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ABSTRACT: The (time-independent) Schrödinger equation for
atomistic systems is solved by using the adiabatic potential energy
curves (PECs) and the associated adiabatic approximation. In cases
where interactions between electronic states become important,
the associated nonadiabatic effects are taken into account via
derivative couplings (DDRs), also known as nonadiabatic
couplings (NACs). For diatomic molecules, the corresponding
PECs in the adiabatic representation are characterized by avoided
crossings. The alternative to the adiabatic approach is the diabatic
representation obtained via a unitary transformation of the
adiabatic states by minimizing the DDRs. For diatomics, the
diabatic representation has zero DDR and nondiagonal diabatic
couplings ensue. The two representations are fully equivalent and
so should be the rovibronic energies and wave functions, which result from the solution of the corresponding Schrödinger equations.
We demonstrate (for the first time) the numerical equivalence between the adiabatic and diabatic rovibronic calculations of diatomic
molecules using the ab initio curves of yttrium oxide (YO) and carbon monohydride (CH) as examples of two-state systems, where
YO is characterized by a strong NAC, while CH has a strong diabatic coupling. Rovibronic energies and wave functions are
computed using a new diabatic module implemented in the variational rovibronic code DUO. We show that it is important to include
both the diagonal Born−Oppenheimer correction and nondiagonal DDRs. We also show that the convergence of the vibronic energy
calculations can strongly depend on the representation of nuclear motion used and that no one representation is best in all cases.

1. INTRODUCTION
Nonadiabatic effects within the electronic structure of
molecules are important for many physical and chemical
processes1−7 such as when a chemical reaction alters the
electronic structure, affecting nuclear dynamics. Nonadiabatic
processes are also important in astronomy and atmospheric
chemistry, where collisions of free radicals and open-shell
molecules with spatially degenerate electronic states are often
seen.8−12 Modeling electronically nonadiabatic processes has
also been effective in explaining the bonding in dications such
as BF2+13 and strongly ionic molecules such as LiF14 and
NaCl,15 whose 1Σ+ ground states show nonadiabatic behavior.

Both the adiabatic and Born−Oppenheimer (BO) approx-
imations assume nuclear dynamics evolve on single electronic
potential energy surfaces (PESs),8 where no kinetic energy
coupling (DDR) to neighboring electronic states occurs and is
generally good for predicting near-equilibrium properties for
many molecules.6 While related, the adiabatic approximation
differs from the BO approximation by the addition of the well-
known diagonal BO correction (DBOC), introducing mass
dependence into the PECs within the adiabatic representation.
The adiabatic approximation then breaks down when
electronic states of the same symmetry near spatial degeneracy
exhibit an avoided crossing. Neumann and Wigner16

formalized this as a noncrossing rule for diatomics, showing
that potential energy curves (PECs) cannot cross and appear
to “repel” upon approach (see Figure 1 for example).
Relaxation of the BO and adiabatic approximation is then
required to fully encounter the electronically nonadiabatic
effects because of the inherent coupling between electronic and
nuclear degrees of freedom for both the diagonal and
nondiagonal terms.

The so-called derivative couplings (DDRs) or nonadiabatic
couplings (NACs) between states that exhibit avoided
crossings arise through the nuclear kinetic energy operator
acting on the electronic wave functions when the BO
approximation is relaxed and corresponds to derivatives in
terms of the nuclear coordinate. The computation of DDRs
and PESs around the avoided crossing geometry is a major
source of computational expense within both quantum

Received: October 17, 2023
Revised: December 19, 2023
Accepted: December 20, 2023

Articlepubs.acs.org/JCTC

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jctc.3c01150

J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

Ja
nu

ar
y 

5,
 2

02
4 

at
 1

2:
20

:5
6 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryan+P.+Brady"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Charlie+Drury"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sergei+N.+Yurchenko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonathan+Tennyson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.3c01150&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01150?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01150?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01150?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01150?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01150?fig=tgr1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01150?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


chemistry and nuclear motion calculations because of the cusp-
like behavior of the PESs and the singular nature of the DDRs
at the geometry of spatial degeneracy.8,17−19 It is therefore the
main focus of many works to explore property-based
diabatization methods8,20−22 that transform to a diabatic
representation, where DDRs vanish or are reduced and PESs
become smooth. For diatomics, the smoothness condition of
their PECs uniquely defines the unitary transformation to the
diabatic representation where NACs (first-order nondiagonal
DDR) vanish, PECs are allowed to cross, and consequently,
the molecular properties are smooth, at the cost of introducing
off-diagonal diabatic potential couplings. This smoothness is
then favorable for nuclear motion calculations since no
quantities within the molecular model are singular/cusped,
making their integration and fitting of analytical forms much
simpler. The other method of diabatization, known as point-
diabatization,14,22−30 is direct and requires the NAC to be
obtained ab initio such as through the DDR procedure,31

where each point can be diabatized without knowledge of the
previous one, unlike property-based methods.

Mead and Truhlar32 showed that a strictly diabatic
electronic basis, in which all derivative coupling vanishes, can
be defined for a diatomic system. The conditions required to
make the first-order NAC vanish are straightforward; however,
a true diabatic electronic basis only exists when one can
remove the second-order (diagonal) derivative coupling
simultaneously, which is only possible when considering an
isolated two-state system, allowing one to ignore coupling to
other adiabatic states. The adiabatic to diabatic transformation
(AtDT) for the N-nuclear-coordinate case up to coupled 4-
state systems has been investigated thoroughly by Baer and
coauthors since the late 1980s.33−37 These works develop the
so-called line-integral approach in solution to the matrix
differential equation that arises when solving for the AtDT,
which completely reduces the NAC matrix. Their results, albeit
from a different angle than in this study, are consistent with the
results we present.

Despite diabatization being used routinely to treat the
avoided crossings of molecular PESs, there have been very few
studies examining the numerical equivalence of adiabatic and
diabatic states. This would be of value not only to those who
want to benchmark their own nuclear motion codes but also to
better understand the roles of each term in the diabatic and
adiabatic Hamiltonian. Equivalence refers to the principle that

the two representations should yield identical observables such
as energy eigenvalues.

The solution of the nuclear motion Schrödinger equation
should not depend on whether the adiabatic or diabatic
representations of the electronic states are used.37 In practice
with numerical applications, observables should converge to
the same values with increasing accuracy of calculation, e.g., by
using increasingly larger basis sizes. Equivalency is often
assumed but is rarely shown. Convergence between the
adiabatic and diabatic states has been investigated in only a
handful of papers. Zimmerman and George38 performed
numerical convergence tests on adiabatic and diabatic states
of the transition probability amplitudes in collisions of collinear
atom−diatom systems, where the convergence to equivalence
was demonstrated, and it was shown that convergence was
markedly different with the diabatic representation converging
significantly faster. Shi et al.39 evaluated numerical convergence
rates of adiabatic and diabatic energy eigenvalues and
eigenfunctions using a sinc-DVR method; equivalency was
demonstrated, but this required using a complete adiabatic
model and a conical intersection at high energy. The
magnitude of the DDR corrections within the adiabatic
representation has been studied before such as in the series
of papers by Wolniewicz, Dressler, and co-workers,40−46 where
excited electronic states of molecular hydrogen and their
coupling were studied in detail. The earliest of these studies
used the adiabatic approximation, but through the series,
nonadiabatic couplings were introduced and improved for an
increasing number of excited states and were shown to be
essential to produce accurate spectroscopy (i.e., accurate
rovibronic energies and transitions) of the system, as
confirmed by comparison to experiment. In the later studies,
the diabatic representation was also shown to provide an
accurate description of the nuclear dynamics of H2, but
comparisons between the adiabatic and diabatic representa-
tions were not shown. Additionally, DDR corrections were
studied with respect to the computed rovibrational energies of
H2

+ and D2
+ by Jaquet and Kutzelnigg47 and later by Jaquet48

on the H2
+, H3

+, and H2 systems. It is therefore expected that
DDR contributions are critical for the accurate determination
of the energies of small hydrogen-bearing molecules.

Nonadiabatic interactions are also important for scattering
calculations, which often assume the equivalence between the
adiabatic and diabatic representations.49 For example, Little

Figure 1. Illustration of the [D2Σ+, B2Σ+] and [C 2Σ+, 2 2Σ+] avoided crossing systems ([black, blue] lines) for the YO and CH diatomic molecules,
respectively, which we use to perform tests on the adiabatic and diabatic equivalence. The top panels show the adiabats (solid lines) and diabats
(dashed lines). The bottom panels show the corresponding NAC and DC (in units of Å and cm−1) of the transformations.
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and Tennyson50 provide a partial diabatic representation for
the electronic structure of N2, which was used within
multichannel quantum defect theory calculations for the
dissociative recombination of N2

+,51 where ab initio cross
sections were generated. It was shown by Volkov et al.52 that
for multichannel coulomb scattering calculations for the
mutual neutralization reaction H+ + H− → H2*→ H(1) +
H(n), an adiabatic and diabatic reformulation produced not
only equivalent results but also almost identical cross sections
as generated from various other methods. Furthermore, the
influence of the second derivative coupling term was shown to
be important for producing accurate cross sections, an
interesting result which showcases the need for accurate
representation of nonadiabatic dynamics.

This study aims to show the numerical equivalence of the
adiabatic and diabatic representations in nuclear motion
calculations of rovibronic energies and spectral properties for
two selected diatomic systems, represented by two coupled
electronic states: yttrium oxide (YO) and carbon monohydride
(CH) molecules illustrated in Figure 1. YO shows avoided
crossings between the B2Σ+, D2Σ+ and A2Π, C2Π states as
described by Yurchenko et al.53 YO has broad scientific
interest, having been observed in stellar spectra,54−57 and
found use in solar furnaces58,59 and magneto-optical traps.60,61

YO is a complex system showing many low-lying electronic
states; accurate descriptions of its avoided crossings will be
valuable to works in several fields. CH is one of the most
studied free radicals62 because it occurs in such a wide variety
of environments: it has been observed in flames,63,64 solar65−67

and stellar spectra,68−70 spectra of comets,71 ISM,72−75 and
molecular clouds.76

As part of the study, we also report our implementation of
the full diabatic/adiabatic treatments in our code DUO,77 a
rovibronic solver of general coupled diatomic Schrödinger
equations, which is used in the analyses. DUO is a general,
open-access Fortran 2003 code (https://github.com/Exomol/
Duo).

2. DESCRIPTION OF THE DIABATIZATION OF A
TWO-ELECTRONIC-STATE SYSTEM

Consider a coupled two-electronic-state system of nuclear
(pure vibrational) Schrödinger equations for a diatomic
molecule in the adiabatic representation, with the nonadiabatic
effects between these two states fully accounted for, as given by
(ignoring spin and rotation angular momenta)

H r E r( ) ( )v v v
(a) =

where r is the distance between the two nuclei and the Born−
Huang 2 × 2 Hamiltonian operator is (see, e.g., Varga et al.,30

Römelt,78 and Yarkony et al.79)
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Here, μ = m1m2/(m1 + m2) is the reduced mass, V1
(a)(r) and

V2
(a)(r) are the adiabatic potential energy functions, and

W12
(1)(r) is the first-order DDR or nondiagonal NAC, given by
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where ψ1
a and ψ2

a are the adiabatic electronic wave functions,
and K(r) is the diagonal DDR component given by

K
r r r r

d

d

d

d

d

d

d

d
1
a

1
a

2
a

2
a

= | = |
(3)

Furthermore, K r( )
2

2

is the well-known DBOC.80

The derivative coupling K(r) is related to the second DDR
W12

(2) through the following relations81,82 in the g-, h-, and k-
notations
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In conjunction with eqs 4−6 and the results by Baer,37

Mabrouk and Berriche,83 and Smith,84 a simple and powerful
expression for the matrix element of the diagonal DDR term K
for the coupled two-electronic state problem is obtained

K W
W

r
W( )

d
d12

(1) 2 12
(1)

(2)= =
(7)

A diabatic representation of a two-state system can be
introduced via a unitary transformation U(r) of the adiabatic
electronic wave function vector ( , )Ta

1
a

2
a= , in which the

first-order DDR vanishes and PECs and other molecular
properties become smooth at the cost of introducing an off-
diagonal potential energy coupling, termed a diabatic coupling
(DC), between the nonadiabatically interacting electronic
states.17,18,85 The unitary 2 × 2 matrix U(r) is given by

U r
r r

r r
( ( ))

cos ( ( )) sin ( ( ))

sin ( ( )) cos ( ( ))
=
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where the mixing angle β(r) is obtained by integrating NAC as
follows8,86−88

r r W r r( ) ( ) ( ) d
r

r

0 12
(1)

0

= +
(9)

where r0 is a reference geometry and is usually chosen as such
that one can define a physical condition which ensures the
mixing angle to equal π/4 at the crossing point rc. It can also be
shown that for the diatomic one-dimensional case, the
transformation to a strict diabatic basis is unique and that
W12

(1) vanishes upon the diabatization together with K(r) (see
eq 7). Similar to the work by Köppel et al.,89 who developed a
Hamiltonian for the two-coupled electronic state problem, we
develop theory for the diabatic and adiabatic electronic PECs
for the coupled two-electronic states in question. The
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corresponding two-electronic-state Born−Huang Hamiltonian

operator H(d) then becomes
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where the diabatic potential energy functions V1
d(r) and V2

d(r)
and the DC function V12

d (r) are given by
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The goal of this work is to demonstrate the equivalency of
the adiabatic and diabatic representations when solving the
nuclear motion diatomic (eigenvalue) problem. To this end,
we aim to construct, solve, and compare the eigensolutions of
model diatomic systems in the adiabatic and diabatic
representations.

If the adiabatic representation of an isolated two-electronic
state diatomic system is fully defined by the three functions
V1

a(r), V2
a(r), and W12

(1)(r) in eq 1, in turn, the diabatic
representation is fully defined by the three functions V1

d(r),
V2

d(r), and V12
d (r) in eq 10. In fact, both transformations can be

fully described by a combination of any three functions from
the set V1

a(r), V2
a(r), W12

(1)(r), V1
d(r), V2

d(r), and V12
d (r). For this

study, we choose V1
d(r), V2

d(r), and W12
(1)(r). The diabatic PECs

V1
d(r) and V2

d(r) are expected to have smooth shapes by
construction and are easy to parameterize, which explains our
choice, while W12

(1)(r) also has a rather simple, easy-to-
parameterize cusp-like shape,8,14,17−19 as will be shown
below. The other three functions are constructed from V1

d(r),
V2

d(r), and W12
(1)(r) as follows.

We first define β(r) via eq 9. By applying the inverse
transformation U† to the potential matrix Vd(r) in eq 11, we
arrive at the following condition for the off-diagonal element of
the adiabatic potential matrix

r r V V r r Vsin ( ) cos ( )( ) (cos ( ) sin ( ) )

0
1
d

2
d 2 2

12
d+

= (12)

which is required to be zero since Va(r) = UVd(r)U† in eq 1 is
diagonal by definition. Hence, we can rearrange it for the DC
to get

V r V V
1
2

tan (2 ( ))( )12
d

2
d

1
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(13)

The adiabatic functions V1
a(r) and V2

a(r) can then be
constructed as eigenvalues of the diabatic potential energy
matrix (second term in eq 10)
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or, equivalently, via the inverse unitary transformation U
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3. SPECTROSCOPIC MODELS
As an illustration, two model two-state electronic systems are
used, YO and CH, with their diabatic and adiabatic curves
shown in Figure 1 and introduced in detail in the following.

3.1. YO Spectroscopic Model. As an example of a two-
state system with narrow, coupled-bound electronic curves, we
chose the ab initio PEC curves of the B2Σ+ and D2Σ+ states of
YO from Smirnov et al.90 with the NAC from Yurchenko et
al.53

We use a Morse oscillator function as a simple model for the
diabatic B2Σ+ and D2Σ+ PECs of YO as given by

V r T A T b r r( ) ( ) 1 exp ( ( ))e e e e
2= + [ ] (17)

where Ae is a dissociation asymptote, Ae − V(re) is the
dissociation energy, and re is an equilibrium distance of the
PEC. The NAC of YO can be efficiently described by a
Lorentzian function

W r
r r

( )
1
2 ( )12

(1)
2

c
2=

+ (18)

where γ is the corresponding half-width-at-half-maximum
(HWHM), while rc is its center, corresponding to the crossing
point of diabatic curves. These PECs and NACs are illustrated
in Figure 2. The parameters defining these curves are listed in
Table 1, which were obtained by fitting them to the
corresponding ab initio data.

For the Lorentzian as a NAC, eq 9 is easily integrable to give
the transformation angle β(r)

r
r r

( )
4

1
2

arctan c= ±
i
k
jjjj

y
{
zzzz

(19)

where rc is obtained as the crossing point between the PECs,
and the ± sign refers to the path integral when r < rc and rc < r,
respectively.

The adiabatic curves obtained using eqs 14 and 15 and the
DC curve obtained using eq 13 are shown in Figure 2. The
value of the crossing point rc is obtained as a numerical
solution of V1

d = V2
d and is listed in Table 1. The derivative

coupling K in the diagonal matrix element of the adiabatic
kinetic energy operator in eq 1 is simply defined by
K W( )12

(1) 2= according to eq 7. All of the corresponding
curves are programmed in DUO analytically and are provided
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on a grid of 1000 equidistant bond lengths as part of the
Supporting Information.

3.2. CH Spectroscopic Model. The spectroscopic model
for CH, with curves illustrated in Figure 1 (right panel), is
constructed to mimic the ab initio curves of C1Σ+ and 21Σ+ by
van Dishoeck.91 The C1Σ+ state has a bound shape with a well
of about 16,700 cm−1 (2.0705 eV), which we model using a
Morse oscillator function in eq 17. The 21Σ+ state is repulsive,
with the dissociation energy lower than that of C1Σ+ by about
10,000 cm−1. We chose to model the 21Σ+ PEC using the
following form

V r D C r( ) /e 4
4= + (20)

The corresponding NAC between C1Σ+ and 21Σ+ of CH from
van Dishoeck91 is modeled using a two-parameter Lorentzian
function in eq 18. All parameters defining the CH
spectroscopic model are given in Table 2. As above, the
value of the crossing point rc is obtained as a numerical
solution of V1

d = V2
d.

4. SOLVING THE ROVIBRONIC SCHRÖDINGER
EQUATIONS FOR CH AND YO

Both CH and YO doublet systems represent open-shell
molecules. Toward a complete rovibronic solution, the pure
vibrational Hamiltonian operator in eqs 1 or 10 is extended
with the rotation-spin-electronic contribution as follows (see
Yurchenko et al.77 for details of the approach used)

H H R
2vib

2
2= +

(21)

where the rotational angular momentum operator R̂ is replaced
with

R J S L= (22)

Here, J,̂ Ŝ, and L̂ are the total, spin, and electronic angular
momenta, respectively. We then solve the aforementioned
rovibronic Schrödinger systems for YO and CH variationally
on the Hund’s case (a) basis using the DUO program,77 which
has been extended as part of this work to include the adiabatic
and diabatic effects. The spectroscopic models of CH and YO
are provided in the form of the DUO input files in both the
diabatic and adiabatic representations as part of the Supporting
Information.

DUO uses the numerical sinc-DVR method92,93 to solve the
Schrödinger systems for the curves defined either on a grid or
as analytic functions. For the analytic representations above,
the corresponding functions are mapped on a grid of sinc-DVR
points. For the grid input, cubic splines are used. The DUO

kinetic energy has been extended to include the first derivative
component required for implementation of the NAC, also
using the sinc-DVR representation.94 The DBOC terms can be
either provided as input or generated from the NAC using eq
3. In order to facilitate the numerically exact equivalency of the
diabatic and adiabatic representations in DUO calculations, eqs
13−15 are provided and are used for constricting V12

d, V1
a(r),

and V2
a(r), respectively, from V1

d(r), V2
d(r), and β(r).

4.1. YO Solution. We first find the vibronic (J = 0.5)
energies of the coupled B2Σ+ and D2Σ+ systems in the adiabatic
and diabatic representations as accurately as possible in order
to establish a baseline and also to demonstrate the equivalency
of the two representations. Even though we know that the
diabatic and adiabatic solutions should be equivalent (i.e.,
identical within the calculation error), this is always subject to
the convergence or other numerical limitations. For example,
DUO uses a PEC-adapted vibrational basis set constructed by
solving the pure vibrational problem, which will be different
depending on the representation, diabatic or adiabatic, and
thus will influence the convergence. The corresponding YO
model curves are shown in Figure 2, where DBOC coupling K
is included in the adiabatic PECs for clarity. There is a striking
difference between the two models, with a large spike in the
middle of the adiabatic PECs, yet we expect them to give the
same eigenvalues and eigenfunctions.

A selected set of rovibronic energy term values (J = 0.5)
computed using the two methods is listed in Table 3. The
energies are indeed identical (within 2.5 × 10−5 cm−1), but the
approximate quantum state labels as assigned by DUO are very
different. DUO assigns quantum labels via the largest
contribution from the corresponding basis sets, which in
both cases are very different and so are their state
interpretations, in which case we compare states of matching
energy enumerator n.

Figure 2. Full adiabatic (left) and diabatic (right) models of the B2Σ+

and D2Σ+ systems of YO. The top panels show the PECs, where the
adiabatic PECs include the diagonal DDR corrections αK and α = h/
(8π2cμ). The bottom panels show the corresponding coupling curves,
NAC (left) and DC (right).

Table 1. Molecular Parameters Defining the YO
Spectroscopic Model

parameter V1
d V2

d W12
(1)

Te, cm−1 20700.0 20400.0
re, Å 1.89 2.035
b, Å−1 1.5 1.26
Ae, cm−1 59220.0 59220.0
γ, cm−1 0.01
rc, Å 1.945843834

Table 2. Molecular Parameters Defining the CH Diabatic
Spectroscopic Model

parameter V1
d V2

d X1Π W12
(1)

Te, cm−1 32500.0 0.0
re, Å 1.12 1.12
b, Å−1 2.5 1.968
Ae, cm−1 49200.0 29374.0 39220.0
C4, Å−4 18000.0
γ, cm−1 0.2
rc, Å 1.656644935
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Having established the numerical equivalence, we can now
investigate the importance of different nonadiabatic couplings
for the YO model. Three approximations are considered here:
(A1) in the adiabatic model, both DDR terms are switched off
(W12

(1) = K = 0); (A2) in the adiabatic model, the diagonal
DDR is switched off (K = 0), but the NAC is included; and
(A3) in the diabatic model, the diabatic coupling is set to zero
(V12 = 0). The effects of these approximations on the
calculated energies of YO (J = 0.5) are also shown in Table 3.
For the adiabatic model, the omission of K (A2) has the overall
largest impact, especially on the B2Σ+ term values. The
omission of V12 from the diabatic model (A3) appears to be
less damaging than the other two approximations. It is clear,
however, that any degradation of theory leads to large errors,
which is unacceptable for high-resolution applications. This is,
in fact, the main conclusion of this work: the impact of
dropping any nonadiabatic corrections from the model
describing a system with crossings has to always be
investigated.

Out of the two representations, the adiabatic model is
usually considered to be more complex to work with. Its curves
have complex shapes with the model being very sensitive to the
mutual consistency of the curves V1

a, V2
a, and W12

(1) around
the crossing point. The disadvantage of the diabatic
representation is that it does not come out as a solution of
the (adiabatic) electronic structure calculations directly and
needs to be constructed either through a diabatization
approach8,14,20−30 or approximated.

4.2. Eigenfunctions and Reduced Density. It is
instructive to compare the eigenfunctions φi

J,τ(r) of the
adiabatic and diabatic solutions and different approximations.
To this end, we form reduced radial densities of the eigenstate
in question. The eigenfunctions φi

J,τ utilized by Duo are
expanded in the basis set |n⟩

C ni
J

n

N

i n
J,

1
,
,= |

= (23)

where N is the basis size and Ci,n
J,τ are the expansion coefficients

used to assign quantum numbers by largest contributions. |n⟩
denotes the full basis: |n⟩ = |st, J, Ω, Λ, S, Σ, v⟩, where “st” is
the electronic state; S is the electron spin angular momentum;
v is the vibrational quantum number; and Λ, Σ, and Ω are the
projections of electron orbital, spin, and total angular
momentum along the internuclear axis, respectively. The
reduced radial density ρi

J,τ(r) is then given by

r C r( ) ( )i
J

v k
v k
i J

v
,

,
, , 2 2= | | | |

(24)

where |k⟩ = |st, J, Ω, Λ, S, Σ⟩ and χv(r) are the vibrational wave
functions. The reduced density states are probability density
functions over the bond length averaged over all quantum
numbers in |n⟩. This is an efficient way of examining the
behavior of the wave functions without looking in a
hyperdimensional space defined by quantum numbers |n⟩.

Figure 3 shows selected reduced radial state densities of YO
computed by using different representations and approxima-
tions. As expected from our energy comparisons, the diabatic
and adiabatic representations produce identical results, where-
as the reduced densities quickly deviate when the NAC and/or
K corrections are removed. Again, it appears that the adiabatic
representation with approximations is almost better when the
DDRs are completely omitted rather than omitting only one, at
least concerning the lower energy levels.

5. ADIABATIC AND DIABATIC SOLUTIONS FOR CH
We now turn to a slightly different system of the C1Σ+ and
21Σ+ states of 12CH shown in Figure 4. Adiabatically, these
states have a large separation and a broad NAC. In contrast to
YO, there is no spike-type contribution from the DBOC-term

Table 3. Rovibronic (J = 0.5) Energy Term Values (cm−1) of the B2Σ+ (B) and D2Σ+ (D) Systems of YO Computed Using the
Adiabatic and Diabatic Representationsa

n adiabatic diabatic

Ẽ Ẽ(DDRs = 0) Ẽ(K = 0) state v Ẽ Ẽ(V12 = 0) state v

1 0.000000 0.000000 0.000000 B 0 0.000000 0.000000 D 0
2 344.431810 347.928597 191.831751 B 1 344.431809 351.249676 B 0
3 561.079914 690.986320 492.221984 B 2 561.079921 549.732652 D 1
4 1009.133229 967.537324 983.098980 B 3 1009.133232 1002.246089 B 1
5 1108.354299 1132.062465 1129.463766 D 0 1108.354283 1095.516787 D 2
6 1612.539760 1553.296745 1777.897073 B 4 1612.539736 1637.352406 D 3
7 1688.323434 1897.761066 1868.635701 B 5 1688.323453 1647.646531 B 2
8 2179.350796 2008.167697 2345.749886 D 1 2179.350783 2175.239507 D 4
9 2297.569318 2465.488852 2396.923772 B 6 2297.569321 2287.451003 B 3
10 2718.929830 2689.784491 2839.568147 B 7 2718.929830 2709.178092 D 5
11 2928.147305 2925.374682 3115.611400 D 2 2928.147294 2921.659505 B 4
12 3247.771603 3395.227251 3377.138924 B 8 3247.771603 3239.168161 D 6
13 3559.124439 3442.432354 3666.238711 D 3 3559.124429 3550.272037 B 5
14 3772.447582 3862.695406 3963.866748 B 9 3772.447578 3765.209712 D 7
15 4181.801597 4167.979957 4373.535285 D 4 4181.801594 4173.288598 B 6
16 4295.897860 4333.054560 4472.298326 B 10 4295.897854 4287.302747 D 8
17 4783.958004 4805.617146 4913.118506 B 11 4783.958001 4790.709188 B 7
18 4829.238038 4866.961640 4961.045768 D 5 4829.238030 4805.447266 D 9
19 5320.626170 5275.859430 5497.071432 B 12 5320.626156 5319.643267 D 10
20 5417.844769 5552.275088 5610.459386 D 6 5417.844772 5402.533809 B 8

aThe energies are listed relative to the lowest J = 0.5 state
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K to the adiabatic PECs of CH. Diabatically, the system
consists of a bound state and a repulsive state with a crossing at
a large distance and high energy, which therefore should not
influence the lower rovibronic states of C2Π significantly.
Regardless of the representation used, the region above the
first dissociation channel (39220.0 cm−1) is heavily (pre)
dissociative and should contain both (pre)dissociative and
continuum states. DUO is capable of finding both bound and
continuum eigensolutions. While the bound wave functions
satisfy the standard boundary condition leading to decay at
large and short distances, the continuum wave functions can
also be computed with the sinc-DVR method used by DUO and
satisfy the boundary condition of vanishing exactly at the
simulation box borders (together with their first derivatives),

see Pezzella et al.95 For the analysis, we separate the (quasi-
)bound and the continuum states by checking the character of
the wave functions at the “right” border rmax, while the
continuum states tend to oscillate at r → ∞ with a nonzero
density around rmax

96 where the bound state vanishes
completely.

The resulting energy term values of the bound states are
listed in Table 4 for all five cases, including nonadiabatic and
diabatic couplings considered as in the YO example. The full
diabatic and adiabatic (bound) C1Σ+ energies are fully
equivalent within 10−6 cm−1 (here shown up to the second
decimal point). However, any degradation of the theory leads
to drastic changes in the topology of the system and hence in
the calculated rovibronic energies of the C1Σ+ state, with the
accuracy quickly deteriorating already for v = 2. For example,
by removing the DC term, the diabatic solution becomes
meaningless with lots of nonphysically bound states above the
first dissociation channel, nonexistent in the case of the full
treatment. A similar effect is caused by the omission of the
derivative couplings from the adiabatic pictures with bound
spurious 21Σ+ states produced by the adiabatically bound PEC
21Σ+ (see Figure 4). Although the omission of the K(r) term
from the adiabatic solution seems harmless for the topology of
the corresponding PECs, even this case leads to a spurious
vibrational 21Σ+ (v = 0) state. Therefore, the conclusion is that
every nonadiabatic term should be considered important,
unless proven otherwise.

The corresponding reduced densities for some lower lying
bound states of CH (C1Σ+, J = 0.5) are shown in Figure 5 (n =
1, 2, 3). We see that the low-lying vibronic states of C2Π are
largely unaffected by the omission of the DDRs or DCs since
they are energetically well separated from the region of
nonadiabatic interaction, in this case occurring near dissoci-
ation. However, the reduced densities of the 21Σ+ state (n = 4)
quickly diverge when the NAC and/or K corrections are
removed. The 21Σ+ state is adiabatically bound and diabatically
unbound, where this drastic difference is seen with the reduced
densities in Figure 5 and corresponds to energy levels that arise
from PECs of very different character. For example, in the
diabatic case where the DC is omitted, the n = 4 state
corresponds to the bound C1Σ+ (J = 0.5, +, v = 3) state,
whereas in the adiabatic A1 and A2 cases, the n = 4 bound
state corresponds to the bound 21Σ+ (0.5, +, v = 0) state. In
the cases where the DDRs and DCs are fully accounted for, no
fourth bound state exists since the couplings will push it into
the quasi-bound region about the adiabatic potential hump of
the C1Σ+ state. This quasi-bound nature begins to show itself
in the reduced density of the adiabatic case with K = 0, where
small oscillations propagating to the right simulation border at
4 Å are seen.

5.1. Continuum Solution of CH: Photoabsorption
Spectra. In order to illustrate the equivalence of the
continuum solution involving the repulsive 21Σ+ state of CH,
we model a photoabsorption spectrum X1Π → C1Σ+/21Σ+,
where we follow the recipe from Pezzella et al.97 and Tennyson
et al.98 For the X1Π state, we use the same Morse function
representation in eq 17 with the parameters listed in Table 2.
For the transition electric dipole moments X C, = ⟨X1Π|μ|
C1Σ+⟩ and X ,2 = ⟨X1Π|μ|21Σ+⟩ of CH, we adopt the ab initio
curves by van Dishoeck91 with an approximate model using the
following function

Figure 3. YO reduced density states for the lowest 5 bound levels
with n being the energy enumerator given in Table 3. These reduced
densities are illustrated and computed using different levels of theory:
diabatic representation with DC (blue dotted); diabatic model with
the DC turned off (magenta, A3); adiabatic representation with both
the NAC and K correction included (lime green); adiabatic
representation with NAC only (orange, A2); and adiabatic
representation with no correction (red, A1).

Figure 4. Full adiabatic (left) and diabatic (right) models of the C1Σ+

and 21Σ+ systems of CH. The top panels show the PECs, where the
adiabatic PECs include the diagonal DDR correction αK, where α =
h/(8π2cμ). The bottom panels show the corresponding coupling
curves, NAC (left) and DC (right).
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r c c( ) ( )(1 )0 1 p p= + (25)

where ξp is the Šurkus99 variable given by
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The parameters defining the diabatic transition dipole moment
(TDM) functions are listed in Table 5. The adiabatic TDM
curves are obtained through the unitary transformation U(r)
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where β(r) is from eq 9 and 1
d and 2

d are the diabatic TDM
curves of ⟨X1Π|μ|C1Σ+⟩ and ⟨X1Π|μ|21Σ+⟩, respectively. The
full photodissociation system, in both adiabatic and diabatic
representations, is illustrated in Figure 6.

Figure 7 shows a photoabsorption spectrum of CH at T =
300 K computed with DUO using the continuum solution of
the coupled C1Σ+/21Σ+ system from the bound states of X1Π
for the diabatic and adiabatic models. We used the box of 60 Å
and 1600 sinc-DVR points. For the cross sections, a Gaussian
line profile of the HWHM of 50 cm−1 was used to redistribute
the absorption intensities between the “discrete” lines
representing the photoabsorption continuum. For details, see
Pezzella et al.97 The diabatic and adiabatic continuum wave
functions are obtained identically, so the photoabsorption

Table 4. Rovibronic (J = 0.5, 1.5, and 2.5) Bound Energy Term Values (cm−1) of the C1Σ+ (C) and 21Σ+ (2) Systems of CH
Computed Using the Adiabatic and Diabatic Representationsa

J e/f adiabatic diabatic

state v Ẽ Ẽ(DDRs = 0) Ẽ(K = 0) state v Ẽ Ẽ(V12 = 0)

0.5 e C 0 0.00 0.00 0.00 C 0 0.00 0.00
0.5 e C 1 2450.23 2448.12 2446.42 C 1 2450.23 2524.70
0.5 e C 2 4617.30 4608.42 4601.48 C 2 4617.30 4822.76
0.5 e 2 0 11191.50 13607.15 C 3 6894.18
0.5 e 2 1 12464.33 C 4 8738.95
0.5 e 2 2 13549.98 C 5 10357.08
0.5 e 2 3 14449.75 C 6 11748.57
0.5 e 2 3 C 7 12913.41
0.5 e 2 3 C 8 13851.60
0.5 e 2 3 C 9 14563.15
0.5 f 2 2 27.83 27.82 27.82 C 6 27.83 28.08
0.5 f 2 3 2476.23 2474.10 2472.39 C 7 2476.23 2551.11
0.5 f C 0 4641.14 4632.21 4625.24 C 8 4641.14 4847.45
0.5 f 2 1 11205.63 13620.21 C 9 6917.10
0.5 f 2 2 12478.11 C 0 8760.06
0.5 f 2 3 13562.86 C 1 10376.30
0.5 f 2 4 14461.35 C 2 11765.83
0.5 f 2 4 C 3 12928.61
0.5 f 2 4 C 4 13864.61
0.5 f 2 4 C 5 14573.78

aThe energies are listed relative to the lowest J = 0.5 state

Figure 5. CH reduced density states for the lowest four bound
rovibronic levels with n being the energy enumerator given by the row
number in Table 4. Different levels of theory are used to compute
these reduced densities and are illustrated: diabatic representation
with DC (blue dotted); diabatic model with the DC turned off
(magenta, A3); adiabatic representation with both the NAC and K(r)
correction included (lime green); adiabatic representation with NAC
only (orange, A2); and adiabatic representation with no correction
(red, A1).

Table 5. Molecular Parameters Defining the CH Diabatic
Transition Dipole Moment Functions

parameter ⟨X1Π|μ|C1Σ+⟩ ⟨X1Π|μ|21Σ+⟩
rref, Å 1.4 1.27
P 4 5
c0, Debye 0.71 0.85
c1, Debye 0.09 0.17
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spectra in this figure are indistinguishable. Figure 7 also
illustrates the effects of the nonadiabatic approximations on the
photoabsorption spectra of CH. Removing the diagonal DDR
(K = 0) results in a shift of the band by about −50 cm−1, while
setting both DDRs to zero leads to a significant drop of the
absorption by a factor of ∼4. If we remove the DC term from
the diabatic model, the bound absorption becomes dominant
in the Franck−Condon region (see Figure 6), and the
photoabsorption contribution drops by 2 orders of magnitude
and is therefore not visible on this scale. As a further
illustration of the continuum system of CH, Figure 8 gives an
example of reduced densities of one of the continuum states
used in the photoabsorption simulations.

6. CONVERGENCE
Since DUO uses a solution of the J = 0 uncoupled vibrational
problem to form its vibrational PEC-optimized basis set
functions ψv(r), and these model problems are hugely different
depending on the representation, one can also expect the
convergence of the eigensolution to be impacted by the choice
of the representation.

Here, we test the convergence of the J = 0.5 energy levels of
our simplified YO and CH models in the diabatic and adiabatic
representations where all nonadiabatic effects are encountered.
Figure 9 illustrates the convergence of the lowest 20 J = 0.5
energies of YO and the n = 5 state of CH (C2Σ+(J = 0.5, ±)),
where the difference of the i-th level Ei to its converged value
Ei

cvg is plotted as a function of vibrational basis size. The two
systems show contrasting results. The diabatically computed
YO (D2Σ+) energies converge very quickly for basis sizes of
∼25, whereas, within the adiabatic representation, a much
larger basis set of ∼250 was required to achieve convergence.
For CH (C2Σ+), the adiabatic energies initially converge faster,
but the diabatic energies eventually converge to within 10−6

cm−1 for a basis size of ∼25 as opposed to ∼42 for the
adiabatic energies.

Figure 6. Adiabatic (left) and diabatic (right) models of the
photoabsorption system of X1Π → C1Σ+/21Σ+ of CH. The top
panels show the PECs, adiabatic and diabatic, while the bottom panels
show the corresponding TDM curves.

Figure 7. Photoabsorption spectra of CH at T = 300 K. The no-
approximation case is shown with the blue line; the NAC = 0 case is
shown with the red line; and the black line shows the spectrum with
all DDRS set to zero.

Figure 8. Reduced density of the continuum state corresponding to an energy of hc·38183.6576 cm−1. Its transition with the X1Π (J = 1.5, f, v = 0)
state is positioned at the peak in the spectra of Figure 7. The reduced density state is illustrated and computed using different levels of theory:
diabatic representation with DC (blue dotted); diabatic model with the DC turned off (magenta, A3); adiabatic representation with both the NAC
and K correction included (lime green); adiabatic representation with NAC only (orange, A2); and adiabatic representation with no correction
(red, A1).
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Tests comparing the convergence rates for vibrational
energies of higher J resulted in the same conclusions as
those above for the J = 0.5 case.

This shows that there is not one representation that rules
over the other; it depends on the character of the avoided
crossing, specifically in its position, the shape of the potentials
approaching the crossing, and the separation of the adiabatic
PECs. It is therefore important to consider the system of study
before choosing a representation where all corrections must be
included.

7. CONCLUSIONS
A demonstration of the equivalency of the diabatic and
adiabatic representations for two model diatomic systems,
bound electronic B2Σ+ and D2Σ+ states of YO and a bound/
repulsive electronic systems C1Σ+ and 21Σ+ of CH, is
presented. Both representations should be equivalent by
construction, but we explicitly show this within nuclear motion
calculations through comparison of the rovibronic energies and
wave functions. The importance of different nonadiabatic
couplings in the molecular Hamiltonian is investigated, such as
how the rovibronic energies and wave functions change when
the NAC, DBOC, or the diabatic coupling vanish.

We present a transformation from the adiabatic to strict
diabatic basis for an isolated two-electronic state diatomic
system. Each representation is defined by three functions; the
adiabatic representation is given by two avoiding PECs and
their corresponding NAC, whereas the diabatic picture is
analogously defined by two diabatic PECs and a DC, all of
which are related to each other through the mixing angle.
Because of this, any three of the aforementioned quantities can
be used to fully reconstruct either the adiabatic or the diabatic
representation. We demonstrate that the choice of two diabatic
PECs and a NAC provides an easily parameterizable and
powerful way to define the two-level problem. In the case of
the diabatic PECs, they can be modeled easily by Morse
oscillators, and the NAC is easily modeled using a Lorentzian.

We show that omission of any of the nonadiabatic terms
leads to significant changes in the spectral properties of these
systems, which is unsatisfactory, especially for high-resolution
applications. Even the diagonal derivative coupling, often

omitted in practical applications, is shown to be of central
importance in achieving equivalency.

We also show that the choice of a preferable representation,
diabatic or adiabatic, is not the same for all systems. For cases
where the NAC is small (large DC), then the adiabatic
representation shows initially fast convergence of rovibronic
energy levels. However, for cases where the NAC is large
(small DC), the diabatic representation converges rovibronic
energies with very small basis sets, where large ones are
required for the corresponding adiabatic representation.

We used simplified approximated functions to model
different diabatic and adiabatic curves for the purpose of
facilitating the comparison and demonstration of equivalency
as well as simplifying the debugging process. In fact, our
program DUO uses numerically defined curves either provided
as grids of r-dependent values or generated from analytic input
functions, as used here. For the convenience of the reader, all
curves from this work are provided in both the analytic and
numerical representations as ASCII files, which are also DUO

input files. As we demonstrated, the models provide the exact
equivalency of the diabatic and adiabatic solutions and
therefore can be used as a benchmark for similar programs.
At the same time, DUO provides an efficient platform to test
different aspects of diabatizations in diatomic calculations,
including the testing of different approximations. DUO is open-
access, with an extended online manual and many examples.

It would be interesting to develop and apply a similar
methodology for polyatomic molecules, where the derivative
couplings cannot be fully transformed away. The exact
equivalence of the two representations should still be possible
to demonstrate numerically, even for a quasi-diabatic trans-
formation. This work on triatomic molecules is currently
underway. In the present diatomic study, we show that
exclusion of the DDR couplings can lead to differences on the
order of magnitude of 10s−100s of cm−1 in the energy
wavenumbers, reinforcing the need for a careful error budget of
all the approximations made when using them in high-
resolution spectroscopic applications.

All of the DDR, potential energy, and DC curves are
programmed in Duo analytically and are provided on a grid of
1000 equidistant bond lengths as part of the Supporting

Figure 9. Convergence of the lowest 20 vibrational J = 0 energies of the D2Σ+ state of YO (left) and the C 2Σ+ (v = 0, e/f) state of CH (right) is
plotted, where the difference of the i-th vibrational level Ei to its converged value Ei

cvg is plotted as a function of vibrational basis size. A constant
grid size of G = 3001, 4001 points for the sinc-DVR basis set was used for the YO and CH states, respectively. We see that the diabatically
computed energies for YO converge much faster than the adiabatic ones, whereas for CH, the opposite is true.
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Information. The spectroscopic models of CH and YO are also
provided in the form of DUO input files in both the diabatic
and adiabatic representations as part of the Supporting
Information.
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