportion of time their newsfeed contained

a post labelled s. I disregard periods during which the newsfeed contained a post

labelled ‘?’.

6.4.3 Opinion distribution on newsfeeds and echo chamber

effect in #Elysée2017fr

I evaluate the accuracy of theoretical values for the Φ-score (6.4), made via Eq. 6.1,

against empirical estimates. I use the #Elysée2017fr dataset described in Sec-

tion 4.4.2. Theoretical and empirical values of p are derived as described in Sec-

tion 6.4.1 and Section 6.4.2. Again, model parameters are inferred via Section 6.4.1,

and I obtain empirical estimates of p via the emulator described in Section 6.4.2.

6.4.3.1 Opinion distribution on newsfeeds

I display in Figure 6.3 the values of p(s)n and Γn from both the empirical evaluation

and the theoretical model. The difference between both is 0.093 on average, and

overall tendencies are respected as the Pearson correlation coefficients are close to 1.

Moreover the ranking of parties based on their overall share of content, defined for

party s as the average of p(s) over all users, is the same as for empirical estimations
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(Figure 6.5). Note that it is also identical to the ranking of parties according to the

number of users affiliated to them (Figure 4.1).

However the model is too moderate as it tends to overestimate the small values

of p(s)n and underestimate the high ones. This is due to the random reposting policy:

in the model users repost content without distinction for the opinion expressed within.

This is not the case in practice, as people are more inclined to interact with congenial

content—about 89% of retweets in the dataset are between supporters of the same

party.

In Figure 6.4 I compare empirical estimates with averages obtained in simula-

tions using reposting preferences, as in Section 6.2.2. Whenever user n visits their

newsfeed at time t, the choice of which item to repost is made at random under

the following probability: if p(n)(t) is the M-sized vector describing the state of n’s

newsfeed at that time, the user will repost an item from party s with probability

ν
(n)
s p(n)s (t). If no item comes from a party with ν > 0 then nothing is reposted. I set

K = 1 and M = 5—I obtain similar results with M = 2,10. This time, I observe a

very tight fit between the resulting values of p and empirical estimates. Thus, further

research shall strive to solve analytically the case with reposting preferences.

6.4.3.2 Echo chamber effect

I can obtain corresponding values of the ECE and of the AOD via (6.3) and (6.4),

respectively. Additionally, I also calculate their values under preferential reposting

behaviour, via simulations. I show in Figure 6.6 the resulting cumulative distributions

of Φ and Γ, obtained by kernel density estimation1.

The base model tends to underestimate the ECE and overestimate the AOD. This

is because of uniform reposting, meaning users are prone to repost a wider variety of

content, even if that content expresses opinions that clash with their personal beliefs.

As we saw in Section 6.4.3.1, the simulations with preferential reposting yield

results closer to empirical estimates. The newsfeeds exhibit a strong echo chamber

effect and low diversity of opinions, as only 20% of users have Γ < 0.50, and same

1I use the function kdeplot from the Python package Seaborn (https://seaborn.pydata.
org/generated/seaborn.kdeplot.html)

https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://seaborn.pydata.org/generated/seaborn.kdeplot.html
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Figure 6.3: Comparison between p estimated from data and p given by the model. Average
errors (‘err.’) and Pearson correlations (‘corr.’) between estimations and model
are indicated above. Left: scatter plots. Right: distributions.
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Figure 6.4: Comparison between p estimated from data and p given by the model with
reposting preferences (simulations with newsfeed size M = 5). Average errors
(‘err.’) and Pearson correlations (‘corr.’) between estimations and model are
indicated above. Left: scatter plots. Right: distributions.
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empirically (purple), as per the the model without preferential reposting (cyan),
and as per the model with preferential reposting (orange).

for Φ > 0.50. About 60% of users have Γ > 0.75 and are thus exposed to more than

75% of congruent opinions.
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Figure 6.6: Cumulative distributions of Φ (left) and Γ (right), as given by the model, the
emulator, and simulations with reposting preferences (newsfeed size M = 10).
Averages are precised in parentheses.

The intensity of the echo chamber effect is not too surprising. Indeed, as we see

in Figure 6.7, there is great homophily in the network. For each party, the average

proportion of leaders supporting the same views is between 62% (PS) and 88% (FI).

This entails the biased distribution of opinions on the newsfeeds, as we see on the

right plot that on average, between 53% and 80% of opinions on a newsfeed are

congruent.
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Figure 6.7: Top: distribution of leaders’ party for each party. Bottom: average distribution
of empirically estimated p by party. Each bar represents a party, in the same
order as the x-axis. All values are empirical and independent from the model.

6.5 Discussion
In this chapter, I presented the Newsfeed Model and the Extended Newsfeed Model,

that incorporates opinions. The models describe the flow of content throughout an

OSP, as users create new posts or repost items from their newsfeeds.

6.5.1 Theoretical findings

I expressed my metrics of interest, the ECE and the AOD, in this context. They rely

on the equilibrium state of the users’ newsfeeds. The newsfeeds are interdependent

through a linear system of size N, and I gave a closed-form formula to compute their

equilibrium distributions. I also explained how to simulate the model and its possible

variations.

The model can be further extended by assuming a preferential reposting mech-

anism, where users choose items to repost according to their concordance with
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personal views. However, this induces non-linearities in the model equations, mak-

ing it difficult to solve analytically. I can still study the model behaviour in this

context via simulations. In that case, the size of the newsfeeds has an impact on the

equilibrium of the system, which is not the case otherwise.

Finally, I detailed how to infer model parameters, and make empirical estimates

of newsfeed distributions, ECE, and AOD, from real-life datasets. I applied the

methods on #Elysée2017fr and highlighted the existence of an important echo

chamber effect, as given by the ECE metric. I also observed that simulations with

preferential reposting yielded results closest to empirical estimates. Solving the

model with this feature is thus of primary importance for future research concerned

with real-life applicability. Future research shall also look into the convergence time

of the dynamics.

6.5.2 Empirical evaluation

I evaluated the accuracy of the model on the #Elysée2017fr dataset. I obtained Φ-

scores, both via theoretical computations and empirical estimations. I also compared

theoretical and empirical distributions of opinions on the newsfeeds. The model was

able to capture general trends, but fails to return precise results in many cases. I

found that it was due to the random reposting behaviour. Indeed, when I assume

that users choose items to repost based on personal preferences, the correspondence

between empirical and theoretical values is very tight. This highlights the importance

to try to incorporate this behaviour in the analytical model, as for now I am only

able to simulate it. Note that Giovanidis et al. (2021) contains additional empirical

evaluations of the model on different datasets, with encouraging results.



Chapter 7

Steering the echo chamber effect

This chapter lays the final contribution of this project, which is the steering of the

echo chamber effect. I start with the macroscopical approach and finish with the

microscopical one. In both cases, I demonstrate how to increase the diversity of

opinions that users are exposed to, via content recommendation, accounting for

possible backfire effects. The results for the macroscopic approach with the EV

Model were published—albeit under a slightly different form—in Vendeville et al.

(2022c). Most of the results for the microscopic approach with the EV Model were

published in Vendeville et al. (2023a).

7.1 Macroscopical approach with the Enhanced

Voter Model
I assume a complete network of N individuals, who unilaterally support opinion 0. I

model this by assuming all receive the same influence from zealots, as follows:

∀n ∈N ,

z(0)n = z(0) > 0,

z(1)n = z(1) = 0.
(7.1)

The completeness assumptions acts like a simplifying hypothesis when precise

connections are unknown. It is also realistic in certain cases to assume that everyone

sees what everyone else posts, as it is the cases for Subreddits or Facebook groups

for example.
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7.1.1 Without backfire effect

Because z(0)> 0 and z(1)= 0, the community is homogeneous: each member will end

up adopting opinion 0 no matter what. To steer this phenomenon, I suggest increasing

z(1), which can be achieved in practice by recommending content supporting opinion

1. My goal is to maximise the AOD, given by Eq. 5.32:

⟨Φ⟩= 4z(0)z(1)

z2 , (7.2)

where z = z(0)+ z(1). Here, ⟨Φ⟩= 0 initially. Maximising this quantity is equivalent

to solving the following problem:

argmin
z(1)≤B

(
z(1)

z
− 1

2

)2

. (P0)

The upper bound B acts as a budget: I do not want to flood users with recom-

mendations, so I limit the amount they will receive. Under no budget constraints,

B = 1− z(0) due to Eq. 5.1. When this bound is reached, users are not exposed to

content created by others anymore, but solely to the recommendations, while still

being subject to their inner biases towards opinion 0.

By writing the problem as (P0), we see that one can tune the amount diversity

to be reached. To do so, it suffices to replace the 1/2 in the objective by any target

value x̃(1) ∈ [0,1]. For the sake of generality, I will thus look to solve

argmin
z(1)≤B

(
z(1)

z
− x̃(1)

)2

(P)

for a fixed x̃(1) that I assume chosen. Typically it should be around 1/2 if the goal is

to transform the echo chamber into a diverse sphere of opinions.

Differentiating the objective with respect to z(1) and finding the zeros of the

derivative, gives us the solution of (P) as

z(1)⋆ = min

{
B,

x̃(1)

1− x̃(1)
z(0)
}
. (7.3)
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If the second element is smaller than the first, the target x̃(1) is reached. Otherwise,

one or both of α and x̃(1) is too high, and we can only hope to approach the target

but not reach it exactly.

7.1.2 With backfire Effect

Numerous studies suggest that presenting certain users with opposing views might

actually entrench them even deeper in their beliefs. This is known as the backfire

effect. To account for it I study the scenario where in reaction to the apparition of

recommendations supporting opinion 1, users will reinforce their inner bias towards

opinion 0. Formally, I set that for z(1) > 0, the value of z(0) is incremented by αz(1),

with α < 1. The average opinion at equilibrium is now given by

z(1)

z(0)+ z(1)+αz(1)
(7.4)

and the target x̃(1) is exactly reached with

z(1)⋆ = x̃(1)z(0)/d (7.5)

where d := 1− (1+α)x̃(1). If d > 0 then z(1)⋆ > 0 and we can inject this quantity of

users into the network. If d ≤ 0 however this becomes impossible as (7.5) is then

either undefined or negative. In this case, I find that the function

z(1) 7→
(

z(1)

z(0)+ z(1)+αz(1)
− x̃(1)

)2

(7.6)

is strictly positive and decreasing towards (x̃(1)− (1+α)−1)2 over R>0. Thus the

larger z(1) the closer we get to the target diversity, up to a certain point. This means

that the backfire effect is too strong and the target is unreachable. Thus, we have the

optimal values for z(1):

z(1)⋆ = min
(

B, x̃(1)z(0)d−1
)

if d > 0,

z(1)⋆ = B if d ≤ 0.
(7.7)



7.1. Macroscopical approach with the Enhanced Voter Model 124

Because after optimisation we have z = z(0)+(1+α)z(1)⋆ , the default budget is given

by

B(α,z(0)) =
1− z(0)

1+α
. (7.8)

7.1.3 Results on synthetic data

I present the results in Figure 7.1. I consider three different targets x̃(1) =

(0.1,0.25,0.5) and intensities of the backfire effect α = (0,0.1,0.25,0.5,0.75,0.9).

The first value α = 0 corresponds to the absence of a backfire effect. The last target

x̃(1) = 0.5 corresponds to the maximisation of the AOD per se, whereas with the

other I am not trying to reach a perfect balance between opinions 0 and 1 but rather

to nudge opinions towards 1 just slightly. I first do not assume any budget constraint

and simply set B to its default value B(α,z(0)) as per (7.8). The ECE depends upon

the total number of users and I set N = 103.

Inflexion points in the curves correspond to the threshold above which the target

is not reachable anymore, and we can only hope to approach it by injecting the

maximum possible amount of recommendations B. As α and x̃(1) increase, this

threshold gets lower, and so does B. For low enough values of α and x̃(1), we are

able to reach the target without even using the maximal amount of recommendations

possible—cf. last row of plots.

In the left and middle columns, the AOD never reaches 1 because the target is

lower than 0.5. In the last column, it is encouraging to observe that we can reach an

AOD higher than 0.5 for most values of α and z(0). In many of these cases however,

the optimal proportion of recommendations z(1)⋆ is quite high (cf. fourth row of plots).

This means that users are less subject to influence of peers and more impacted by

recommendations and inner bias. With just x̃(1) = 0.5 for example, as soon as the

inner bias gets higher than 0.5, users have no influence on each other anymore.

In Figure 7.2 I set B to 0.1 (or (1− z(0))/(1+α) if it is lower), so that users

don’t see more than 10% of recommended content. As expected the errors grow way

quicker, but we can still sustain an error lower than 0.1 for most values of z0 and α .

The evolution of the metrics is this time divided in three phases: a first one when
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optimal diversity is reached, a second one when z(1) = B and AOD and ECE start

decreasing, and a third one where α,z(0) are jointly too high, we cannot even take

z(1) = B anymore, and AOD and ECE decrease even faster.

Finally, notice that the ECE evolves symmetrically to the AOD in both Figure 7.1

and Figure 7.2, except for very low values of z(0). As I remarked in Section 5.3.3.3,

when z≫ 1/N both opinion diversity ⟨Φ⟩ and discord ⟨ρ⟩ are equivalent. Because

ECE is in this case given by ⟨Γ⟩= 1−ρ as per (5.38), maximising AOD has exactly

the same effect as minimising ECE. But this equivalence vanishes when z≫ N−1

does not hold anymore. This is confirmed by Figure 7.3: here I have set N = 103,

and we see that the ECE starts mirroring the AOD at about z(0) = 10−2, or 10×N−1.
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Figure 7.1: Maximisation of AOD on a complete network of size N = 103, for various
intensities α of the backfire effect. In each column I am trying to reach a
different target x̃(1). The budget is maximal (7.8). First row: AOD after
optimisation. Second row: ECE after optimisation. Third row: squared error
between z(1)⋆ /z and x̃(1) after optimisation. Fourth row: optimal z(1)⋆ needed
to maximise. Last row: total zealousness z after optimisation. I impose no
constraint on z(1) except the natural one z(1) ≤ 1− z(0).
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Figure 7.2: Same as Figure 7.1, except this time I set B = min (0.1,B(α,z(0))).
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7.2 Microscopical approach with the Extended

Newsfeed Model

I now turn to the microscopic approach, that relies on the EN Model. Assume given

a (possibly directed) network of users, as well as posting and reposting rates λn,µn.

As per (6.4), the AOD is given by

⟨Φ⟩= ∑
n

Φn(p)/N, (7.9)

which is the average diversity of opinions on the newsfeeds. I am looking to solve

an optimisation problem of the form

argmax
y,p

⟨Φ⟩ (P0)

where y are personalised recommendation policies that describe what opinions should

be inserted (in the form of posts) by the platform into the newsfeeds and at what rate.

The dependency of ⟨Φ⟩ on y is detailed below. Importantly the impact of inserting

an item into a newsfeed is not limited to an immediate change therein, but may also

include a broader effect on the whole network as the concerned user can share it to

their followers, who may share it further, and so on. The spreading behaviour of the

individuals on the platform thus affects the results of the recommendation policies.

7.2.1 Newsfeeds with recommendations

The system can be acted upon by the platform administrator via personalised recom-

mendations, that consist in selecting posts to insert into the newsfeeds of others. Let

y(s)n be the rate at which an s-post (i.e. a post expressing opinion s) is inserted into

the newsfeed of user n this way. I am looking for the values of y that maximise the

AOD. For the sake of equity I would like all newsfeeds at equilibrium to contain on

average the same proportion B < 1 of recommended posts. This value should not

be too high, lest the users will be flooded with recommendations. Users with very

active leaders and thus fast-changing newsfeeds should get new recommendations
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more often than those with quieter leaders. Formally I require for any user n:

∑
s

y(s)n =
B

1−B ∑
k∈Ln

(λk +µk) . (7.10)

This ensures that a proportion ω of all content arriving on the newsfeed of n is

a recommendation. The recommender system can be seen as if each user n has

an artificial leader controlled by the platform, who creates s-posts at rates y(s)n and

these immediately appear on the newsfeed of user n. Hence, the steady-state of the

newsfeeds is now given for all n and s by

p(s)n

(
∑
s

y(s)n + ∑
k∈Ln

(λk +µk)

)
= y(s)n + ∑

k∈Ln

(
λ
(s)
k +µk p(s)k

)
. (7.11)

This is straightforward from (6.1). Inserting (7.10) in (7.11) we obtain

p(s)n

1−B ∑
k∈Ln

(λk +µk) = y(s)n + ∑
k∈Ln

(
λ
(s)
k +µk p(s)k

)
. (7.12)

Such values p(s)n exist and are unique, as proved in Appendix B.2.

7.2.2 Optimisation problem

The optimal recommendation rates that maximise the AOD under budget B can be

computed via the following quadratic program with linear constraints.

argmax
y,p

⟨Φ⟩

s.t.
p(s)n

1−B ∑
k∈Ln

(λk +µk) = y(s)n + ∑
k∈Ln

(λ
(s)
k +µk p(s)k ), ∀n,s,

∑
s

y(s)n =
B

1−B ∑
k∈Ln

(λk +µk), ∀n, (Q0)

y(s)n , p(s)n ≥ 0 ∀n,s.

Note the presence of p in the optimisation variables, due to its values being dependent

on the recommendations y. To avoid any backfire effect, I would like to limit the
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recommendation of posts supporting incongruent opinions. To do so, I can tweak

the problem (Q0) to penalise the difference between the newsfeeds before and after

optimisation. Formally:

argmax
y,p

⟨Φ⟩−ω ∑
n,s

(
p̃(s)n − p(s)n

p̃(s)n + ε

)2

s.t.
p(s)n

1−B ∑
k∈Ln

(λk +µk) = y(s)n + ∑
k∈Ln

(λ
(s)
k +µk p(s)k ), ∀n,s,

∑
s

y(s)n =
B

1−B ∑
k∈Ln

(λk +µk), ∀n, (Q)

y(s)n , p(s)n ≥ 0 ∀n,s.

In the new objective function, p̃n is the newsfeed of n before optimisation, ω > 0

is the strength of penalisation, and ε > 0 ensures that the denominator is positive.

The penalty term thus quantifies the total relative change in each newsfeed. With

ω = 0 we recover the initial problem (Q0). Note that if one wishes, it is possible

to set particular values of ω for each user without impacting the complexity. For

example, one may set a stronger penalty for more radical users.

7.2.3 Application on #Elysée2017fr

I solve (Q) for the social network described by the #Elysée2017fr dataset (follow

graph). More details on this dataset are found in Section 4.4.2, and inference methods

to estimate models parameters are in Section 6.4.1. With N = 8,277 nodes and five

categories, problem (Q) has 82,770 variables and 49,662 linear constraints. I solve

(Q) for the following budgets and penalty strengths:

B = 0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18,0.20.

ω = 0,1,10,100.

The case ω = 0 corresponds to the optimisation problem without backfire effect. I

also use B = 0 to denote (theoretical) values of ⟨Φ⟩ and ⟨Γ⟩ before optimisation. I

set ε = 10−4.
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7.2.3.1 Optimal AOD and impact on ECE

In Figure 7.4, we see that, as the budget increases, so does the AOD while the ECE

decreases: the newsfeeds get more and more diverse and the prevalence of congruent

opinions diminishes. Unsurprisingly, the lower the backfire effect, the better the

results. If the penalty strength is high enough, the AOD starts to decrease while the

ECE increases when the budget becomes too high. Eventually, for the highest budget

and backfire effect, the AOd and ECE are even worse after than before optimisation.

This is because, as the backfire effect gets stronger, we have to propose more and

more congruent opinions to the users, thus reducing the diversity of their newsfeeds.

The two plots on the right underline how important the diffusion aspect captured

by the model is. If I assume that recommended content is never propagated by users,

the states of the newsfeeds are given by

pn = (1−B)p̃n +Byn/∥yn∥1, (7.13)

where p̃ are (theoretical) distributions of opinions on the newsfeeds before optimi-

sation. In that case, the evolution of ⟨Φ⟩ and ⟨Γ⟩ as ω increases follows the same

trend as before, but at a smaller magnitude. Thus, users spreading the recommended

content is crucial to the effectiveness of the method. Of note, this is also what would

happen if users do not appreciate or simply ignore the recommended posts. This is

why it is important to account for the backfire effect when solving the optimisation

problem.

One may argue that the recommendation algorithm relies on the model equation

that do not include preferential reposting, a mechanism with which the model is more

truthful to empirical observations. This is why, I use simulations to compute values of

⟨Φ⟩ and ⟨Γ⟩ obtained with preferential reposting, and with added recommendations

as given per the solution of (Q), for ω = 0,10. I find that recommendations are still

effective in increasing AOD and reducing ECE, albeit considerably less so. The

trend of the curves is very similar to the no diffusion case. Recall that the vector of

preferences for user n is the same as its vector of self-posting λn, which contains only

zeros except for the one (96% cases) or two (4% cases) entries that correspond to n’s
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affiliation—cf. Figure 4.1. Thus, items supporting incongruent opinions are never

reposted, which is what the recommender is mostly inserting into the newsfeeds (cf.

Figure 7.6, left). Hence, there is little spreading of the recommended content, and

the results resembles the case without diffusion. The two curves are shifted when

compared to the no diffusion case, due to the fact that reposting preferences induce

different values of p, with less AOD and more ECE are users favourise congruent

opinions.

7.2.3.2 Analysis of the recommendation rates

Figure 7.5 shows the average rate at which each opinion, i.e. party, is recommended.

That is for all s, I plot
1
N

N

∑
n=1

y(s)n

∥yn∥1
. (7.14)

Recall that I do not enforce that all users receive recommendations at the same

rate, but only that their newsfeeds contain on average the same proportion ω of

recommended posts. This is why here, each vector yn is normalised, so that all users

equally impact the mean.

For lower values of ω = 0,1, the rates are rather spread for low budgets and

converge towards 0.2 as the budget increases. Indeed when B→ 1 the newsfeeds only

contain recommended posts so that maximal diversity is achieved with a balanced

representation of all parties. Note also that the more a party was initially represented

(cf. Figure 4.1,6.5), the least they get recommended. As ω gets larger, the tendency

reverses. Recommendation are equally distributed between parties for low budgets,

but as ω increases, the ranking of parties by their rate of recommendation follows

their overall presence on the network (cf. Figure 4.1,6.5). This is not surprising, as

the backfire effect is so strong that we are more and more forced to recommend

congruent opinions. Thus, the overall distribution of recommendations follows the

distribution of parties throughout the network.

This is confirmed in Figure 7.6 (left), where I compare vector of recommen-

dation rates yn and the initial newsfeed distributions p̃n. The squared difference

between them, average over all users, declines towards zero as the budget increases,
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Figure 7.4: Optimisation of ⟨Φ⟩ with increasing budget ω and various penalty strengths
ω . Top: optimal AOD ⟨Φ⟩. Bottom: impact on ECE ⟨Γ⟩. Budget B = 0
corresponds to initial values before optimisation. On the right I show the results
without diffusion of the recommended posts. The green lines represent values
obtained in simulations, with reposting preferences and a recommender system
that follows the optimal recommendation rates (newsfeed size M = 5).

at a pace that increases with the backfire effect.

Finally, in Figure 7.6 (right) I show for each value of ω the relative change in

⟨Φ⟩ and ⟨Γ⟩ per budget unit, for ω = 10. The curves are decreasing, showing that

higher budgets have diminishing returns. Adding more and more recommendations

into the newsfeeds is less and less effective. We observe similar curves for other

values of ω , showing that this behaviour is independent from the intensity of the

backfire effect.
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budget unit, for ω = 10.

7.2.3.3 Implementation and numerical precision

The problem (Q) has a quadratic objective and linear constraints. The time complex-
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ity to solve these problems is often considered to be polynomial in the number of

variables and constraints (Kozlov et al., 1980). The experiments are run on a virtual

machine with 40 vCPUs and 256GB RAM. For the solution of the optimization

problem, I configure a Gurobi1 solver with the barrier algorithm. The runtime is less

than fifteen minutes for all parameters values.

While the problem is easily solved, I had trouble with the numerical precision.

Indeed, I have thousands of equality constraints. They will never be perfectly

accurate, and depending on how tolerant I am on the numerical error, the optimisation

might take a very long time—if the software does not return an error before it is

finished. I did two things to accelerate the processus:

1. I set the parameter NumericFocus to 1, which favours speed against numerical

precision.

2. I transformed the equality budget constraint

∑
s

y(s)n =
B

1−B ∑
k∈Ln

(λk +µk) (7.15)

into an inequality, and added a penalty term of the form

∑
s

y(s)n −
B

1−B ∑
k∈Ln

(λk +µk), (7.16)

with a very high penalty coefficient.

Both of the above allow for a higher tolerance to numerical errors, while preserving

precision as much as possible. However, the “wobbly” aspect of the high backfire

curves in Figure 7.4 and Figure 7.5 makes me believe some errors subsist. To verify

that, I compute for each constraint of (Q) the relative difference between both sides

of the equation defining the constraint, after optimisation. I show the average and

maximum numerical errors for all values of B,ω in Figure 7.7.

We observe that indeed, stronger backfire effects entail higher errors. Average

errors are rather low on average, below 0.1%. Maximum errors on the other hand,
1https://www.gurobi.com/

https://www.gurobi.com/
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Figure 7.7: Average (left) and maximal (right) numerical error for each budget. Errors are
computed as the relative difference between both sides of each constraint in the
optimisation problem (Q).

reach as much as 30%(B = 0.02,ω = 100) and are often in the range of 5−10% for

ω = 10,100. This might explain the aforementioned “wobbly” aspect of some of the

plots in this Section. Due to time constraints, I did not perform more experiments

to reduce the numerical error. Further research shall try to determine more adapted

settings of the optimization software to avoid these issues.

7.3 Discussion
The two proposed methods are effectively able to increase the AOD, and decrease

the ECE, for most budgets and backfire effect intensities.

7.3.1 Macroscopical approach

For the macroscopical approach, the method does not depend on the size of the

system and is thus completely scalable. We saw that maximising the AOD and

minimising the ECE were equivalent, except when we do not have z≫ 1/N. In that

case, one has to be mindful that this equivalence vanishes. For future research, it may

be interesting to give time constraints in the form of a maximum duration tolerated

for the group to reach the target diversity. Because convergence time of the model

decreases with z, this comes down to imposing a lower bound on z(1).

The method I just presented is fairly simple. I assume a complete network

where all agents share the exact same characteristics. They are all biased towards
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opinion 0 with the same strength and react to the recommendations in the same way.

These assumptions are the strength and the weakness of this method at the same

time: I lose in precision but I gain in universality, simplicity, and tractability. As

mention earlier, this also makes the method highly adaptable to contexts where we

have very few information of the system at hand, merely its general preference for

an opinion rather than the other.

The microscopical method is precisely developed to take fine-grained, individual

features into account. However, if one wants more precise methods that use the Voter

Model, there are several possible extension. Non complete network, individual levels

of bias, and individual recommendation rates first spring to mind. As more partisan

people are often more prone to backfire, I could make the intensity of the backfire

effect proportional to the initial bias of the agent. Some agents could also simply be

immune to backfire, or others immune to recommendations. I could take also age

into account, so that older agents are less likely to change opinion. Another idea

to model the backfire effect is to rely on discord: if a user experiences too much

discord with their neighbours, they radicalise into a zealot, with the mode of their

opinion distribution as their new, definitive opinion. These are all interesting leads,

that future research shall look into.

7.3.2 Microscopical approach

For the microscopical approach, the optimisation method relies on the model equa-

tions that do not include preferential reposting, which we saw was crucial to fit

empirical data. However, the optimal recommendation rates returned are able to have

the desired effect under preferential reposting—albeit less so—as proved through

simulations. Additionally, it is possible to set particular values of ω for each user

without impacting the complexity. For example, one may set a stronger penalty for

more radical users.

We also saw that high budgets and high backfire effects induce an undesirable

outcome: the recommender injects too much congruent opinions into the newsfeed,

thus reinforcing the ECE instead of attenuating it. In this context, perhaps it would

be wiser to simply recommend less, for example by replacing the equality budget
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constraint by an inequality. Doing so would induce an inequity is the proportion of

recommendations shown to different users, wish might not be something to wish for.

The recommender did favourise some parties more than others, because of their

unequal numbers of supporters in the dataset. This might also entail ethical issues,

and an interesting lead to avoid it is to enforce equality of all parties in terms of share

of recommendations. This could be done via an additional penalty in the objective

of the optimisation problem (Q).

Finally, implementing the optimisation problem is not without difficulties. There

exists a trade-off between speed of execution and numerical precision. In certain

cases, we saw the software (Gurobi) make significant numerical errors, that were

reflected in some of the constraints not being exactly respected. It is difficult to strike

a good balance between accuracy and efficiency here, and future research shall dive

into this issue.

7.3.3 In practice

There are a few things one need if they wish to use my methods in practice. The

intensities α,ω of the backfire effects can be chosen in various ways depending on

the context. For example, we can treat more radical communities with more caution

by choosing higher values. The budget B should be chosen to reflect how often we

want each user to be recommended content.

For the Microscopical method, we would need precise estimation of the model

parameters λ ,µ as well as the user graph. The platform administrator has access

to ground-truth values, but otherwise, they can be estimated as described in Sec-

tion 6.4.1. The error made in the process can themselves also be estimated—again

see Section 6.4.1.

In the Macroscopical method, the initial bias z(0) can be treated in several

ways. It may be estimated, although it is not obvious how to estimate the bias of a

community. It could inferred based on the number of times they mention specific

politicians, or post partisan newspaper articles. Another way of proceeding is to act

similarly as for the backfire effect: we do not know the bias, but the more partisan

we believe the community is, the higher bias we attribute to it, which forces us to be
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more careful.

So, which one to choose? This will depend on the problem at hand, the

information available as well as time constraints and computation capacities. The

strength of the Macroscopical method lies in its simplicity and tractability. When

dealing with highly homogeneous communities with all-to-all connections, such as

some sub-Reddits or Facebook pages, the assumptions of the method can be realistic.

In that case, Macroscopical will be very fast and efficient. It is also useful when

not much user-level information is available, or is too cumbersome to collect. On

the other hand, in more heterogeneous networks with known user-level features,

Microscopical will perform better and is thus preferable. It can also accomodate

any number of opinions, while Macroscopical only works with two. The complexity

of the optimisation problem, as well as the potential for numerical errors, might

however make the process much longer and require a precise configuration of the

solver software. Under constraints on time and computation capacity, Macroscopical

can then be preferred. Finally, it would be interesting to compare the outcome of

both approaches on a same dataset, real or synthetic. We could get a better grasp on

how they fare one versus the other depending on the structure of the network, and

the precise context of the datasets.



Chapter 8

Conclusion

The regulation of online social platforms is one of the major challenges faced by our

societies today. They have profoundly affected the informational landscape and the

political debate, posing serious threats to democracy and integrity of information.

There is in particular growing concern about the echo chamber effect, where a lack

of opinion diversity in the content presented to users is leading to a fragmentation of

the society in polarised clusters. It has become crucial to develop principled tools

to assess (i) the extent of this phenomenon, (ii) the impact of the personalisation

algorithms employed by the platforms, and (iii) possible avenues towards healthier

personalisation algorithms.

At the same time, the advent of social platforms has blessed us with rife, fine-

grained, readily accessible data on human behaviour. This is a huge leap forward

when compared to previous existing methods that relied on surveys, making them

cumbersome, imprecise and difficult to scale. Thus has come a unique opportunity

to better understand social phenomenons. The modelling of opinions dynamics and

social structures, which has interested scholars for many years, is largely benefitting

from this upheaval to propose more realistic and better calibrated mathematical

models.

There is a lack of overarching works that improve on existing theoretical models

for opinion dynamics to propose empirically verified frameworks to describe the echo

chamber effect, and investigate how it can be acted upon via the platforms algorithms.

This was the aim of this doctoral research. First, I designed novel mathematical
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models to describe and quantify the echo chamber effect in social networks. I verified

their accuracy on empirical datasets. Then, I developed recommendation methods in

order to increase the diversity of opinions that users in a social network are exposed

to. I proposed a macroscopical and a microscopical method, each adapted to a

different level of granularity. The latter was specifically tailored for online social

platforms, while the former was more general and applicable in any type of social

network.

These methods are thought of as proofs of concepts rather than guidelines on

how should OSPs be regulated. The backbone of this project was to provide tools

that can useful in the broad study of opinion evolution, diffusion, and echo chambers

phenomenons online. These tools are destined to other researchers, who wish to

study these phenomenons. I demonstrated the effectiveness of these tools for the

specific problem of maximising opinion diversity, but I do not advocate that it is

what must be done, and that this is the best way to do it. This are merely destined

to serve as a basis for decision-making by policymakers or platform administrators.

Moreover, I believe that as more problems and challenges arise concerning social

media, my methods can be adapted to gain more insight on how to address them.

8.1 Achievements
My contributions mostly benefit two domains: the study of opinion dynamics through

mathematical models, and the regulation of echo chambers in OSPs. The first domain

I contributed to via the novel models I proposed, the Enhanced Voter Model (EV

Model) and the Extended Newsfeed Model (EN Model), that I also evaluated on

empirical data. Bridging with the second domain, I introduced metrics to quantify

the echo chamber effect and the diversity of opinions that users in a social network

are exposed to. I expressed these metrics in the context of my models, and developed

recommendation methods to steer their values.

8.1.1 Contributions to the field of opinion dynamics

The EV Model generalises the traditional Voter Model to directed, weighted agent

graphs with exogenous influences (zealots), multiple opinions and individual update
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rates. Due to the origins of the Voter Model in the field of statistical physics, efforts

have mostly focused on regular graphs and mean-field approximations. Thus, few

works have focused on the application of the model to real-life networks. I derived a

closed-form formula for the probability of discord between any two agents, allowing

for the computation of the order parameter known as active links density, that I

extended to general cases. I was able to demonstrate that, adding links between

polarised communities may sometimes increase or decrease the echo chamber effect

and the diversity of opinions. I believe this is an important stone in the study of the

voter model in complex networks, and opens the road for refined investigation on

real-life datasets.

I also extended the Newsfeed Model, that describes the flow of content through-

out the newsfeeds of users in an OSP, by incorporating the notion of opinions. This

let me quantify how political views spread throughout the network and what distribu-

tions of opinions are users exposed to. This model takes into account the different

activity rates across users, and complex topologies, making it highly applicable to

real-life settings. I introduced preferential reposting, whence users choose content to

repost based on personal preferences.

The two models were evaluated on real-life datasets. The EN Model exhibited

very good correspondence between theoretical predictions and empirical estimates,

when applied on data from Twitter. It was able to identify the distributions of opinions

on the newsfeeds of users, with a very high accuracy if a mechanism of preferential

reposting is used. As for the EV Model, I studied its ability to predict the outcome

of democratic elections, based on passed ones. On one hand, my method allowed

me to derive proportions of stubborn voters who never change opinion, making it a

valuable tool for the study of political landscapes.

8.1.2 Contributions towards the regulation of echo chambers

I introduced novel metrics to measure the echo chamber effect, and the diversity

of opinions, that users are exposed to. Both can be calculated in the context of the

EV Model and the EN Model, as functions of the equilibrium states of the system

considered. The two measures are complementary: closely related, and sometimes
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equivalent, but not always. In particular, I highlighted in Section 5.4.2 how one

being high does not mean the other is low, and vice-versa. Both are thus important

to consider when studying the impact of recommendation algorithms in OSPs.

My final contribution was to develop recommendation methods to steer the

echo chamber effect. For each model, I searched for optimal recommendation rates

to maximise the diversity of opinions that users are exposed to. I improved on the

existing literature by proposing both a macroscopical and a microscopical approach,

and taking into account possible backfire effects, that make users susceptible to

reinforce their pre-existing beliefs when presented with incongruent opinions.

I took a macroscopical approach with the EV Model, considering a complete

network of like-minded agents. This benefits general settings where the overall

leaning of the population is known, but fine-grained data is not available. It is also

particularly applicable in some real cases, such as Facebook groups or Subreddits,

where the agent network is effectively complete as everyone has access to the content

created by everyone else. When backfire effects and inner biases are not too high, it is

possible to effectively increase the overall opinion diversity. This has the advantage

of requiring very little computation.

I took a microscopical approach with the EN Model, allowing the craft of

individual recommendation policies in a setting with complex topologies, and various

political views in the same network. This is done by the means of a quadratic

optimisation problem with linear constraints. I demonstrated the effectiveness of

the method in the context of the #Elysée2017fr dataset. The optimisation problem

does not include preferential reposting for the reasons stated above. However, I

showed via simulations, that the optimal recommendation rates also had the intended

impact on the system when simulating with preferential reposting. The importance

of taking the diffusion aspect of the model into account was also highlighted.

For people willing to use this work in practice, I also explained in details how to

proceed: from inferring the model parameters—and estimating the associated error—

to choosing optimisation parameters and implementing the optimisation programs.

Most importantly, I laid the advantages and drawbacks of each method, helping
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to choose between both depending on the context. In general, the Macroscopical

method should be used either in (i) homogeneous contexts, (ii) in the absence

of information on user-level features, or (iii) under certain constraints on time or

computing capacity. In all other cases, the Microscopical method should return more

refined results, allowing for a more precise steering of the echo chamber effect. Note

also that anyone looking to apply the EV Model on large-scale networks should in

priority seek to reduce the complexity of the computation of discord probabilities.

This one of the most important limitations of this work, as I discuss now.

8.2 Limitations

In the EV Model, computing discord probability however relies on solving a large

linear system of sizeO(N2), which can quickly become intractable for large systems.

Accelerating the computation of finding accurate approximations is thus necessary if

one wishes to compute discord probabilities for large systems. As for the empirical

evaluation, I obtained an average error of 4.7% when forecasting the outcome of an

election. This is a non-negligible gap in politics, where elections are often decided

by a few percentage points. The model parameters, such as the number of agents

N and the time unit, could be adapted to enhance accuracy. Dynamical estimates

could also be made without accounting for the presence of stubborn agents. Note

that, in absence of more precise information, I considered a complete network where

everyone is connected to everyone else. This is probably an unrealistic assumption.

Further research shall thus look to investigate the validity of the EV Model on

complex topologies.

For the steering of the echo chamber effect with the EC Model, I also considered

complete graphs. Developing similar methods for complex topologies might entail

intractability, and require heuristics or greedy approximations. Introducing varying

degrees of bias at the individual level, as well as considering individual recommenda-

tion rates, are also interesting possible extensions. As more partisan individuals tend

to be more susceptible to the backfire effects, we could try to adjust the intensity of

the penalty depending on the initial bias of the agent. Another strategy for modeling
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the backfire effect could involve discord probabilities: if a user experiences too much

discord with their peers, it may lead to radicalisation, lmeading them to stick with

their opinion and not update anymore.

As for the EN Model, we saw that preferential reposting was a crucial feature

if one wishes to obtain empirically accurate values. I was however only able to

incorporate it in simulations, as it makes the model equations non linear and harder

to analyse. Thus, the main limitation of the model as it stands is the analytical

intractability of this feature. This does not impede steering of the ECE too much

however. We saw that optimisation results obtained without accounting for preferen-

tial reposting, yielded good results when injected into a simulator that incorporates a

recommender system and a preferential reposting mechanism.

The problem I studied for steering the ECE does not enforce equity between

the different political parties, and some were much more recommended than others.

The may raise ethical concerns, and could be avoided via an additional penalty in

the objective of the optimisation problem. I also obtained undesirable outcomes

with high budgets and high backfire effects, that could be avoided by replacing the

equality budget constraint by an inequality. This would allow the recommender

to have varying rates between users, effectively making some less exposed than

others to recommendations. An important and fairly straightforward extension is

also to use individual penalties for the backfire effect, in order to account for varying

levels of partisanship, and susceptibility to incongruent opinions, in the population.

Finally, we saw that specific attention should be devoted to the trade-off between

speed of execution and numerical precision in the implementation of the optimisation

problem.

8.3 Future research

I already laid some leads for future research. The EV Model lacks a fast algo-

rithm to compute discord probabilities, an empirical evaluation of its predictions

on fine-grained datasets, and a recommendation method for complex topologies

with different-minded agents. The EN Model lacks analytical tractability when
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considering preferential reposting, which has turned out to be a crucial feature for

real-life applicability. The optimisation problem to find optimal recommendation

rates could also be further refined, to enforce equity between political parties, for

example.

There is an important aspect of social relations that I did not take into account:

enmity. Indeed, I did not consider antagonistic connections between agents. They are

often represented by negative edges in social graphs, and can be crucial to accurately

describe the phenomenons of polarisation or echo chambers (Keuchenius et al., 2021).

For example, Williams et al. (2015) found that there was a lot of communication

between climate activists and climate sceptics on Twitter, but it was mostly hostile

and aggressive—a feature that my models, as presented here, do not incorporate. I

believe this to be a primary lead for further investigations.

Another area for improvement is the design of recommendation policies. In this

project, I only studied recommendation rates per opinion, but not how exactly they

are implemented. The exact type of content recommended, and the recommendation

of users to one another, is important to consider. The ranking of items in the

newsfeeds, and filtering policies that hide content, are examples of other important

personalisation features. To be able to further refine recommendation policies, it

is crucial to have access to the actual data employed by the platforms, and how

there personalisation algorithms are built. The EU has started to take action in this

direction with the Digital Service Act (EU, 2022), and Twitter has already made

their algorithm public.

The models I developed and the results I presented in this thesis are not limited

to the sole purpose of steering the echo chamber effect. The theoretical aspect

of the models, especially the EV Model, makes them applicable in many other

contexts. One can think of using my models to predict the evolution of opinions in a

population, to replace traditional polls or surveys. Doing so, they could also help

better understand the impact of political elites or media outlets on the public opinion,

by incorporating such entities in the models and trying to isolate their impact on

the dynamics. The EN Model, with its good description of content propagation
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in OSPs, can be used for marketing purposes. For example, to find when and to

whom a product should be advertised in order to yield the most visibility. Beyond

social platforms and politics, there is an interesting field of applicability for the EV

Model: collective intelligence. In particular for robot swarms, coordinated groups of

robots that can solve problems or take decisions by interacting with each other via

pre-determined rules (Zavala-Rio et al., 2013). The Voter Model dynamics may be

an interesting type of interaction rule for this purpose.

Overall, I believe that research shall keep striving to improve descriptions of

social phenomenons, and especially how they intertwine with the structure and func-

tionality of online social platforms. First to provide us with a deeper understanding

of ourselves, and our societies in general. But also because, in the current times, the

need for appropriate regulation of OSPs is stronger than ever. It is not obvious how

exactly this should be done, and the precise effects that it will have. This is why, it is

very important that researchers develop refined, empirically accurate, characterisa-

tions of the phenomenons taking place. Once we have a profound understanding of

the impact of OSPs, we can propose adequate policies to keep their nefarious effects

at bay.
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Notations

Table A.1: General notations.

Symbol Definition Range Equation
N number of users N -
N user set - {1, . . . ,N}
S number of possible opinions N -
S opinion set - {1, . . . ,S}

i, j,k,n a user N -
r,s an opinion S -
G agent/user graph/network - -
E edge set of G - -
W adjacency matrix of the user graph G [0,1]N×N -
wi j weight of the directed edge j→ i [0,1]
Ln set of leaders of user n P(N ) { j ∈N : wi j > 0}
⟨·⟩ overall average at equilibrium - -
A⊤ transpose of the matrix A - A⊤i j = A ji

u⊤ transpose of the vector u - -
eA matrix exponential of A - ∑k∈N Ak/k!

1{•} indicator function {0,1} 0 if • is false, 1 if true
P probability [0,1] -
| · | absolute value (scalar), cardinal (set) - -
Γn ECE for user n [0,1] -
⟨Γ⟩ average ECE at equilibrium [0,1] ∑n∈N Γn/N
Φn AOD for user n [0,1] -
⟨Φ⟩ average AOD at equilibrium [0,1] ∑n∈N Φn/N
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Table A.2: General notations for the EVM, Chapters 5 and 7.

Symbol Definition Range Equation
σi opinion of user i S -
z(s)i zealousness of user i towards opinion s [0,1] -
x(s)i probability of user i having opinion s [0,1] ∑ j wi jx

(s)
j + z(s)i

y(s)i average exposure of user i to opinion s [0,1]
∑ j wi jx

(s)
j

∑ j wi j

ri update rate of user i R>0 -
ρi j probability of discord between agents i and j [0,1] (5.17),(5.12)
⟨ρ⟩ generalised active links density (GALD) [0,1] (5.23)
w∞

i j coordinate (i, j) of the matrix exponential of W R>0 -
cos(u,v) cosine similarity between u and v [−1,+1] u⊤v/∥u∥∥v∥

Table A.3: Notations for the EVM, sections 5.3.3.1,5.3.3.2,5.3.3.3, and Chapter 7.

Symbol Definition Range Equation
z(s) zealousness of users towards opinion s R>0 -
z total zealousness of users R2

>0 ∑s∈S z(s)

x(s) probability of users having opinion s R≥0 z(s)/z
B optimisation budget [0,1] -
α backfire effect intensity [0,1] -

B(α,z(0)) maximal budget [0,1] (1− z(0))/(1+α)

z(1)⋆ optimal recommendation rate of opinion 1 R>0 (7.3),(7.7)
x̃(1) target support for opinion 1 [0,1] -

Table A.4: Notations for the EVM, Section 5.3.3.4 and Section 5.5.

Symbol Definition Range Equation
N1(t) number of nodes with opinion 1 at time t N -

n1 initial number of nodes with opinion 1 N N1(0)
qk,l transition rate from state k to state l R -
Q transition rates matrix - -

pn1,k(t) probability for N1(t) to equal k R [etQ]n1,k
M total number of elections N -
xi percentage of votes for the party in the ith election N -

(z(0)⋆ ,z(1)⋆ ) most likely percentages of stubborn agents N2 (5.45)

Table A.5: Notations for the Newsfeed model, Chapters 6,6.4,7.

Symbol Definition Range Formula
M,K newsfeeds and walls size N -

λn posting rate of user n R>0 -
λ
(s)
n posting rate of user n for opinion s [0,λn] -
µn reposting rate of user n R>0 -

ν
(s)
n preferences of n towards opinion s when reposting [0,1] λ

(s)
n /λn

p(s)n proportion of posts supporting opinion s on the newsfeed of n [0,1] -
B optimisation budget [0,1] -
ω backfire effect R>0 -

y(s)n optimal recommendation rate of s-posts to user n R>0 -
p̃(s)n initial values of p before optimisation [0,1] -
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Mathematical proofs

B.1 Unicity of ρ

I demonstrate that the spectral radius of V is strictly less than 1, which implies that

Eq. 16 has a unique solution. I make use of the following technical lemma.

Lemma 1 (Azimzadeh (2018), Lemma 2.1). Let A be the adjacency matrix of a

graph F so that ai j is the weight of the edge j→ i. The spectral radius of A is strictly

less than 1 if and only if for every row i, one of the following holds:

• row i sums to strictly less than 1, or

• there is a path k→ . . .→ i in F and row k sums to strictly less than 1.

The matrix V can be seen as the adjacency matrix of a new graph F . Its nodes

correspond to agent pairs, and there is an edge from node i′ j′ to node i j if and only

if one of i′ or j′ is a leader of i or j in the original agent graph G. Let νi j denote the

sum of the row of V that corresponds to node i j. We have

νi j =
1
2

(
∑

k∈Li

wik + ∑
k∈L j

w jk

)
. (B.1)

Lemma 1 tells us that it suffices to prove, for every i j: either νi j < 1, or there exists

another node i′ j′ with νi′ j′ < 1 and a path from i′ j′ to i j in F . If νi j = 1, assuming

every agent can be influenced by a zealot, there exists an agent k such that zs
k > 0 for

some s and a path from k to i. Hence there is path from ik to i j in F , and νik < 1 as

shown by Eq. 2 in the main text.
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B.2 Unicity of p with recommendations
I prove that Eq. 7.12 has a unique solution. Let us write it in matrix form: ps =

Aps +b. As long as the spectral radius ρ(A) of A is stricly less than 1, the system

has a unique solution ps = (I−A)−1b. The entries of A are given by

ai j = (1−B)
µ( j)

∑k∈L(i) λ (k)+µ(k)
1 j∈L(i) (B.2)

and because B > 0 it holds that ∑ j ai j < 1 for any row i. But from Horn and Johnson

(1990, Thm. 8.1.22) we have ρ(A)≤max
i

∑ j ai j and thus ps exists and is unique.
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Discord and communities

An immediate application of discord in the EVM (Chapter 5) is the analysis of

polarised networks. If two groups support different ideas, how fiercely do they

disagree? To what extent does it depend on the connections between them, and

on the influence of zealots in each camp? To study these questions I calculate the

generalised active links density of networks partitioned in two communities C0 and

C1, for various values of the model parameters, at equilibrium. The rest of this

section is dedicated to the discussion of the results, illustrated in Figure C.1.

When reinforcing connections between different-minded communities, the

novel paths of influence creat more diverse information flows, and thus a higher

exposition to contradicting beliefs. There are two main consequences one could

expect from this. Agents may revise their viewpoint to incorporate adverse ideas,

leading the system towards a more consensual state of lower discord. Alternatively,

they may fiercely cling onto their prexisting opinions, thus creating more tension

and reinforcing discord—the so-called backfire effect (Bail et al., 2018; Schaewitz

and Krämer, 2020).

When community C0 is much less zealous than C1, for z = (0.1,0.5) and z =

(0.1,0.9), outgroup links can surprisingly reduce the discord within C0. While adding

too few of them will introduce more discord in the community, once they reach a

critical mass we observe a decrease in ⟨ρ⟩. This stems from the fact that C1 has

fiercer partisans, meaning opinion 1 gets more and more prevalent in the network

as connectivity between the two communities goes up—see the support for opinion
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0 dropping in the bottom plots. Thus even within C0, holding opinion 1 guarantees

more agreement with peers.

It is striking that contrary to ⟨ρ⟩, the average difference in opinion ⟨∆x⟩ (middle

plots) always decreases within communities, given enough outgroup links. The

opinion difference between i and j is defined by ∆xi j = ∥xi− x j∥2. Hence despite an

surge of discord amongst like-minded agents, the distributions of their equilibrium

opinions converge. This might be due to the fact that as edges are added, the network

gets closer to a complete one. Individual node particularities thus fade as agents

become more similar to one another. But as opinions distributions approach the

uniform distribution, the probabilities of drawing two different values increase. This

highlights the importance of distinguishing between similarity of opinion distribution

and discord probabilities.

Between the communities it seems that discord always diminishes with more

outgroup links. However, as shown in the inset (upper right plot), for equally low

values of zealousness z = (0.1,0.1), first ⟨ρ⟩ decreases but it quickly goes back up

as pout gets larger. Thus, when agents are not very zealous, relations with opposite

minded-others become more tumultuous as connections between them increase. For

high values of z, discord does decrease with pout , but stays at rather high values.

Finally, the lower left plot showcases the importance of using other measures

than simply average opinions. This was already highlighted in Vazquez and Eguı́luz

(2008). When the zealousness is the same on both sides, average opinions over the

whole network (bottom left plot) do not change with more links, but we observe a

rich behaviour in the evolution of ⟨ρ⟩ and ∆x (top left, center left plots).
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Figure C.1: Network of N = 100 agents with two communities C0 and C1. The s-zealot
exert a total influence z(s) on each agent in Cs and none on others. In-group
link probability is fixed at pin = 0.1, while the out-group link probability pout

and zealousness z = (z(0),z(1)) vary. Results are averaged over 20 agent graphs
generated under the Stochastic Block Model, for the whole network (left),
within each community (center) and between them (right). Top: Generalised
active links density. Middle: Opinion difference. Bottom: Support for opinion
0. The plots have different scales for clarity, but the purpose is to focus on the
qualitative dynamics rather than exact values.
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Elections table

Table D.1: Evolution of the estimates for the proportion of stubborn agents (z(0)⋆ ,z(1)⋆ ) over
time. Left: United Kingdom. Right: United States.

Year Conservative Labour
1924 (62, 38) (65, 30)
1929 (20, 21) (61, 30)
1931 (28, 20) (55, 30)
1935 (1, 5) (53, 27)
1945 (9, 10) (48, 26)
1950 (11, 10) (26, 17)
1951 (13, 12) (23, 16)
1955 (13, 12) (23, 16)
1959 (15, 14) (22, 16)
1964 (16, 15) (25, 18)
1966 (18, 16) (25, 18)
1970 (18, 16) (24, 18)
1974 (19, 17) (26, 19)
1974 (19, 16) (26, 19)
1979 (19, 16) (26, 19)
1983 (20, 17) (28, 20)
1987 (20, 17) (22, 15)
1992 (22, 18) (21, 14)
1997 (22, 18) (23, 15)
2001 (19, 15) (24, 16)
2005 (18, 14) (24, 16)
2010 (17, 13) (24, 16)
2015 (18, 13) (22, 14)
2017 (18, 13) (22, 14)
2019 (19, 14) (22, 14)
2024 (19, 14) (24, 15)

Year Republicans Democrats
1920 (23, 23) (44, 42)
1924 (15, 21) (18, 12)
1928 (18, 23) (15, 8)
1932 (18, 23) (18, 11)
1936 (16, 18) (10, 8)
1940 (13, 13) (7, 7)
1944 (14, 14) (9, 8)
1948 (15, 15) (9, 8)
1952 (17, 16) (10, 9)
1956 (16, 16) (11, 10)
1960 (16, 16) (11, 10)
1964 (17, 17) (12, 11)
1968 (17, 16) (10, 10)
1972 (17, 16) (12, 11)
1976 (15, 15) (11, 10)
1980 (16, 16) (12, 11)
1984 (16, 16) (13, 11)
1988 (16, 16) (13, 11)
1992 (16, 16) (14, 12)
1996 (15, 15) (14, 12)
2000 (16, 15) (15, 13)
2004 (16, 15) (15, 13)
2008 (16, 16) (15, 13)
2012 (17, 16) (16, 14)
2016 (17, 16) (16, 14)
2020 (18, 17) (16, 14)
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Flammarion.

Chen, W., Pacheco, D., Yang, K.-C., and Menczer, F. (2021). Neutral bots probe

political bias on social media. Nat Commun, 12(1):5580.



BIBLIOGRAPHY 162

Chen, W., Wang, C., and Wang, Y. (2010). Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In Proceedings of the 16th

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, KDD ’10, page 1029–1038, New York, NY, USA. Association for Computing

Machinery.

Chinellato, D. D., Epstein, I. R., Braha, D., Bar-Yam, Y., and De Aguiar, M. A. M.

(2015). Dynamical response of networks under external perturbations: Exact

results. J Stat. Phys., 159(2):221–230.

Chitra, U. and Musco, C. (2020). Analyzing the impact of filter bubbles on social

network polarization. Proc. of WSDM2020, page 115–123.

Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., and Starnini,

M. (2021). The echo chamber effect on social media. Proc. Natl. Acad. Sci.,

118(9):e2023301118.

Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi, W., and Starnini,

M. (2020). Echo chambers on social media: A comparative analysis. arXiv:

2004.09603.

Cinus, F., Minici, M., Monti, C., and Bonchi, F. (2021). The effect of people

recommenders on echo chambers and polarization. arXiv:2112.00626 [physics].

Clifford, P. and Sudbury, A. (1973). A model for spatial conflict. Biometrika,

60(3):581–588.

Collins, B. and Zadrozny, B. (2020a). Facebook bans QAnon across its platforms.

NBC News.

Collins, B. and Zadrozny, B. (2020b). Twitter bans 7,000 QAnon accounts, limits

150,000 others as part of broad crackdown. NBC News.

Collins, B. and Zadrozny, B. (2020c). YouTube bans QAnon, other conspiracy

content that targets individuals. NBC News.



BIBLIOGRAPHY 163

Conover, M. D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., and
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Vaccari, C., Valeriani, A., Barberá, P., Jost, J., Nagler, J., and Tucker, J. (2016). Of

echo chambers and contrarian clubs: Exposure to political disagreement among

German and Italian users of Twitter. Soc Media Soc, 2(3).

Vazquez, F. and Eguı́luz, V. M. (2008). Analytical solution of the voter model on

uncorrelated networks. New J. Phys., 10(6):063011. Publisher: IOP Publishing.

Vendeville, A., Giovanidis, A., Papanastasiou, E., and Guedj, B. (2022a). Rec-

ommendation of content to mitigate the echo chamber effect. In Conference on

Complex Systems, Palma de Mallorca, Spain. Extended abstract.



BIBLIOGRAPHY 178

Vendeville, A., Giovanidis, A., Papanastasiou, E., and Guedj, B. (2023a). Opening

up echo chambers via optimal content recommendations. In Complex Networks

and Their Applications XI, pages 74–85, Cham. Springer International Publishing.

Vendeville, A., Guedj, B., and Zhou, S. (2021). Forecasting elections results via the

voter model with stubborn nodes. Appl Netw Sci, 6(1):1.

Vendeville, A., Guedj, B., and Zhou, S. (2022b). Active links density in the Voter

Model with zealots. In Conference on Complex Systems 2022, Palma de Mallorca,

Spain. Extended abstract.

Vendeville, A., Guedj, B., and Zhou, S. (2022c). Towards control of opinion diversity

by introducing zealots into a polarised social group. In Complex Networks & Their

Applications X, pages 341–352, Cham. Springer International Publishing.

Vendeville, A., Guedj, B., and Zhou, S. (2023b). Discord in the multi-state voter

model with zealots.

Vosoughi, S., Roy, D., and Aral, S. (2018). The spread of true and false news online.

Science, 359(6380):1146–1151.

Wang, Y. and Wang, Y. (2023). Opinion-aware influence maximization in online

social networks.

Weatherbed, J. (2023). Twitter replaces its free API with a paid tier in quest to make

more money. The Verge.

Weber, D., Nasim, M., Falzon, L., and Mitchell, L. (2020). #ArsonEmergency and

Australia’s “Black Summer”: Polarisation and misinformation on social media. In

Disinformation in Open Online Media, Lecture Notes in Computer Science, pages

159–173. Springer International Publishing.

Williams, H. T., McMurray, J. R., Kurz, T., and Hugo Lambert, F. (2015). Network

analysis reveals open forums and echo chambers in social media discussions of

climate change. Glob Environ Change, 32:126 – 138.



BIBLIOGRAPHY 179

Wojcieszak, M. (2010). ‘Don’t talk to me’: effects of ideologically homogeneous

online groups and politically dissimilar offline ties on extremism. New Media Soc.

Publisher: SAGE PublicationsSage UK: London, England.
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