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Multilevel Purcell effect and the impact of vibrational modes in molecular quantum optics
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The increased decay rate of a two-level system weakly coupled to an optical cavity, known as the Purcell
effect, is a cornerstone of cavity QED. However, the effect of cavity coupling is not well understood if the
two-level system is replaced by a multilevel interacting system. Motivated by experiments looking to characterize
molecular systems via exploiting a cavity interaction, we study a manifestation of the Purcell effect in a bio-
inspired photosynthetic dimer. We focus in particular on how molecular vibrational modes, thought to play an
important role in photosynthetic exciton transport, impact the system-cavity behavior in the Purcell regime.
We provide a theoretical picture in terms of an effective non-Hermitian Hamiltonian, which extends the simple
picture of a Jaynes-Cummings model to the description of a “multilevel” Purcell effect, where different levels
have differing Purcell factors, with effective cooperativities mediated by coherent vibrational interactions.
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I. INTRODUCTION

Molecular systems often operate at the boundary of quan-
tum and classical phenomena. The coherent coupling of
electronic, optical, and vibrational degrees of freedom avail-
able in molecular systems thereby offers an excellent testbed
for optomechanical and quantum optical effects via molecular
cavity quantum electrodynamics (QED) experiments [1–3].
Of particular interest is the deployment of QED setups for
the investigation of quantum effects in individual photosyn-
thetic molecules and the detailed interplay between coherent
and dissipative interactions with the vibrational motions that
affect excitation transport [4–14]. More generally, many-body
system-cavity interactions are of relevance to fields such as
ultracold atomic gases [15], as well as optical properties of
quantum dots [16–21], photonic devices [22,23], condensed-
matter physics [24], artificial light-harvesting devices [25],
and a variety of other applications in quantum technologies,
quantum chemistry, and beyond [26,27].

Central to emitter-photon interactions via cavity QED is
the Purcell effect [28], which is canonically modeled by the
Jaynes-Cummings (JC) model. This model describes a two-
level system weakly interacting with a “leaky” cavity, where
the cavity decay κ is fast compared to its resonant frequency
ωc, leading to a small quality factor Q := ωc

κ
. In this limit,

the two-level system experiences a significantly increased de-
cay rate compared to its bare emission rate γ . This increase
is determined by the cavity cooperativity C = g2

c/κγ , with
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gc the system-cavity coupling strength. Molecule and many-
atom cavity interactions have been theoretically described via
modifications to canonical models of cavity QED [21,29–
35]. Here we describe the coherent electronic and exciton-
vibration interactions in multilevel molecular systems, and
their manifestation in the Purcell enhancement of the decay
of molecular states. A crucial motivation for analysis of the
molecular Purcell effect is that it may be exploited in order
to increase light capture for quantum optical experiments
[36–38], and is thus of particular relevance for single molecule
spectroscopies, where a signal may otherwise be extremely
weak.

Experimental application of fluorescence enhancement at
the single molecule level has previously been exploited in
order to measure photon statistics in the photosynthetic
light-harvesting complex 2 (LH2) complex [39], showing an-
tibunching of emitted light. Both experimental [40,41] and
theoretical [42–44] studies of photosynthetic molecules inter-
acting with a cavity have mostly concerned strong-coupling
regimes, polariton formation, and the optimization or mod-
ification of transport. Notably, in Ref. [45] targeted Purcell
enhancement on a molecular transition was used in order to
turn a molecule into an ideal quantum emitter. This exper-
iment captures one branch of the possible applications of
molecular cavity QED: creation of a hybrid system with a new
behavior induced by cavity interaction. Indeed, the Purcell
effect may be exploited to selectively affect particular tran-
sitions of molecular systems in this manner [3,46,47]. In this
paper we are motivated by a second branch: exploiting a cavity
coupling in order to probe molecular behavior, with no (or at
least controlled) effect on the molecular system itself. This
enables the cavity to act as a tool for increased targeted light
collection, which is otherwise extremely weak in the single
molecule regime.

In Ref. [42] Caruso et al. show that the emission spec-
tra from the cavity coupled to LH2 yields information on
the delocalization of the collective electronic states of the
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molecule (exciton states). Here we study a similar scenario,
but rather focus on understanding in which limits the resulting
enhanced light emission may faithfully reflect the properties
of a bare molecule, providing a theoretical description of the
effect of the cavity mode on a complex multilevel molecule
featuring rich electronic and electronic-vibrational (vibronic)
interactions.

We take as our example model a prototype photosynthetic
dimer [6] including coherent vibronic couplings and inco-
herent interactions due to the surrounding vibrational and
electromagnetic environments. We find that even in the weak
cavity coupling regime, an understanding of the cavity cou-
pling in terms of the Purcell effect must be modified. Whereas
we may indeed understand the system in terms of modified
decay rates of excited states, in general these decay rates
are affected differently for different, near resonant, molecular
states. We give a simplified analytical description of these dif-
fering Purcell factors in terms of an effective non-Hermitian
Hamiltonian, and see that Jaynes-Cummings-like couplings
emerge, characterized by state dependent cavity cooperativ-
ities, which depend crucially on both excitonic and vibronic
coherences of the system.

This paper is arranged as follows. We begin in Sec. II by
introducing the Purcell effect and its analysis via an effective
non-Hermitian Hamiltonian with the simplest case of the JC
model. In Sec. III A we extend the analysis to a multilevel
system. We first introduce the prototype photosynthetic dimer
model, in which we show that the Purcell effect can be ob-
served directly from excited-state dynamics in Sec. III B. We
then in Sec. III C show that this direct approach is somewhat
naive, and in terms of an effective Hamiltonian in analogy to
the JC model analysis we calculate effective Purcell factors
for the system, and observe that they in general differ for dif-
ferent (near resonant) states. In Sec. III D we analyze in more
detail how molecular vibronic and excitonic delocalizations
play a role in the multilevel Purcell (MLP) effect. We finally
conclude in Sec. IV. Additional derivations are provided in
the Appendices.

II. THE PURCELL EFFECT

The canonical demonstration of the Purcell effect is via the
JC model, describing a two-level system interacting with a
single cavity mode:

HJC = 1
2ω0σz + ωca†a + gcσ+a + g∗

cσ−a†. (1)

Cavity and atom decay processes are treated via Marko-
vian dissipators in Gorini-Kossakowski–Sudarshan-Lindblad
(GKSL) form, DL[·] = 2L · L† − {L†L, ·}, for some jump
operator L. These are taken to be the atom and cavity
annihilation operators σ− and a, respectively. The master
equation governing the atom-cavity system evolution is thus

∂tρ(t ) = −i[HJC, ρ(t )] − γ

2
Dσ−[ρ(t )] − κ

2
Da[ρ(t )]. (2)

In order to describe the Purcell effect, it is useful to reexpress
the master equation in terms of an effective non-Hermitian
Hamiltonian [48]. For a GKSL master equation this takes the

form [49]

Heff = H − i
∑

i

γi

2
L†

i Li, (3)

where H is the original Hamiltonian describing unitary coher-
ent dynamics, and the second term manifests the effect of the
Markovian decay channels. We thus obtain

Heff = HJC − i
γ

2
σ †σ − i

κ

2
a†a. (4)

This effective Hamiltonian is easily diagonalized, from which
we obtain complex eigenvalues for the lowest-energy doublet
given by

ω± = ωc + ω0 + i(κ + γ )

2
±

√
g2

c +
(

� − i(κ − γ )

2

)2

,

(5)

where � = ωc − ω0 is the cavity detuning.
Importantly for the following analysis, the imaginary parts

of the complex eigenvalues may be understood as the de-
cay rate of the corresponding Hamiltonian (pseudo)eigenstate,
which can be seen by writing explicitly the evolution of some
pure state |φ〉 via |φ(t )〉 = e−iHeff t |φ〉 = ∑

μ e−iEμt cμ|ψμ〉.
Here |ψμ〉 are the eigenstates of Heff , and cμ = 〈ψμ|φ〉. We
see, then, that for complex Eμ individual terms oscillate at a
frequency Re[Eμ], and decay at a rate −Im[Eμ].

In Fig. 1 we show the dependence of the real and imaginary
parts of the effective Hamiltonian eigenvalues on the cavity
coupling strength gc for a given quality factor. For gc = 0, the
eigenstates correspond to uncoupled atom and cavity modes,
decaying at rates γ and κ respectively. As the coupling is
increased these modes are hybridized. The Purcell regime is
characterized by the area in which the respective decay rates
are altered by the interaction, but the energy levels remain
largely unaffected. This change in decay rate is determined
by cavity cooperativity [50],

C := g2
c

κγ
, (6)

through the modification to the bare atom decay rate via
γ → γ (1 + 4C). This is shown in Fig. 1(b) (dotted line),
and compared to the decay rates obtained directly through
diagonalization of the effective Hamiltonian. We see that
the Purcell regime (where the above prescription is a good
approximation) extends into rather high cooperativities of
C � 200, corresponding to a significant increase in the light
emission from the atom. We additionally see in Fig. 1 that this
picture holds upon introducing a detuning [50]. The pertinent
question for application to molecular cavity QED, then, is
whether, and in what limits, this picture can be extended to
interacting multilevel systems coupled to a cavity mode.

III. MULTILEVEL PURCELL EFFECT

A. Prototype photosynthetic dimer

For our analysis, we use a biologically inspired dimer
model [6,13,51], which consists of two pigments, and their
surrounding Bosonic environment. The electronic degrees of
freedom of the pigments are each described by a two-level
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FIG. 1. (a) Real and (b) imaginary parts of the eigenspectrum of
the effective non-Hermitian Hamiltonian of the Jaynes-Cummings
model, Eq. (4), for varying detuning � := ω0 − ωc. Blue lines show
dressed atom modes, and orange lines show dressed cavity modes.
The dotted blue line shows Purcell enhancement of the decay rate via
γ → γ (1 + 4C). Parameters: κ/2π = 20, γ /2π = 0.02, ω0 = 1.

system:

Hel = ε1n̂1 + ε2n̂2 + V (σ †
1 σ2 + σ

†
2 σ1) (7)

where σk = |G〉〈k|, and n̂(k) = σ
†
k σk for each pigment site k.

We thus have that the excited states of each site are coupled
by V , and differ in energy by �ε = |ε1 − ε2|. The ground
state |G〉 and doubly excited state |1, 2〉 are each electronically
uncoupled. The central dimer of excited states can then be
diagonalized, transforming to the excitonic basis, with exci-
tonic states |X1〉 and X2〉 having energies E + �E

2 and E − �E
2 ,

with �E = √
�ε2 + 4V 2. Note that the transformation to the

excitonic basis does not affect the ground or doubly excited
states.

The role of electronic interaction V in delocalizing the
excitons may be characterized by a “mixing angle” θ , via

ζ = tan(2θ ) = 2V

�ε
. (8)

The excitons are then simply written in terms of the localized
pigment excitations via |X1〉 = cos(θ )|1〉 − sin(θ )|2〉, |X2〉 =
cos(θ )|2〉 + sin(θ )|1〉.

The role of excitonic delocalization in quantum transport is
of particular interest to the study of photosynthetic molecules,
and is captured for this model by ζ . We choose parameters
to resemble the cryptophyte antennae PE545 [52], which are
detailed in Table I. A diagram of the dimer model energy
levels is given in Fig. 2(a).

TABLE I. Parameters of the dimer model, chosen to resemble
cryptophyte antennae PE545 [52].

Parameter Value

ζ = 2V
�α

0.1
V 92 cm−1

�α 1042 cm−1

�E 1058.2 cm−1

γ (0.5 ns)−1 ≈ 0.01 cm−1

E 18000 cm−1

γPD (1 ps)−1 ≈ 5.31 cm−1

ωvib 1111 cm−1

PX1 (0.6 ns)−1 ≈ 0.009 cm−1

g 267.1 cm−1

�th (1 ps)−1 ≈ 5.31 cm−1

β (KBT )−1 = 0.0048 cm−1 (T = 300 K)
� (0.48 ps)−1 ≈ 1.11 cm−1

We additionally include coherently coupled vibrational
modes, which have energies taken near resonance to the
excitonic energy gap. Such near-resonant vibrational modes
are understood to be a key potential mechanism contributing
to the emergence of long-lived coherences in photosynthetic
complexes [5–7,9,53–57]. Our phenomenological model may
be understood as absorbing the non-Markovian contribution
of the environment into the coherent dynamics, and thus al-
lowing the additional environmental effects of the bath to be
described by Markovian dynamics. This is often achievable
explicitly via the reaction coordinate picture [58,59].

The Hamiltonian describing the vibrational mode is
Hvib = ωvib(d†

1 d1 + d†
2 d2), which is coupled to the electronic

states via

Hel-vib = g
2∑

k=1

σ
†
k σk (d†

k + dk ), (9)

where dk are the vibronic annihilation operators on sites k, and
have energies ωk .

Additionally, we wish to capture the interaction of the
above system with a single mode optical cavity with creation
(annihilation) operators given by a† (a), with Hamiltonian

FIG. 2. (a) Energy-level diagram of the dimer model. (b) Rep-
resentation of the photosynthetic dimer in a cavity with incoherent
pumping and decay. (c) Reduced model of dimer exciton-vibration
levels and cavity level with labeled mutual interactions.
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Hc = ωca†a. We make the rotating wave approximation, thus
assuming that the coupling to the cavity gc is weak relative to
the electronic coupling V , and thus have a Tavis-Cummings-
like interaction:

Hel-c = gc

2

2∑
k

[σka† + σ
†
k a]. (10)

We choose the cavity frequency to be fixed near resonance
with the highest-energy exciton, with ωc = 18 529 cm−1.

We describe the environment via a sum of the various
incoherent processes acting on the system. We apply a pure
dephasing in the site basis at a rate γ1 = γPD, via jump
operators L1,k = Ak , with Ak = |k〉〈k|, for k = 1, 2. Addi-
tionally, we account for thermal relaxation and absorption at
rates γ2 = �th(n(ωvib) + 1) and γ3 = �thn(ωvib) respectively,
via the jump operators L2,k = dk and L3,k = d†

k . We further
model the radiative decay of polaritonic states (the eigenstates
of the coupled exciton-vibration-cavity system), denoted |Fν〉,
into the vacuum dictated by rate γ4 = γ , with state depen-
dent rates γν,l = Fν,lγ , where Fν,l = ∑

m〈m, l|Fν〉 dictates the
overlap between excited polaritonic states and vibrational ex-
citations in the electronic ground state, and with associated
jump operators σv,l = |G, l〉〈Fv|. This form for the jump op-
erators describing decay processes via the dipole operator is
derived in Appendix A. Additionally, we include a weak inco-
herent pumping of the highest-energy exciton at rate γ5 = PX1

via the jump operator L5 = σ
†
X1

= |X1〉〈G|, and a decay of
the cavity mode at rate γ6 = γc via jump operator L6 = a.
A diagram of the coupled dimer-cavity system is shown in
Fig. 2(b).

In summary, the set of jump operators we con-
sider is {Li} = {Ak, dk, d†

k , σvl , σ
†
X1

, a}, with respective rates
{γi} = {γPD, �th(n(ωvib) + 1), �thn(ωvib), γν,l , PX1 , γc}.

B. Dynamics

The Purcell effect is observed most readily as an increase
in the decay rate of the excited state of a system. For a many-
body system, however, there are additional timescales relevant
for characterizing the excited-state dynamics. Therefore, a
complete characterization of the Purcell regime becomes more
challenging in a molecular-cavity QED setup, where internal
system dynamics and system-cavity dynamics may be convo-
luted.

In order to observe this interplay of system and decay
timescales, in Fig. 3 we show the dynamics of relevant density
operator matrix elements for varying gc. We initialize the
system in the state ρ(0) = |X1〉〈X1| ⊗ ρ

(vib)
th ⊗ |0〉cc〈0|, where

ρ
(vib)
th := 1

Z e−βHvib is the thermal state of the vibrational Hamil-
tonian, and |0〉c is the cavity ground state. Notice that in the
free dimer model (no cavity) we see a clear separation of
the timescales of internal system dynamics and the decay to
the ground state (the latter occurring on longer timescales
than those shown), yet as gc is increased we can observe
the Purcell effect in the increased decay rate of the excited
states. As expected, this increase is observed to be of the form
γ → γ (1 + F ), where F ∝ g2

c [Fig. 3(e)].
One may then interpret the “Purcell regime” in two ways:

First, simply as the increase of the rate of decay of the

FIG. 3. Dynamics of density operator matrix elements corre-
sponding to (a)–(c) excitonic populations and (d) coherences, for
varying gc. Here we observe the increased rate of decay of excited-
state populations with gc due to the Purcell effect, and that coherence
timescales are essentially unaltered. (e) Purcell factor as obtained
via a fit to the exponential growth of ground-state populations in
panel (a). Fit to (1 − e−γ ′t ) where γ ′ = γ0(1 + F ), F is the Purcell
factor extracted from fit, and γ0 is the bare growth rate with no cavity
present. Q = 50, β = 300 K.

molecule, with no regard to the effect on the internal dynam-
ics, or second, in terms of the effect on the rate of decay of
individual states within the system, enforcing each level is
itself in the Purcell limit. In the following, we refer to these
regimes as the Jaynes-Cummings-Purcell (JCP) and multi-
level Purcell (MLP) regimes, respectively.

Obviously, the latter condition is a much stronger require-
ment, and we may not expect such a regime in systems where
the internal dynamics occurs on a timescale comparable with
its excited-state decay in free space, as any change to this
decay rate necessarily alters the internal dynamics. However,
it is commonplace in many chemical and biological systems
of interest for these timescales to be well separated [60]. For
example, in the model described here, typical of many photo-
synthetic pigment protein complexes, internal dynamics occur
over a few picoseconds, whereas decay to the ground state
occurs over ≈1 ns. One may thus expect that the Purcell effect
may enable a significant increase in the decay rate without a
large effect on internal dynamics.

Indeed, in Fig. 3(e), then, we see that the JCP regime is
observed in the prototype photosynthetic dimer introduced
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FIG. 4. (a) Real and (b) imaginary parts of the eigenspectrum of the effective non-Hermitian Hamiltonian of the dimer model, showing
only the single excitation manifold of states corresponding to |X1, 0, 0, 0〉 (green circles), |X2, 1, 0, 0〉 (blue crosses), |G, 0, 0, 1〉 (red squares),
and |X2, 0, 1, 0〉 (yellow pluses) at gc = 0. Solid lines show exact calculation of energy levels. Dotted lines in panel (b) show Purcell regime
estimates for decay rates from Eq. (11), assuming no higher vibrational levels, shown for biological value gv = 267.1 cm−1, where we can see
deviation due to the role of higher excited states via the blue dash-dotted line in panel (b), showing an imaginary decay rate of |X2, 1, 0, 0〉 for
restricted vibrational excitation number to Lv = 1. We can see that the center-of-mass mode branch changes very little with increasing cavity
coupling, indicating its effective decoupling over the Purcell regimes of other excited molecular states. Q = 50.

above. We note that this dynamical picture may capture
core behaviors of the model, in particular in regimes where
timescales are not overlapping such that a fit may accurately
extract rate information. The effective Hamiltonian approach
outlined for the JC model, however, offers complementary
and insightful information, providing analytical dependencies
of core phenomena on model parameters. Therefore, in what
follows, we apply a similar effective Hamiltonian description
analysis to the JC model above in order to characterize the
effect of internal electronic and vibrational degrees of freedom
on the Purcell effect, thereby enabling characterization of the
MLP regime.

C. Effective cooperativities

The effective Hamiltonian of the photosynthetic dimer
model may be obtained from Eq. (3), as in the case of the JC
model. In Fig. 4, we show the change in the real and imaginary
parts of selected eigenenergies (see below) with cavity cou-
pling gc. What is immediately apparent is phenomenological
similarity to the JC model. For weak couplings we have a very
small change to the energy levels of the system [Fig. 4(a)],
complemented by comparatively large changes to the decay
rates [Fig. 4(b)].

As with the JC model, the energy levels Re(ωi ) are well
separated into bands corresponding to manifolds of like exci-
ton and cavity occupation number, which for weak couplings
are not significantly mixed by the presence of the cavity. Of
particular relevance to spectroscopic experiments is the single
excitation manifold, which is that accessed in the limit of
weak pumping. Thus, we attempt to simplify the problem
by restricting our regime of interest to the relevant subspace
defining this initial band of low-energy excitations. The four
states which encompass the relevant occupied states in this
limit are those with real and imaginary eigenenergies depicted
in Fig. 4.

In Appendix B, we derive the restricted effective Hamil-
tonian for the low-energy manifold. We reexpress the

vibrational modes into their relative displacement and center-
of-mass modes, where the latter is seen to cause no electronic
transitions, rather only an energy shift, which we treat in
the mean field. This state is seen in yellow (+ symbols) in
Fig. 4, where the eigenenergies are observed to depend ex-
tremely weakly on gc, indicating an approximate decoupling
from the cavity. We then obtain an effective description of
the weak pumping regime in terms of three coupled states,
described by the cavity mode |G, 0RD, 1cav〉, the highest exci-
ton, |X1, 0RD, 0cav〉 [labeled (1) below], and the lower exciton
with a single vibrational quantum in the relative displacement
mode |X2, 1RD, 0cav〉 [labeled (2)]. Due to the near resonance
of the vibrational mode, with the excitonic energy gap, or
small �vib := �E − ωvib, and the tuning of the cavity to near
resonance with the highest-energy exciton, each of these states
is nearby in energy.

As with the JC model, for small gc the decay rates
are separated into two bands—a quickly decaying (large
negative values) band of modes with finite cavity occupa-
tion, and a slowly decaying (small negative values) band of
molecular excited states. As gc is increased, molecule-cavity
hybridization causes these molecular excited states to have
an increased decay rate, as expected. The core deviation
from the JC model is that for each of the excited states
shown, we observe a different rate of change of decay rate
with cavity coupling—indicating state dependent Purcell fac-
tors of these near-resonant exciton-vibrational states. In the
simplified four-level model, these are described by |vi〉 =
c(X1,0)

i |X1, 0RD, 0cav〉 + c(X2,1)
i |X2, 1RD, 0cav〉 for i ∈ [1, 2], and

have associated cooperativities:

Ci = gc,i(θ, φ)2

γ ′
i �

′
c

, (11)

where

gc,1(θ, φ) = gc

2
[cos(θ ) − sin(θ )] cos(φ) (12)
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FIG. 5. (a)–(c) Imaginary part of eigenenergies ωi of the dimer model for varying excitonic delocalization [see Eq. (8)] for (a) g =
267.1 cm−1 (g > V ), (b) g = 100 cm−1 (g ∼ V ), and (c) g = 50 cm−1 (g < V ). We see that the reduced model (dashed lines) is in good
agreement for vibrational couplings that are � V ≈ 92 cm−1, and numerical results (solid lines) for the full model begin to deviate from the
analytical calculation around the biological value, however remaining in good phenomenological agreement. (d) Dependence of the imaginary
part of eigenenergies ωi of Eq. (11) on vibronic delocalization for ζ = 0.1. Labels |X1〉, RD (relative displacement), and COM (center of
mass) refer to the (quasi)eigenstates of H corresponding to |X1, 0, 0, 0〉, |X2, 1, 0, 0〉, and |X2, 0, 1, 0〉, respectively, for gc = 0. We can see
that the COM dominated eigenstate is essentially unchanged in the parameter regimes studied, indicating that it effectively decouples. Here
gc ≈ 2.65 cm−1, Q = 50.

and

gc,2(θ, φ) = gc

2
[cos(θ ) − sin(θ )] sin(φ) (13)

with θ defined in Eq. 8, and φ = 1
2 arctan( 2gx

�vib
) defining

an analogous vibrational mixing angle, with gx = − g sin(2θ )√
2

,
and gc,1(2)(θ, φ) are the effective coupling strengths of the
two states. The expressions for γ ′ and �′

c are given in Ap-
pendix B, and describe the decay rates of the vibronically
dressed excitonic states, and the vibronically dressed cavity
mode, respectively. The Purcell modification to the excitonic
decay rates expected via the prescription γ → γ (1 + 4C) is
shown in Fig. 4(b) as dotted lines.

We note that the approximate cooperativities are underesti-
mated compared to the numerical calculation. This deviation
is due to the effect of ignored additional vibrational levels in
the reduced subspace model, which we show in Fig. 4 (dot-
dashed blue line), showing the exact numerical calculation
with a restricted vibrational cutoff to a single excitation. This
is also seen below in Fig. 5, where the analytical results are
seen to be significantly closer to the exact numerical results
for smaller gv , where higher vibrational states are less im-
portant. Crucially, however, the approximate analytical result
confirms the key mechanism involved in the multilevel Purcell
effect as the mixing of nearby energy levels in the system by
vibronic interactions. We observe in numerical calculations a
convergence in vibrational occupation cutoff of nv = 4, and
nc = 2 for the cavity mode maximal occupation. We see,
however, that the core phenomenology is well captured in the
approximate model, and will see in the next section that the
model similarly captures more subtle effects of electronic and
vibrational coherences on cavity cooperativities.

We thus observe that a simplified picture of the system
in terms of a restricted set of energy levels captures the key
mechanism of the Purcell effect in a multilevel molecular
system, which can be understood as the mixing of molecu-
lar eigenstates with the quickly decaying cavity modes. This

mixing occurs at different rates for different molecular states,
and thus multiple Purcell factors are necessary, each dictated
by details of the internal molecular interactions and cavity
coupling.

It is important to note that in the above model a treatment
of all three levels is vital to a correct characterization of
the cavity cooperativities, as those of each state depend on
one another via the influence of the vibrational mode. This
mode has the effect of mixing the excitonic states, leading to
a competition for cavity cooperativity between the excitonic
states, as we study in more detail in the next section.

D. Vibronic modification of the Purcell factor

As we have seen, the effective cooperativities of each
molecular excited state depend on both the excitonic and
vibronic mixing angles, θ and φ, which in turn depend on
their respective delocalization parameters ζ = 2V

�ε
and ζv =

2gx

�v
, with �vib = �E − ωv . In this section we study the role

of these excitonic and vibronic delocalizations on the cavity
cooperativities, in order to understand the role of internal
molecular coherences on the cavity interaction. To do so,
we ensure that vibrational resonance condition is maintained,
fixing �E = √

�ε2 + 4V 2 and ωv and varying the excitonic
mixing ζ by consistently altering V and �ε.

In Fig. 5 we show the dependence of the decay rates of
molecular excited states with electronic and vibrational de-
localization parameters ζ and ζv , respectively. We can see
immediately that the core effect of the delocalization is to
cause the rates to coalesce, as one may expect moving towards
the limit of highly delocalized collective excitations.

We can understand this behavior in more detail noting
that the cooperativities of each state are dominated by the
behavior of the effective cavity couplings in Eqs. (12) and
(13), from which we can see that there are two key parameters
dictating the dependence of the effective coupling strengths
on excitonic delocalization. First, we see the dependence of
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the effective cavity coupling on θ (and hence on ζ ) when
no vibrational mode is present: gc(θ ) = gc

2 [sin(θ ) − cos(θ )].
Thus, the purely excitonic part contributing to the decay via
g2

c,i is a monotonically decreasing function of delocalization,
leading to a reduction of the overall cooperativities with delo-
calization. We note that for maximal delocalizations at θ ≈ π

4
we do not expect the reduced model to hold, as for vanishing
gc,i(θ, φ) the interaction with the cavity will be dominated
by states ignored in the reduced model. For even values of
delocalization that are much larger than that of PE545 of
≈0.1, however, our reduced model well captures observed rate
changes (seen in Fig. 5).

Second, the vibronic mixing angle itself has a de-
pendence on the excitonic delocalization via φ(θ ) =
1
2 tan−1(−

√
2g sin(θ )
�vib

) ∈ [−π
4 , π

4 ] [see Eq. (B1)]. This induces
a competing effect caused by the vibronic mode that is due to
the φ(θ ) dependent terms for each gc,i. This manifests in the
increased rate of change of decay rates with ζ observed as the
vibronic coupling strength increases in Figs. 5(a)–5(c).

IV. CONCLUSIONS

The Purcell effect is a foundation of many applications of
cavity QED, and promises to hold a similar place in molec-
ular cavity QED, as more complex systems are studied in
such setups. One notable motivation, particularly relevant to
single molecule experiments, is the potential enhancement of
light collection, which may otherwise be extremely weak.
Improved light collection may thus allow for the quantum
optics of single molecules to be effectively studied experi-
mentally. As the cavity inevitably hybridizes with the system
under study, potentially modifying internal coherences and
dynamics, if one aims to probe molecular properties a detailed
understanding of such hybridization is necessary in order to
determine faithful molecular properties. Here we have shown
that the most sensitive effect of the cavity is to change the
relative decay rates of the molecular states, where multiple
Purcell factors alter decay rates of different states, and are
mediated by internal molecular interactions.

We have studied a prototype photosynthetic dimer model,
which consists of two excited electronic states, each coher-
ently coupled to a localized vibronic mode near resonance
with the transition energy between excitonic state energies.
This model captures many of the important features of pho-
tosynthetic complexes, and allows for study of vibronic and
excitonic coherences. In particular, we observe that the rel-
ative change in decay rates under Purcell enhancement is
mediated by such coherences, enabling information on the
quantum behavior of the biologically inspired dimer to be
accessible via cavity couplings.

In order to model the effect of interaction with a single
mode cavity on the internal molecular energy structure, we
study the effective non-Hermitian Hamiltonian. Indeed, for
weak couplings, the real parts (energies) of the effective eigen-
values remain approximately constant, whereas there is a large
change in the imaginary part (decay rates)—indicative of the
Purcell regime. For stronger couplings, however, this picture
is quickly broken, as the cavity mixes energy levels within
the system, causing an alteration to internal molecular dy-
namics. We introduce a simplified effective Hamiltonian that

captures some of the key phenomena of the photosynthetic
dimer studied. From this, we are able to isolate the influence of
different effective cavity cooperativities on molecular states,
which well captures the behavior of the differing Purcell fac-
tors between near-resonant molecular states.

We have further seen that as the different Purcell factors
are sensitive to internal molecular interactions, the change in
relative decay rates of excited states with cavity couplings
may yield information on molecular coherence. We observe
that excitonic and vibronic delocalizations each act to alter
the molecular cooperativities of particular states of the sys-
tem. For weak vibronic couplings excitonic delocalization
acts predominantly to increase these cooperativities. How-
ever, for larger couplings, as the vibrational and excitonic
delocalizations are intimately connected, an increase in the
latter causes vibronic couplings between excited states of the
system. This has the surprising effect that the cavity cooper-
ativity is not necessarily increasing with excitonic coherence,
as, in some regimes, an increase in excitonic delocalization
similarly increases the vibronic mixing on states, decreasing
the cooperativity of one state, and increasing it for another.
This regime coincides with the biologically inspired values of
our model, taken to resemble PE545 [52].
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APPENDIX A: DERIVATION OF EMISSION
JUMP OPERATORS

In this section we derive the form of the jump oper-
ators contributing to the emission processes in the GKSL
master equation used in the main text. We use a standard
quantum optical master equation [62], starting from the light-
matter interaction Hamiltonian for an N-site Frenkel exciton
model [63],

HI =
∑

m

μ̂m ⊗ B̂m, (A1)

with B̂m = gm(b̂†
m + b̂m) coupled via the dipole operator of

site m, which may be expressed in the Hamiltonian eigenbasis
as follows:

μ̂m = μm(|m〉〈g| + |g〉〈m|)
= μm

∑
ν,ν ′

|Fν〉〈Fν |(|m〉〈g| + |g〉〈m|)|Fν ′ 〉〈Fν ′ |

=
∑

ω

μm(ω)�̂(ω)

=
∑

ω

Âm(ω) (A2)

where we have defined μm(ω) := μm〈Fν |(|m〉〈g| +
|g〉〈m|)|Fν ′ 〉 and �̂(ω) = |Fν〉〈Fν ′ |, with ω = Eν − Eν ′ as
the energy difference of the transition |Fν〉 → |Fν ′ 〉. We note
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that whereas μ̂m is Hermitian, the components Âm(ω) are not
in general, and that as |Fν〉 are eigenstates of H with energy
Eν , we have

[H, Â(ω)] = −ωÂ(ω), [H, Â(−ω)] = ωÂ(ω). (A3)

Then, after the Born-Markov and rotating wave approxi-
mations [62], we can write the GKSL form dissipator due to
this interaction in the form

D[ρ] =
∑

ω

∑
m,m′

γm,m′ (ω)[Âm(ω)ρÂ†
m′ (ω)

+ {Â†
m′ (ω)Âm(ω), ρ}], (A4)

with

γm,m′ (ω) =
∫ ∞

−∞
dseiωs〈B̂†

m(s)B̂m(0)〉. (A5)

Following Ref. [62] (see Sec 3.4), and assuming the elec-
tromagnetic environment to be in the limit of small photon
number N (ω) � 1, we have

D[ρ] =
∑
ω>0

γm[Âm(ω)ρÂ†
m(ω) + {Â†

m(ω)Âm(ω), ρ}]. (A6)

As we will see, the nature of the dipole operator, enabling
transitions from the ground to excited states in the site basis,
further restricts the contributing transitions �(ω).

Before continuing, we note some important features of
the relations between the three relevant bases in which pro-
cesses are here described. First, the site basis ({m} | m ∈
[0, N]) ∈ B(Hel ), with |m = 0〉 = |g〉 being the ground state.
The excitonic basis diagonalizes the electronic Hamiltonian,
which does not couple ground (m = 0) and excited (m >

0) states, thus we have similar form of the excitonic basis
({|Xi〉} | i ∈ [0, N]) ∈ B(Hel ), with |X0〉 = |m = 0〉 = |g〉 la-
beling the ground state. Finally, we have the total Hamiltonian
(polaritonic) eigenstates |Fν〉 which diagonalize the system
Hamiltonian including the coherent vibrational modes and
cavity modes. We truncate each local vibrational mode at an
occupation number Lv , and the cavity modes at Lc and thus
the total number of vibrational and cavity energy levels are
L2

vLc and ν ∈ [0, (N + 1)L2Lc]. In the following we use the
multi-index l to refer to both cavity and vibrational mode
occupation, that is, l = (lv1 , lv2 , lc).

Thus, we have

|Fν〉 =
∑

i,l

ci,l (ν)|Xi, l〉, (A7a)

|Xi〉 =
∑

m

am(i)|m〉, (A7b)

with cil (ν) = 〈Xi, l|Fν〉 and am(i) = 〈m|Xi〉, with ground-state
components c0l (ν) = 〈g, l|Fν〉 = δν,(0,l ) and a0(i) = 〈g|Xi〉 =
δi0 respectively. Thus, to evaluate the components in Eq. (A2),
we can write

〈Fν |m〉 =
∑

il

cil (ν)〈Xi, l|m〉

=
∑

il

c∗
il (ν)a∗

m(i)〈l| (A8)

and

〈Fν |g〉 =
∑

il

c∗
il (ν)〈Xi, l|g〉

=
∑

l

δν,(0,l )〈l| (A9)

such that

Âm(ω) = μm〈Fν |(|m〉〈g| + |g〉〈m|)|Fν ′ 〉�̂(ω)

= μm(〈Fν |m〉〈g|Fν ′ 〉 + 〈Fν |g〉〈m|Fν ′ 〉)�̂(ω)

= μm

[ ∑
il

c∗
il (ν)a∗

m(i)〈l|
∑

l ′
δν ′,(0,l ′ )|l ′〉

+
∑

l

δν,(0,l )〈l|
∑

il ′
cil ′ (ν

′)am(i)|l ′〉
]
�̂(ω)

= μm

∑
il

[c∗
il (ν)a∗

m(i)δν ′,(0,l )

+ δν,(0,l )cil (ν
′)am(i)]�̂(ω). (A10)

We thus immediately see that the possible ω values are
those that are close to the ground-state–excited-state transition
energy. Concretely, as �̂(ω) = (|Fν〉〈Fν ′ |)Eν−E ′

ν=ω we have,
defining σ̂νl := |g, l〉〈Fν | and Fmlν := μm

∑
i cil (ν)am(i),

Âm(ω) =
∑

l

Fmlν σ̂νl (A11)

and

Âm(−ω) = Â†
m(ω) =

∑
l

F ∗
mlν σ̂

†
νl . (A12)

Thus, we obtain an expression in terms of weighted transi-
tions from Hamiltonian eigenstates to electronic ground states
with local vibrational excitations. We assume constant dipole
moments μm = μ, and thus write a single rate γ for each
transition that absorbs the dipole moment contribution to the
weights, and define

A(ω) =
∑

m

Am(ω)

= μ
∑

m

∑
l

cil (ν)am(i)σ̂vl . (A13)

In practice it is not convenient to label our set of jump
operators by a frequency ω, but rather in terms of quantum
numbers that label the unique jump operators. We see in
Eq. (A13) that the operators are defined by the indices ν, l ,
and thus we relabel∑

ω

A(ω) =
∑

ν

∑
l

Fν,lσν,l , (A14)

where

Fν,l =
∑

m

∑
i

cil (ν)am(i)

=
∑

m

∑
i

〈Xi, l|Fν〉〈m|Xi〉

=
∑

m

〈m, l|Fν〉. (A15)
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We can extend the above discussion to include the sec-
ond excited state noting the additional contribution from
μ̂m,m′ = μm′ |m, 0〉〈m, m′| + μm|m′, m〉〈m, 0| for m �= m′. For
the dimer model discussed, then, we have two additional
processes due to the transitions |1, 2〉 → |m〉 for m ∈ [1, 2],
which have the associated jump operators

Â12→m(ω) =
∑

ω

〈Fν |m〉〈1, 2|Fν ′ 〉�̂(ω)

=
∑

ω

∑
i,l

c∗
i,l (ν)a∗

m(i)δν,(1,2,l )�̂(ω)

=
∑

ω

∑
i,l

c∗
i,l (ν)a∗

m(i)|Xi〉〈1, 2|, (A16)

where we have used that similarly to the ground-state contri-
bution the vibrational modes do not mix the single and doubly
excited manifolds, and thus 〈Fν |1, 2〉 = δν,(1,2,l )〈l|.

APPENDIX B: REDUCED EFFECTIVE HAMILTONIAN
FOR THE PROTOTYPE PHOTOSYNTHETIC

DIMER MODEL

In this section we derive the reduced subspace effective
Hamiltonian from which we obtain state dependent coopera-
tivities. As we are artificially restricting the subspace to that of
a single excitation, the form of the Hamiltonian has a nontriv-
ial dependence on the choice of basis in which we truncate, as
nonzero couplings to states outside of this subspace remain. In
order for the reduced effective Hamiltonian to remain a good
approximation, at least for small cavity coupling strengths, we
choose a basis that is amenable to such an assumption.

To this end, we define the relative displacement and center-
of-mass modes, dRD = 1√

2
(d1 − d2) and dcom = 1√

2
(d1 + d2),

respectively, and write |1〉 = (cos(θ )|X1〉 + sin(θ )|X2〉) and
|2〉 = (cos(θ )|X2〉 − sin(θ )|X1〉). The vibrational Hamiltonian
then becomes Hvib = ωvib(d†

RDdRD + d†
comdcom ), with a cou-

pling to the electronic degrees of freedom via

Hel-vib = g√
2

∑
i∈{1,2}

|Xi〉〈Xi|(d†
com + dcom)

+ g√
2

[cos(2θ )σ̃z − sin(2θ )σ̃x](d†
RD + dRD), (B1)

where the σ̃i | i = {x, y, z} are the Pauli operators in the exci-
tonic basis. Notice that the center-of-mass mode causes only
an energy shift proportional to g√

2
with respect to the ground

state, and therefore has no contribution to coherent excitonic
dynamics. Due to the presence of incoherent processes be-
tween the excitonic and ground states, however, this energy
shift indeed plays a role when considering decay processes to
the ground state.

In this basis, then, we restrict the subspace of interest
to those levels around the energy of the highest excitonic
state. Using the notation |Xi〉 ⊗ |nRD〉 ⊗ |ncom〉 ⊗ |ncav〉 =
|Xi, nRD, ncom, ncav〉, this subspace is then the set of states
H1 = {|X2, 0, 0, 0〉, |X1, 1, 0, 0〉, |X1, 0, 1, 0〉, |G, 0, 0, 1〉}.
Here we see that, as the vibrational energy ωvib is near
resonant with the difference in excitonic energies, ωvib ≈ �E ,
and further, the cavity is near resonant with the highest level
exciton ωc ≈ E + �E

2 , each of these levels is nearby in
energy.

The cavity coupling Hamiltonian is written in the excitonic
basis as

Hel-c = gc

2
[cos(θ ) − sin(θ )|X1〉〈g|

+ cos(θ ) + sin(θ )|X2〉〈g|]a + H.c. (B2)

Note that of the four states in H1 above, this couples only
|X1, 0, 0, 0〉 and |g, 0, 0, 1〉, as additional vibrational transi-
tions are required for the lower excitonic state to interact
within the subspace defined.

To obtain the non-Hermitian part we require a sim-
ilar process. For completeness here we write each of
the relevant operators L†

i Li in the exciton-RD-com ba-
sis as above.

∑
k A†

kAk = ∑
i |Xi〉〈Xi|,

∑
k d†

k dk = d†
RDdRD +

d†
comdcom,

∑
k dkd†

k = d†
RDdRD + d†

comdcom + 2. We note that
σ

†
vlσvl = |Fv〉〈Fv|, which is already written in the basis diag-

onalizing H , and that the jump operators for the cavity mode
are unchanged in this basis.

Using the above, then, the real part of the reduced effec-
tive Hamiltonian on this single excitation manifold can be
obtained from Eq. (B1) as

H (1)
r =

⎛
⎜⎜⎝

E + �E
2 gx(θ ) 0 gc(θ )

gx(θ ) E − �E
2 + ωvib 0 0

0 0 E − �E
2 + ωvib 0

gc(θ ) 0 0 ωc

⎞
⎟⎟⎠, (B3)

where we have defined gx(θ ) = − g sin(2θ )√
2

, gc(θ ) = gc

2 [cos(θ ) − sin(θ )], and use the superscript (1) to indicate the subspace of a
single excitation. Notice that on this subspace the cavity only couples to the state, |X1, 0, 0, 0〉.

From Eq. (B3) we may immediately notice that the states involving the center-of-mass vibrational mode are uncoupled within
this subspace. We have observed numerically, however, that ignoring this mode indeed leads to alterations to the observed
dynamics and correlation functions. This motivates a mean-field treatment of the center-of-mass mode in the reduced subspace,
leading to a reorganization of the exciton mean energy E → EMF = E + g√

2
〈Xcom〉, where Xcom is the displacement operator

for the center-of-mass mode, and 〈· · · 〉 denotes an average in the thermal state of the center-of-mass mode. Additionally, the
excitonic states are coupled via the relative displacement mode, which is the source of deviation from a pure JC Hamiltonian
for this manifold. Notice that the role of the vibrational mode thus depends explicitly on the excitonic delocalization, which is
characterized by the excitonic mixing angle θ .
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For gc = 0, in a similar manner, we may diagonalize H (1)
r to obtain the vibronic Hamiltonian, characterized by the vibronic

mixing angle φ, where tan 2φ = 2gx

�vib
and �vib = �E − ωvib. Defining �′ =

√
�2

vib + 4g2
x, the corresponding vibronic eigen-

states are

|v1〉 =
∣∣∣∣∣
√

1 + �vib

�′ ,

√
1 − �vib

�′ , 0

〉
= | cos(φ), sin(φ), 0〉,

|v2〉 =
∣∣∣∣∣−

√
1 − �vib

�′ ,

√
1 + �vib

�′ , 0

〉
= | − sin(φ), cos(φ), 0〉, (B4)

|vc〉 = |0, 0, 1〉,
with corresponding energies ε1 = EMF + ωvib

2 + �′, ε2 = EMF + ωvib
2 − �′, ε3 = ωc. Expressed in this vibronic basis, the Hamil-

tonian then becomes

H̃ (1)
r =

⎛
⎝ ε1 0 gc(θ ) cos(φ)

0 ε2 −gc(θ ) sin(φ)
gc(θ ) cos(φ) −gc(θ ) sin(φ) ωc

⎞
⎠. (B5)

To obtain the full effective non-Hermitian Hamiltonian of the reduced subspace model, we must similarly reduce the jump
operators to their action on this subspace. In the excitonic basis, this is written as

H (1)
i = − i

2

⎛
⎝γPD + 2�thn(ωvib) 0 0

0 γPD + �th(4n(ωvib) + 1) 0
0 0 PX1 + �c + 2�thn(ωvib)

⎞
⎠ − i

2

∑
ν,l

γν,lσ
†
ν,lσν,l

:= − i

2

⎛
⎜⎝γ

(v)
1 0 0
0 γ

(v)
2 0

0 0 γ
(v)

3

⎞
⎟⎠ − i

2

∑
ν,l

γν,lσ
†
ν,lσν,l , (B6)

where we have left the polariton decay term out, as it
is already in the basis that diagonalizes H , and thus
the vibronic basis on this reduced subspace, making the
identification |F1〉 = |v1〉, |F2〉 = |v2〉, |F3〉 = |vc〉, such that
γν = ∑

l γν,l = γ
∑

l Fν,l , with Fν,l = 〈1, l|Fν〉 + 〈2, l|Fν〉 =
cos(θ ) − sin(θ )〈X1, l|Fν〉 + [cos(θ ) + sin(θ )]〈X2, l|Fν〉. We
thus have γ1/2 = γ {cos(θ ) ∓ sin(θ ) cos(φ) + [cos(θ ) ±
sin(θ )] ± sin(θ )} and similarly γ2 = γ . We can then write
this in the vibronic basis, as above:

H̃ (1)
i = − i

2

⎛
⎝ �1(φ) �12(φ) 0

�21(φ) �2(φ) 0
0 0 γ3

⎞
⎠, (B7)

where �1(φ) = γ
(v)

1 cos2(φ) + γ
(v)

2 sin2(φ) + γ1, �2=γ
(v)

1

sin2(φ) + γ
(v)

2 cos2(φ) + γ2, �21(φ) = �12(φ)=(γ (v)
1 −γ

(v)
2 )

sin(φ) cos(φ). We note that for the parameters considered
�12 � �1, �2, γ3 and they are thus ignored when assigning
an effective cooperativity.

We thus arrive at a picture that facilitates comparison to
the JC Hamiltonian. From the real part, Eq. (B5), we can see

that there are in this case two vibronic states [|v1〉 and |v2〉
in Eqs. (B4)], which are each coupled to the cavity mode,
with coupling strengths that depend on both the excitonic and
vibronic mixing angles θ, φ.

We note that the difference in decay rates between
the vibrationally dressed excitonic states is due to the in-
creased thermal dephasing of the state |X2, 1, 0, 0〉 relative to
|X1, 0, 0, 0〉, as this rate scales with the vibrational excitation
number.

Finally, in analogy to the JC model, we define cavity coop-
erativities of the vibronic states, as

C1 = [gc(θ ) cos(φ)]2

γ ′
1�

′
c

,

C2 = [gc(θ ) sin(φ)]2

γ ′
2�

′
c

, (B8)

with γ ′
1 = γPD + γ + 2�thn(ωvib), γ ′

2 = γPD + γ +
�th[3n(ωvib) + 1], and �′

c = PX1 + �c + 2�thn(ωvib).
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