
PHYSICAL REVIEW B 108, 195143 (2023)

Automatic differentiable nonequilibrium Green’s function formalism:
An end-to-end differentiable quantum transport simulator

Zhanghao Zhouyin,1 Xiang Chen,2 Peng Zhang,1,* Jun Wang,3,† and Lei Wang4

1College of Intelligence and Computing, Tianjin University, Tianjin 300354, China
2Noah’s Ark Lab, Huawei, Beijing 100085, China

3University College London, London WC1E 6BT, United Kingdom
4Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 6 June 2023; accepted 25 October 2023; published 27 November 2023)

The state-of-the-art first-principles quantum transport theory and modeling are based on carrying out self-
consistent atomistic calculations within the Keldysh nonequilibrium Green’s function (NEGF) formalism. The
atomistic model of the device can be at the tight-binding (TB) or the density functional theory levels, and NEGF
determines the nonequilibrium carrier distribution under external bias and gate voltages. In this work, we report
an end-to-end automatic differentiable NEGF simulator (AD-NEGF) within the NEGF-TB framework. AD-
NEGF calculates gradient information by automatic differentiation (AD) and the implicit layer technique while
guaranteeing the correctness of forward simulation. The gradient information enables accurate calculations of
transport properties that depend on the derivatives of the transmission coefficient and/or charge current. More
interestingly, AD-NEGF can be applied to the extremely interesting inverse design problem; namely, with a
desired transport property, AD-NEGF inversely finds a possible device Hamiltonian that would produce such a
property.

DOI: 10.1103/PhysRevB.108.195143

I. INTRODUCTION

Quantum transport theory provides fundamental un-
derstandings of device physics and scientific background
knowledge of practical modeling tools for predicting carrier
transport in electronic devices [1–3]. The state-of-the-art first-
principles quantum transport theory is based on carrying out
atomistic analysis within the Keldysh nonequilibrium Green’s
function (NEGF) formalism [4,5]. Here, the atomic model of
the device can be at the tight-binding (TB) level or the density
functional theory (DFT) level to capture material details of the
device system. The density matrix of the device is constructed
by NEGF which provides the nonequilibrium distribution of
the carriers under the external bias/gate potentials for the open
device structure. A self-consistent NEGF-TB or NEGF-DFT
procedure solves the nonequilibrium quantum transport prop-
erties including all the atomistic details of the device. Such
NEGF methods have been widely applied for device physics
and are part of the larger industrial tool set of technology
computer-aided design (TCAD) [6–8].

In practical applications of first-principles device model-
ing, after the self-consistent NEGF simulation is converged,
one obtains physical quantities such as the transmission func-
tions T = T (E), where E is the carrier energy, and the
electric current I = I (V), where V is the externally applied
bias/gate voltages, etc. With T (E), I (V), important phys-
ical or device parameters that depend on their derivatives

*pzhang@tju.edu.cn
†jun.wang@cs.ucl.ac.uk

can be further calculated. These include the Seebeck coeffi-
cient of thermoelectric devices [9], differential conductance
of tunneling spectroscopy [10], and subthreshold swing of
a metal-oxide-semiconductor field-effect transistor [11]. To
calculate the parametric derivatives of T (E) for instance, a
dense energy mesh is usually required especially when T is
a rapidly varying function of E . In industrial TCAD, one
resorts to compact models which are analytical models of
the carrier transport, in which many measured, fitted, and/or
phenomenological parameters are used to achieve accuracy.
For analytical models, the derivatives can be easily done. For
situations where the analytical models do not exist or are diffi-
cult to establish, it will be very useful to develop an approach
that directly predicts the derivatives of the transport functions
without doing brute-force numerical differentiation. In addi-
tion, for device physics, being able to predict derivatives or
gradients is important in high-dimensional optimization of
the device models which is related to the inverse problem of
property-by-design.

For this purpose, here we report an end-to-end differen-
tiable quantum transport simulator. The automatic differen-
tiable NEGF (hereafter called AD-NEGF) is at the level of
NEGF-TB. AD-NEGF calculates gradient information effi-
ciently by automatic differentiation (AD) and implicit layer
techniques (see below) while guaranteeing the correctness of
forward simulation. The gradient information enables precise
calculation of differential physical quantities directly and al-
lows model optimization at a complexity level not achievable
by conventional approaches. To the best of our knowledge, an
end-to-end differentiable quantum transport simulator has not
been reported in the literature before.

2469-9950/2023/108(19)/195143(13) 195143-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.195143&domain=pdf&date_stamp=2023-11-27
https://doi.org/10.1103/PhysRevB.108.195143

ZHOUYIN, CHEN, ZHANG, WANG, AND WANG PHYSICAL REVIEW B 108, 195143 (2023)

Our AD-NEGF is inspired by recent progress in artifi-
cial intelligence (AI) for quantum transport and differentiable
programming. So far, machine-learning-based AI techniques
have been applied to train neural networks with data generated
from first-principles transport simulations. Here, the neural
network serves as an efficient surrogate model to make predic-
tions of conductance [12–14] and other transport coefficients
[15]. As AI for quantum transport is still in the early stages
of development, relatively simple deep-learning models such
as multilayer perceptrons [16] and convolutional networks
[17–19] were typically used, although more advanced and
specially designed models started to appear [12]. Regarding
differentiable programming, in our context, it refers to em-
bedding physical models or numerical computation processes
into the AI model to improve data efficiency, generaliza-
tion capability, and interpretability. It requires an automatic
differentiation framework to support implicit numerical oper-
ations such as fixed-point iterations [20], optimization [21],
and initial value problems [22]. Differentiable programming
has been applied to physical simulations [23,24] such as
rigid-body dynamics [25,26], computational fluid dynamics
[27–29], ray tracing [30], and quantum many-body simula-
tions [31]. More specifically, in ab initio simulations, there
have been differentiable programming in density functional
theory [32,33], Hartree-Fock methods [34], coupled-cluster
expansions [35], and molecular dynamics [36]. In the rest of
this paper, we present a differentiable programming technique
for quantum transport simulations.

We apply AD-NEGF to several situations. First, we
demonstrate its ability to accurately and efficiently compute
differential physical properties. Second, we demonstrate that
combining AD-NEGF with gradient-based optimization can
help solve the inverse problem of transport-by-design. Third,
as another inverse problem, we apply AD-NEGF to find
possible Slater-Koster tight-binding (SKTB) parameters of
impurity dopants to reach a predetermined goal of transmis-
sion coefficient. We show that AD-NEGF gains significant
advantages in these problems over conventional approaches.
The rest of the paper is organized as follows. In the next sec-
tion, we present details of AD-NEGF. Section III summarizes
the applications of AD-NEGF. A short summary is reserved
for Sec. IV.

II. AD-NEGF: THEORY AND IMPLEMENTATION

Our NEGF-TB transport method in AD-NEGF is imple-
mented in PyTorch [37], so that we can utilize the tensor
operations in PyTorch linalg and other modules, including
multiplication, addition, and inversion. Our code also in-
cludes an SKTB module that generates a block-tridiagonal
TB Hamiltonian [38] of the device material. The back-
propagation process in AD-NEGF is improved through the use
of implicit gradient techniques, the adjoint sensitivity method
for partial differential equations (PDEs), and an image charge
gradient method.

A. NEGF-TB transport method

Before discussing the AD process in the next section, it
is helpful to briefly present our NEGF implementation on

which the AD is applied. The NEGF first-principles quan-
tum transport formalism is based on performing atomistic
material-specific calculations within the NEGF framework
[5]. The atomistic model can be at the level of DFT or TB as
mentioned above. This work is based on using the TB Hamil-
tonian for the device material. The idea of the NEGF-TB or
NEGF-DFT is to calculate the Hamiltonian of the device un-
der the influence of external bias and gate voltages. In the case
of NEGF-TB, the equilibrium Hamiltonian is parametrized
by TB parameters and the electrostatic potential due to ex-
ternal electric field is calculated self-consistently. In the case
of NEGF-DFT, the entire device Hamiltonian, including the
effects of external electric field, is calculated self-consistently.
On the other hand, the application of NEGF determines the
nonequilibrium statistical information for constructing the
density matrix. Typically, real-space numerical methods are
used to handle transport and electrostatic boundary conditions
of the open device structure. Since its first report [5], the
NEGF based atomistic modeling methods have become the de
facto standard approach for simulating nonequilibrium quan-
tum transport in atomistic nanostructures. For more technical
details we refer interested readers to Ref. [39] and in the rest of
this section, we outline our implementation on which the AD
process is developed. Some further details are summarized in
Appendix A.

Consider a transport system made of a device scattering
region and two semi-infinite electrodes that attach to the left
and right sides of it, shown in Fig. 1. The Hamiltonian H of
the entire system, device and electrodes, is represented with
a TB model [40], which is in a block-tridiagonal form. We
express the NEGF model under an orthogonal atomic basis
here for brevity. The stationary Schrödinger equation of the
infinitely large open device structure is H� = E�, where �

is the wave function and E the corresponding energy. The
Green’s function of the system is formally obtained as

G = [EI − H]−1, (1)

where I is the identity matrix. Note that for the open device
structure, the Hamiltonian H is in fact an infinitely large ma-
trix; thus the Green’s function G cannot be directly obtained
from Eq. (1). This problem is resolved by computing the
Green’s function only for the device scattering region GD via
its Hamiltonian HD, and the electronic degrees of freedom in
the two semi-infinite electrodes are integrated out, resulting
in the self-energy � terms which are added to HD. GD is
solvable since it is finite. The Green’s function GD and its
conjugate construct the Keldysh NEGF G< via the Keldysh
equation will give the nonequilibrium charge distribution in
the device [39]. With the charge distribution, Poisson’s equa-
tion for the electrostatic potential in the device scattering
region VD is solved which updates the Hamiltonian HD. This
process is self-consistently iterated to numerical convergence.
Following this standard procedure [5,39], GD is obtained by
inverting a finite matrix,

GD = [EI − HD − �]−1. (2)

Since the matrix to be inverted can be cast into block-
tridiagonal form due to the short-range-ness of the TB
potential, we apply the efficient recursive algorithm in [41]
to obtain GD. In Eq. (2), the self-energy � due to the two

195143-2

AUTOMATIC DIFFERENTIABLE NONEQUILIBRIUM … PHYSICAL REVIEW B 108, 195143 (2023)

FIG. 1. Workflow of AD-NEGF. Solid lines indicate the forward simulation flow, where loops denote self-consistent iterations. Dashed
lines indicate the gradient back-propagation flow.

electrodes of the device can be calculated using the surface
Green’s function technique [42], the details of which are sum-
marized in Appendix A 1.

An electrostatic potential VD in the device scattering region
is established due to external bias/gate voltages applied to
the device. VD is solved self-consistently via Poisson’s equa-
tion and added to the HD,

∇ · ε(r)∇[�VD(r)] = −[ρ(r; �VD) − ρ0(r)],

�VD(r)|{zL,zR} = {VL,VR}, (3)

where VL and VR are boundary conditions at electrodes zL

and zR, and �VD = VD − V0 is the difference between the real
potential and the equilibrium one. The charge density ρ on the
right-hand side is obtained by NEGF; the details are summa-
rized in Appendix A 2. In our Poisson’s equation solver, an
efficient image charge approach based on the fast multipole
method (FMM) [43,44] is used. After VD is obtained, it is
added to HD to calculate Green’s functions and the process
is repeated until self-consistency.

Once the GD − VD self-consistency reaches a small numer-
ical tolerance, we calculate the transmission coefficient T (E)
by the Landauer formula and further the I-V curves I (V) by
integrating the T (E) over the bias window. Details of the
implementation are summarized in Appendix A 3.

B. Differentiable NEGF

Our differentiable NEGF model is implemented in PyTorch
[37]. Automatic differentiation is achieved by implementing
each operation in NEGF as a tensor operation in PyTorch.
Therefore, when executing a program, PyTorch will automat-
ically track the tensor operations to build a computational
graph according to their calling orders. The corresponding
gradient can be computed by running backward through the
computational graph based on the chain rule. An illustra-
tion of the forward pass and backward pass can be found in
Fig. 1, where the solid lines indicate the forward computation

procedure and the dashed lines show the back-propagation
procedure.

Moreover, implementing NEGF also includes several nu-
merical processes that do not work straightforwardly with the
automatic differentiation framework of PyTorch. Their imple-
mentation via tensor operation is either unavailable in the Py-
Torch framework (e.g., Poisson’s equation solver) or includes
iterative processes which will make the computation graph
too large to track (e.g., self-consistent calculation of charge
density and surface Green’s function). For this purpose, we
implemented several customized gradient computation meth-
ods through the torch.autograd. Function interface, which
requires implementing both the forward and the backward
methods. The mechanism works as follows: (1) We implement
the numerical algorithm in the forward method. The operation
in the forward method is not limited to tensor operation, as
long as the input and output are PyTorch tensors. (2) The
gradient calculation of the numerical algorithm, which is often
derived analytically, needs to be implemented in the backward
function. Through this, the whole numerical computation can
cooperate with the PyTorch automatic differentiation system.
To derive the analytical gradient of the numerical steps, we ap-
ply implicit gradient techniques for self-consistent iterations
and the adjoint sensitivity method for the solvers of Poisson’s
equation [45]. In addition, an efficient gradient formula for the
image charge method [43]—accelerated by FMM—is devel-
oped to accelerate the gradient calculation. This formulation
can be regarded as a summation of point charges produced
by the gradients which can also be computed with FMM. The
detailed derivation and their implementation are illustrated in
the rest of this section.

Regarding the implicit gradient technique, it is needed
when direct automatic differentiation through the function
y = f (x) is unavailable or expensive to compute. Instances
often arise when one wishes to calculate gradients through
numerical solvers or complicated iterative algorithms. Based
on the implicit function theorem [46], if there exists such con-
strained function h(y, x) = 0 where y is taken as the converged

195143-3

ZHOUYIN, CHEN, ZHANG, WANG, AND WANG PHYSICAL REVIEW B 108, 195143 (2023)

output of function f , the gradient dy
dx is obtained as

dy

dx
= −

[
∂h(y, x)

∂y

]−1
∂h(y, x)

∂x
. (4)

We use the implicit gradient to derive the gradient of the
surface Green’s function [42] that appears in the self-energy
� calculation (see Appendix A 1). In particular, the converged
surface Green’s function gs(θ) in Appendix A 1 must satisfy
the self-consistent equation (A6). Hence h(gs, θ) = [All −
All−1gsA

†
l−1l] − g−1

s = 0, where All stands for [ESll − Hll],
and θ denotes the input variables to compute gs. Thus we
can write down the gradient of gs with respect to the input of
the recursive algorithm θ (usually including the Hamiltonian
matrix, the overlap matrix, and the energy) explicitly by

dgs

dθ
= −

[
∂h(gs, θ)

∂gs

]−1
∂h(gs, θ)

∂θ
. (5)

Another way that the implicit gradient is applied is to
compute gradients through the self-consistent Poisson’s equa-
tion under external electrostatic boundary conditions. Note
that Poisson’s equation (3) depends on charge density ρ, while
the charge density is given by the density matrix via NEGF in
Eq. (A10), also shown in the self-consistent loop of Fig. 1. To
perform back-propagation through Poisson’s equation solver,
the adjoint sensitivity method [45,47] for PDE-constrained
optimization is adopted, which is a technique for constrained
optimization in inverse problems. Here, the forward process of
the numerical PDE solver is unaltered which is often denoted
as the state equation that links the controlled parameter and
the state of the constrained system. Meanwhile, an adjoint
state equation that connects the perturbation of variables and
states is solved by using the same numerical solver. The
gradients can then be evaluated with the adjoint state, and
join in the gradient chain of backward propagation. Since the
adjoint state equation is often independent of the number of
controlled variables, the total complexity is proportional to the
forward process which makes it suitable for control problems
with scalar output and high-dimensional inputs. Recently, the
adjoint method has been applied in constructing subtle neural
networks containing dynamic physical processes including
neural ODE [22] and the deep-equilibrium model [20], which
can be considered as examples of cooperations of automatic
differentiation and adjoint methods. For our problem here,
since in TB models the electrostatic potential is established
by point charges, �ρ(r) = ∑

i �qiδ(r − ri), we developed a
method to evaluate the gradients of such situations. By lin-
earity of Poisson’s equation, the original form is decomposed
into a Laplace’s equation with the Dirichlet boundary condi-
tion and a Poisson’s equation with zero Dirichlet boundary
condition,

−∇2[�V1(r)] = 0,

�V1(r)|{zL,zR} = {VL,VR}, (6)

−∇2[�V2(r)] = 1

ε
�ρ(r),

�V2(r)|� = 0. (7)

Laplace’s equation can be easily solved. The second equa-
tion can be solved with image charges [43,48], and the second
potential can be written as

V2(ri) =
∑

j∈N, j �=i

q j

4πε

1√
t2
i j + (zi − z j)2

+
∑
j∈N

q j

4πε

∞∑
n=1

⎡
⎢⎣ 1√

t2
i j + �2

1

− 1√
t2
i j + �2

2

+ 1√
t2
i j + �2

3

− 1√
t2
i j + �2

4

⎤
⎥⎦, (8)

where t2
i j = (xi − x j)2 + (yi − y j)2, and �i stands for the dis-

tance between charges in the central region and all the induced
images in the electrodes, which equals

�1 = zi + (2n + 1)z j + 2(n + 1)(d − z j),

�2 = zi + (2n + 1)z j + 2n(d − z j),

�3 = (d − zi) + (2n + 1)(d − z j) + 2(n + 1)z j,

�4 = (d − z) + (2n + 1)(d − z j) + 2nz j,

where the integer n gives the repetitive image charges to be
summed over. Practically, the summation is computed until
achieving high accuracy, which usually requires hundreds of
sites. To speed up this calculation, we apply the FMM [49] to
reduce the computational complexity from O(N3) to O(N4/3),
where N is the number of sites. To perform backward propaga-
tion through the fast multipole layer, the gradient of the output
potential to the charges is required. By taking the derivative of
a target objective L : Cd −→ R, the derivative of L with respect
to charge q j can be expanded as the image summation form
of accumulated gradients from the last layer, which is

∂L(V)

∂q j
=

∑
i

∂L

∂Vi

∂Vi

∂q j

=
∑

i∈N,i �= j

∂L/∂Vi

4πε

1√
t2
i j + (z j − zi)2

+
∑
i∈N

∂L/∂Vi

4πε

∞∑
n=1

⎡
⎢⎣ 1√

t2
i j + �2

1

− 1√
t2
i j + �2

2

+ 1√
t2
i j + �2

3

− 1√
t2
i j + �2

4

⎤
⎥⎦. (9)

Similarly, computing gradients of this form can be accelerated
by FMM with a complexity of O(N4/3), which is significantly
faster than iteratively solving the adjoint Poisson’s equation.

In summary, AD-NEGF is realized by the following steps:
(1) The entire calculation is implemented in PyTorch so

that the explicit numerical expressions are automatically dif-
ferentiated by PyTorch.

(2) For the implicit equations such as the self-consistent
iterations for the surface Green’s function and the

195143-4

AUTOMATIC DIFFERENTIABLE NONEQUILIBRIUM … PHYSICAL REVIEW B 108, 195143 (2023)

(a) Structure of an AGNR with width 7
and length 5.

(b) Structure of a 7-4 graphene
nano-junction.

(c) Structure of a 5-2 graphene
nano-junction.

FIG. 2. Device structures used in the experiments.

nonequilibrium charge densities, as well as Poisson’s
equation, we implement the corresponding numerical solvers
in the PyTorch autograd forward functions, and implement
the gradient computation methods in the corresponding
PyTorch autograd backward functions [i.e., implicit gradient
of Eq. (4) for iterative solvers and charge gradient of Eq. (9)
for Poisson’s equation solver]. Therefore, in such cases, the
gradients through the numerical solvers are computed by our
customized algorithms instead of automatic differentiation.

(3) By implementing the above steps, the gradient of the
entire NEGF-TB process can be computed end-to-end simply
by back-propagation.

III. EXAMPLES OF AD-NEGF

We have applied AD-NEGF to two-probe transport junc-
tions made of armchair graphene nanoribbon (AGNR), shown
in Fig. 2. In all examples, the Hamiltonians are represented
by a tight-binding model, with the pz orbital for each carbon
atom. The parameters we use include hopping integrals of
Vppπ , which are −2.97, −0.073, and −0.33 (in units of eV)
for the first three nearest neighbors, and the corresponding
overlaps Oppπ as 0.073, 0.018, and 0.026. More details of the
calculation parameters can be found in Appendix D.

A. Differential transmission

Differential transmission is needed when calculating phys-
ical quantities such as the Seebeck coefficient and differential
conductance. The Seebeck coefficient, also known as ther-
moelectric power, measures the induced voltage across a
transport junction in response to a temperature gradient. Theo-
retically, the Seebeck coefficient is related to the derivative of
the transmission function T (E) versus the energy E , evaluated
at the chemical potential of the system [50]:

S = −π2k2
Bϒ

3e

∂ln[T (E)]

∂E
, (10)

where ϒ is the temperature and kB the Boltzmann constant.
The differential conductance is another very useful quantity
that is related to differential transmission. It is commonly
used to analyze nonlinear current-voltage characteristics in
tunneling spectroscopy, and devices with negative differential
conductance are used in electronic oscillators and amplifiers.
Theoretically, the differential conductance is obtained by the
gradient of electric current to applied bias voltage: G = dI

dV .
For the AGNR system of width 7 and length 5, as shown

in Fig. 2(a), the transmission function T (E) and the density
of states (DOS) are calculated by our AD-NEGF, shown in

Fig. 3(a). The results are in perfect agreement with those
obtained by the Atomic Simulation Environment (ASE) [51].
AD-NEGF is then deployed to obtain the Seebeck coefficient
by Eq. (10) and the differential conductance; results are shown
in Fig. 3(b). The steplike transmission function T (E) leads
to singular behavior in its derivative, giving rise to peaks
in the Seebeck coefficient curve. While a direct brute-force
calculation of the differentiation can be done [FD; red pluses

(a) Transmission and DOS calculated by AD-NEGF and
confirmed with ASE.

(b) Seebeck coefficient and differential conductance calculated by
AD-NEGF.

FIG. 3. Transmission quantity computation with AD-NEGF.

195143-5

ZHOUYIN, CHEN, ZHANG, WANG, AND WANG PHYSICAL REVIEW B 108, 195143 (2023)

FIG. 4. Comparison of automatic differentiation and numerical
differentiation to compute the Seebeck coefficient with different step
sizes.

in Fig. 3(b)], such calculation is highly sensitive to the fine
energy mesh. In comparison, AD-NEGF gives precise values
of the differentiation at any energy point (black curve). In
particular, for direct numerical differentiation, the trade-off
between the truncation error and the round-off error is ob-
served by selecting different energy mesh sizes from 10−2

to 10−5 eV. With a coarse mesh, peaks in the Seebeck co-
efficient may be missing or mistakenly generated due to the
truncation error (see Fig. 4). With a very fine mesh, lacking
machine precision causes significant noise which may lead
to meaningless results. In addition to accuracy, evaluating
the Seebeck coefficient with AD-NEGF is also faster than
numerical differentiation by roughly 30%, due to our partic-
ular back-propagation procedure in AD-NEGF. We compare
the end-to-end wall time of computing derivatives for one-
dimensional variables (here the Seebeck coefficient) in Table I
and high-dimensional variables (here the Hamiltonian) in Ta-
ble II. In Table I, it is shown clearly that the AD and FD

TABLE I. Wall time of computing Seebeck coefficients.

Number of atoms Time (FD) Time (AD)

18 0.17 0.12
36 1.17 0.54
54 3.95 1.78
72 16.17 6.86
90 34.70 14.03
108 68.89 45.28
126 127.52 60.11

TABLE II. Wall time of computing high-dimensional derivatives.

Number of parameters Time (FD) Time (AD)

324 5.26 0.02
1296 20.14 0.02
2916 34.71 0.04
5184 55.35 0.04
8100 106.48 0.05

implementation share a similar trend, while AD is still faster
by roughly 30%. On the other hand, in the high-dimensional
derivative computation task, the scale of the FD method is
linear with the number of the variable dimension, while the
time cost of AD still follows a constant order, as shown in
Table II.

To summarize, the correctness and effectiveness of
AD-NEGF are validated in comparison with direct brute-force
numerical differentiation. In AD-NEGF, differential transport
quantities are calculated by simply calling a single backward
step. Moreover, the process of computing derivatives is itself
differentiable, permitting the computation of higher-order
derivatives such as the nonlinear conductance coefficients
[52].

B. Transmission by design

In this section, we show that AD-NEGF can be potentially
useful to give insight to the problem of transport-by-design.
Namely, if one wishes to obtain a desired transport property,
can one design a Hamiltonian that does produce it? Such an
inverse problem is very difficult, if not impossible, to solve;
here we show AD-NEGF may lead to a possible route. In gen-
eral, the inverse problem is about inferring input parameters
reversely from the objective. One approach is using black-
box optimization methods to sample a large number of input
combinations, but the computational cost grows exponentially
with the number of parameters, making it intractable for this
task. On the other hand, based on AD-NEGF, the gradient
of the transport property with respect to the Hamiltonian el-
ements can be computed by simply calling the forward and
backward computation each for one time, the computational
complexity of which is irrelevant of the number of parameters
to be determined in the Hamiltonian. Such characteristics of
AD-NEGF allow for conducting gradient-based optimization
on the Hamiltonian elements to fit the desired properties.
Through such paradigms, AD-NEGF holds the potential to
solve transport-by-design problems in material science.

Let us consider a 7-4 graphene nanojunction, consisting
of 7 graphene rings on the left and 4 rings on the right. The
transmission coefficient T74(E) of this system is calculated by
NEGF-TB, shown as the blue dash-dotted curve in the lower
panel of Fig. 5, which serves as the desired result. In this toy
exercise of the inverse problem, we wish to find a Hamilto-
nian that will produce this T74(E). To this end, we may start
from any physically sound Hamiltonian as an initial guess,
for example, the Hamiltonian of a 5-2 graphene nanojunction,
H52, which produces a totally different transmission T52(E) as
depicted by the green dashed curve in Fig. 5. With the T74(E)

195143-6

AUTOMATIC DIFFERENTIABLE NONEQUILIBRIUM … PHYSICAL REVIEW B 108, 195143 (2023)

FIG. 5. The fitting loss and the fitted transmission curve of a 5-2
graphene nanojunction.

as the goal and using the gradient-based optimization in AD-
NEGF, it is possible to automatically vary the parameters in
H52 such that it generates the desired result T74. The fitting
parameters are the elements of H52 including the device, leads,
and the corresponding couplings. For this exercise, the di-
mension of the optimizing variables is at the level of 104.
The transmission curve, as shown in Fig. 5, consists of 2000
energy points sampled from (−5 eV, 5 eV). The loss function
is defined as the l2 norm of the target and fitted transmission
at given energy points, which is loss = ||T74(E) − T̂52(E)||.
Since directly computing the gradients of all 2000 points is in-
efficient, we apply the stochastic gradient descent algorithm to
conduct minibatch optimization which has shown supremacy
of efficiency and performance in high-dimensional optimiza-
tion problems. The fitting parameters are optimized with the
Adam optimizer [53] built in PyTorch, making the procedure
highly similar to training a neural network.

The results are displayed in Fig. 5. The upper panel shows
the loss function versus the optimization iteration, where the
loss is reduced to a considerably low level after a few hundred
iterations, which means the converged H52 parameters of the
5-2 nanojunction could approximately produce T74(E) of the
7-4 nanojunction. Indeed, the black solid curve in the lower
panel, obtained by the converged H52, is akin to a smoothed
T74 of the 7-4 junction. This is consistent with the intuition
since a graphene junction of 5-2 has fewer degrees of freedom
than that of a 7-4 nano-junction. We mention in passing that
we have also tried traditional black-box optimization meth-
ods including Bayesian optimization, genetic algorithms, and
gradient-based optimization with numerical differentiation,
but none works for this problem because of the curse of
dimensionality.

Finally, we wish to mention that solving the problem of
transport-by-design can be potentially very useful in appli-
cations where a particular transport property is desired. As
we have shown here, AD-NEGF can inversely determine a
Hamiltonian that would approximately generate the desired

property. Since the Hamiltonian matrix elements are made
of atomic potentials, it would provide tremendous intuitions
on the material and external manipulation (i.e., stress, doping,
impurity, external fields, etc.) to produce the desired transport.

C. On-site doping

Modern device engineering is capable of manipulating ma-
terial properties at the atomic level. By stress and impurity
doping, etc., electronic structure and material parameters can
be controlled and modified for better device performance.
Here we further explore the possibility to solve practical in-
verse problems with AD-NEGF through an end-to-end doping
optimization. The doped structure is illustrated in Fig. 6,
where some of the carbon atoms (in gray) are replaced with
the impurities (in Navajo white). To this end, as the desired
goal we wish to reduce the average transmission of the AGNR
in a specified energy range of (−1 eV, 1 eV), by doping
impurity atoms into the scattering region. Doping can be
modeled as an effective change in the site and the hopping
parameters in the TB Hamiltonian, i.e., the diagonal and off-
diagonal elements of the Hamiltonian matrix. In contrast to
the inverse problem presented in the last section, here we are
only allowed to vary the SKTB parameters associated with
the dopant atoms, leaving parameters of the host material not
touched. The parameters for optimization include orbital en-
ergy and two-center integrals. We also use the pz orbital as the
TB basis for the impurity atoms. With three nearest-neighbor
hopping and overlap integrals, the total number of optimiza-
tion variables is 13 for one kind of impurity atom. The loss
function of the optimization is defined as loss = ||T (E)|| for
E ∈ (−1 eV, 1 eV).

For comparison, we also apply conventional optimization
methods of genetic algorithm and Bayesian optimization. The
results are displayed in Fig. 7. In the loss diagram in the left
panels, the gradient-based method in AD-NEGF converges
significantly faster and much better than the conventional
approaches in terms of computational time as well as the total
iteration steps. We also found that the conventional optimiza-
tions are sensitive to the preset hyperparameters, and were not
able to reach the loss level of AD-NEGF (see left panels of
Fig. 7). Corresponding to the loss curves, the AD-NEGF has
essentially reached our design goal of reducing transmission
in the energy range of (−1 eV, 1 eV), shown in the right
panels of Fig. 7 (blue curve). In comparison, the conventional
optimization was not able to reach the design goal (green and
red curves).

These results validate the effectiveness of the AD-NEGF
method in conducting practical atomic-level inverse design
to optimize transport properties by cooperating with material
models.

IV. SUMMARY

Motivated by recent advances in AI for quantum trans-
port and differentiable programming, we have developed an
automatic differentiation capability into the atomistic NEGF
quantum transport simulator. The end-to-end automatic
differentiable NEGF simulator, AD-NEGF, calculates gradi-
ent information by AD while guaranteeing the correctness

195143-7

ZHOUYIN, CHEN, ZHANG, WANG, AND WANG PHYSICAL REVIEW B 108, 195143 (2023)

(a) Loss against running time and iteration steps respectively. (b) Original and optimized transmission curves.

FIG. 6. Comparison between AD-NEGF and conventional black-box optimization methods in the doping optimization task.

of forward simulation. The gradient information enables ac-
curate predictions of transport properties that depend on
the derivatives of the transmission coefficient and/or charge
current, such as the Seebeck coefficients in the thermoelec-
tric phenomenon and differential conductance in nonlinear
carrier transport. For ballistic transport in confined nanostruc-
tures, transmission functions often vary rapidly as a function
of carrier energy due to quantum interference, causing its
derivative to be singular and thus hard to accurately deter-
mine. AD-NEGF solves such problems very accurately as we
demonstrated in this work. In the experimental technique of
inelastic tunneling spectroscopy (IETS) [54], the opening of
phonon-assisted transmission channels leads to slight changes
of the measured current at a certain bias voltage, and the
signal is picked up by measuring the differential conductance.
In NEGF simulations of IETS, AD-NEGF can be used to
directly compare with the measured signal. AD-NEGF can
also be very useful for accurate and efficient simulations of
other transport coefficients related to nonlinear expansions of
current and/or charge versus external voltages.

FIG. 7. The structure of the doped AGNR system, where the
atoms depicted in Navajo white are replaced with impurities.

More interestingly, AD-NEGF can be applied to the inverse
design problem; namely, with a desired transport property,
AD-NEGF inversely finds a possible device Hamiltonian that
would produce such a property. While property-by-design
is a dream goal of materials and device physics, it is an
extremely difficult problem to solve. In particular, due to
the high dimensionality of Hamiltonian matrices in NEGF
simulations, conventional optimization techniques are essen-
tially powerless for such inverse problems. To this end, we
showed that AD-NEGF with gradient-based optimization has
great potential. Here we showed that starting from a prede-
fined transport property (transmission function), AD-NEGF
inversely determines a possible Hamiltonian that would ap-
proximately produce it. Though the examples are relatively
simple, the idea is very clear. In real practical applications,
once the model Hamiltonian is inversely determined, one may
investigate its on-site and hopping parameters which would
generate deep insights into how to realize such a model with
real materials.

Our code is available on GitHub [55] for cross-checking.
The code will be maintained as an open-source repository in
the future.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Hong Guo for useful
discussions on quantum transport theory and for his critical
reading of the manuscript before submission. This work is
supported in part by the Natural Science Foundation of China
(Grant No. 62276188). L.W. is supported by the Strategic Pri-
ority Research Program of the Chinese Academy of Sciences
under Grant No. XDB30000000 and the National Natural
Science Foundation of China under Grant No. T2121001.

195143-8

AUTOMATIC DIFFERENTIABLE NONEQUILIBRIUM … PHYSICAL REVIEW B 108, 195143 (2023)

0 1000 2000 3000 4000 5000 6000 7000 8000
(# Atoms)2

104

105

106

107

St
or

ag
e(

bi
t)

AD w/o imp
AD (ours)

(a) Memory consumption

0 1000 2000 3000 4000 5000 6000 7000 8000
(# Atoms)2

0

2

4

6

8

10

12

14

W
al

l T
im

e(
s)

FD
AD w/o imp
AD (ours)

(b) Wall time

FIG. 8. Comparison of memory and time costs for the surface Green’s function.

APPENDIX A: ADDITIONAL DETAILS
ON THE NEGF METHOD

1. Self-energy

The self-energy of electrodes is computed from the sur-
face Green’s function gs of the electrode layer coupled
with devices. Here we assume that the system is made up of a
device and two semi-infinite contacts on the side. Equation (1)
can be expanded in the following form:⎡

⎢⎢⎣
AL ALD 0

ADL AD ADR

0 ARD AR

⎤
⎥⎥⎦

⎡
⎢⎢⎣

GL GLD GLR

GDL GD GDR

GRL GRD GR

⎤
⎥⎥⎦ = I, (A1)

where A = [EI − H], and the subscripts are used to distin-
guish the matrix elements corresponding to the left lead (L),
the device (D), the right lead (R), and their interactions.
Thanks to its block-tridiagonal form, the device Green’s func-
tion GD satisfies[

AD − ADLA−1
L ALD − ADRA−1

R ARD
]
GD = I. (A2)

Since AD = [EI − HD], compared with Eq. (2), we have

�L = ADLA−1
L ALD, (A3)

�R = ADRA−1
R ARD, (A4)

� = �L + �R. (A5)

To avoid using the full leads Hamiltonian, it is assumed
that only the neighboring layers have interactions with each
other. We denote the left lead layer connected to the device
by l . Then the left self-energy can be simplified as �L =
ADl A

−1
l AlD. The coupling matrix AlD is given as input of

NEGF. What remains unclear is A−1
l , the bottom-right block

of A−1
L . This is known as the surface Green’s function, denoted

as gs. By utilizing the ideal lead assumption that removing one
layer of the lead will not change gs, we obtain a self-consistent
form as

g−1
s = [Al − Al,l−1gsA

†
l−1,l], (A6)

where Al,l−1 is the block in [EI − H] for the coupling between
layer l and layer l − 1. We implemented the Lopez-Sancho

algorithm [42], as illustrated in Algorithm, to accelerate the
convergence speed. We have also implemented a modern
method based on the generalized eigenvalue problem [56] as
an alternative.

2. Computation of the self-consistent electrostatic potential

Denote the charge densities in the equilibrium and
nonequilibrium states as ρ0 and ρ, and the potential fields
from the original neutral and redistributed charges as V0 and
V . The equilibrium and non-equilibrium Hamiltonian can be
expressed as H0 = T + V0, Hneq = T + V , where T is the
kinetic energy. Poisson’s equation relates potentials to the
corresponding charge densities:

∇ · ε(r)∇V (r) = −ρ(r),

∇ · ε(r)∇V0(r) = −ρ0(r). (A7)

Therefore we have ∇ · ε(r)∇[�V (r)] = −[ρ(r) − ρ0(r)],
where �V = V − V0 is used to correct the Hamiltonian by
Hneq = H0 + �V . The updated Hneq will again be used to
update �V . Hence a self-consistent iteration is constructed:

∇ · ε(r)∇[�V (r)] = −[ρ(r; �V) − ρ0(r)],

�V (r)|{zL,zR} = {VL,VR}. (A8)

Charge densities are necessary inputs for the above equa-
tion. Denote potentials in the left and right electrodes as
ul and ur (assume ul < ur); then the charge density ρ(r) =
− i

2π

∫ +∞
−∞ dE G(E), which can be decomposed into equilib-

rium and nonequilibrium terms:

ρ(r) = ρeq(r) + ρneq(r) (A9)

= 1

π
Im

[∫ ul

−∞
dE GD(E)

]
+ 1

2π

∫ ur

ul

dE G<
D (E). (A10)

The first integration up to infinity can be computed effi-
ciently using contour integration with the residue theorem. It
is achieved by expanding the Fermi-Dirac function [57,58].
On the other hand, the nonequilibrium charge density ρneq is
computed directly by numerical integration. The density of
neutral charges ρ0 can be computed by setting ul = ur = 0.

195143-9

ZHOUYIN, CHEN, ZHANG, WANG, AND WANG PHYSICAL REVIEW B 108, 195143 (2023)

101 102

Atoms

10−1

100

101

102

W
al

l T
im

e(
s)

k=0.8037

k=1.9708

AD-NEGF (ours)
conventional

FIG. 9. Gradient computation cost of Poisson’s equation.

3. Expressions of transport properties

With the NEGF theory, electronic transport properties can
be derived, such as the transmission probability [T (E)], the
density of states (DOS), the electronic current (I), and the
equilibrium and nonequilibrium electronic densities (ρeq and
ρneq). Here we list some of the expressions:

T (E) = Trace[�L(E)GD(E)�R(E)G†
D(E)], (A11)

DOS(E) = − 1

π
Trace{Im[GD(E)]}, (A12)

I = 2e

h̄

∫ +∞

−∞

dE

2π
T (E)[f (E − ul) − f (E − ur)], (A13)

ρ(r) = 1

π
Im

[∫ ul

−∞
dE GD(E)

]
+ 1

2π

∫ ur

ul

dE G<
D (E).

(A14)

For Eq. (A13), the integral range of the current is decided by
the subtraction of the Fermi-Dirac function, which is a little
wider than (ul , ur).

APPENDIX B: COMPUTATIONAL COST ANALYSIS
OF CUSTOMIZED GRADIENT COMPUTATION

In this Appendix, we analyze the space and time cost
of the customized gradient computation method adopted in

0 1000 2000 3000 4000 5000 6000 7000 8000
Parameters

0

20

40

60

80

100

W
al

l T
im

e(
s)

FD
AD (ours)

FIG. 10. Wall time of Hamiltonian gradient computation against
the dimension of the input variable.

FIG. 11. Computation of high-order derivatives via AD-NEGF
and FD.

AD-NEGF, including the implicit gradient method for com-
puting gradients through the self-consistent iteration, and the
image charge method used in solving Poisson’s equation. For
the implicit gradient method, we compared the space and
time required to perform back-propagation through the sur-
face Green’s function algorithm with and without adopting
the implicit gradient method. We also illustrate the wall time
of computing the gradient of Poisson’s equation. We consider
a nanoribbon as the test system, where we fix the width as
7 atoms, and vary the length of the system size (number of
atoms).

1. Implicit gradient method for the surface Green’s function

The computational analysis of the implicit gradient method
is provided in Fig. 8. The computational time and storage here
are collected when computing the Seebeck coefficient, which
is a 1D derivative as explained in the main text. From Fig. 8(a)
we can clearly observe that the direct back-propagation costs
10 times the memory of our implementation. This aligns with
our proposal that tracking and expanding the computation
graph of the recursive algorithm is very memory-demanding.
In Fig. 8(b), we also demonstrate the effectiveness of the
implicit gradient method in accelerating the gradient compu-
tation, which is faster than the result of FD and AD without
using the implicit gradient method.

2. Gradient of Poisson’s equation solution

In Fig. 9, we compare the computational time cost for
Poisson’s equation. We can see that when compared with
the conventional point charge method, our implementation is
much faster. The computational complexity of our algorithm
is sublinear, while for the conventional method it is roughly
quadratic. This matches with the theoretical analysis that the
FMM method reduces the computational complexity from
O(N3) to O(N4/3), where the extra speedup is due to the
built-in parallelization from PyTorch tensor operations.

195143-10

AUTOMATIC DIFFERENTIABLE NONEQUILIBRIUM … PHYSICAL REVIEW B 108, 195143 (2023)

TABLE III. The hyperparameters of the genetic algorithm.

Parameter Value

max_num_iteration None
population_size 20
mutation_probability 0.1
elit_ratio 0.01
crossover_probability 0.5
parents_portion 0.3
crossover_type uniform
max_iteration_without_improv None

3. Scaling of end-to-end Hamiltonian gradient computation

We analyze the time cost of computing derivatives using
AD-NEGF and the conventional FD method, as displayed in
Fig. 10. More specifically speaking, we compute the deriva-
tive of the transmission with respect to the input Hamiltonian
elementwise. The figure clearly shows the advantage of AD
to compute derivatives with high-dimensional input variables.
On the other hand, the computation time of the FD method,
as expected, scales linearly with the input dimension, which
costs far more than the AD method.

APPENDIX C: DEMONSTRATION OF COMPUTING
HIGH-ORDER DERIVATIVES

AD-NEGF can naturally generalize to computing high-
order derivatives by directly applying the AD on the custom
first-order derivative. In Fig. 11, we show an example of com-
puting derivatives of the transmission coefficient with respect
to energy, with first, second, and third order. The result given

TABLE IV. The hyperparameters of the Bayesian optimization
algorithm. ucb: Upper confidence bound.

Parameter Value

random_state 3
verbose 2
kind ucb
kappa 2.5
xi 0.0

by AD-NEGF is validated by comparing with the numerical
finite difference method.

APPENDIX D: ADDITIONAL DETAILS ON
COMPUTATIONAL SETUP

The simulations are run on an Intel Xeon CPU E5-2650
version 4 at 2.20 GHz CPU, and an NVIDIA Tesla P40 GPU.
We implemented our method in PyTorch 1.9.1. We validated
the correctness of our simulation results by comparing with
ASE of version 3.22.0.

In the simulations, we set the learning rate of the Adam
optimizer as 0.001, and the batch size as 64. Bayesian opti-
mization is implemented based on Ref. [59], and the genetic
algorithm is implemented based on Ref. [60]. The bounds of
the optimization variables for the black-box optimizers are
(θ0 − 0.3, θ0 + 0.3), where θ0 is the initial value, namely the
original 5-2 nanojunction TB Hamiltonian for the transmis-
sion curve fitting experiment, and undoped SKTB parameters
for the device doping optimization experiment. The hyperpa-
rameters of the genetic algorithm are listed in Table III, and
the hyperparameters of the Bayesian optimization algorithm
are listed in Table IV.

[1] Y. V. Nazarov and Y. M. Blanter, Quantum Transport: Introduc-
tion to Nanoscience (Cambridge University Press, Cambridge,
UK, 2009).

[2] D. Ryndyk, Theory of Quantum Transport at Nanoscale: An
Introduction (Springer, Berlin, 2015).

[3] M. Wimmer, Quantum transport in nanostructures: From
computational concepts to spintronics in graphene and mag-
netic tunnel junctions, Ph.D. thesis, Universität Regensburg,
2009.

[4] C. Jacoboni, Theory of Electron Transport in Semiconductors:
A Pathway from Elementary Physics to Nonequilibrium Green
Functions (Springer Science & Business Media, New York,
2010).

[5] J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum
transport properties of molecular electronic devices, Phys. Rev.
B 63, 245407 (2001).

[6] C. Medina-Bailon, T. Dutta, A. Rezaei, D. Nagy, F. Adamu-
Lema, V. P. Georgiev, and A. Asenov, Simulation and modeling
of novel electronic device architectures with NESS (Nano-
Electronic Simulation Software): A modular nano TCAD
simulation framework, Micromachines 12, 680 (2021).

[7] L. Silvestri, M. Palsgaard, R. Rhyner, M. Frey, J. Wellendorff,
S. Smidstrup, R. Gull, and K. El Sayed, Hierarchical modeling

for TCAD simulation of short-channel 2D material-based FETs,
Solid-State Electron. 200, 108533 (2023).

[8] S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J.
Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov,
U. G. Vej-Hansen et al., QuantumATK: An integrated plat-
form of electronic and atomic-scale modelling tools, J. Phys.:
Condens. Matter 32, 015901 (2020).

[9] R. Kim and M. S. Lundstrom, Computational study of the See-
beck coefficient of one-dimensional composite nano-structures,
J. Appl. Phys. 110, 034511 (2011).

[10] L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko,
A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S.
Novoselov, and L. Eaves, Resonant tunnelling and negative
differential conductance in graphene transistors, Nat. Commun.
4, 1794 (2013).

[11] R. J. Prentki, Theory and simulation of novel low-power nan-
otransistors, Ph.D. thesis, McGill University, 2021.

[12] M. Bürkle, U. Perera, F. Gimbert, H. Nakamura, M. Kawata,
and Y. Asai, Deep-learning approach to first-principles transport
simulations, Phys. Rev. Lett. 126, 177701 (2021).

[13] K. Li, J. Lu, and F. Zhai, Neural networks for modeling electron
transport properties of mesoscopic systems, Phys. Rev. B 102,
064205 (2020).

195143-11

https://doi.org/10.1103/PhysRevB.63.245407
https://doi.org/10.3390/mi12060680
https://doi.org/10.1016/j.sse.2022.108533
https://doi.org/10.1088/1361-648X/ab4007
https://doi.org/10.1063/1.3619855
https://doi.org/10.1038/ncomms2817
https://doi.org/10.1103/PhysRevLett.126.177701
https://doi.org/10.1103/PhysRevB.102.064205

ZHOUYIN, CHEN, ZHANG, WANG, AND WANG PHYSICAL REVIEW B 108, 195143 (2023)

[14] A. K. Pimachev and S. Neogi, First-principles prediction of
electronic transport in fabricated semiconductor heterostruc-
tures via physics-aware machine learning, npj Comput. Mater.
7, 93 (2021).

[15] A. Lopez-Bezanilla and O. A. von Lilienfeld, Modeling elec-
tronic quantum transport with machine learning, Phys. Rev. B
89, 235411 (2014).

[16] T. Župančić, I. Stresec, and M. Poljak, Predicting the transport
properties of silicene nanoribbons using a neural network, in
Proceedings of the 43rd International Convention on Infor-
mation, Communication and Electronic Technology (MIPRO)
(IEEE, Piscataway, NJ, 2020), pp. 44–48.

[17] S.-C. Han, J. Choi, and S.-M. Hong, Acceleration of three-
dimensional device simulation with the 3D convolutional neural
network, in Proceedings of the 2021 International Conference
on Simulation of Semiconductor Processes and Devices (SIS-
PAD) (IEEE, Piscataway, NJ, 2021), pp. 52–55.

[18] S. Souma and M. Ogawa, Acceleration of nonequilibrium
Green’s function simulation for nanoscale FETs by applying
convolutional neural network model, IEICE Electron. Exp. 17,
20190739 (2020).

[19] S. Souma and M. Ogawa, Neural network model for imple-
mentation of electron-phonon scattering in nanoscale device
simulations based on NEGF method, in Proceedings of the
2021 International Conference on Simulation of Semiconductor
Processes and Devices (SISPAD) (IEEE, Piscataway, NJ, 2021),
pp. 56–59.

[20] S. Bai, J. Z. Kolter, and V. Koltun, Deep equilibrium models,
in Advances in Neural Information Processing Systems, Vol. 32
(NeurIPS, 2019).

[21] B. Amos and J. Z. Kolter, OptNet: Differentiable optimization
as a layer in neural networks, in International Conference on
Machine Learning (PMLR, 2017), pp. 136–145.

[22] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K.
Duvenaud, Neural ordinary differential equations, in Advances
in Neural Information Processing Systems, Vol. 31 (NeurIPS,
2018).

[23] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-
Kelley, and F. Durand, DiffTaichi: Differentiable programming
for physical simulation, arXiv:1910.00935.

[24] M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba,
V. B. Shah, and W. Tebbutt, A differentiable programming
system to bridge machine learning and scientific computing,
arXiv:1907.07587.

[25] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum,
and J. Z. Kolter, End-to-end differentiable physics for learning
and control, in Advances in Neural Information Processing
Systems, Vol. 31 (NeurIPS, 2018), pp. 71–78.

[26] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch,
and O. Bachem, Brax: A differentiable physics engine for large
scale rigid body simulation, arXiv:2106.13281.

[27] P. Holl, N. Thuerey, and V. Koltun, Learning to control PDEs
with differentiable physics, in International Conference on
Learning Representations (PMLR, 2019).

[28] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner,
and S. Hoyer, Machine learning: Accelerated computational
fluid dynamics, Proc. Natl. Acad. Sci. USA 118, e2101784118
(2021).

[29] C. Schenck and D. Fox, SPNets: Differentiable fluid dynamics
for deep neural networks, in Conference on Robot Learning
(PMLR, 2018), pp. 317–335.

[30] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, Differentiable
Monte Carlo ray tracing through edge sampling, ACM Trans.
Graph. 37, 1 (2018).

[31] J. B. Rigo and A. K. Mitchell, Automatic differentiable numer-
ical renormalization group, Phys. Rev. Res. 4, 013227 (2022).

[32] M. F. Kasim and S. M. Vinko, Learning the exchange-
correlation functional from nature with fully differentiable
density functional theory, Phys. Rev. Lett. 127, 126403 (2021).

[33] L. Li, S. Hoyer, R. Pederson, R. Sun, E. D. Cubuk, P. Riley, and
K. Burke, Kohn-Sham equations as regularizer: Building prior
knowledge into machine-learned physics, Phys. Rev. Lett. 126,
036401 (2021).

[34] T. Tamayo-Mendoza, C. Kreisbeck, R. Lindh, and A. Aspuru-
Guzik, Automatic differentiation in quantum chemistry with
applications to fully variational Hartree-Fock, ACS Cent. Sci.
4, 559 (2018).

[35] F. Pavošević and S. Hammes-Schiffer, Automatic differentia-
tion for coupled cluster methods, arXiv:2011.11690.

[36] S. S. Schoenholz and E. D. Cubuk, JAX, M.D.: A framework
for differentiable physics, in Advances in Neural Information
Processing Systems, Vol. 33 (NeurIPS, 2020).

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai et al., PyTorch:
An imperative style, high-performance deep learning library, in
Advances in Neural Information Processing Systems, Vol. 32
(NeurIPS, 2019).

[38] M. V. Klymenko, J. A. Vaitkus, J. S. Smith, and J. H.
Cole, NanoNET: An extendable Python framework for semi-
empirical tight-binding models, Comput. Phys. Commun. 259,
107676 (2021).

[39] J. Maassen, M. Harb, V. Michaud-Rioux, Y. Zhu, and H. Guo,
Quantum transport modeling from first principles, Proc. IEEE
101, 518 (2012).

[40] J. C. Slater and G. F. Koster, Simplified LCAO method for the
periodic potential problem, Phys. Rev. 94, 1498 (1954).

[41] M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, Model-
ing of nanoscale devices, Proc. IEEE 96, 1511 (2008).

[42] M. P. Lopez Sancho, J. M. Lopez Sancho, J. M. L. Sancho, and
J. Rubio, Highly convergent schemes for the calculation of bulk
and surface Green functions, J. Phys. F 15, 851 (1985).

[43] A. Svizhenko and M. P. Anantram, Effect of scattering and
contacts on current and electrostatics in carbon nanotubes,
Phys. Rev. B 72, 085430 (2005).

[44] M. Zahn, Point charge between two parallel grounded planes,
Am. J. Phys. 44, 1132 (1976).

[45] L. S. Pontryagin, Mathematical Theory of Optimal Processes
(CRC Press, Boca Raton, FL, 1987).

[46] S. G. Krantz and H. R. Parks, The Implicit Function Theorem:
History, Theory, and Applications (Springer Science & Business
Media, New York, 2002).

[47] R.-E. Plessix, A review of the adjoint-state method for comput-
ing the gradient of a functional with geophysical applications,
Geophys. J. Int. 167, 495 (2006).

195143-12

https://doi.org/10.1038/s41524-021-00562-0
https://doi.org/10.1103/PhysRevB.89.235411
https://doi.org/10.1587/elex.17.20190739
http://arxiv.org/abs/arXiv:1910.00935
http://arxiv.org/abs/arXiv:1907.07587
http://arxiv.org/abs/arXiv:2106.13281
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1103/PhysRevResearch.4.013227
https://doi.org/10.1103/PhysRevLett.127.126403
https://doi.org/10.1103/PhysRevLett.126.036401
https://doi.org/10.1021/acscentsci.7b00586
http://arxiv.org/abs/arXiv:2011.11690
https://doi.org/10.1016/j.cpc.2020.107676
https://doi.org/10.1109/JPROC.2012.2197810
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1109/JPROC.2008.927355
https://doi.org/10.1088/0305-4608/15/4/009
https://doi.org/10.1103/PhysRevB.72.085430
https://doi.org/10.1119/1.10207
https://doi.org/10.1111/j.1365-246X.2006.02978.x

AUTOMATIC DIFFERENTIABLE NONEQUILIBRIUM … PHYSICAL REVIEW B 108, 195143 (2023)

[48] M. A. Harb, Scattering effects in atomistic quantum transport
simulations, Ph.D. thesis, McGill University, 2019.

[49] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou,
The fast multipole method (FMM) for electromagnetic scatter-
ing problems, IEEE Trans. Antennas Propag. 40, 634 (1992).

[50] P. Reddy, S.-Y. Jang, R. A. Segalman, and Arun Majumdar,
Thermoelectricity in molecular junctions, Science 315, 1568
(2007).

[51] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R.
Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C.
Hargus et al., The atomic simulation environment: A Python
library for working with atoms, J. Phys.: Condens. Matter 29,
273002 (2017).

[52] Z. S. Ma, J. Wang, and H. Guo, Weakly nonlinear ac response:
Theory and application, Phys. Rev. B 59, 7575 (1999).

[53] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-
mization, arXiv:1412.6980.

[54] M. A. Reed, Inelastic electron tunneling spectroscopy,
Mater. Today 11, 46 (2008).

[55] See https://github.com/floatingCatty/ADNEGF.
[56] J.-S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport

in nanostructures, Eur. Phys. J. B 62, 381 (2008).
[57] D. A. Areshkin and B. K. Nikolić, Electron density and trans-

port in top-gated graphene nanoribbon devices: First-principles
Green function algorithms for systems containing a large num-
ber of atoms, Phys. Rev. B 81, 155450 (2010).

[58] T. Ozaki, Continued fraction representation of the Fermi-
Dirac function for large-scale electronic structure calculations,
Phys. Rev. B 75, 035123 (2007).

[59] F. Nogueira, Bayesian optimization: Open source constrained
global optimization tool for Python, https://github.com/fmfn/
BayesianOptimization.

[60] R. M. Solgi, Genetic algorithm package for Python,
https://github.com/rmsolgi/geneticalgorithm.

195143-13

https://doi.org/10.1109/8.144597
https://doi.org/10.1126/science.1137149
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1103/PhysRevB.59.7575
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1016/S1369-7021(08)70238-4
https://github.com/floatingCatty/ADNEGF
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1103/PhysRevB.81.155450
https://doi.org/10.1103/PhysRevB.75.035123
https://github.com/fmfn/BayesianOptimization
https://github.com/rmsolgi/geneticalgorithm

