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Ultracold atomic gases can undergo phase transitions that mimic relativistic vacuum decay, allowing us
to empirically test early Universe physics in tabletop experiments. We investigate the physics of these
analog systems, going beyond previous analyses of the classical equations of motion to study quantum
fluctuations in the cold-atom false vacuum. We show that the fluctuation spectrum of this vacuum state
agrees with the usual relativistic result in the regime where the classical analogy holds, providing further
evidence for the suitability of these systems for studying vacuum decay. Using a suite of semiclassical
lattice simulations, we simulate bubble nucleation from this analog vacuum state in a 1D homonuclear
potassium-41 mixture, finding qualitative agreement with instanton predictions. We identify realistic
parameters for this system that will allow us to study vacuum decay with current experimental capabilities,
including a prescription for efficiently scanning over decay rates, and show that this setup will probe the
quantum (rather than thermal) decay regime at temperatures T ≲ 10 nK. Our results help lay the
groundwork for using upcoming cold-atom experiments as a new probe of nonperturbative early
Universe physics.

DOI: 10.1103/PhysRevD.109.023506

I. INTRODUCTION

The decay of metastable “false vacuum” states via the
nucleation of “true vacuum” bubbles (as illustrated in Fig. 1)
is a quintessential problem in nonperturbative quantum field
theory [1–5]. This process has a broad range of applications
in cosmology, including eternal inflation and multiverse
scenarios [6–10], electroweak baryogenesis [11–13], Higgs
vacuum decay [14–16], and the production of strong
gravitational-wave signals [17,18] (and potentially primor-
dial black holes [19,20]) from bubble collisions. These
gravitational-wave signals in particular are a candidate
source for the gravitational-wave background recently

detected by various pulsar timing arrays, including
NANOGrav [21,22] and the European Pulsar Timing
Array [23,24], and are also one of the key obseva-
tional targets of the planned space-based interferometer
LISA [25,26].
Since the pioneering early work of Coleman and

collaborators [1–3], false vacuum decay (FVD) has pri-
marily been studied using instanton methods, in which one
obtains a semiclassical approximation of the decay rate by
solving the equations of motion in imaginary time. These
methods are made tractable by imposing Oðdþ 1Þ sym-
metry on the resulting Euclidean “bounce” solutions which
describe the bubble nucleation event (with d the number of
spatial dimensions). However, this symmetry assumption is
broken on dynamical and/or inhomogeneous spacetimes
that are relevant to cosmology, and precludes us from
studying interesting and observationally important issues
such as correlations between multiple bubbles [27,28].
Furthermore, additional assumptions are required to inter-
pret the instanton in real time; specifically, it is assumed
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that a critical bubble appears at some instant in time. This
prevents any study of the precursors of such an event in
terms of the real-time dynamics of the field.
Recently, a promising new method for addressing these

questions has emerged: the use of ultracold atomic Bose
gases as quantum simulators of relativistic bubble nucle-
ation [29–40]. These systems exhibit coherent quantum
behavior on scales that can be directly imaged in the
laboratory, and can be manipulated into mimicking the
dynamics of a Klein-Gordon field in a potential with true
and false vacua. Cold-atom experiments have already been
successfully used to study discontinuous phase transitions
in quantum fields [41–46], including nonrelativistic ther-
mal vacuum decay [47]. Atomic simulators of relativistic
FVD are now under active development by several groups,
offering the prospect of studying vacuum decay in real time
and in a controlled and reproducible manner, with the
promise of new insights that complement those from long-
established Euclidean techniques. These insights could
have a transformative impact on our understanding of
the early Universe, potentially helping to answer some
of the most fundamental questions in cosmology, such as
why there is more matter than antimatter [11–13], and
whether our observable Universe is embedded in a larger
“multiverse” [6–10].
Previous analyses of these analogs have focused on their

classical equations of motion, showing that these are
equivalent to the Klein-Gordon equation for a relativistic

field in the appropriate limit. Here we go further by
calculating the spectrum of quantum vacuum fluctuations
in the analog false vacuum state. This fluctuation spectrum
is a crucial input for lattice simulations of the cold-atom
system, in which the fluctuations are represented as
classical stochastic variables in order to obtain a semi-
classical approximation of the decay process. These sim-
ulations are our main theoretical tool for guiding the
development of the analog experiments, and ultimately
for helping us interpret the experimental data.
After describing our proposed analog system in Sec. II,

we show in Sec. III that the false-vacuum fluctuation
spectrum matches that of a Klein-Gordon field on scales
where the classical analogy holds. This result was not
guaranteed by the existing classical analogy, and thus
provides further evidence for the suitability of this system
as a relativistic analog. After an exhaustive search of the
cold-atom literature, we identify a homonuclear potassium-
41 mixture as the most promising experimental setup, and
in Sec. IV we present a realistic set of parameters for a 1D
realization of this system. This includes a protocol for
scanning over parameters that allows us to vary the decay
rate while keeping all other scales in the effective relativ-
istic theory fixed. In Sec. V we then carry out a suite of
semiclassical lattice simulations of this system, using our
results for the fluctuation spectrum to generate realistic
vacuum initial conditions. We verify that the field under-
goes exponential decay as expected, and that the decay rate
scales exponentially with the amplitude of the initial
fluctuations, in qualitative agreement with the instanton
prediction. Finally, in Sec. VI we explore the impact of
finite temperatures on the decay rate, and argue that current
experimental technologies can probe the regime of quan-
tum rather than thermal decays. We summarize our results
in Sec. VII, and discuss avenues for further development of
this work.

II. THE ANALOG FALSE VACUUM

In this sectionwe review the essential details of the analog
FVD system we are interested in, as first proposed by
Fialko et al. [30], and subsequently studied in Refs. [31–37].
This system consists of a two-component Bose-Einstein
condensate (BEC), with each atomic species described by a
complex bosonic field1

ψ̂ iðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
n̂iðxÞ

p
expðiϕ̂iðxÞÞ; i ¼ 1; 2: ð1Þ

The operators ψ̂†
i ðxÞ and ψ̂ iðxÞ create and annihilate atoms

of species i in the position eigenstate jxi, respectively.
Their amplitudes therefore determine the local number
density of each species, n̂iðxÞ ¼ ψ̂†

i ψ̂ i, while their phases

FIG. 1. Lattice simulation of vacuum decay in the 1D analog
system. Nonlinear interactions between fluctuations around the
false vacuum (blue) lead to the nucleation of a true vacuum
bubble (red), which then expands relativistically. The simulation
shown here corresponds to the blue curves in Fig. 7, and
conserves the Hamiltonian of the effective relativistic theory to
within ∼10% (see discussion in Sec. V C).

1Here and throughout, objects with hats denote quantum
operators.
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ϕ̂iðxÞ encode coherent wavelike behavior and interference
effects. The dynamics of these fields are described by the
Hamiltonian

Ĥ0 ¼
Z
V
dx
X
i

ψ̂†
i

�
−
ℏ2

2m
∇2 þ 1

2
gψ̂†

i ψ̂ i

�
ψ̂ i; ð2Þ

which consists of a nonrelativistic kinetic term for each
species, as well as a quartic self-interaction of strength
g > 0 due to repulsive s-wave contact interactions between
atoms. This interaction sets the characteristic energy scale
of the BEC, E ¼ gn, where n ¼ hn̂i is the mean number
density. The integral in Eq. (2) is over a finite spatial
volume V that is either one- or two-dimensional, with the
BEC confined tightly along the remaining dimensions,
rendering them nondynamical.
We have specialized here to the case where both species

have equal masses (m1 ¼ m2 ¼ m), equal intraspecies
scattering (g11 ¼ g22 ¼ g), and zero interspecies scattering
(g12 ¼ g21 ¼ 0). These conditions can be realized in
practice by letting our two species be two different hyper-
fine states of the same atomic isotope, and applying an
external magnetic field at the zero-crossing of a Feshbach
resonance in the interspecies channel g12 [31,48]. Another
possibility is to trap a single atomic species in a double-well
potential; the atoms in each of the two wells then act as the
two species, and only scatter with other atoms in the same
well [49,50].
The Hamiltonian (2) excludes the usual external poten-

tial term that describes the trapping of the atoms along the
extended direction(s). Our proposed experiment uses a
“box trap” which effectively approximates an infinite-well
potential [51,52], so that the given Hamiltonian is accurate
inside the trap. This is desirable for simulating relativistic
physics as it maintains translation invariance in the interior
region, with a near-homogeneous density profile. The
density rapidly tapers to zero at the walls of the trap on
a characteristic scale called the healing length,2

ξ ¼ ℏffiffiffiffiffiffiffiffiffi
mgn

p : ð3Þ

For the experimental parameters we consider here, this
scale is smaller than the size of the BEC by a factor of 500
(see Table I). We therefore treat the field as homogeneous
with periodic boundaries throughout this paper, as in most
previous studies of this system [30–32,34–38]. (This setup
is also a reasonable approximation to a 1D ring trap, as used
in e.g. Ref. [53].) Extending our results below to include
the box trap and corresponding boundary conditions
requires a calculation of the full spectrum of inhomo-
geneous eigenmodes, which has yet to be carried out for

this system. We will present this calculation and its impact
on bubble nucleation in an upcoming companion paper.
The two condensed species are coupled via a linear

interaction term in the Hamiltonian,

Ĥ¼ Ĥ0−ℏνðtÞĤint; Ĥint¼
Z
V
dxðψ̂†

1ψ̂2þ ψ̂†
2ψ̂1Þ; ð4Þ

which allows atoms of species 1 to convert into species 2
(and vice-versa) at a rate ν that undergoes rapid modulation
at some angular frequency ω,

ℏνðtÞ ¼ ϵgnþ λℏω
ffiffiffiffiffiffiffi
ϵ=2

p
cosðωtÞ; ð5Þ

where ϵ ≪ 1 and λ ¼ Oð1Þ are dimensionless constants. In
the setup with two hyperfine states, this coupling is
introduced by applying a modulated radio-frequency (rf)
field; in the double-well case, ν instead represents the
tunneling rate between the two wells. We integrate out the
fast oscillation to obtain an effective Hamiltonian Ĥeff that
is valid on timescales much longer than ω−1 [54]. At linear
order in ϵ, we find

Ĥeff ¼ Ĥ0 þ ϵgnĤint

þ 1

4
ϵλ2g

Z
V
dx
�
4ψ̂†

1ψ̂
†
2ψ̂1ψ̂2 − ψ̂†

1ψ̂
†
1ψ̂1ψ̂1

− ψ̂†
2ψ̂

†
2ψ̂2ψ̂2 − ψ̂†

1ψ̂
†
1ψ̂2ψ̂2 − ψ̂†

2ψ̂
†
2ψ̂1ψ̂1

�
: ð6Þ

This time-averaged picture fails to capture the presence of
Floquet instabilities induced in modes whose natural
frequencies are close to the driving frequency ω [32,34].
One expects that setting ω sufficiently large (i.e., making
the wavelengths of the unstable modes sufficiently short)
will cause these instabilities to be quenched by damping
effects on small scales; however, the exact nature of this
process is still an open question.
The relevance of the effective Hamiltonian (6) for

quantum simulation comes from considering the field

φ̂≡φ0ðϕ̂1− ϕ̂2Þ; φ0≡
ffiffiffiffiffiffiffiffi
ℏ2n
2m

r
; ð7Þ

which is proportional to the relative phase between the two
species.3 On scales much larger than the healing length, the
classical equation of motion for this degree of freedom is
identical to that of a relativistic scalar field,

ðc−2∂2t −∇2ÞφþU0ðφÞ ¼ 0; ð8Þ

2Note that this differs by a factor of
ffiffiffi
2

p
from the convention

used by some authors.

3The normalization here is arbitrary at the classical level, but is
chosen such that the quantum fluctuations in φ̂ around the false
vacuum exactly match those of the corresponding canonically
normalized Klein-Gordon field.
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where we identify the “speed of light” as

c ¼
ffiffiffiffiffiffiffiffiffiffiffi
gn=m

p
: ð9Þ

Note that in reality this is the sound speed of phonons in
the BEC, which is roughly eleven orders of magnitude
smaller than the speed of light in vacuum. However, as we
see below, it plays exactly the same role as the speed of
light in the effective relativistic theory that emerges on
large scales.
The potential appearing in Eq. (8) is

UðφÞ ¼ 4ϵφ2
0

m2c2

ℏ2

�
1 − cosðφ=φ0Þ þ

1

2
λ2sin2ðφ=φ0Þ

�
:

ð10Þ

As shown in Fig. 2, this contains a series of true vacua at
φtv=φ0 ¼ 2jπ, j∈Z, and for λ > 1, a series of false vacua
at φfv=φ0 ¼ ð2jþ 1Þπ. These correspond to the two atomic
species being in phase and in antiphase, respectively; the
linear coupling means that there is an additional energy
density of order ϵgn2 associated with being in antiphase,
while the modulation generates an effective potential
barrier that makes this state metastable. Increasing the
amplitude of the modulation via λ creates a deeper potential
barrier, and increases the mass of fluctuations in the false
vacuum,

m2
fv ¼

ℏ2

c2
U00ðφfvÞ ¼ 4ϵm2ðλ2 − 1Þ: ð11Þ

III. QUANTUM FLUCTUATIONS
IN THE FALSE VACUUM

We have reviewed the known result that, on scales much
larger than the healing length, an atomic Bose-Bose mixture
can reproduce the classical equation of motion of a
Klein-Gordon field (8) with a false vacuum potential (10).
However, vacuum decay is inherently quantum-mechanical,
so it is important to test whether these systems are also
analogous at the quantum level. Here we perform this test by
calculating the power spectrum of fluctuations in the false
vacuum state jΩfvi,

PφðkÞ≡ hΩfvjφ̂†
kφ̂kjΩfvi; ð12Þ

where φ̂k are the Fourier modes4 of the effective relativistic
field (7). Below we find that, on scales much larger than the
healing length (ξk ≪ 1), this spectrum asymptotically
matches that of the corresponding Klein-Gordon field,

PφðkÞ≃
ℏc2

2ωk
; ω2

k≃c2k2þ c4

ℏ2
m2

fv; ð13Þ

with corrections suppressed by powers of ðξkÞ2 and ϵ.
To derive this result, we adopt the standard mean-field

approximation [55] in which each atomic field consists of
small quantum fluctuations around a highly occupied
classical condensate wave function,

ψ̂1¼
ffiffiffi
n

p
e−iμt=ℏþδψ̂1; ψ̂2¼−ð ffiffiffi

n
p

e−iμt=ℏþδψ̂2Þ: ð14Þ

The factor (−1) here reflects the fact that the two species
are in antiphase in the false-vacuum state. We expand
around a homogeneous mean-field wave function, whose
phase evolves at a rate set by the chemical potential,
μ ¼ ð1þ ϵÞgn. To study the dynamics of the fluctuations,
it is convenient to remove this time evolution with a
canonical transformation ψ̂ i → eiμt=ℏψ̂ i. This modifies
the Hamiltonian to

K̂eff ¼ Ĥeff −
X
i

Z
V
dxμψ̂†

i ψ̂ i: ð15Þ

Expanding this new Hamiltonian to quadratic order in
the fluctuations, we find that it can be written as

FIG. 2. Potential for the analog relativistic field φ̂, as given by
Eq. (10). There are stable “true vacuum” (TV) states at every even
integer value of φ=ðπφ0Þ. For λ > 1 there are also metastable
“false vacuum” (FV) states for every odd integer value.

4Note that we have discrete Fourier frequencies, as we are
working in a finite volume V. Our conventions for the Fourier
transform and its inverse are fk ¼ V−1=2

R
V dxe

−ik·xfðxÞ and
fðxÞ ¼ V−1=2P

k e
ik·xfk.
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K̂eff ¼ K0 þ K̂þ þ K̂−;

K̂� ¼ 1

2
gn
X
k≠0

	
½ξ2k2 þ 2 − ð2 ∓ 2Þϵ�ψ̂�†

k ψ̂�
k

þ ½1 − ð1 ∓ 1Þϵλ2�
�
ψ̂�†
k ψ̂�†

−k þ ψ̂�
k ψ̂

�
−k

�

; ð16Þ

with K0 a constant energy offset associated with the mean-
field solution, and separate terms K̂� governing the total
and relative fluctuation modes,5

ψ̂�
k ≡ 1ffiffiffiffi

V
p

Z
V
dxe−ik·x

1ffiffiffi
2

p ðδψ̂1 � δψ̂2Þ; ð17Þ

with the normalization chosen such that the modes obey
canonical bosonic commutation relations. The field we are
interested in is defined solely in terms of the relative modes,
and at linear order in the fluctuations is given by

φ̂k ¼
iℏc
2
ffiffiffiffiffi
gn

p ðψ̂−†
k − ψ̂−

k Þ: ð18Þ

We can therefore ignore the dynamics of the total modes for
now, given that they are decoupled in the linear regime. (We
return to them in Sec. VI, as they play a significant role in
the presence of thermal noise.)
To calculate the power spectrum (12), we must determine

the eigenstates of the relative Hamiltonian K̂− and identify
jΩfvi as the lowest-lying of these states.6 We can do this by
writing the Hamiltonian in diagonalized form,

K̂− ¼
X
k≠0

ℏωkâ
†
kâk; ð19Þ

so that each normal mode, described by the ladder
operators âk, â

†
k, acts as an independent harmonic oscil-

lator. The false vacuum jΩfvi is then identified as the state
annihilated by âk for all wave numbers k. In Appendix A
we identify the appropriate Bogoliubov transformation
relating the normal modes to the relative atomic field
modes ψ̂−

k , ψ̂
−†
k . The energy associated with excitations of

the normal modes is given by

ℏωk ¼
1

2
gn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k2 þ 4ϵðλ2 − 1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k2 þ 4− 4ϵðλ2 þ 1Þ

q
;

ð20Þ

which, on scales much larger than the healing length
(ξk ≪ 1), reduces to the dispersion relation (13) of a
Klein-Gordon field of the same false vacuum mass (11)
we found in our classical analysis of the equations of
motion. We can directly evaluate the power spectrum (12)
by writing the Fourier modes φ̂k in terms of the normal
modes âk and using standard ladder operator identities. In
the same IR limit as before we find Eq. (13), which is
exactly what we expect for the corresponding Klein-
Gordon field.
We already know from our classical understanding of the

system that the relativistic analogy breaks down on scales
much smaller than the healing length (ξk ≫ 1). In this
limit, we recover a white-noise fluctuation spectrum and
the usual nonrelativistic dispersion relation,

PφðkÞ≃
ℏ2

4m
¼ const; ℏωk≃

ℏ2k2

2m
: ð21Þ

The former represents an excess of power at small scales
compared to the Klein-Gordon spectrum (13), due to
nonrelativistic, high-momentum excitations of individual
atoms. The interpolation between this regime and the
Klein-Gordon-like results on large scales is shown
in Fig. 3.

IV. EXPERIMENTAL PARAMETERS

Our results for the false vacuum power spectrum are a
general feature of the modulated Bose-Bose mixture system
described in Sec. II, regardless of any particular exper-
imental realization. In this section, we describe a concrete
set of experimental parameters (summarized in Table I) that
is achievable with current cold-atom experiments, and
which will allow us to probe the physics of relativistic
vacuum decay.
As highlighted in Sec. II, among the key requirements for

our system are that both atomic species have equal masses
(m1¼m2), equal intraspecies scattering lengths (a11¼ a22),
and negligible interspecies scattering (a12 ¼ 0).7 It is easy to
select equalmasses by using twohyperfine states of the same
atomic isotope (i.e., a homonuclear mixture). However, the
conditions on the scattering lengths are more difficult to
arrange. It is possible to set a12 to zero by applying an
external magnetic field at the zero-crossing of a Feshbach
resonance [48], but there is then no further freedom to tune
a11 and a22 in order to set them equal to each other.
Fortunately, as pointed out by Fialko et al. [31], 41K
(potassium-41) possesses a Feshbach resonance between
the jF;mFi ¼ j1; 0i and j1;þ1i states with a zero crossing
at B ≃ 675.256 G, where the condition a11 ≃ a22 is realized

5Note that this is only true because we have truncated the
Hamiltonian at quadratic order in the fluctuations. At higher order
there are interactions between the total and relative modes, and
these can in principle spoil the relativistic analogy if the
fluctuations are sufficiently large.

6Restricting ourselves to linear fluctuations around the false
vacuum means that the lower-lying states near the true vacuum
are not in the spectrum.

7These 3D scattering lengths aij determine the correspond-
ing 1D interaction strength, gij ¼ 2ℏω⊥aij, where ω⊥ is
the frequency of the transverse harmonic potential, V trap ¼
1
2
mω2⊥ðy2 þ z2Þ.
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naturally with a precision of ∼1%. We have performed an
exhaustive search of other known Feshbach resonances in
homonuclear mixtures of stable bosonic isotopes of
the alkali metals (7Li [31,56], 23Na [57,58], 39K [59,60],
85Rb [61,62], 87Rb [63,64], and 133Cs [65,66]), and have not
found any other interstate resonances where the condition
a11 ≃ a22 is satisfied at the zero-crossing of a12. The 41K
resonance specified above is therefore the optimal candidate
system for simulating relativistic vacuum decay.
The main technical challenge with this setup is that the

resonance has awidth of only 155.8mG [59], necessitating a
very high level of magnetic field stability in order to stay at
the zero-crossing of a12, as illustrated in Fig. 4. Nonetheless,
this level of stability is achievable with current experimental
technologies. In particular, Borkowski et al. [67] have
recently demonstrated magnetic field stability at the level
of ∼2 ppm in a cold-atom experiment. For our proposed
system this corresponds to ja12j ≤ 0.53a0 (where a0 ¼
5.292 × 10−11 m is the Bohr radius). This is less than 1%
of the mean intrastate scattering length a ¼ 60.24a0, which
should be sufficient precision for our purposes.
Given the 3D scattering properties of the two atomic

species, the behavior of the effective 1D system is set by the
number of condensed atoms, the size of the trap along the
elongated and transverse directions, and the strength and
modulation of the applied rf field. We have explored this
parameter space with the goal of maximizing the natural
condensate energy scale gn relative to the thermal energies
kBT that can be achieved in current experiments, as this will
allow us to investigate the regime of quantum (rather than
thermal) decays. At the same time, we have ensured that
this energy scale is not so high that transverse modes of
energy ℏω⊥ are excited, where ω⊥ is the frequency of the
harmonic trapping potential in the transverse directions.

(We plan to test this explicitly in future work with 3D
simulations that resolve the transverse directions.)
In order to facilitate comparisons with instanton pre-

dictions (which are challenging to calibrate at any single
point in parameter space), it is useful to vary the system
parameters to scan over a broad range of bubble nucleation
rates. The instanton decay rate per unit volume in this
model scales as

logðΓ=VÞ ∝ −ϵ1−d2 n̄; ð22Þ

where n̄≡ ξdn is the dimensionless condensate number
density (i.e., the number of atoms in a region of size equal to
the healing length). In d ¼ 1 dimensions the dependence on
ϵ vanishes, and the decay rate is thus primarily controlled by
n̄. This parameter also sets the size of fluctuations in the field
relative to the characteristic value φ0,

σ2φ=φ2
0 ∝ 1=n̄: ð23Þ

We find that it is possible to vary n̄while keeping the energy
scale gn (and therefore all other dimensionless parameters of
the system) fixed, by simultaneously increasing the number
of atoms of each species N and decreasing the transverse
trapping frequency ω⊥. This allows us to perform a con-
trolled test of how the bubble nucleation rate scales with the
amplitude of the initial fluctuations.
Our proposed parameters are summarized in Table I. We

vary n̄ by a factor of 5, which is sufficient to see a
significant variation in the decay rate. As we show in
Sec. VI below, the energy scale gn here is large enough that
the quantum-decay regime is readily accessible to current
or near-future experiments.

FIG. 3. Left panel: dispersion relationship (20) for the relative modes of the analog system. Right panel: Fluctuation power spectrum
for the effective relativistic field φ̂. Both quantities interpolate between being Klein-Gordon-like (13) in the IR (ξk ≪ 1) and
nonrelativistic (21) in the UV (ξk ≫ 1). The vertical dashed line in each panel indicates the crossover between these two regimes. Both
use our fiducial parameters, given in Table I.
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V. LATTICE SIMULATIONS

Part of the value of our results on the vacuum power
spectrum in Sec. III is that they can be used as an input for
semiclassical lattice simulations of the cold-atom system.
These simulations are a powerful tool for exploring the
real-time dynamics of bubble nucleation, and are a crucial
ingredient for developing and interpreting analog FVD
experiments. The key idea is to encode the nonclassical
nature of the problem in the initial conditions of the
simulation, by drawing an ensemble of random field
realizations that sample vacuum fluctuations around the
homogeneous false vacuum state [68]. These realizations
are then evolved forward by numerically integrating the
classical equations of motion. This approach is widely
used in the context of atomic physics and quantum optics
(where it is referred to as the “truncated Wigner approxi-
mation” [69–71]), and also underpins cosmological lattice
simulations of inflation and preheating [72–83] as well as
vacuum decay [68,84,85].
It is common for lattice simulations of cold-atom systems

to initialize the fluctuations using a white-noise power
spectrum (21) [30,31,33,34], particularly in situations

where the processes of interest are insensitive to the precise
form of this spectrum. Bubble nucleation, however, is
extremely sensitive to the statistics of the initial fluctuations,
as different initial states can decay at exponentially different
rates. (For example, we see from Eq. (22) that there is an
exponential sensitivity on n̄.) The vacuum fluctuation
spectrum derived above is therefore a crucial ingredient
for realistic simulations of analog vacuum decay.
In this section we use a suite of lattice simulations to

study bubble nucleation from vacuum initial conditions in
the 1D cold-atom system described in Sec. IV. We extract
decay rates for different values of the fluctuation-amplitude
parameter n̄, and verify that the rates depend exponentially
on this parameter, in agreement with the scaling found in
the instanton approach. We perform the same test with
white-noise initial conditions, and find decay rates that are
globally larger than in the vacuum case. This confirms that
vacuum decay in semiclassical lattice simulations is indeed
sensitive to the statistics of the initial fluctuations, and that
for the cold-atom system these must be correctly specified
using Bogoliubov theory, as we have done here. We
additionally investigate the conservation of the Noether
charges of the effective Klein-Gordon theory in our
simulations of the cold-atom system, as these are a useful
diagnostic for the faithfulness of the relativistic analogy.

A. Code setup

We use a Fourier pseudospectral code with an eighth-
order symplectic time-stepping algorithm [86] (see
Appendix B for details), and work in units where the
atomic mass m, healing length ξ, and sound speed c are set

TABLE I. List of fundamental and derived parameters for our
proposed 1D cold-atom experiment. Here u ¼ 1.661 × 10−27 kg
is the unified atomic mass unit and a0 ¼ 5.292 × 10−11 m is the
Bohr radius. The scattering length a quoted here is the mean of
the two intrastate scattering lengths; the difference is ∼1%
(c.f. Fig. 4). The number density n and scattering strength g
are scanned over by varying the number of atoms of each species
N and the harmonic trap frequency ω⊥ respectively, while
holding the energy scale gn constant.

Parameter Value

Atomic isotope 41K (potassium-41)
Atomic mass m ¼ 40.96 u ¼ 6.802 × 10−26 kg
Hyperfine states jF;mFi ¼ j1; 0i; j1;þ1i
Magnetic field B ¼ 675.256 G
Scattering length (3D) a ¼ 60.24 a0 ¼ 3.188 nm
Healing length ξ ¼ 80 a ¼ 0.2550 μm
Box trap length L ¼ 500 ξ ¼ 127.5 μm
Number of atoms per species 5000 ≤ N ≤ 25000
Number density (1D) 39.21 μm−1 ≤ n ≤ 196.1 μm−1

Dimensionless density 10 ≤ n̄ ≤ 50
Transverse trap frequency 3.04 kHz ≤ ω⊥=2π ≤ 15.2 kHz
Scattering strength (1D) 0.08 peV μm ≤ g ≤ 0.4 peV μm
Energy scale gn ¼ 15.69 peV
Temperature scale gn=kB ¼ 182.1 nK
Sound speed c ¼ ffiffiffiffiffiffiffiffiffiffiffi

gn=m
p ¼ 6.079 mms−1

Sound-crossing time L=c ¼ 20.98 ms
Mean rf field ν0 ¼ 59.59 Hz
Inter-species coupling ϵ ¼ ℏν0=gn ¼ 2.5 × 10−3

Rf modulation amplitude λ ¼ ffiffiffi
2

p
Rf modulation frequency ω ≥ 680c=ξ ¼ 2π × 2.58 MHz
False vacuum mass mfv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵðλ2 − 1Þ

p
m ¼ 0.1m

FIG. 4. The three scattering lengths a11, a22, a12 of our
proposed homonuclear 41K mixture as a function of magnetic
field strength. The quoted values and gray shaded region
correspond to �2 ppm ≈�1.4 mG either side of the zero-cross-
ing, as given by Ref. [59].
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to unity (which is equivalent to also setting ℏ ¼ gn ¼ 1).
Our simulations work at the level of the time-dependent
Hamiltonian (4), resolving the modulation of the interspe-
cies coupling so that we can test for the emergence of the
effective time-averaged dynamics.
We simulate a system with the experimental parameters

specified in Table I. In code units, this setup is realized by
evolving a periodic region of volume V=ξd ¼ L=ξ ¼ 500,
and setting ϵ ¼ 2.5 × 10−3 and λ ¼ ffiffiffi

2
p

so that the false
vacuum mass is mfv=m ¼ 0.1. We additionally set the
dimensionless modulation frequency to ωξ=c ¼ 680,
which is sufficiently large that the Floquet instability
bands are above the Nyquist frequency for all of our
simulations. This allows us to model the expected exper-
imental situation where these instabilities are damped by
the small-scale dynamics of the BEC, and do not affect the
evolution of the IR modes; the actual experimental value of
ω is unimportant so long as the Floquet instabilities are
quenched. Our simulations use 2048 lattice sites and a
timestep that is 1=16 times the modulation period 2π=ω,
giving spatial and temporal resolution of Δx=ξ ≈ 0.244
and cΔt=ξ ≈ 5.77 × 10−4, respectively. In Appendix B we
show that our results are numerically converged at this
resolution, and that the Noether charges of the cold-
atom Hamiltonian (4) are conserved to within a few parts
per billion.

B. Bubble nucleation rates

We extract decay rates for the analog system using
ensembles of 1024 simulations, with each simulation
corresponding approximately to a different possible
classical history drawn from the path integral describing
the full evolution of the many-body quantum state. We
initialize each simulation as the homogeneous false vacuum
φ ¼ πφ0 plus independent random draws of the vacuum
fluctuations δφ̂. We treat the latter as a zero-mean Gaussian
random field with a power spectrum that (as shown in
Fig. 3) interpolates between a relativistic spectrum in the IR
and a white-noise spectrum in the UV. We have checked
that this power spectrum remains statistically stationary
over time by averaging over the ensemble of non-decayed
trajectories, effectively testing that our initial state is indeed
an eigenstate of the Hamiltonian near the false vacuum.
As well as the relative phase, we also initialize the

relative density and the total phase and density using
random draws from their corresponding vacuum spectra.
It is crucial to initialize all four fields in this way to
correctly capture the vacuum state. For example, neglecting
the relative density fluctuations corresponds to initializing
the effective Klein-Gordon field with zero momentum
everywhere, when in fact this momentum field should also
contain vacuum fluctuations. In practice, we initialize the
total and relative atomic field modes in our code, which is
equivalent at the linear level to working in terms of the
density and phase fields.

We find that it is crucial that the positive- and negative-
momentum Fourier modes ψk and ψ−k are not treated
as statistically independent random variables. Instead,
one must draw the positive- and negative-momentum
normal modes ak, a−k independently, and then obtain
the Fourier modes of the atomic fields via a reverse
Bogoliubov transformation. This induces a nontrivial
correlation between ψk and ψ−k that appropriately cap-
tures the quantum statistics of the false vacuum state.
Failing to include these correlations in the initial con-
ditions puts the system into an excited state that nucleates
bubbles much more rapidly than the false vacuum state,
and much more even than the white-noise state.
We truncate all of the fluctuation spectra at a maximum

wave number of ξkUV ≈ 3.22, which is a factor of 4 smaller
than the Nyquist frequency of our simulations, ξkNyq ¼
πξ=Δx ≈ 12.9. Evidence from pure Klein-Gordon lattice
simulations [87] suggests that changing this cutoff modifies
the decay rate in a way that can be absorbed into a
renormalization of the bare model parameters. We leave
a detailed investigation of this effect in the analog system
for future work, and here use a fixed UV cutoff for all of
our simulations.
The amplitude of the fluctuations relative to the homo-

geneous value of the field is set by the dimensionless
number density n̄, which we scan over in the experimen-
tally accessible range 10 ≤ n̄ ≤ 50. We measure a decay
rate from each ensemble of simulations by counting the

FIG. 5. Individual random realizations of vacuum decay in our
n̄ ¼ 35 ensemble, showing how the volume-averaged cosine of
the relative phase field evolves over time. Each curve corre-
sponds to an independent simulation, which oscillates near
hcosðφ=φ0ÞiV ¼ −1 until a true vacuum bubble nucleates, at
which point the trajectory grows until it saturates near
hcosðφ=φ0ÞiV ¼ þ1. The colored curves are three randomly
selected trajectories, highlighted to illustrate the typical behav-
ior. The black dotted line shows our empirically determined
decay threshold for this ensemble, as found using the procedure
described in the main text.
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number of nondecayed trajectories as a function of time,
dividing by the total number of simulations to obtain an
estimate of the time-dependent survival probability. In
doing so, it is necessary to choose a definition for when
an individual realization has decayed. We do this by setting
a threshold on the volume average of the cosine of the
relative phase, hcosðφ=φ0ÞiV . This quantity fluctuates near
to −1 in the false vacuum, and grows rapidly after a bubble
nucleates before saturating near þ1 once the transition has
percolated, as illustrated in Fig. 5. We compute the decay
threshold separately for each ensemble as the lowest
possible value of hcosðφ=φ0ÞiV for which no more than
1% of the simulations cross back below the threshold in any
given timestep.8

Our resulting estimates of the survival probability are
shown in the left panel of Fig. 6. As expected, the
ensembles with smaller n̄, and therefore larger initial
fluctuations, decay on much shorter timescales. After an
initial transient, each ensemble reaches a regime of expo-
nential decay,

PrðsurviveÞ ∼ expð−ΓtÞ: ð24Þ

We fit a decay rate Γ to each curve, restricting the fit to
survival probabilities between 50% and 1% in order to
exclude the nonexponential regime at early times and noisy
small-number statistics at late times, respectively. The
resulting decay rates (in dimensionless units, and measured
per unit volume) are shown in blue in the right panel of
Fig. 6, and are well-described by an exponential scaling
with respect to n̄, in qualitative agreement with the
instanton prediction (22).
It is important to note however that the proportionality

constant linking logðΓ=VÞ and n̄ does not agree with the
instanton prediction; our simulations decay significantly
faster than predicted in the instanton approach. This same
behavior has been observed in pure Klein-Gordon lattice
simulations [68], and is an expected consequence of
performing instanton calculations using the bare lattice
parameters, rather than the renormalized theory [87]. It is
also worth pointing out that our instanton calculations are
based on the effective Klein-Gordon theory, rather than the
full analog system, and therefore neglects effects such as
the excess small-scale power identified in Sec. III. We plan
to explore these issues in the context of the analog system
in future work.
As well as our simulations using vacuum initial

conditions, we carry out a suite of simulations using
white-noise initial conditions. This corresponds to the
nonrelativistic UV limit (21) of the full power spectrum
derived from Bogoliubov theory, and matches the pre-
scription used by several previous studies of vacuum decay
in cold-atom analog systems [30,31,33,34]. The resulting

FIG. 6. Left panel: survival probability for the false vacuum state as a function of time, as estimated using ensembles of 1024
simulations for each curve. We scan over the dimensionless number density n̄ ¼ ξn to probe a broad range of decay rates. The gray
shaded region (0.01 ≤ PrðsurviveÞ ≤ 0.5) is used to fit an exponential decay rate Γ for each curve (shown as dashed lines). Right panel:
dimensionless decay rate per unit volume as a function of n̄, computed for both vacuum and white-noise initial conditions. Both curves
are well-described by a linear fit, as expected from instanton calculations. The white-noise case consistently gives faster decays despite
the smaller initial phase fluctuations, due to this being an excited state of the system.

8A more obvious choice would be to allow zero downward
crossings through the threshold, as this would capture the notion
that vacuum decay is an irreversible process. However, we find
that enforcing zero downward crossings makes the algorithm
easily confused by small fluctuations in hcosðφ=φ0ÞiV , and
results in a choice for the threshold that is far too conservative.
Manual inspection of the results with a 1% allowance for
downward crossings confirms that this accurately captures the
common-sense notion of when the field has decayed (e.g. see
Fig. 5). We have checked that varying this allowed fraction
between 0.5% and 2% does not significantly impact our mea-
sured decay rates.
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decay rates are shown in red in the right panel of Fig. 6.
These are fit only to survival probabilities between 20%
and 1%, as we find that it takes longer for these initial states
to settle into a period of steady exponential decay. We see
that, while the resulting decay rates also follow the
expected exponential scaling with n̄, they are globally
larger for white-noise initial conditions than for the vacuum
case, despite the fact that the actual amplitudes of the
fluctuations are smaller in the IR in the white-noise case
(compare the blue and purple curves in Fig. 3). We interpret
this as evidence that white-noise fluctuations correspond to
an excited state of the analog system, and thus lead to faster
decays, on average, than the vacuum initial conditions we
have derived here.
Note that this does not imply that the white-noise

spectrum is somehow unphysical. In fact, such a spectrum
is thevacuumstate for an alternative systemwith zero atomic
scattering, g ¼ 0. The enhanced decay rates shown in red in
Fig. 6 can thus be interpreted as being due to a mismatch
between the Hamiltonian describing the initial conditions
and the Hamiltonian describing the time evolution.

C. Verifying Klein-Gordon behavior

While our results for the decay rates are in broad
agreement with our expectations for relativistic vacuum
decay, we can also directly test whether the relative phase
field φ is indeed analogous to a relativistic Klein-Gordon
field by computing the Noether charges for the correspond-
ing Klein-Gordon theory,

H ¼
Z
V
dx

�
1

2c2
φ̇2 þ 1

2
j∇φj2 þ UðφÞ

�
;

P ¼ −
Z
V
dx

1

c
φ̇∇φ: ð25Þ

Since the Noether charges for the underlying nonrelativistic
Hamiltonian are conserved with extremely high precision
in our simulations (see Appendix B), any non-conservation
of the Klein-Gordon charges (25) should be interpreted as
being due to limitations of the relativistic analogy, rather
than numerical errors.
In Fig. 7 we show the violation of these charges for a

series of simulations with a broad range of dimensionless
number densities n̄. We find that violations in the Klein-
Gordon energy and momentum are roughly stationary over
time, and reach a regime where they scale like jΔHj=jHj ∼
n̄−1 and jΔPj=jPj ∼ n̄−1=2 respectively, so that in the limit of
small fluctuations the analogy holds with high accuracy.
However, in the experimentally accessible regime
n̄∈ ½10; 50� that we are interested in here, the violation
is on the order of at least a few percent in the energy. In the
momentum, the relative errors reach order unity, although
this reflects the fact that the total momentum of the field
averaged over the entire volume V is intrinsically close
to zero.
While we do not believe these errors invalidate the

mapping onto the Klein-Gordon theory, further improve-
ments in the accuracy of the analog may be possible.
Specifically, so far we have ignored the backreaction of the
fluctuations onto the mean-field dynamics, which would
modify this mapping in a way that could plausibly be
absorbed into a renormalization of the parameters of the
effective Klein-Gordon theory. (Similar effects have
recently been investigated in the case of pure Klein-
Gordon theory [87].) This would be consistent with our
finding that the level of charge violation scales with the
fluctuation amplitudes. We conjecture that accounting for
these corrections and identifying the appropriate Klein-
Gordon parameters could substantially improve the level of
charge violation over that shown in Fig. 7, and also bring

FIG. 7. Fractional violation of the Klein-Gordon charges (25) as a function of the dimensionless BEC number density n̄. The initial
fluctuations in each simulation are identical except for an overall ∼n̄−1=2 scaling. The level of violation is roughly stationary throughout
each simulation, and approaches zero for large n̄, despite the nonrelativistic behavior of the system on small scales.
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our decay rates into closer quantitative agreement with the
instanton prediction. We plan to explore this in detail in
future work.

VI. FINITE-TEMPERATURE EFFECTS

Thus far we have considered only zero-temperature states
of the analog system.However, any realistic experiment will
inevitably be at some finite temperature, and will therefore
contain thermal as well as quantum fluctuations. These are
potentially a nuisance factor in studying quantum vacuum
decay, giving an excess contribution to the decay rate and
altering the phenomenology of the nucleated bubbles [4]. It
is therefore valuable to estimate the temperature threshold at
which these deviations from the zero-temperature case
become significant, as this can then guide the development
and interpretation of the analog experiments.
In the framework of the truncated Wigner approxima-

tion, we can model the thermal bath by including additional
fluctuation power in our initial conditions.9 This amounts to
replacing vacuum expectation values with traces over a
thermal density matrix, resulting in a scale-dependent
enhancement to the relative phase power spectrum,

Pφðk;TÞ ¼ coth

�
ℏωk

2kBT

�
Pφðk; 0Þ; ð26Þ

as well as for the relative density, and the total phase and
density. (Here coth x ¼ ð1þ e−2xÞ=ð1 − e−2xÞ is the hyper-
bolic cotangent function.) It is convenient to work in terms
of the dimensionless temperature,

T̄ ¼ kB
gn

T ≈
T

182 nK
; ð27Þ

where the numerical value corresponds to our particular
choice of experimental parameters (cf. Table I).
Figure 8 shows the survival probability in ensembles of

simulations at various temperatures, with n̄ ¼ 40. For
dimensionless temperatures T̄ ≲ 0.06 we see that, notwith-
standing some differences in the initial nonexponential
transient phase, the exponential decay rates are all con-
sistent with the zero-temperature result. At higher temper-
atures, rather than finding an enhanced rate of relativistic
decays, we instead find that the exponential decay model
becomes an increasingly poor fit to the empirical survival
probabilities. We interpret this finding as indicating the
breakdown of the relativistic analogy at high temperatures,

and conjecture that this breakdown is due to the impact of
thermal noise on the total phonon modes. In contrast to the
relative modes, which have an effective massmfv due to the
potential barrier around the false vacuum, the total modes
have a massless dispersion relationship ωk ≃ ck in the IR,
allowing them to become excited to very large amplitudes
by the thermal bath, as illustrated in Fig. 9. The coupling
between the total and relative modes then becomes sig-
nificant, and spoils the effective relativistic dynamics of the

FIG. 8. Survival probability as a function of dimensionless
temperature T̄ ¼ kBT=ðgnÞ, for n̄ ¼ 40. For our fiducial param-
eters this can be translated into a physical temperature using
Eq. (27). The decay rates (extracted by fitting in the gray shaded
region, shown here as dashed lines) are consistent with being
temperature-independent up to roughly T̄ ≈ 0.06; beyond this
point, large fluctuations in the total modes couple to the relative
modes and ruin the effective relativistic picture.

FIG. 9. Enhancement in the fluctuation power spectra of the
total and relative phonons as a function of temperature. The
vertical axis shows the ratio between the finite-temperature and
zero-temperature power spectra evaluated at the minimum wave
number kIR ¼ π=L ≈ 6.28 × 10−3ξ−1, for which the enhancement
is maximized.

9Other prescriptions and theoretical frameworks exist, includ-
ing modeling the effects of the thermal bath by adding a
stochastic driving term to the Gross-Pitaevskii equations
[35,37,39,88]. However, our treatment here allows us to model
quantum and thermal fluctuations in a simple and conceptually
unified way. A detailed comparison against alternative simulation
methods would be interesting, but is beyond our present scope.
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relative modes. As evidence for this interpretation, we note
that the T̄ ≲ 0.06 threshold determined empirically from
our simulations is just below the theoretically predicted
threshold at which the total modes of this system should
lose phase coherence, T̄ϕ ¼ n̄=L̄ ¼ 0.08 [35].
Our results show that dimensionless temperatures of

T̄ ≲ 0.06 should give us access to a setting closely resem-
bling the zero-temperature dynamics of the analog vacuum
decay process. This translates into physical temperatures of
T ≲ 10.9 nK for our proposed parameters. Note that our
interpretation in terms of the phase coherence temperature
T̄ϕ ¼ n̄=L̄ implies that this threshold should scale propor-
tionally with the fluctuation-amplitude parameter n̄, so that
the T ≲ 10.9 nK benchmark should be viewed as a minimal
requirement, with lower temperatures giving us access to
vacuum decay rates over a broader range of parameter
space. This benchmark is readily accessible with current
experimental setups, which routinely reach temperatures on
the order of a few nK, and have even recorded temperatures
as low as tens of pK [89].

VII. SUMMARY AND OUTLOOK

Quantum analog experiments present a powerful new
tool for understanding relativistic vacuum decay. Here we
have carried out a detailed study of one such proposed
experimental setup, which uses a rapidly modulated cou-
pling between two atomic Bose-Einstein condensates to
engineer a metastable false vacuum state for the relative
phase. We have derived the spectrum of quantum fluctua-
tions around this state, and have shown that this spectrum
asymptotically matches that of the effective Klein-Gordon
field in the IR.
As well as providing further evidence for the suitability

of the cold-atom analog for studying relativistic physics,
this vacuum fluctuation spectrum is also a crucial input for
semiclassical lattice simulations of this system. By carry-
ing out a suite of such simulations, we have confirmed the
key theoretical expectations for the analog false vacuum:
that it undergoes exponential decay, at a rate that is
exponentially sensitive to the amplitude of the vacuum
fluctuations. We have also shown that using an alternative
fluctuation spectrum—in this case, white noise, which has
been used in several previous studies of this system—leads
to an enhanced decay rate compared to the pseudorela-
tivistic vacuum fluctuations, as this corresponds to putting
the system in an excited initial state.
In carrying out these simulations, we have identified a

realistic set of parameters that will allow us to study
vacuum decay with current experimental capabilities.
This includes a protocol for scanning over fluctuation
amplitudes, and thus decay rates, while keeping all other
natural scales of the system fixed, enabling detailed and
controlled experimental studies of the decay rate.

As well as the zero-temperature fluctuation spectrum, we
have derived the enhancement of the fluctuation power due
to thermal noise at finite temperature. We find that, so long
as the system is below a given temperature threshold
(which we argue is set by the coupling between the total
and relative phase degrees of freedom), the decay rate
extracted from our simulations is consistent with that at
zero temperature. For our proposed parameters, this thresh-
old lies well within reach of current experiments, meaning
that we should be able to empirically test the physics of
quantum bubble nucleation in the near future.
Our results here rely on several simplifying assumptions,

which we plan to relax in future work. In particular,
we have treated the BEC system as periodic, neglecting
boundary effects due to the external trapping potential. In a
forthcoming companion paper, we will generalize our
Bogoliubov analysis to derive the inhomogeneous vacuum
fluctuations in a box trap, and investigate the impact of
these boundary effects on the bubble nucleation rate. We
have also neglected in our calculations the backreaction of
the fluctuations onto the mean-field dynamics of the BEC,
and corresponding renormalization of the bare parameters
of the effective relativistic theory. Incorporating these
effects should allow for a more precise understanding of
the validity of the relativistic analogy, improve the initial-
ization and interpretation of our lattice simulations, and
enable more detailed comparisons with instanton predic-
tions. These developments will enable the first experimen-
tal tests of relativistic vacuum decay.

The data that support the findings of this study are
available from the corresponding author, ACJ, under
reasonable request.
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APPENDIX A: BOGOLIUBOV ANALYSIS

The Hamiltonian (16) is diagonalized by applying a
Bogoliubov transformation to the atomic field modes,

âk ¼ −iðukψ̂−
k þ vkψ̂

−†
k Þ; ðA1Þ

where the coefficients are given by

u2k ¼
1

2

�
gn

2ℏωk
ðξ2k2 þ 2 − 4ϵÞ þ 1

�
;

v2k ¼
1

2

�
gn

2ℏωk
ðξ2k2 þ 2 − 4ϵÞ − 1

�
; ðA2Þ

with ωk the dispersion relation given in Eq. (20). Since the
condition u2k − v2k ¼ 1 is satisfied, one can verify that these
normal modes obey the standard bosonic commutation
relations,

½âk; â†k0 � ¼ δk;k0 ; ½âk; âk0 � ¼ ½â†k; â†k0 � ¼ 0: ðA3Þ

This, combined with the diagonalized Hamiltonian (19),
allows us to interpret âk and â

†
k as ladder operators for a set

of independent harmonic oscillators, one for each normal
mode. The false vacuum jΩfvi is then naturally defined as
the ground state of these oscillators.

Inserting the normal modes into Eq. (18), we find that the
Fourier modes of the relative phase can be written as

φ̂k ¼
ℏc

2
ffiffiffiffiffi
gn

p ðuk þ vkÞðâk þ â†−kÞ: ðA4Þ

In the IR (ξk ≪ 1), this corresponds exactly to the
equivalent expression for a canonically normalized
Klein-Gordon field [93],

φ̂k ≃

ffiffiffiffiffiffiffiffi
ℏc2

2ωk

s
ðâk þ â†−kÞ; ðA5Þ

which automatically guarantees that all expectation values
will match those of the Klein-Gordon case in this regime,
including the power spectrum (13). To simulate white-noise
initial conditions, we simply replace the coefficients in
Eq. (A2) with uk ¼ 1 and vk ¼ 0.
In our lattice simulations, we represent the normal modes

âk as classical stochastic variables ak, with expectation
values defined by symmetrizing over classically equivalent
operator orderings; e.g.,

hjakj2i ¼
1

2
hΩfvjâkâ†k þ â†kâkjΩfvi ¼

1

2
: ðA6Þ

A simple calculation then shows that each ak is an
independent draw from a circularly symmetric complex
Gaussian distribution, with real and imaginary parts each
having variance 1=4. In the finite-temperature case, this
variance is enhanced by a factor of cothðℏωk=2kBTÞ.
Notice that, while ak and a−k are statistically indepen-

dent, the Bogoliubov transformation mixes positive and
negative momenta together so that ψk and ψ−k are not
independent. Initializing ψk and ψ−k independently leads to
nontrivial correlations between ak and a−k, and therefore
fails to correctly capture the statistics of the false vac-
uum state.

APPENDIX B: NUMERICAL METHODS
AND CONVERGENCE TESTS

Our code solves the classical equations of motion for the
atomic fields ψðx; tÞ ¼ ðψ1;ψ2ÞT, corresponding to the
time-modulated Hamiltonian (4),

iℏ∂tψ ¼ Oψ; ðB1Þ

where we define the differential operator,
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Oðx; tÞ ¼ Olin þOnlin

Olinðx; tÞ ¼ −
ℏ2

2m
∇2 − ℏνðtÞ

�
0 1

1 0

�
− μlin

Onlinðx; tÞ ¼ g

 
jψ1ðx; tÞj2 0

0 jψ2ðx; tÞj2

!
− μnlin; ðB2Þ

which we have split into a linear and a nonlinear piece. Each
piece has its own chemical potential, which can be chosen
for convenience—e.g., to minimize sinusoidal oscillations
in the homogeneous mode of the total phase—as these have
no effect on the relative phase φ. Evolution under each of
these operators individually can be solved exactly; the
nonlinear piece conserves the amplitude of each field and
simply performs a local phase rotation,

ψðx; tÞ ¼ exp

�
−i

t − t0
ℏ

Onlinðx; t0Þ
�
ψðx; t0Þ; ðB3Þ

while the linear piece can be solved by going to Fourier
space,

ψðx; tÞ ¼F−1
k→x

	
exp

�
−i

t− t0
ℏ

�
ℏ2k2

2m
−μlin

��

×

�
cosRðt; t0Þ i sinRðt; t0Þ
i sinRðt; t0Þ cosRðt; t0Þ

�
F x→kfψðx; t0Þg



;

Rðt; t0Þ ¼ ϵgn
t− t0
ℏ

þ λ
ffiffiffiffiffiffiffi
ϵ=2

p
½sinðωtÞ− sinðωt0Þ�; ðB4Þ

where F x→k represents a Fourier transform, and F−1
k→x its

inverse. (These are implemented numerically as fast Fourier

transforms, so that in practice Eq. (B4) is only exact under
the assumption that the fields are band-limited with maxi-
mum wave number less than or equal to the Nyquist
frequency on the lattice.)
While there is no exact solution for the evolution under

O ¼ Olin þOnlin from generic initial data, we can approxi-
mate this full evolution by chaining together a series of
short steps with each of the individual operators,

ψðx; t0 þ δtÞ ¼ e−ia1Olin
δt
ℏe−ib1Onlin

δt
ℏ × � � �

× e−iakOlin
δt
ℏe−ibkOnlin

δt
ℏψðx; t0Þ þOðδtnþ1Þ;

ðB5Þ

where the dimensionless coefficients ai, bi, (i ¼ 1;…; k)
are chosen such that the integrator is exact to order n in the
small timestep δt. Integrators of this form are symplectic, in
the sense that they exactly conserve phase space volume.
We implement an efficient realization of this integrator
from Yoshida [86], which uses k ¼ 16 steps and is accurate
to order n ¼ 8.
In Fig. 10 we show convergence tests of our code for

increasing spatial and temporal resolution, measuring
numerical errors in terms of pointwise differences in the
cosine of the relative phase field, cosðφ=φ0Þ. For the level
of resolution used in our simulations in Secs. V and VI, we
see that the maximum error is on the order of ∼10−7 prior to
bubble nucleation, and at most ∼10−5 even long after
bubble nucleation. This indicates that our simulations are
numerically converged, even in the highly dynamical
nonlinear regime.

FIG. 10. Pointwise convergence of our numerical solutions for increasing spatial and temporal resolution (left and right panels,
respectively) in simulations with n̄ ¼ 30. Each curve shows the maximum absolute pointwise difference in cosðφ=φ0Þ between one
solution with the stated resolution and another with double the spatial or temporal resolution, starting from identical initial conditions.
The vertical dotted lines show the time of bubble nucleation in the converged simulations. Note that the resolution used in our
simulations discussed in Secs. V and VI corresponds to the red curves here.
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We also test our code by checking for violations in
conservation of the Noether charges associated with the
cold-atom Hamiltonian (4),

N ¼
Z
V
dx
X
i¼1;2

jψ ij2;

P ¼
Z
V
dx
X
i¼1;2

i
2
ðψ i∇ψ�

i − ψ�
i∇ψ iÞ; ðB6Þ

which correspond to the total number of atoms and the total
momentum of the system, respectively [34]. (Note that the
total energy is not exactly conserved, due to the explicit
time-dependence of the rf modulation term in the
Hamiltonian.) As shown in Fig. 11, both charges are
conserved to the level of a few parts per billion in
simulations at our fiducial resolution.
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