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BACKGROUND: Climate change scenarios illustrate various pathways in terms of global warming ranging from “sustainable development” (Shared
Socioeconomic Pathway SSP1-1.9), the best-case scenario, to ‘fossil-fueled development’ (SSP5-8.5), the worst-case scenario.
OBJECTIVES:We examined the extent to which increase in daily average urban summer temperature is associated with future cause-specific mortality
and projected heat-related mortality burden for the current warming trend and these two scenarios.
METHODS:We did an observational cohort study of 363,754 participants living in six cities in Finland. Using residential addresses, participants were
linked to daily temperature records and electronic death records from national registries during summers (1 May to 30 September) 2000 to 2018. For
each day of observation, heat index (average daily air temperature weighted by humidity) for the preceding 7 d was calculated for participants’ resi-
dential area using a geographic grid at a spatial resolution of 1 km×1 km. We examined associations of the summer heat index with risk of death by
cause for all participants adjusting for a wide range of individual-level covariates and in subsidiary analyses using case-crossover design, computed
the related period population attributable fraction (PAF), and projected change in PAF from summers 2000–2018 compared with those in 2030–2050.
RESULTS: During a cohort total exposure period of 582,111,979 summer days (3,880,746 person-summers), we recorded 4,094 deaths, including 949 from
cardiovascular disease. Themultivariable-adjusted rate ratio (RR) for high (≥21�C) vs. reference (14–15�C) heat index was 1.70 (95%CI: 1.28, 2.27) for car-
diovascular mortality, but it did not reach statistical significance for noncardiovascular deaths, RR=1:14 (95% CI: 0.96, 1.36), a finding replicated in case-
crossover analysis. According to projections for 2030–2050, PAF of summertime cardiovascular mortality attributable to high heat will be 4.4% (1.8%–7.3%)
under the sustainable development scenario, but 7.6% (3.2%–12.3%) under the fossil-fueled development scenario. In the six cities, the estimated annual num-
ber of summertime heat-related cardiovascular deaths under the two scenarios will be 174 and 298 for a total population of 1,759,468 people.

DISCUSSION: The increase in average urban summer temperature will raise heat-related cardiovascular mortality burden. The estimated magnitude of this
burden is >1:5 times greater if future climate change is driven by fossil fuels rather than sustainable development. https://doi.org/10.1289/EHP12080

Introduction
Global warming is a major public health challenge.1–3 Vulnerable
people, particularly the old and infirm, are likely to be most
affected. By increasing cardiovascular strain (predisposing to is-
chemia) and inflammatory responses (elevating the risk of throm-
bosis), heat is known to be associated with excess mortality from
ischemic heart disease, stroke, and heart failure.4–12 Studies have
also found elevated risk of other causes of death, including respira-
tory diseases, infectious and digestive system diseases, and some
external causes, such as suicide.3,13,14 The extent to which global
warming will affect future summertime heat-related mortality is,
however, uncertain and is likely to be dependent on the characteris-
tics of climate change.

Shared Socioeconomic Pathways, or SSPs, are widely used to
characterize how societal, demographic, and economic change
might modify the course of global warming over the next decades.
The most pernicious SSP option, the “fossil-fueled development—
no mitigation” scenario [Coupled Model Intercomparison Project
Phase 6 (CMIP6) SSP5-8.5]15 posits that rapid economic and
social development coupled with continued resource- and energy-
intensive lifestyles and exploitation of abundant fossil fuel resour-
ces will produce an accelerated unfavorable shift in global weather
patterns.16 By contrast, the most positive development scenario,
“taking the green road—very ambitious mitigation” (SSP1-1.9),
forecasts success in efforts toward lower material growth, lower
resource and energy intensity, and developments that respect per-
ceived environmental boundaries, in doing so, reducing the pace of
global warming.16 Recent reviews of studies estimating future
mortality suggest that deaths from high temperatures will increase
with global warming across different scenarios,12,17,18 although
estimates rarely include future changes in population demo-
graphics. Furthermore, the projections have typically been based
on crude aggregate-level data rather than cohort studies that enable
control for individual-level covariates, such as demographic char-
acteristics (age, sex, and socioeconomic position), residential area
characteristics (e.g., neighborhood deprivation) and lifestyle fac-
tors (obesity, alcohol consumption), or study designs with strong
internal validity, such as the case-crossover approach.18–27

Accordingly, in this study, we used individual-level daily spa-
tiotemporal data to make projections regarding future heat-related
mortality burden. Specifically, we aimed to, first, examine the
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association of summer temperature with cause-specific deaths in
the general population and then by subgroups of age, sex, educa-
tion, and characteristics of residential building and neighborhoods
and lifestyle profile. Second, we tested whether these associations
were biased by using a case-crossover design in which each indi-
vidual served as their own control.28 Third, by using these esti-
mates, the observed trends in temperature from 1980 to 2019, and
projected demographic changes in population demographics, we
estimated heat-related mortality burden in future summers (2030–
2050) separately for the fossil-fueled development and sustainable
development scenarios.16 Our analyses of mortality burden are for
the six largest cities in Finland, a country where summers are mild,
but projected future increases in temperature are, in fact, more
rapid than in those at lower latitudes.29

Methods

Study Context
In Finland, the yearly average temperature has risen almost 2°C
since the beginning of the 20th century to the present, double the
rate of the global average.30,31 During 1961–2019, all months
besides June have shown a warming trend, the annually averaged
warming over this period being 2.10°C in Southern Finland (60
to <64�N) and 2.25°C in the North (64–68°N). The absence of
warming in June has been ascribed to persistent changes in
atmospheric circulation patterns during that month.32

Data
We used pooled data from participants in two well-characterized
Finnish prospective cohort studies, the Health and Social Support
Study (HeSSup)33 and the Finnish Public Sector study (FPS).34
These studies include people residing in Finland’s six largest
cities, based on the number of inhabitants (Helsinki, Espoo,
Tampere, Vantaa, Oulu, and Turku). The selection of the analyti-
cal sample is shown in Figure 1. The FPS is an occupational
cohort comprising 353,720 men and women who, as of 1990–
2016, worked in the public sector, lived in the target cities, had
longitudinal data on residential locations (with dates of moves)
and socioeconomic characteristics, and were successfully linked
to death records from the national mortality register until
31 December 2018. In the analysis of lifestyle factors, we used a
subsample of 118,447 participants who responded to one or more
of the five lifestyle surveys conducted between 1 September 2000
and 1 September 2017 (response to at least one survey: 84.9%).

In the population-based HeSSup study, as of 1998, 10,034 men
and women lived in the target cities, responded to a questionnaire
survey on socioeconomic characteristics and lifestyle factors
between 1 June 1998 and 31 May 2000, 1 January and 31 August
2003, and 1 December 2011 and 31 August 2012, had longitudinal
data on residential locations, and were successfully linked to death
records from the nationalmortality register until 31December 2015.

The total analytic sample included 363,754 participants from
the two cohort studies. Analyses of lifestyle factors were based on
a subsample of 128,481 participants, including a subsample from

Figure 1. Selection of participants living in six Finnish cities from two cohort studies, 2000–2018. Summertime is between and 1 May and 30 September, a
total of 150 d. Note: HeSSup, Health and Social Support Study.
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the FPS (N =118,447) and the total sample from the HeSSup
(N =10,034). The FPSwas approved by the ethics committee of the
Hospital District of Helsinki and Uusimaa (HUS/1210/2016) and
the HeSSup, by the ethics committee of Turku University Hospital
and the Finnish PopulationRegister Centre (VRK2605/410/14).

Measures
We used observational daily mean weather data interpolated over
Finland to a spatial resolution of 1 km×1 km.35 The data were
obtained from the FinnishMeteorological Institute and were based
on the Kriging interpolation accompanied by external predictors
(e.g., topography and water bodies) of continuous observational
records from >500 weather stations in Finland, supplemented with
continuous station data from neighboring countries.35 In the pres-
ent analyses we used continuous daily gridded time series of daily
mean temperature and relative humidity for May–September
1980–2019. These are the five warmest months in Finland. The
original data set has been cross-validated; the correlation coeffi-
cient R2 was 0.99 for daily mean temperature and 0.88 for relative
humidity. In summer months, the root-mean-square error was low-
est for daily mean temperature (0:58�C in July) and highest for rel-
ative humidity (5.9% in July).35

We obtained geocoded residential addresses for participants
from the Population Register Centre of Finland. Participants’ resi-
dential locations were linked to information on ambient tempera-
ture using a geographic grid at a spatial resolution of 1 km×1 km
between 1 May and 30 September for each of the years 2000 to
2019. These data were updated on a daily basis.

Summertime heat index. Different indicators of heat exposure
are strongly correlated and cross-validation studies suggest there is
no single optimal temperature measure for mortality research.36–38

Our main exposure was summertime heat index as defined by the
U.S. National Oceanic and Atmospheric Administration (NOAA),
ameasure that has been used in other heat exposure–mortality stud-
ies across diverse environments.39–41 A heat index value for each
day was calculated based on daily mean temperature and humidity
values using the following equation:

HIF = 0:5× fT+61:0+ ½ðT− 68:0Þ×1:2�+ ðRH×0:094Þg,

where T is the temperature (in degrees Fahrenheit), and RH is the
relative humidity.42 This index was converted to degrees Celsius

using the following formula: HIC = ðHIF – 32Þ×5=9. Figure 2
shows the 2000–2019 monthly average heat index in Finland for
eachmonth fromMay to September from 2000–2019.

For each day of observation, we calculated the average 7-d heat
index, including the same day and the previous 6 days. Definitions
of “high heat” vary between studies, with common distribution-
based thresholds ranging between the 95th, 97.5th, and 99th percen-
tiles.36,43,44 To allow sufficient case numbers in statistical analyses,
we used the 95th percentile (representing a heat index of 21�C) dur-
ing summers in 2000–2018 as the threshold for the high heat index.
After rounding the values to the nearest integer, we categorized the
heat index into six categories: 13�C or less, 14–15�C, 16–17�C,
18–19�C, 20�C, and≥21�C, the reference being 14–15�C, the tem-
peraturewithminimummortality in Finland.45

Alternative measures of heat exposure. To examine the robust-
ness of our findings, we conducted subsidiary analyses using three
alternative heat measures: a) lag 0–1 using a mean heat index of the
same and previous day (i.e., 2-d heat index), b) a 7-d mean of daily
maximum temperatures (i.e., 7-d Tmax), and c) a 2-d mean of daily
maximum temperatures (i.e., 2-d Tmax). The 95th percentile defin-
ing the threshold for high heat was 21�C for the 2-d heat index and
26�C for the two maximum temperature indices.

Characteristics of residential location. To examine area-level
indicators that may modify the association between heat and mor-
tality, we conducted stratified analyses by characteristics of resi-
dential location. These included four participant-level variables:
a) the type of building in which the participant resided, b) neigh-
borhood greenness, c) area deprivation, and d) living in an urban
heat island. These variables were dichotomized to enable suffi-
cient case numbers in our analyses. We obtained data on building
type (single-family home vs. not) from the Population Register
Centre of Finland for each residential address, and this informa-
tion was updated daily during follow-up. To assess the degree of
residential surrounding green space, we linked participants’
addresses to the mean Normalized Difference Vegetation Index
(NDVI) calculated for each 250 m×250 m grid area from a satel-
lite image composite using Google Earth Engine, as described pre-
viously.46,47 For subgroup analyses, we dichotomized this variable
into high (NDVI>0:45) vs. low (≤0:45) surrounding green space.
Participants’ residential addresses were linked to data on neighbor-
hood deprivation obtained from Statistics Finland. The deprivation
index is based on the proportion of adults with low education,
the unemployment rate, and household mean income in each

Figure 2. Spatial distribution of monthly heat index (1 km×1 km resolution) in Finland, averaged over 2000–2019. The number to the left of each heat map
is the countrywide monthly average heat index (°C). The corresponding monthly average temperature is slightly higher than the monthly average heat index:
8.2°C (May), 12.9°C (June), 16.4°C (July), 14.1°C (August), and 9.2°C (September). Note: AUG, August; JUL, July; JUN, June; SEP, September.
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250 m×250 m grid area46 and was categorized into low (area de-
privation value <national mean) vs. high neighborhood depriva-
tion (deprivation value >national mean). NDVI and neighborhood
deprivation were updated based on moving during follow-up.

Because the interpolation of the heat index data did not
account for urban surfaces or heating, we constructed a proxy for
regions with potential urban heat island effects using information
on population density from Statistics Finland. Participants were
considered to be living in regions with an urban heat island effect
if they were resident in a densely populated area (population den-
sity ≥500 per 250 m×250 m grid area). These data are updated
annually. We validated our heat island proxy measure by using
high-resolution measurement of mean temperatures for a 7-d pe-
riod in June 2018 as measured in Turku, one of the cities featured
in our study. Linear regression model using geographical infor-
mation system data on land use, topography, and water bodies as
independent variables, using temperature observations of a local
network of 71 HOBO U23 Pro v2 temperature and relative hu-
midity data loggers in the Turku area [Turku Urban Climate
Research Group (TURCLIM); https://sites.utu.fi/turclim/]. In
Figure 3A, heat islands defined by population density are shown
by black circles, and colors ranging from blue to red indicate
temperatures in the 250 m×250 m grid. Regions with urban heat
island effects based on population density corresponded well
with the hottest regions based on high-resolution temperature
measurement (the TURCLIM heat map).

Given that impervious surfaces are a key contributor of the urban
heat island effect, we examined differences in NDVI distributions
between heat islands defined by population density and other loca-
tions (low NDVI is related to impervious surfaces). Supporting the
validity of our proxy measure, the mean±SD of the NDVI was sig-
nificantly lower in urban heat islands (0:40±0:14) than elsewhere
(0:65± 0:12, t-test, p<0:0001; Figure 3B).

Demographic and lifestyle-related covariates. To examine
individual-level indicators that may modify the association between
heat andmortality, we conducted analyses stratified by age (<65 vs.
≥65 y), sex, education (primary vs. secondary or higher), and life-
style factors. Data on age and sex were obtained from employers’
registers (for the FPS) or Statistics Finland (for the HeSSup) and
education from Statistics Finland (for the FPS) or questionnaire

survey (for the HeSSup). In both cohorts, we assessed four lifestyle-
related risk factors using standard survey instruments and catego-
rized using standard thresholds48: a) obesity (body mass index
≥30 kg=m2 vs. lower), b) current or former smoker (vs. never
smoker), c) high alcohol intake (>14 units of alcohol per week or
binge drinking vs. other), and d) physical inactivity [metabolic
equivalent of task (MET)-hours <14 and other]. We also con-
structed a lifestyle index as the sum of lifestyle risk factors (range 0–
4; with a lower score denoting healthier levels). For subgroup analy-
sis, this variable was dichotomized into healthy (0–1 of obesity,
smoking, high alcohol intake, physical inactivity) vs. unhealthy life-
style (2–4 of these four risk factors).

Mortality ascertainment. By using their unique national
identification number, participants were linked to the national
register of mortality kept by Statistics Finland. The records
included date and primary cause of death coded according to
the World Health Organization’s International Classification of
Diseases, Tenth Revision49 (ICD-10). We identified the most
common causes of mortality: from cancer (ICD-10 codes C00–
C97), cardiovascular diseases (ICD-10 codes I00–I99), external
causes (ICD-10 codes V01–Y86), and other causes (all other
ICD-10 codes). Total (all-cause) mortality was also used an out-
come in its own right.

Future Climate Change Scenarios
The climate science community has designed sets of scenarios that
span an array of possible futures for climate policy, global economy,
land use, emissions, resulting greenhouse gas concentrations, and cli-
mate change.16 For this study, we chose two extreme scenarios: a)
SSP1-1.9, which is the most stringent emission reduction scenario
based on the sustainable development with a radiative forcing of
1:9W=m2 at 2,10050; and b) SSP5-8.5, which is based on the fossil-
fueled development with a radiative forcing of 8:5W=m2 at 2,100.51

Hereafter, these are simply referred as “sustainable development”
and “fossil-fueled development” scenarios, respectively. TheCMIP6
data were downloaded from the Earth System Grid Federation
(ESGF) data archive (https://esgf-data.dkrz.de/search/cmip6-dkrz/)
accessed through Google Cloud (https://console.cloud.google.com/
marketplace/product/noaa-public/cmip6). We used estimates of

Figure 3. Validation of the density-based definition of heat island using additional high-resolution temperature and NDVI measurements. (A) Data from a
12 km×12 km area of the city Turku, June 2018. Urban heat islands, defined by a population density of ≥500 people per 250 m×250 m grid, are shown by
black circles. Colors ranging from blue to red indicate temperatures in these grids. (B) The distribution of NDVI by urban heat island status in the same area
and at the same time period. The mean±SD of the NDVI was lower in urban heat islands (0:40± 0:14) than elsewhere (0:65± 0:12, t-test, p<0:0001). Note:
AUG, August; JUL, July; JUN, June; NDVI, Normalized Difference Vegetation Index; SD, standard deviation; SEP, September.
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change in future temperature and heat index that were averaged and
weighted across the following eight climate change models available
for both the sustainable development scenario and the fossil-fueled
development scenario: GFDL-ESM4,52–55IPSL-CM6A-LR,56–59

MIROC6,60–63 MRI-ESM2-0,64–67 CanESM5,68–71 CAMS-
CSM1-0,72–75 FGOALS-g3,76–79 and EC-Earth3-Veg.80–83

Statistical Analysis
To determine the association between summertime heat and mor-
tality, we used four different analytic approaches. First, we exam-
ined the associations of 7-d average heat exposure with all-cause
and cause-specific mortality. Using Poisson regression analyses
adjusted for age, sex, and calendar year, we calculated the number
of deaths per 10,000 during summer periods for each exposure cat-
egory and the corresponding mortality rate ratios (RRs) and their
95% confidence intervals (CIs) for heat index categories ≤13�C,
16–17�C, 18–19�C, 20�C, and≥21�C comparedwith the reference
category (heat index 14–15�C). Multivariable-adjusted analyses
were controlled for age, sex, calendar year and additionally for de-
mographic (education), residential (type of building, greenness,
neighborhood deprivation, population density), and lifestyle-
related (obesity, smoking, high alcohol intake, physical inactivity)
covariates. To examinewhether the heat-related risk of death varied
depending on sex, age, education, building type, NDVI, neighbor-
hood deprivation, urban heat island status, obesity, smoking, alcohol
consumption, and physical inactivity, we stratified analyses by these
factors and reported strata-specific effect estimates. Interactions
between summertime heat and covariates were tested by computing
an interaction term, heat index × covariate. In these analyses, cova-
riates were dichotomized tomaintain statistical power.

To examine the burden of heat-related mortality during
summers, we calculated periodic population attributable fractions
(PAFs) with bootstrap 95% CIs using the following formulas:

PAF in group j=PjðRRj − 1Þ=
"
1+

XK
i=1

PiðRRi − 1Þ
#
,

PAF=
XK
j=1

PAFj,

where Pi is the proportion of the population in group i; RRi is the
RR in group i; and K is the number of non-reference risk groups.

Second, we evaluated the robustness of the heat–mortality
association by using a case-crossover design. This method effec-
tively controls for all measured and unmeasured time-invariant
confounders because only the cases are included.84 We used con-
ditional logistic regression and bidirectional control sampling
design to examine whether the odds of exposure to high heat
index (≥21�C vs. ≤20�C) was higher in the case time (the 7-d
period within which the person died) compared with the odds in
the control times (the corresponding 7-d period 1 y earlier and
1 y later). To further examine the robustness of the findings, this
analysis was repeated using control dates that were the same day
of the weeks as the day of death (e.g., Monday) during the case
month. In both analyses, the results were expressed as odds ratios
(ORs) with accompanying 95% CIs. In secondary analyses, we
repeated steps 1 and 2 after replacing heat index with alternative
indicators: lag 0–1 using mean heat index of the same and previ-
ous day (2-d heat index); 7-d mean of daily maximum tempera-
tures; and 2-d mean of daily maximum temperatures. In the first
indicator, high heat referred to ≥21�C and the reference, to
14–20�C. The corresponding categories for the latter two indica-
tors were to ≥26�C for high and 19–25�C for the reference.

Third, for the future projections of the heat index, we used a
40-y time series of observational data as a basis. Themonthly aver-
aged heat index during 1980–1999 and 2000–2019 was calculated
for each grid cell from observational data. The difference in the av-
erage monthly heat index maps between the two time periods, di-
vided by two decades, represents the decadal change in monthly
average heat index in each location. In the current warming trend
scenario, we assume that the observed (1980–1999 to 2000–2019)
average monthly rate of change in heat index remains unchanged
until 2050. This allowed us to generate a projection of the future
heat index time series for each 1 km×1 km grid cell by adding the
observed decadal change in monthly location-specific heat index
to the daily observed heat index values in the 2000–2019 observa-
tional data for that same month. We assumed that the spatially
resolved heat index pattern relative to mean temperature is con-
stant. This assumption is based on studies suggesting that spatial
temperature change pattern relative to global mean temperature
change (or cumulative carbon dioxide emissions) remains stable,85

applies to seasonal temperatures86 and temperature extremes,87

and can be scaled for extreme heat.88We also anticipated that adap-
tation to heat remains unchanged until 2050.

We predicted heat index and corresponding PAFs and their
95% CIs in heat-related excess mortality during summer periods
in 2030–2050 using a) observations on the heat–mortality associ-
ations at the population level from 2000 to 2018, and b) the
observed monthly spatially resolved change in heat index
between two 20-y summer periods (2000–2019 vs. 1980–1999).
In the current warming trend scenario, we assumed the observed
risk ratios (RRs) would remain unchanged for the near future.24

We estimated PAFs for future heat-related excess mortality for
summer periods in 2030–2050 based on the current warming
trend scenario and two other climate change scenarios. We calcu-
lated the future heat index for the sustainable (SSP1-1.19) and
fossil-fueled (SSP5-8.5) development scenarios in Finland, scal-
ing the current warming trend heat index projections by the ratio
of average May–September warming trend between the SSP and
historical simulations in the CMIP6 ensemble (i.e., SSP1-1.19/
historical and SSP5-8.5/historical). The historical data were
available until 2014 and extended based on SSP5-8.5 for the
years 2015–2019. Scaling observed trends based on climate
model data reduces regional biases because climate models are
used to project only relative trends. The rationale for this method
is the same as that for the current warming trend scenario.

To reduce the “hot model” bias (i.e., error caused in estima-
tion by giving too much weight for models that project more
warming than assessment of multiple other lines of evidence sug-
gests),89,90 we weighted each model depending on how close its
transient climate response (TCR) is to the best estimate of 1:8�C
in the Intergovernmental Panel on Climate Change, Assessment
Report 6 (IPCC AR6).91 Weights were calculated for each model
by evaluating a normal distribution density function fitted to
match the very likely 90% range of TCR (1:2–2:4�C) at the TCR
value of each model. We then used the weighted mean of heat
index trends from the eight climate models as our best estimate
for the two SSP scenarios and calculated the 95% credible inter-
val (CrI) based on a fitted probability density function using ker-
nel density estimation.

Fourth, taking into account demographic changes, we esti-
mated summertime heat-related cardiovascular death burden in
all citizens of the six cities under investigation by climate change
scenario. We obtained demographic characteristics and the num-
bers of deaths for each city at the midpoint of the observation
period 2000–2018 (2010) and projections of demographic charac-
teristics and deaths at midpoint of 2030 and 2050 (2040) from
Statistics Finland.92–94 For the period 2000–2018, we estimated
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weighted RRs of mortality for high heat index based on age- and
sex-specific RRs (four groups: men <65 and ≥65 years of age
and women <65 and ≥65 years of age) and the age and sex dis-
tribution in the six cities in 2010. For the period 2030–2050, we
used the same age- and sex-specific RRs with predicted age and
sex distribution in these cities in 2040. We computed weighted
PAF for the observation period (2000–2018) and future climate
change scenarios (2030–2050) using these effect estimates and
the numbers of people in each population subgroup. For compari-
son, we computed weighted PAF for temperature changes of 0°C
and 1°C per decade; these approximately represent the lower and
upper ends of the 95% CrIs of the climate change scenarios. The
corresponding heat index trends were 0°C and 1.152°C per dec-
ade, respectively.

Warming trend analyses were conducted using Python 3 and
all mortality analyses were performed using SAS statistical soft-
ware (version 9.4; SAS Institute, Inc.). Statistical significance
was inferred at a two-tailed p<0:05. Statistical code for the anal-
ysis and data sharing statement are provided in the “Statistical
Code” section of the Supplemental Material in “Analysis of raw
cmip6 warming trends,” “Analysis of weighted cmip6 warming
trends,” and “Analysis of heat – mortality associations.” All
respondents of the two cohort studies gave informed consent.

Results

Observed Climate Change in Finland
Figure 4 shows that the observed rate of change in the heat
index is relatively uniform in Finland. However, the warming
over large lakes is less pronounced during early summer and
more pronounced during late summer, compared with that over
land areas, and the increasing trend in heat index over time is
stronger in coastal compared with inland regions. The spatial
correlation coefficient calculated for the 1980–2019 May–
September period using either odd- or even-numbered years
only is 0.51 (with corresponding values of 0.77 for relative hu-
midity change and 0.53 for temperature change). This supports
the assumption that the future projections based on observed
trends in spatial distribution of heat index from 1980–1999 to
2000–2019 will persist. Figure 4 also shows that, unlike in other
months, there is little warming in June, an anomaly that has per-
sisted over the 59 y of observations.30

Overall, the temperature and humidity trends for the summer
periods 1980–1999 and 2000–2019 were robust. For example, the
mean decadal changes in temperature and humidity in Finland
(decadal temperature change, 0.49°C; decadal relative humidity
change, 1.05%) closely resembled those derived from the time se-
ries spanning even-numbered years (decadal temperature change,
0.51°C; decadal relative humidity change, 0.95%) or only odd
years (decadal temperature change, 0.46°C; decadal relative hu-
midity change, 1.16%).

Projected Climate Change in Finland
The observed summertime (May–September) warming trend in
Finland from 1980–1999 to 2000–2019 was 0.486°C per decade.
The corresponding relative humidity increase was 1.05% per dec-
ade, and the heat index change was 0.560°C per decade. This
heat index trend was used for the current warming trend scenario
for the years 2020 to 2050. Table 1 shows warming trends in
CMIP6 models for the future period of 2020–2050 by SSP cli-
mate scenario. The weighted mean warming trends in the sustain-
able development and the fossil-fueled development scenarios
between 2020 and 2050 were 0.225°C per decade and 0.528°C
per decade, respectively. The corresponding increases in heat
index were 0.259°C and 0.608°C per decade.

Association between Heat and Mortality
The cohort with valid data for analyses of heat index and cause-
specific mortality comprised 363,754 men and women, with a
mean±SD age of 35:3± 12:8 y at baseline and 45:7± 15:4 y at
the end of the mean follow-up of 10.7 person-summers (Table 2).
The average cumulative 7-d heat index was 14:0�C. During
582,111,979 summer days at risk, we recorded a total of 4,094
deaths. Of the deaths, 1,574 were from cancer, 949 from cardio-
vascular disease, 694 from external causes, and 877 from other
causes. The mean±SD of the age at death was 60:1± 12:9 y.

Table 3 shows the association of heat index with all-cause
and cause-specific mortality. After adjustment for age, sex, and
calendar year, the mortality rate was 10.5 (95% CI: 9.8, 11.3) per
10,000 summers for heat index of 14–15°C (the reference cate-
gory) and 13.3 (95% CI: 11.7, 15.1) per 10,000 summers for high
heat index (21°C or higher). In relative terms, the calendar year-
adjusted mortality RR was 1.27 (95% CI: 1.10, 1.46) times higher
for those with a high heat index than for the reference group. The

Figure 4. Spatial distribution of decadal May–September heat index change in Finland between 1980–1999 and 2000–2019. The number to the left of each
heat map is the countrywide average decadal change in heat index between 1980–1999 and 2000–2019. The corresponding average decadal change in monthly
temperature is: 0.57°C (May), −0:02�C (June), 0.58°C (July), 0.63°C (August), and 0.66°C (September).
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corresponding RR was 1.71-fold (95% CI: 1.29, 2.26) for cardio-
vascular deaths, but it did not reach statistical significance for
deaths from cancer or external causes or for mortality from other
causes (causes of death other than cancer, cardiovascular disease,
or external causes). The association between higher heat index
and higher rate of cardiovascular deaths remained statistically
significant after adjustments for age, sex, calendar year, educa-
tion, type of building, greenness, neighborhood deprivation, pop-
ulation density, obesity, smoking, high alcohol intake, and
physical inactivity (Table 4). For all noncardiovascular causes
combined, we did not observe higher rates of death.

The main results were replicated in case-crossover analyses,
suggesting that the associations between heat index, total mortal-
ity, and cardiovascular mortality were not related to confounding
by stable differences between exposure groups or choice of con-
trol time (Figure 5). A high vs. lower heat index was associated
with a 1.31-fold (95% CI: 1.11, 1.54) higher odds of mortality
from all-causes and 1.98-fold (95% CI: 1.41, 2.78) higher odds of
death from cardiovascular disease compared with control dates 1
y before and after the date of death. The corresponding ORs were
slightly lower [OR=1:21 (95% CI: 1.03, 1.44) and 1.46 (95% CI:
1.06, 2.00)], but statistically significant when this analysis was
repeated using control dates that were the same day of the weeks
as the day of death (e.g., Monday) during the case month.

Secondary analyses using alternative heat measures showed
that the association of high heat with higher rate of cardiovascular
disease death in population analysis and higher odds of cardiovas-
cular disease death in case-crossover analysis was observed using
a 7-d heat index (the main exposure) and a 7-d mean of maximum
daily temperatures (Figure 6). The corresponding effect estimates
were 1.62 (95% CI: 1.25, 2.08) and 1.44 (95% CI: 1.12, 1.84)
using data from the population model and 1.98 (95% CI: 1.41,
2.78) and 1.50 (95% CI: 1.10, 2.06) using the case-crossover
designs. For both 2-d heat indices, this association was attenuated.
Null or weak associations were observed between the alternative
indicators of heat and noncardiovascular deaths.

Results from subgroup analyses were consistent across the
population modeling and case-crossover study designs, although
none of the differences in demographic, residential location, or

Table 1. Change in temperature (°C) and heat index (°C) per decade in
Finland based on scaling the observed trend with the ratio of warming trends
between SSP and historical simulations in the Coupled Model
Intercomparison Project, phase 6.

Warming trenda

WeightbSSP1-1.9 SSP5-8.5

Climate model, change in temperature
GFDL-ESM4 −0:11 0.20 0.19
IPSL-CM6A-LR 0.61 1.15 0.07
MIROC6 0.41 0.93 0.17
MRI-ESM2-0 0.14 0.46 0.20
CanESM5 0.47 0.76 0.01
CAMS-CSM1-0 0.28 0.25 0.21
FGOALS-g3 0.32 0.68 0.15
EC-Earth3-Veg −0:02 0.38 0.01
Weighted mean change in
Temperature per decade
(95% CrI)

0.22 (−0:29, 0.71) 0.53 (−0:14, 1.32) —

Heat index per decade
(95% CrI)

0.26 (−0:34, 0.82) 0.61 (−0:16, 1.52) —

Note: The upper part of the table shows warming trends based on individual models and
weights estimated for each model. The lower part shows weighted means and 95% CrIs
for warming and heat index trends. —, Not applicable; CMIP6, Coupled Model
Intercomparison Project, phase 6; CrI, credible interval; IPCC AR6, Intergovernmental
Panel on Climate Change, Assessment Report 6; SSP1-1.9, Shared Socioeconomic Pathway
(sustainable scenario); SSP5-8.5 (fossil-fueled scenario); TCR, transient climate response.
aNumbers are projected changes in temperature in Celsius degrees per decade between
2020 and 2050 unless otherwise stated.
bWeights obtained by comparing each model’s TCR to the very likely range of IPCC
AR6 were used to reduce hot model bias in estimates of mean change in temperature
and heat index per decade and 95% CrIs.

Table 2. Characteristics of the participants (pooled data from two cohort
studies in six Finnish cities, 2000–2018).
Study population characteristic N (%)

All participants 363,754
Sex
Men 103,846 (28.5)
Women 259,908 (71.5)
Age at baseline (y)
Mean±SD 35:3± 12:8
18–64 y 359,881 (98.9)
65–86 y 3,873 (1.1)
Age at the end of follow-up
Mean±SD 45:7± 15:4
18–64 y 311,251 (85.6)
65–86 y 52,503 (14.4)
Education at baseline
Secondary or higher 326,650 (89.8)
Primary 37,083 (10.2)
Residential locations at baselinea

Building: single-family home
Yes 39,969 (11.3)
No 313,751 (88.7)
Missing 10,034

Neighborhood NDVI
Mean±SD 0:49± 0:14
High 248,188 (68.3)
Low 115,401 (31.7)
Missing 165

Neighborhood deprivationb

Mean±SD −0:19± 0:68
Low 224,835 (62.2)
High 136,422 (37.8)
Missing 2,497

Heat islandc

No 237,704 (65.4)
Yes 126,050 (34.6)
Missing 0

Heat indices, 2000–2018 (mean±SD)
7-d heat indexd 14:0± 4:1
7-d maximum temperature 19:0± 4:1
2-d heat index 13:8± 4:6
2-d maximum temperature 18:8± 4:6

Survey respondents (subsample) 128,481
Obesity at baseline
No 101,578 (80.6)
Yes 24,503 (19.4)
Missing 2,400
Ever-smoker at baseline
No 73,243 (58.1)
Yes 52,915 (41.9)
Missing 2,323
High alcohol consumption at baseline
No 96,118 (75.8)
Yes 30,596 (24.2)
Missing 1,767
Physical inactivity at baseline
No 66,840 (19.4)
Yes 59,946 (52.7)
Missing 1,695
Risk behaviors
0–1 76,899 (60.2)
2–4 50,913 (39.3)
Missing 669

Note: Figures are n (%) unless otherwise stated. NDVI, Normalized Difference
Vegetation Index; SD, standard deviation.
a750 m×750 m resolution for greenness, and 250 m×250 m resolution for other char-
acteristics of residential location.
bDeprivation in relation to grid-based national z-score.
cPopulation density >500 per 250 m×250 m grid area. During the follow-up, 205,116
participants lived in a heat island at some point.
dAverage daily temperature levelweighted by air humidity during a periodof 7 d andnights.
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lifestyle factors between subgroups achieved statistical signifi-
cance (Figure 7). In analyses of data from both designs, there
was a higher effect estimate for heat-related cardiovascular
mortality in women, those ≥65 years of age, participants living
in multiple-family homes, those who lived in regions of urban
heat island effects, and individuals with high alcohol consump-
tion or an unhealthy overall lifestyle. In case-crossover analyses
only, a higher odds of heat-related cardiovascular mortality was
also observed in individuals residing in deprived neighborhoods
and those who were obese.

Future Summertime Heat-Related Cardiovascular Death
Burden

In the whole of Finland, observed average increase in heat index
between 1980–1999 and 2000–2019 is 0:56�C per decade.
Projection for change in the heat index per decade until 2050 is
0:56�C if the current rate of climate change continues, 0:26�C per
decade for the sustainable development scenario and 0:61�C per
decade for the fossil-fueled development scenario (Figure 8A).

In our study population, the heat index was ≤14�C for
42.4% of summer days, within the 14–20°C range for 52.4% of
summer days, and ≥21�C for 5.3% of summer days. If the cur-
rent trend persists for the period 2030–2050, it is estimated that
30.5% of summer days will have a heat index of ≤14�C, 56.7%
will fall in the 14–20°C range, and 12.8% will reach ≥21�C.
The trends projected for our study population under a sustain-
able future scenario indicate a distribution of 36.4%, 55.7%, and
7.8% in the respective temperature categories. In contrast, in a

fossil-fueled future, the distribution shifts to 29.6%, 56.7%, and
13.8%.

These changes have an impact on the burden of summertime
heat-related cardiovascular mortality, as indicated by the PAF
(Figure 8B). In the period from 2000 to 2018, the PAF was 3.0%
(95% CI: 1.2, 5.0) in our study population. Projections for 2030–
2050 show PAF estimates of 7.1% (95% CI: 3.0, 11.5) under the
current warming trend, 4.4% (95% CI: 1.8, 7.3) under the sustain-
able development scenario, and 7.6% (95% CI: 3.2, 12.3) under
the fossil-fueled development scenario.

Table 5 shows the estimated summertime heat-related burden of
cardiovascular deaths for the total 1.3 million population in the
six cities in 2000–2019. This burden is only slightly higher,
PAF=3:2% (95% CI: 0.9, 6.1), than observed in the study partici-
pants (3.0%). A similar small difference is also evident in future pro-
jections for the years 2030–2050. According to the estimates from
Statistics Finland, the population of the six cities is projected to
reach 1.7 million, with a larger proportion of elderly individuals.
Under the current warming trend, the PAF and the annual number of
extra heat-related cardiovascular deaths are estimated to be
PAF=7:6% (95% CI: 2.8, 13.6) and NðdeathsÞ=278 (95% CI:
103, 497), respectively. In the sustainable development scenario,
these figures are estimated to be PAF=4:7% (95%CI: 1.7, 8.7) and
NðdeathsÞ=174 (95%CI: 63, 318), whereas in the fossil-fueled de-
velopment scenario, they are estimated to be PAF=8:1% (95% CI:
3.0, 14.5) andNðdeathsÞ=298 (95%CI: 111, 530). For comparison,
the PAF and the annual number of extra heat-related cardiovascular
deaths for a more extreme future warming projection of 0°C and
1°C per decade are estimated to be PAF=3:2% (95% CI: 1.2, 6.0)
andNðdeathsÞ=118 (95%CI: 42, 218) and PAF=16:2% (95%CI:

Table 3. Association of heat index with summertime all-cause and cause-specific mortality [pooled data from two cohort studies in six Finnish cities, 2000–
2018, NðparticipantsÞ=363,754].

Cause of death Heat indexa N (deaths) N (person-summers)b Rate (95% CI)c RR (95% CI)d

All deaths ≤13 1,708 164,449 10.55 (10.01, 11.13) 1.01 (0.93, 1.09)
14–15 836 78,801 10.49 (9.75, 11.28) 1.00 (Ref)
16–17 731 72,620 10.26 (9.50, 11.07) 0.98 (0.89, 1.08)
18–19 433 41,349 11.02 (9.99, 12.15) 1.05 (0.93, 1.18)

20 109 10,449 10.90 (9.00, 13.19) 1.04 (0.85, 1.27)
≥21 277 20,407 13.27 (11.69, 15.06) 1.27 (1.10, 1.46)

Cancer ≤13 646 164,449 3.15 (2.86, 3.46) 0.97 (0.85, 1.10)
14–15 335 78,801 3.25 (2.88, 3.68) 1.00 (Ref)
16–17 269 72,620 2.96 (2.60, 3.38) 0.91 (0.77, 1.07)
18–19 178 41,349 3.57 (3.05, 4.18) 1.10 (0.91, 1.32)

20 43 10,449 3.46 (2.55, 4.71) 1.06 (0.77, 1.47)
≥21 103 20,407 4.04 (3.27, 4.99) 1.24 (0.98, 1.57)

Cardiovascular disease ≤13 410 164,449 1.84 (1.62, 2.08) 1.15 (0.97, 1.38)
14–15 177 78,801 1.59 (1.34, 1.88) 1.00 (Ref)
16–17 166 72,620 1.70 (1.43, 2.02) 1.07 (0.86, 1.32)
18–19 93 41,349 1.73 (1.39, 2.16) 1.09 (0.84, 1.40)

20 24 10,449 1.76 (1.17, 2.66) 1.11 (0.72, 1.71)
≥21 79 20,407 2.72 (2.12, 3.48) 1.71 (1.29, 2.26)

External causes ≤13 281 164,449 2.13 (1.89, 2.41) 0.87 (0.71, 1.06)
14–15 149 78,801 2.46 (2.09, 2.89) 1.00 (Ref)
16–17 133 72,620 2.30 (1.93, 2.73) 0.94 (0.74, 1.18)
18–19 74 41,349 2.28 (1.81, 2.87) 0.93 (0.70, 1.23)

20 21 10,449 2.51 (1.63, 3.88) 1.02 (0.64, 1.63)
≥21 36 20,407 2.28 (1.62, 3.21) 0.93 (0.64, 1.36)

Other causes ≤13 371 164,449 2.26 (2.01, 2.53) 1.05 (0.88, 1.26)
14–15 175 78,801 2.14 (1.83, 2.52) 1.00 (Ref)
16–17 163 72,620 2.24 (1.90, 2.64) 1.05 (0.84, 1.30)
18–19 88 41,349 2.20 (1.77, 2.74) 1.03 (0.79, 1.33)

20 21 10,449 2.01 (1.30, 3.10) 0.94 (0.59, 1.48)
≥21 59 20,407 2.48 (1.89, 3.27) 1.16 (0.85, 1.58)

Note: CI, confidence interval; Ref, reference; RR, rate ratio.
a7-d average.
bFrom May to September.
cRate per 10,000 person-summers adjusted for age, sex, and calendar year.
dAge-, sex-, and calendar year-adjusted ratio of mortality and the 95% CIs by level of 7-d heat index.
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6.4, 27.1) and NðdeathsÞ=594 (95% CI: 235, 992), respectively. In
all these comparisons, the relative and absolute difference in heat-
related cardiovascular mortality burden between the most and least
favorablewarming trends is considerable.

Discussion
Findings for the six largest cities in Finland suggest that high ambient
temperature is associated with moderately increased summertime
cardiovascular disease mortality and slightly increased risk of total

Table 4. Heat exposure and risk of association [RR (95% CI)] with summertime death from cardiovascular and noncardiovascular causes after serial adjustment
[pooled data from two cohort studies in six Finnish cities, 2000–2018, NðparticipantsÞ=363,754].

Cause of death Heat index (°C)a N (deaths)

Model

1 2 3 4

All participants (N =363,754)
Cardiovascular disease ≤13 410 1.17 (0.98, 1.40) 1.15 (0.97, 1.38) 1.15 (0.97, 1.38) 1.14 (0.95, 1.36)

14–15 177 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
16–17 166 1.07 (0.86, 1.32) 1.07 (0.86, 1.32) 1.07 (0.86, 1.32) 1.06 (0.85, 1.32)
18–19 93 1.07 (0.83, 1.39) 1.09 (0.84, 1.40) 1.09 (0.85, 1.41) 1.02 (0.78, 1.33)

20 24 1.13 (0.73, 1.74) 1.11 (0.72, 1.71) 1.11 (0.72, 1.70) 1.09 (0.70, 1.70)
≥21 79 1.69 (1.28, 2.24) 1.71 (1.29, 2.26) 1.71 (1.29, 2.26) 1.70 (1.28, 2.27)

Noncardiovascular ≤13 1,298 0.98 (0.89, 1.07) 0.97 (0.88, 1.06) 0.97 (0.88, 1.06) 0.97 (0.88, 1.06)
14–15 659 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
16–17 565 0.95 (0.85, 1.07) 0.95 (0.85, 1.07) 0.95 (0.85, 1.07) 0.96 (0.85, 1.07)
18–19 340 1.03 (0.90, 1.18) 1.04 (0.91, 1.19) 1.04 (0.91, 1.19) 1.03 (0.89, 1.18)

20 85 1.04 (0.82, 1.30) 1.02 (0.81, 1.28) 1.02 (0.81, 1.28) 1.05 (0.84, 1.33)
≥21 198 1.14 (0.96, 1.34) 1.15 (0.97, 1.35) 1.15 (0.97, 1.35) 1.14 (0.96, 1.36)

Model

1 2 5

Survey respondents (subsample, N =128,481)
Cardiovascular disease ≤13 95 1.51 (1.01, 2.26) 1.48 (0.99, 2.21) 1.50 (0.96, 2.32) —

14–15 32 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) —
16–17 37 1.33 (0.83, 2.14) 1.34 (0.83, 2.16) 1.20 (0.71, 2.04) —
18–19 25 1.69 (0.99, 2.88) 1.71 (1.01, 2.92) 1.28 (0.67, 2.43) —

20 <10 1.04 (0.36, 2.97) 1.02 (0.36, 2.91) 0.95 (0.29, 3.19) —
≥21 21 2.36 (1.32, 4.22) 2.39 (1.34, 4.28) 2.59 (1.38, 4.88) —

Noncardiovascular ≤13 323 1.04 (0.86, 1.26) 1.02 (0.84, 1.23) 1.07 (0.87, 1.32) —
14–15 163 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) —
16–17 134 0.92 (0.73, 1.16) 0.93 (0.74, 1.16) 0.96 (0.74, 1.23) —
18–19 81 1.01 (0.77, 1.33) 1.02 (0.78, 1.34) 1.06 (0.78, 1.43) —

20 19 0.99 (0.61, 1.60) 0.98 (0.60, 1.58) 1.21 (0.74, 2.00) —
≥21 57 1.37 (0.99, 1.89) 1.39 (1.01, 1.91) 1.39 (0.97, 1.99) —

Note: —, not applicable; CI, confidence interval; Ref, reference; RR, rate ratio.

Figure 5. Case-crossover analysis of exposure to high heat index and risk of summertime all-cause and cause-specific mortality. Pooled individual-level data
from two cohort studies in six Finnish cities, 2000–2018, were used. The number of participants in each analysis is the same as the number of deaths (range:
694–4,094). Conditional logistic regression with bidirectional control sampling was used for analysis. The analysis compares the odds of being exposed to high
heat (≥21�C) in case time compared with control times. In the design “1 year before and after death,” control dates are 1 y before and after the date of death.
In the design “Same day of the weeks at the month,” control dates are the same day of the week during the case month as the death day. All time-invariant
covariates are controlled by the study design.
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mortality. According to modeling of future heat-related mortality
burden under two different climate change scenarios, the current
summertime PAF of ∼ 3% (95% CI: 1%, 6%) for fatal cardiovascu-
lar events will increase to 5% (95% CI: 2–9%) in the sustainable

development scenario and to 8% (95% CI: 3–14%) in the fossil-
fueled development scenario by 2030–2050. Thus, for cardiovascu-
lar mortality the estimated magnitude of increasing summertime
mortality burden is almost two times greater if future climate change

Figure 7. Heat exposure and risk of summertime cardiovascular death in population subgroups from a stratified population model and case-crossover analyses.
Pooled individual-level data from two cohort studies in six Finnish cities, 2000–2018, were used. Population models and related tests for interaction are based
on Poisson regression analysis. Mortality rate and age, sex, and calendar year-adjusted rate ratio for participants exposed to high heat index (>21�C) compared
with those unexposed (heat index 14–20°C) are shown. Case-crossover models and related tests for interaction are based on conditional logistic regression with
bidirectional control sampling. The analysis compares the odds of being exposed to high heat (≥21�C) in case time (the date of death) compared with control
times (1 y before and after the date of death). All time-invariant covariates are controlled by study design. The number of participants in case-crossover analy-
sis is the same as the number of deaths. Note: NDVI, Normalized Difference Vegetation Index.

Figure 6. Heat exposure and risk of summertime cardiovascular and noncardiovascular death by heat indicator in population model and case-crossover analy-
ses. Pooled individual-level data from two cohort studies in six Finnish cities, 2000–2018, were used. Population models are based on Poisson regression analy-
sis. Mortality rate and age, sex, and calendar year-adjusted rate ratio for participants exposed to high heat index (≥21�C) compared with those unexposed (heat
index 14–20°C) are shown. Case-crossover models are based on conditional logistic regression with bidirectional control sampling. The analysis compares the
odds of being exposed to high heat (≥21�C) in case time (the date of death) compared with control times (1 y before and after the date of death). All time-
invariant covariates are controlled by the study design. The number of participants in the case-crossover analysis is the same as the number of deaths. Note:
Tmax, mean of daily maximum temperatures.
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will be driven by fossil-fueled development compared with sustain-
able development.

To our knowledge, this study is one of few large-scale, high-
resolution investigations using an individual-level daily based
follow-up for location, temperature, humidity, and mortality.
Thus, we were able to take into account participants’ migrating to
new residential addresses during the 20-y exposure period and a
large number of participant- and area-level covariates, including
demographic characteristics, features of the residential building,
neighborhood deprivation, heat islands, and health-related lifestyle
factors. Our study also benefits from the national coverage of mor-
tality registers.95 The replication of epidemiological findings in
multivariable-adjusted and case-crossover analyses strengthened
the validity of our results that we used to draw projections from all

summers between 1980 and 2019 to those between 2030 and 2050
under different global warming scenarios.

Our results on the association between heat and mortality are in
accord with existing research, although the large variety of analyti-
cal designs, with alternative effect summaries, time periods, statisti-
cal modeling, and assumptions, makes direct comparisons difficult.
In accordance with reviews of the evidence, we found stronger
association between heat index and cardiovascular mortality in
women and people≥65 years of age.11,96–99 The observed associ-
ations with cardiovascular mortality in subgroup analyses also
highlighted higher risk in study participants living in regions
with potential urban heat island effects—a finding that is consist-
ent with previous studies, suggesting that factors characterizing
heat islands, such as high population density and reduced urban

A

B

Figure 8. Observed and predicted burden of summertime heat-related cardiovascular death burden by climate change scenarios. (A) Observed decadal change
in summertime heat index between 2000 and 2019 and projected decadal change in summertime heat index between 2030 and 2050 in Finland. (B)
Summertime heat-related cardiovascular death burden as indicated by PAFs in participants living in six Finnish cities for 2000–2018 and 2030–2050 by climate
change scenario. The whiskers in the bars represent 95% confidence intervals. Estimations in (B) are based on pooled individual-level data from two cohort
studies in six Finnish cities, 2000–2018 (N =363,754). Note: PAF, population attributable fraction; SEP, September; SSP, Shared Socioeconomic Pathway.
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vegetation, increase vulnerability to heat.100,101 The finding that
the link between heat index and cardiovascular mortality was
highest among those individuals with the least healthy lifestyles
is novel yet biologically plausible.102

The mechanisms underlying the observed associations remain
unclear. Heat exhaustion or heat strokes (defined as a core tempera-
ture of >40:6�C) can cause heart failure, but studies suggest that
most heat-related deaths are not attributable to heat stroke, and this
is particularly true in Finland where extreme ambient temperatures
are extremely rare.103,104 Heat represents an acute stressor that
may act on preexisting or subclinical vascular disease and, consis-
tently with this, increased risk of heat-related mortality has often
been observed among peoplewith diabetes, hyperlipidemia, or car-
diovascular disease.104–106 Heat-induced increases in body tem-
perature activate the heat loss responses of cutaneous vasodilation
and sweating, which reduce peripheral vascular resistance and cen-
tral blood volume, require greater cardiac contractility and cardiac
output, and increase heart rate. In vulnerable people, the resulting
greater cardiovascular strain lowers the arrhythmic threshold and
may predispose to ischemia and major adverse cardiac events.9 In
addition, heat-induced inflammatory response can increase risk of
thrombosis.9 In terminally ill individuals, high temperature, as a
stressor, predisposes to organ failure.

Prior predictions of future heat-relatedmortality have been incon-
sistent and usually based on aggregate data. An analysis of 44 large
U.S. cities with metropolitan areas exceeding 1 million residents pre-
dicted that climate change for the years 2020–2050 will dramatically
increase summer mortality and slightly decrease winter mortality,
even if people acclimatize to the increasedwarmth.107 Another study,
using aggregate data from daily deaths of older people living in North
and South Finland, German (Baden Württemberg), Netherlands, the
UK (London), North Italy, and Greece (Athens), came to an opposite
conclusion.108 The investigators found little differences in annual
heat-related mortality between regions with hot summers compared
with cold regions. Assuming this cross-sectional finding applies to
longitudinal predictions, they suggested people can be expected to
adjust to the global warming predicted for the next decades with little
sustained increase in annual heat-related mortality. In accordance
with our findings, other reports have favored views emphasizing
future increases in heat-related mortality. These studies have used
various sources of data for projections, including those collected from
Europe,19,20 15 European cities,109 a large city in the Netherlands,21
New York City,22 10 large metropolitan areas in the United States,23
Central and Southern America,19 Southeast Asia,19 7 large cities of
South Korea,24 Beijing,25 a Chinese coastal city,26 and urban and ru-
ral counties inChina.27

We estimated the future mortality burden under two climate
change scenarios using adapted projections of preceding temperature
shift from 1980–1999 to 2000–2018 and including Statistical

Finland projections for demographic changes in the studied six
cities.91–94 In predicting the number of heat-related cardiovascular
deaths in 2030–2050, we controlled for the hot model bias89,90 and
took into account both population growth and population aging
because adverse heat-related effects are more pronounced in older
people—the age group in Finland, and many other countries, that
will increase most in absolute numbers in future.92–94 If the current
warming trend continues, the estimated increase in the number of
future summertime heat-related cardiovascular deaths is 4-fold. This
increase would be smaller, <3-fold under the sustainable climate
change scenario, but more than 4.5-fold assuming a fossil-fueled
future. Modeling of more extreme changes to the current warming
trend, such as temperature increases of 0�C and 1�C per decade, led
to greater differences in the burden of heat-related cardiovascular
mortality between themost and least favorable climate scenarios.

Although the present findings on a greater burden of summer-
time cardiovascular disease mortality in urban heat islands is intui-
tive and in accord with other results,110,111 they should be
interpreted cautiously. First, themeasurement of urban heat islands
was based on population density. It therefore missed important fac-
tors that cause the urban heat island effect, such as impervious
surfaces or anthropogenic heat emission,112 although associations
of our urban heat island measurement with higher temperatures
and lower NDVI were seen in the validation substudy. Second, our
estimates of mortality risk accounted for uncertainty in the heat–
mortality associations, but not the uncertainty in future climate sce-
narios, which has been taken into account in some previous studies
not based on individual-level cohort data.18,19 To evaluate the
uncertainty in warming trends of the sustainable development and
fossil-fueled scenarios, we predicted mortality burden separately
for 0�C and 1�C increases in temperature per decade. These
approximately represent the lower and upper ends of the 95% CrIs
for the two global warming scenarios. Third, in the modeling of the
future burden of heat-related cardiovascular deaths, it was not pos-
sible to consider the influence of increases in heat islands within
urban areas owing to the lack of relevant data, a limitation shared
by several other studies in the field.17,112–114 This could have con-
tributed to an underestimation of true effects because the impact of
warming induced by urbanization can be even greater than the
impact of climate change.115,116 Other potentially health-related
climate data not available for this study include air pollution, aver-
age wind speed, and wind direction,12,117,118 although recent
multi-model mean results suggest close to zero changes in wind
speed in Finland over time.119 It also remains unknown how future
improvements in health care, air conditioning of homes and
vehicles, and physiological acclimatization will affect the ability of
humans to adapt to higher temperatures.

Although heat-related death burden varies geographically,
increased heat-related mortality is evident on every inhabited

Table 5. Estimated burden of summer heat-related cardiovascular deaths in citizens of six Finnish cities by climate change scenario (pooled data from two
cohort studies in six Finnish cities, 2000–2018).

Year

Total adult population

Hot days (%)a
Weighted Weighted Excess CVD (N)

N CVD deaths RR (95% CI)b PAF (%) (95% CI)b Deaths (95% CI)

Summers 2000–2018—observed 2010 1,306,928 2,040 5.3 1.668 (1.18, 2.34)c 3.19 (0.91, 6.14)c 65 (19, 125)
Summers 2030–2050—estimated 2040 1,759,468 3,665 — — — —
Current warming trend — — — 12.8 1.672 (1.24, 2.31)d 7.60 (2.81, 13.57)d 278 (103, 497)
SSP1-1.9 (sustainable scenario) — — — 7.8 1.672 (1.24, 2.31)d 4.74 (1.72, 8.68)d 174 (63, 318)
SSP5-8.5 (fossil-fueled scenario) — — — 13.8 1.672 (1.24, 2.31)d 8.13 (3.02, 14.46)d 298 (111, 530)
0°C change in temperature per decade — — — 5.3 1.672 (1.24, 2.31)d 3.21 (1.15, 5.95)d 118 (42, 218)
1°C change in temperature per decade — — — 29.7 1.672 (1.24, 2.31)d 16.20 (6.40, 27.07)d 594 (235, 992)

Note: —, Not applicable; CI, confidence interval; CVD, cardiovascular disease; PAF, population attributable fraction; Ref, reference; RR, rate ratio.
aHeat index ≥21 during summer months.
bRR and PAF for CVD deaths during summers estimated for heat index ≥21�C vs. 14–20°C.
cWeighted by age and sex distribution in the cities in 2010 (midpoint of 2000–2018).
dWeighted by projected age and sex distribution in the cities in 2040 (midpoint of 2030–2050).
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continent with different weather and geographic conditions.18 Our
study was based on data from six large cities in Finland, a cold-
climate Northern-latitude country. The findings may not be gener-
alizable to rural areas in Finland or other countries with different
weather and geographic conditions. The vast majority of the partic-
ipants were employed and relatively young, with the mean age at
death being 60 y. This implies that the population segments most
vulnerable to heat stress, such as people with low incomes, mem-
bers of minority groups, older adults, and people with chronic dis-
eases and disabilities,102,120 were underrepresented in these data.
Thus, we may have underestimated the heat-associated death bur-
den. Furthermore, the climate in Finland varies between subarctic
or humid continental, and summers are typically mild.29 Because
of this relatively low countrywide heat exposure, one would expect
the burden of heat-related deaths to be lower in Finland than in
those regions with hotter summers. This may, however, be only
partially true. Populations tend to adjust to local temperatures over
centuries and millennia and, thus, mortality risk is not a simple
function of the heat index, which applies universally.118,121

This study focused on heat-related mortality during summers,
and further research covering cold-related deaths during winters is
needed for an overall evaluation of global warming. This would
require control for time-varying individual-level covariates relevant
for cold-related health effects (e.g., variation in snow cover, ice, and
light), which, of course, differ from those for heat-related impacts.
The potential interactions between heat- and cold-related biological
mechanisms add a further layer of complexity to such analysis.

In conclusion, individual-level daily based spatiotemporal
data in citizens from Finland suggest that climate change will
increase heat-related cardiovascular mortality in urban-dwelling
populations. The increase in summertime death burden from car-
diovascular diseases will be >1:5 times greater if future human-
induced global warming follows the fossil-fueled development
rather than sustainable development scenario. These findings sup-
port the need for more ambitious mitigation and adaptation strat-
egies to minimize the public health impacts of climate change.
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