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Geometric and fluctuational divergences in the linear response of coherently driven
microcavity polaritons and their relation to superfluidity
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We consider the possibility of superfluid behavior in a coherently driven, dissipative microcavity polariton
system in gapless spectrum regimes. Previous work demonstrated the absence of such behavior for gapped
spectra via a linear response analysis. The system can, however, be tuned to possess a gapless spectrum in
special cases, leaving open the possibility of superfluid behavior. Here we show the absence of superfluidity
in all regimes; we find a divergent linear response in the system’s gapless regimes, which may be linked
to phase-transition behavior. This indicates that the gapless spectrum is related to phase instability and not
superfluid-enabling massless modes.
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I. INTRODUCTION

Superfluidity is a classic phenomenon in quantum mechan-
ics. First discovered in 1937 in liquid helium-4 [1,2], it is
characterized by a series of unusual hydrodynamic properties
such as vanishingly small viscosity, the inability to rotate ex-
cept in quantized vortices, and the flow of metastable currents
that persist for astronomical timescales. It has been widely
studied and found to occur in a variety of other systems,
including helium-3, ultra-cold bosonic atoms, and charged
Cooper pairs in superconductors [3,4].

While historical research on superfluidity has concentrated
on examples in thermal equilibrium, in recent years driven-
dissipative systems, which never thermalize due to constant
decay and must be pumped to maintain a steady state, have be-
gun to generate substantial interest. Examples of such systems
are numerous, including Bose-Einstein condensates (BEC) of
photons [5,6], cold atoms coupled to photonic modes in opti-
cal cavities [7], and cavity arrays [8–10]. Of particular note are
microcavity polaritons [11–13], which are two-dimensional
bosonic quasiparticles made of photons trapped in a cavity
strongly coupled to excitons in a quantum well. While we
shall focus here on their more fundamental properties, in
recent years microcavity polaritons have found many practi-
cal applications [14–16] including spintronics [17–19], lasing
[20–22], and optical circuits [23,24].

Polariton experiments have observed a number of effects
usually associated with superfluidity, such as the suppression
of scattering for flow past a defect [25–27], metastable persis-
tent currents [28], and quantized vortices [29]. The question
of how superfluidity may occur in these out-of-equilibrium
systems has proved contentious [29–35], however, and it is
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unclear whether all the effects seen in equilibrium will con-
tinue to apply [11,36,37]. Of particular importance when
classifying these systems is that the classic notion of super-
fluidity groups together multiple behaviors into a “complex of
phenomena” [38]. While flow without viscosity is perhaps the
most famous of these, irrotationality of superflow is crucial for
characterizing a superfluid state. Unlike the former property,
which is only approximately true at finite temperature and
provides no clear distinction between true superfluids and
generic low viscosity systems, the definition of a superfluid
as a macroscopic quantum state in which the bulk does not
rotate provides a precise description. This property is encoded
in the response of a system to longitudinal and transverse
perturbations. Given that superfluids exhibit the former but
not the latter, if there exists a difference between the two
the system in question must contain a superfluid component.
Indeed, this has become a standard definition of superfluidity
[31,39–44].

The properties of microcavity polaritons are heavily depen-
dent on how the system is pumped, that is, on how photons
are injected into the cavity. When this occurs incoherently,
meaning photons are injected far off-resonance, then relax-
ation processes involving excitons and photons will under the
right conditions lead to the “condensation” of polaritons into a
low-energy state [45]. This process involves the spontaneous
breaking of the U (1) phase symmetry of the macroscopic
wave function, leading to a Goldstone mode in the excitation
spectrum of the system [46,47]. In a theoretical study of the
longitudinal and transverse response functions of an incoher-
ently driven system using a Keldysh path integral technique
[31], it was found that the gapless excitation spectrum allowed
superfluidity to survive despite the driven-dissipative nature of
the system.

Alternatively, polaritons may be pumped coherently, mean-
ing they are injected at a specific energy and momentum,
and can form a macroscopic state with a phase fixed to that
of the external pump [48]. Because of this phase fixing, the
excitation spectrum in such a system is typically gapped.

2469-9950/2023/108(21)/214513(28) 214513-1 Published by the American Physical Society

https://orcid.org/0000-0002-7132-3064
https://orcid.org/0000-0001-5054-1110
https://orcid.org/0000-0002-2785-7157
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.214513&domain=pdf&date_stamp=2023-12-11
https://doi.org/10.1103/PhysRevB.108.214513
https://creativecommons.org/licenses/by/4.0/
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Despite this, experiments have observed that coherently
pumped polaritons can flow past a defect with vanishing
dissipation; this, together with theoretical analysis specula-
tively applying the Landau criterion to the real part of the
polarition spectrum [49,50], has been claimed as evidence of
superfluidity [25]. The Landau criterion, however, is appli-
cable only to conservative systems with purely real energy
spectra. By applying the Keldysh path integral technique to
directly calculate the longitudinal and transverse responses
of coherently pumped polaritons, two of the present authors
found these responses to be equal in all regimes with a gapped
excitation spectrum, indicating an absence of superfluidity
and underscoring the inadequacy of the Landau criterion for
driven-dissipative systems [51].

For special choices of system parameters, however, co-
herently pumped polaritons may be induced to possess a
gapless spectrum, suggesting the possibility of superfluid
behavior in these regimes. In this paper, we derive the mean-
field responses at such points in parameter space, showing
that while an anisotropic (nonzero momentum) pump yields
a divergent linear response, an isotropic (zero momentum)
pump leads to a pure superfluid one. However, we further
demonstrate that, when perturbative corrections are included,
coherently driven polaritons do not exhibit superfluidity in
any regime. By analyzing the system from the point of view
of catastrophe theory, we show that the anisotropic mean-
field divergence of the response is physical and related to
bifurcations in the system order parameter. Such bifurcations
are also responsible for the gapless mode, which is shown
to be due to the appearance of a “non-Morse critical point”
of the action. Finally, performing perturbative calculations to
O(h̄2), we demonstrate that higher-order terms of the per-
turbation expansion in both isotropic and anisotropic cases
diverge in the gapless regime due to these points in fact
corresponding to phase transitions and the condensate density
diverging; this indicates that perturbation theory is not rigor-
ously applicable and that the mean-field superfluidity result is
misleading.

In Sec. II of this paper, we recapitulate the theoretical
debate around superfluidity in coherently driven polaritons,
explaining the attempted applications of the Landau criterion
[49,50] and the direct calculations of the response showing a
general absence of superfluidity [51]. In Sec. III we derive the
mean-field responses in the specific regime where the spec-
trum is gapless, for both anisotropic and isotropic cases, which
are divergent and superfluid, respectively. This is followed by
a catastrophe-theoretic analysis of the anisotropic mean-field
behavior of the system in Sec. IV, demonstrating the origin
of the mean-field response divergences in bifurcations of the
order parameter. Then in Sec. V quantum fluctuations of the
system are taken into account to show that, despite isotropic
mean-field calculations yielding a superfluid response, the re-
sponse in gapless regimes is still divergent. This divergence is
analyzed both from the perspective of the infinite-dimensional
analog of catastrophe theory, renormalization group theory,
and of naive perturbation theory, showing that it originates
from the phase transitions in these regimes. In Sec. VI we
conclude that, as of now, there appear to be no regimes of
coherently driven microcavity polaritons that exhibit super-
fluidity.

FIG. 1. Polaritons in semiconductor microcavities; figure from
[51]. (a) Polaritons are quasiparticles formed when cavity photons,
which are massive due to confinement in the z direction between
two Bragg mirrors, interact strongly with excitons confined in a
quantum well. Polaritons are free to move in the two-dimensional
plane perpendicular to their confinement. (b) The excitonic dis-
persion (dashed green) is approximately constant compared to the
photonic (dashed red) due to the much larger exciton mass. Strong
coupling leads to anticrossing and the formation of upper and lower
polariton branches (solid black). Polaritons interact because of their
excitonic component, while their photonic part causes decay and the
need for an external drive. A coherent laser pump resonantly tuned
to the polariton dispersion is marked by a blue dot.

II. PRIOR ART: COHERENTLY DRIVEN MICROCAVITY
POLARITONS AND THE QUESTION OF SUPERFLUIDITY

The present paper seeks to answer questions related to su-
perfluidity in coherently driven microcavity polaritons, raised
by some special regimes not addressed in the general treat-
ment by [51]. This section is thus devoted to a summary of
relevant theoretical work in this field and an introduction to
the specific regimes of interest.

A. Strong coupling of photons and excitons:
The coherently driven lower dolariton model

Semiconductor microcavities are typically constructed by
placing semiconductor quantum wells supporting Wannier-
Mott excitons between Bragg reflectors (layers of alternating
refractive index material leading to high-quality reflection for
wavelengths close to four times the layer widths), typically
spaced microns apart [Fig. 1(a)]. Semiconductor quantum
wells are thin layers of semiconductor with a thickness com-
parable to the exciton Bohr radius, sandwiched between two
barrier layers with a much larger band gap. The exciton center-
of-mass motion is quantized in the confinement direction, and
the wells are typically engineered to support only the lowest
of these energy modes at the relevant energies, making the
excitons quasi-2D particles [12].

Photons trapped in the cavity also behave as quasi-2D
particles, developing an effective mass related to their quan-
tized mode in the confinement direction. Typically only the
lowest mode is considered, and the effective energy spectrum
becomes

ωc(k) = c

n

√(
2π

Lw

)2

+ k2, (1)
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where n is the refractive index of the quantum well and Lw is
the cavity width.

With appropriate tuning, the system can be described by a
Jaynes-Cummings interaction:

H0 =
∑

k

ωc(k)c†
kck +

∑
k

ωx(k)x†
kxk

+ �R

2

∑
k

(c†
kxk + x†

kck ) (2)

with quasi-2D photon annihilation operators ck and exciton
annihilation operators xk, where the Rabi frequency �R acts as
the exciton-photon coupling constant. In the strong-coupling
regime, the Hamiltonian may be approximately diagonalized
into quasiparticles known as lower and upper polaritons:

H0 ≈
∑

k

ωLP(k)a†
LP,kaLP,k +

∑
k

ωUP(k)a†
UP,kaUP,k (3)

with [Fig. 1(b)]

ωUP/LP(k) = 1

2

(
ωx − ωc(k) ±

√
[ωx − ωc(k)]2 + �2

R

)
. (4)

The gap between the lower and upper polariton spectra
is typically large enough for the lower polaritons to be con-
sidered in isolation (from now on we write ak for aLP,k) if
the relevant energy scales are tuned to them, and excitonic
interactions may be modelled as weak contact interactions
between polaritons:

Hint = V

2

∑
k,k′,q

a†
k−qa†

k′+qakak′ . (5)

Note that this form for the interaction is valid only so long as
we may ignore the spatial extent of the excitons. With a typical
exciton Bohr radius as high as 100 Å, we must impose a
momentum cutoff on our theory of kmax = h

100 Å . This will also
be relevant to our approximations in Appendix A 2. Finally,
the system is typically driven-dissipative, meaning that it is
externally pumped by a laser and is in contact with a photonic
decay bath. Denoting the bath photon modes by Ak and their

spectrum by ωA(k), the decay term may be written as

Hbath =
∑

k

ωA(k)A†
kAk +

∑
k,q

ζk,q(a†
kAq + A†

qak ). (6)

The pump laser is typically applied at some angle to the cavity,
leading to an effective pump wave vector kp in the cavity
plane. A classical coherent pump term, by which we mean
resonant or near-resonant with the lower polariton dispersion,
may then be represented as

Hpump = Fp(t )a†
kp

+ F ∗
p (t )akp, (7)

where Fp(t ) = Fpe−iωpt , and the implications of neglecting
fluctuations in the pump field are discussed in Sec. V B.
Performing a gauge transformation a → ae−iωpt , resumming
relative to the pump k → k + kp, and writing ak for ak+kp ,
the complete Hamiltonian then reads

H =
∑

k

(ωLP(k + kp) − ωp)a†
kak

+ V

2

∑
k,k′,q

a†
k−qa†

k′+qakak′ +
∑

k

ωA(p + kp)A†
pAp

+
∑
k,p

ζk,p(eiωpt a†
kAp + A†

pake−iωpt ) + Fp(a†
0 + a0). (8)

Note that this is not a closed-system Hamiltonian, since it
incorporates a number nonconserving interaction with laser
degrees of freedom the dynamics of which we do not incorpo-
rate in the model; rather it is the effective Hamiltonian for the
polariton and photon bath subsystem.

B. Keldysh effective action

In order to work with the above Hamiltonian, it is conve-
nient to eliminate the bath degrees of freedom and obtain an
effective action for the polaritons; all questions we wish to
ask of the system pertain exclusively to them. This may be
achieved by use of the Keldysh path integral technique [52],
and this is done in Appendix A. The result is the following
effective action in terms of two fields ψc, ψq:

Seff =
∑

k

(
ψ̄c

k ψ̄
q
k

)( 0 g−1(k)

(g−1)∗(k) 2iκ

)(
ψc

k

ψ
q
k

)
− V

2

∑
k,k′,q

(
ψ̄c

k−qψ̄
q
k′+q

[
ψc

k ψ
c
k′ + ψ

q
k ψ

q
k′
]+ c.c.

)−
√

2Fp
(
ψ̄

q
0 + ψ

q
0

)
, (9)

where �p = ωp − ωLP(0), g−1(k) = ω + �p − ε(k) − iκ , κ is a constant related to the system’s dissipation, and ωLP(k +
kp) − ωLP(0) = ε(k). Note that unbolded momentum variables are 4-vectors, standing for the combination of frequency and
momentum as k = (ω, k).

In the absence of the last term,
√

2Fp(ψ̄q
0 + ψ

q
0 ), the action possesses a global U (1) symmetry ψ

c/q
k → ψ

c/q
k eiθ . Such

symmetry in condensed matter systems is often indicative of superfluidity [39], and incoherently pumped systems can indeed be
shown to exhibit it [31]. The drive term, however, breaks the U (1) symmetry, since the phase of the pump Fp is independent of
that of the fields.

The mean-field equations for this action are found by functional differentiation to be

dSeff

dψ̄c(k)
= [ω + �p − ε(k) − iκ]ψq(k) − V

2

∑
k′,q

(ψ̄q(k′ + q)[ψc(k + q)ψc(k′) + ψq(k + q)ψq(k′)]

+ 2ψ̄c(k′ + q)ψq(k + q)ψc(k′)) = 0, (10)
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dSeff

dψc(−k)
= [−ω + �p − ε(−k) + iκ]ψ̄q(−k) − V

2

∑
k′,q

(ψq(k′ + q)[ψ̄c(−k + q)ψ̄c(k′) + ψ̄q(−k + q)ψ̄q(k′)]

+ 2ψc(k′ + q)ψ̄q(−k + q)ψ̄c(k′)) = 0, (11)

dSeff

dψ̄q(k)
= [ω + �p − ε(k) + iκ]ψc(k) − V

2

∑
k′,q

(ψ̄c(k′ + q)[ψc(k + q)ψc(k′) + ψq(k + q)ψq(k′)]

+ 2ψ̄q(k′ + q)ψq(k + q)ψc(k′)) + 2iκψq(k) −
√

2Fpδk,0 = 0, (12)

dSeff

dψq(−k)
= [−ω + �p − ε(−k) − iκ]ψ̄c(−k) − V

2

∑
k′,q

(ψc(k′ + q)[ψ̄c(−k + q)ψ̄c(k′) + ψ̄q(−k + q)ψ̄q(k′)]

+ 2ψq(k′ + q)ψ̄q(−k + q)ψ̄c(k′)) + 2iκψ̄q(−k) −
√

2Fpδ−k,0 = 0. (13)

Assuming the solution to be space-time homogeneous and
classical (ψc(k) = √

2ψ0δk,0, ψq(k) = 0), the equations sim-
plify to

[�p − ε(0) + iκ]ψ0 − Fp = V |ψ0|2ψ0, (14)

[�p − ε(0) − iκ]ψ̄0 − Fp = V |ψ0|2ψ̄0. (15)

Writing δp = �p − ε(0) for the detuning, mod-squaring the
above yields a cubic equation for the mean-field occupancy of
the pump mode n = |ψ0|2:

V 2n3 − 2δpV n2 + (
δ2

p + κ2
)
n − F 2

p = 0. (16)

Depending on whether δp >
√

3κ or δp �
√

3κ , the equa-
tion may or may not have multiple (specifically, three) real
solutions for certain values of Fp. The former case is referred
to as the bistable regime and will be of primary interest to us
in this paper.

For a particular value of ψ0, the action may be rewritten via
the background field method in terms of the fields ψc(k) →
ψc(k) − ψ0δk,0, ψq(k) → ψq(k). Up to second order in the
fields this yields

Seff = Seff|ψ=ψ0 + 1

2

∑
k,k′

�†(k)D−1(k, k′)�(k′) + O(ψ3),

(17)

where

D−1(k, k′) =

⎛
⎜⎜⎜⎜⎝

0 0 J∗(k) −V ψ2
0

0 0 −V ψ̄2
0 J (−k)

J (k) −V ψ2
0 2iκ 0

−V ψ̄2
0 J∗(−k) 0 2iκ

⎞
⎟⎟⎟⎟⎠δk,k′

(18)

and J (k) = ω + �p − ε(k) + iκ − 2V |ψ0|2. Here we have
written the action in terms of the Nambu vector �(k) =
(ψc(k), ψ̄c(−k), ψq(k), ψ̄q(−k)). This introduces a measure
of redundancy to the expression which is explained in detail in
Appendix B, where the corresponding diagrammatics are also
worked out. Taking this into account, the bare propagators are

given in terms of the block matrix(
iG

K
(k, k′) iG

R
(k, k′)

iG
A

(k, k′) 0

)
= D(k, k′), (19)

where the blocks are 2×2 matrices in Nambu space. Each
block is named for its corresponding top left entry, so that
the conventional Keldysh Green’s functions are given by
GK/R/A(k, k′) = (G

K/R/A
(k, k′))11. The exact expressions for

these are given in the Appendixes, and in the next section we
will use them to study the system spectrum.

C. System spectrum and the Landau criterion

One of the oldest criteria by which the superfluidity of a
system may be judged is due to Landau [39] and relies en-
tirely on the system’s quasiparticle excitation spectrum ε(p).
Consider a fluid with total mass M moving with velocity V in
the laboratory frame. Suppose now that, through interaction
with some external perturbation (e.g., a capillary wall or sub-
strate defect), a quasiparticle with momentum p is created. By
conservation of momentum

MV = MV′ + p, (20)

where V′ is the new velocity, and thus the new total energy is

E ′ = 1

2
MV ′2 + ε(p) = 1

2
MV 2 + ε(p) − V · p + p2

2M
. (21)

For large M the last term may be neglected, and we see that
for the system to lose energy via dissipation we must have

min
p

[ε(p) − V · p] < 0. (22)

For an isotropic system this is equivalent to minp[ε(p) −
V p] < 0, and the largest value of V for which this does not
hold Vcrit = minp

ε(p)
p is termed the critical velocity. This is

because for fluid velocities not exceeding this value, it is en-
ergetically unfavorable for the system to generate excitations
and thus the system cannot dissipate energy via this route—
non-dissipative flow characteristic of a superfluid occurs.

The Landau criterion is not rigorously applicable to driven-
dissipative systems. It assumes a real excitation spectrum,
which in such systems is generally complex, and relies on
a conservation of energy argument that may be violated by
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the external drive. Nevertheless, some works have presented
results via a heuristic application of it to the real part of the
complex spectrum of coherently driven exciton-polaritons in
the bistable regime [11,49,50].

The excitation spectrum of the system may be obtained
from the poles of the retarded Green’s function [53], which
is given by (see Appendix B):

GR(k) = J∗(−k)

J (k)J∗(−k) − V 2|ψ0|4 . (23)

The spectrum ω(k) is thus given by the solution to

J (ω(k), k)J∗(−ω(k),−k) − V 2|ψ0|4 = 0 (24)

and is found to be

ω±(k) = ε(k) − ε(−k)

2
− iκ

±
√(

ε(k) + ε(−k)

2
−�p+2V |ψ0|2

)2

−V 2|ψ0|4.
(25)

For kp = 0, Re ω+(k) = − Re ω−(k), Im ω+(k) =
Im ω−(k), and the ω−(k) negative energy branch corresponds
to the same physical excitations as the positive energy one.
It may thus be interpreted as the spectrum for “holes” and is
sometimes referred to as the ghost branch.

For kp �= 0, due to our resummation with respect to the
pump momentum in (8), we may view the system’s action as
that for an isotropically pumped (and thus stationary) fluid of
polaritons but with a tilted energy spectrum. While similar to
a change of reference frame to one in which the polaritons
are stationary, we emphasize that this is simply a formal

manipulation of the action. Writing ε(k) ≈ (k+kp)2

2m where m
is the effective polariton mass, to linear order one finds that

ω±(k) = ω±(k)|kp=0 + kp

m
· k + O(|kp|2), (26)

which shows that the tilt is due to the bulk flow of the fluid
(induced by the pump) with velocity v = h̄kp

m . From this point
of view, superfluidity will be destroyed when the linear tilt
becomes so significant as to push ω±(k) for some nonzero
k below the energy of the condensed mode ω±(0) so that
particles may scatter into this new mode. Comparing with
(22), it is evident that this is equivalent to applying the Landau
criterion to the real part of the spectrum without this linear
correction [here δp = �p − ε(0)]:

Re ω+
rest(k)

= Re
√

(ε(k)|kp=0 − δp + 2V |ψ0|2)2 − V 2|ψ0|4. (27)

Here three situations are possible. If V |ψ0|2 < δp then, for
some value of |k0| �= 0,

ε(k0)|kp=0 − δp + 2V |ψ0|2 = 0 (28)

and Re ω+(k0)|kp=0 = 0, meaning the critical velocity is zero
and there is no superfluid (per the Landau criterion). If
V |ψ0|2 > δp, then the spectrum is gapped and there is a posi-
tive critical velocity and associated superfluidity. This velocity

FIG. 2. Absolute value squared of the homogeneous solution ψ0

to the mean-field equations for varying values of the pump Fp. The
left figure corresponds to the δp = 3κ >

√
3κ bistable regime with

multivalued solutions and inversion points (marked by fuchsia dots),
while the right corresponds to the monostable δp <

√
3κ regime with

a single solution for each pump value.

is given by

Vcrit

=
√

−δp + 2V |ψ0|2 −√
(−δp + 2V |ψ0|2)2 − V 2|ψ0|4

m
.

(29)

Finally, if V |ψ0|2 = δp, then the real spectrum is gapless at
|k| = 0 and its gradient there (the polariton “sound velocity”)
must be considered. This derivative comes out as

Vcrit = d Re ω+
rest(|k|)

d|k|
∣∣∣∣
k=0

=
√

V |ψ0|2
m

, (30)

which agrees with the limit of the previous expression in δp.
This discussion can be specialized to the case of the

bistable regime, where the mean-field solution of Eq. (16) can
be split into three branches (red, green, and blue in Fig. 2).
These branches are separated by points called “inversion
points,” which correspond to

V |ψ0|2 = 1

3

(
2δp ±

√
δ2

p − 3κ2
)
. (31)

We thus see that V |ψ0|2 < δp on the lower red branch, and so
superfluidity cannot occur there per the Landau criterion. The
middle green branch can be shown to be dynamically unstable
since

∃k s.t. Im ω±(k) > 0 (32)

for every point on that branch (a simple proof of this is given
in Sec. IV A), and this is an indication of dynamical instability
[53]. Thus, according to the Landau criterion, superfluidity
is present on the upper blue branch for every point with
V |ψ0|2 � δp.

D. Current-current response and the rigid state

1. Linear-response superfluid criterion

Because of the aforementioned heuristic nature of the
Landau criterion when applied to driven-dissipative systems,
however, the work on which we are building [51] opted to use
a linear response-based criterion [39,40], one which has even
been proposed as a generalized definition of a superfluid [11].
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The results, which we briefly outline now, partially differ from
the Landau criterion analysis and highlight its limitations in a
driven-dissipative context.

For a system possessing a conserved current j(x, t ), con-
sider a Hamiltonian perturbation of the form

−
∫

dx dt j(x, t ) · u(x, t ), (33)

where u(x, t ) is an external field. Considering the histor-
ical example of fluid in a capillary, this generalizes the
term −m

∫
dx dt j(x, t ) · u(t ) = −P · u(t ), which appears in

the superfluid’s rest frame Hamiltonian when the walls are
moving with velocity u(t ). The Helmholtz decomposition of
u(x, t ),

u(x, t ) = −∇�(x, t )︸ ︷︷ ︸
longitudinal

+∇ × A(x, t )︸ ︷︷ ︸
transverse

, (34)

consists of longitudinal and transverse components. Intu-
itively, the gradient term corresponds to some sort of push,
while the curl term introduces shear. The generalization of the
classical superfluid’s frictionless flow through a capillary is
the statement that its current does not respond to transverse
perturbations, since friction with the walls is a shearing force.

To study this (linear) response, we require the current-
current response tensor. By Kubo’s formula, this is

χi j (x, t, x′, t ′) = iθ (t − t ′)〈[ ji(x, t ), j j (x′, t ′)]〉. (35)

In an isotropic, time and space translation-invariant system,
the most general form the static (ω = 0) Fourier transform of
this quantity can take is

χi j (k) = kik j

k2
χL(k) +

(
δi j − kik j

k2

)
χT (k). (36)

The subscripts indicate that the first term couples to the lon-
gitudinal component of the static Helholtz decomposition,
−k�(k), while the second couples to the transverse compo-
nent k×A(k). Using the special form of (36), we observe that
the static limits of the normal and transverse components may
be extracted by sequential limits. For example,

lim
ky→0

lim
kx→0

χxx = lim
k→0

χT (k), (37)

lim
kx→0

lim
ky→0

χxx = lim
k→0

χL(k). (38)

While we will use this property later to perform explicit
calculations, it is worth highlighting what it suggests about
the response tensor. Namely, in order for a system to possess
different transverse and longitudinal responses, the response
tensor must be discontinuous at zero momentum. Superfluid-
ity is then defined in the thermodynamic limit as a difference
between the static, homogeneous linear, and transverse re-
sponses:

lim
k→0

(χL(k) − χT (k)) > 0 ⇒ superfluid. (39)

While this response tensor should be calculated in the super-
fluid’s rest frame, it is sometimes instructive to examine its
behavior in other frames [though it may no longer take the
form (36)]. We will see this to be the case when we study the
case kp �= 0 later.

2. Nonequilibrium current

The above definition relies on a conserved system current,
but the situation is more complicated for driven-dissipative
systems. For such systems, we are interested in the component
of the current that is internal to the system as opposed to the
component relating to pump and dissipation. This is known as
the coherent current [54] and takes the familiar form

j(x, t ) = 1

2mi
(ψ̄∇ψ − ψ∇ψ̄ ). (40)

In [51] care is taken to normal-order this operator. Normal
ordering, however, affects only the expectation of the operator
up to a constant. Since we are interested in the linear response
of this expectation the constant is irrelevant.

Suppose that we introduce a term of the form

−
∫

dx dt j(x, t ) · u(x, t ) (41)

to the original Hamiltonian, where u is a classical field. Writ-
ing j+ for (40) written in terms of fields on the forward
contour, and similarly j− for the backward contour, this will
give the following contribution to the overall Keldysh action:∫

dxdt (j+(x, t ) · u+(x, t ) − j−(x, t ) · u−(x, t )). (42)

We may now define, by analogy with the classical and
quantum fields, the classical and quantum current operators
jc, jq as

jc = 1
2 (j+ + j−), (43)

jq = (j+ − j−). (44)

Also introducing the “physical” field f = 1
2 (u+ + u−) and the

“unphysical” field θ = u+ − u−, the significance of which
will be explained shortly, we may rewrite (42) as∫

dx dt (jc(x, t ) · θ(x, t ) + jq(x, t ) · f (x, t )). (45)

Since the classical field is the same on both contours, u+ =
u−, we have that the unphysical field θ = 0, which motivates
its name. On the other hand the physical field is equal to the
original field f = u. The perturbation to the Keldysh action
thus takes the form∫

dx dt jq(x, t ) · f (x, t ), (46)

from which one can see that the first perturbative correction to
the expectation of the classical current will be∫

dx′ dt ′ i〈jc(x, t )jq(x′, t ′)〉 · f (x′, t ′). (47)

Since, up to normal ordering, the expectation value of the
classical current is equal to the expectation value of the true
current, this shows that the response function we seek is given
by

χi j (x, t, x′, t ′) = i
〈
jc
i (x, t ) jq

j (x′, t ′)
〉
, (48)

and we may view the response we seek as the response of the
classical current to the physical field. This result is derived in
an alternative way in [54].
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FIG. 3. Order O(h̄) diagrams for the current-current response.

In terms of Fourier-transformed fields, (46) is∑
k

jq(−k) · f (k) (49)

so that the static response in terms of these fields becomes

χi j (0, q) = χi j (q) = i

2

〈
jc
i (0, q) jq

j (0,−q)
〉
, (50)

while the static classical and quantum currents are given by

c
i (0, q) = jc

i (q) (51)

=
∑
ω,k

γi(2k + q)[ψc(ω, k + q)ψ̄c(ω, k) (52)

+ ψq(ω, k + q)ψ̄q(ω, k)], (53)

q
i (0, q) = jq

i (q) (54)

=
∑
ω,k

γi(2k + q)[ψc(ω, k + q)ψ̄q(ω, k) (55)

+ ψq(ω, k + q)ψ̄c(ω, k)], (56)

where γ (q) = q+kp

2m .

3. The rigid state

The response tensor may be worked out perturbatively us-
ing the diagrammatics of Appendix B. At order O(h̄) there are
six diagrams, presented in Fig. 3. Placing one current operator
on the left of the diagram and one on the right, the first four of

these come out to

− |ψ0|2G11
R (0, q)γi(q)γ j (q) − ψ2

0 G21
R (0, q)γi(−q)γ j (q)

− ψ̄2
0 G12

R (0, q)γi(q)γ j (−q) − |ψ0|2G22
R (0, q)γi(−q)γ j (−q),

(57)

while the last two yield the more complicated term

−γi(0)|ψ0|2δq,0

∑
ω′,k′

[
G11

R (ω′, k′) + G11
A (ω′, k′)

]
γ j (2k′).

(58)

This term is zero by the Keldysh identity
∑

ω[G11
R (ω, k) +

G11
A (ω, k)] = 0, so at order O(h̄) the current-current response

is given by

χh̄,i j (q) = − |ψ0|2G11
R (0, q)γi(q)γ j (q)

− ψ2
0 G21

R (0, q)γi(−q)γ j (q)

− ψ̄2
0 G12

R (0, q)γi(q)γ j (−q)

− |ψ0|2G22
R (0, q)γi(−q)γ j (−q). (59)

We may briefly comment on the physical significance of these
diagrams, as related in [31] (the present diagrams correspond
to the first diagram in Fig. 1 of that paper). In all (nonzero)
of these, each current vertex scatters a particle out of the
condensate and thus yields a term of the form γi(q). All such
diagrams thus contribute to the superfluid qiq j component of
the response tensor.

We may expand this expression out to facilitate taking
appropriate limits. Substituting in for the propagators and
splitting γi(q) = 1

2m (q)i + 1
2m (kp)i yields

χh̄,i j (q) = − |ψ0|2
4m2(J (q)J∗(−q) − V 2|ψ0|4)

([J (q) + J∗(−q) + 2V |ψ0|2](kp)i(kp) j − [J (q) − J∗(−q)](q)i(kp) j

− [J (q) − J∗(−q)](kp)i(q) j + [J (q) + J∗(−q) − 2V |ψ0|2](q)i(q) j ). (60)

So long as J (0)J∗(−0) − V 2|ψ0|4 �= 0 (the condition for the complex spectrum to be gapped), the q → 0 limit of this quantity
is direction-independent and comes out to
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χh̄,i j (0) = − |ψ0|2(2δp − 2V |ψ0|2)

4m2
(
3V 2|ψ0|4 − 4δpV |ψ0|2 + δ2

p + κ2
)

× (kp)i(kp) j . (61)

This homogeneous response is not in the fluid’s rest frame
and thus not isotropic unless kp = 0, so the tensor cannot be
decomposed as in (36). Note, however, that the direction inde-
pendence of the limit means that for a perturbation in a given
direction d, for q → 0 the response is χh̄,i j (0)(d(0)) j and is
thus independent of whether the perturbation was longitudinal
or transverse. This absence of a discontinuity at k = 0 will be
unaffected by a change of frame, so we may conclude that the
response is entirely nonsuperfluid. More specifically, it will
be shown in Sec. IV B 2 that it can be interpreted as a change
in occupation of the macroscopically occupied q = kp pump
state (also referred to as the condensate, and corresponding
to ψ0 due to the momentum shift performed earlier), so that
the homogeneous component of the nonequilibrium current is
rigidly in the kp direction. This situation was referred as the
system being in a “rigid state” by [51].

A particularly interesting situation occurs when V |ψ0|2 =
δp, as the response then vanishes entirely even at kp �= 0. This
corresponds to what is sometimes known as the “sonic point,”
as here the real part of the spectrum becomes gapless and
linear (refer to Sec. II C) and has been studied in experiments
where the polariton fluid was induced to flow past a defect
[25]. Such experiments report significantly reduced scattering
of the fluid by the defect (also referred to as frictionless flow)
in this regime and interpret this as a sign of superfluidity.
We argue, however, that what was actually detected was the
vanishing of the linear response in its entirety. This means
that, while scattering is indeed expected to be reduced, the
transverse and longitudinal responses are equal and both zero
so that the system is in the unique rigid state rather than a
superfluid state: “frictionless flow in the sonic regime is the
only property associated with superfluidity that is exhibited
by this rigid state, as vortices and persistent currents cannot
form when the phase is externally fixed” (note that recent
work has demonstrated that the topological defects associated
with coherently driven polaritons are domain walls rather than
vortices [55]), “and the superfluid response is zero” [51].

A number of groups have also experimentally measured
the spectrum in the sonic regime based on a belief in the
importance of the linearization of the real part of the spectrum
(and thus it taking on a Bogoliubov form) to the Landau
criterion [56–58]. Such interest in this point as a superfluid
candidate warrants an explanation for why we detect no su-
perfluid response despite the linearized spectrum.

Recall that, in order for a superfluid response to be present,
there must be a discontinuity in the current-current response
at zero momentum. Yet a crucial effect of the excitation
spectrum in Bose-condensed systems in the weakly inter-
acting regime relates to the fact that in such systems the
poles of one-particle Green’s functions coincide with those
of density and current response functions (strictly speaking
nonanalyticities of the response functions, since a pole of the
Green’s function may become “smoothed out” in the response
function) [42,59]. This is easily seen to be the case for our sys-
tem, where the mean-field current-current response is a linear

FIG. 4. Gapless excitation spectra at the bistability inversion
points, where blue is the real part and dashed-red imaginary, for the
isotropic kp = 0 case. (a) The spectrum at the the inversion point on
the lower branch in Fig. 2(a). (b) The spectrum at the the inversion
point on the upper branch in Fig. 2(a). For the anisotropic case, where
kp �= 0, the real spectra are tilted but still gapless.

combination of the retarded Green’s functions [see (59)].
Thus, in order for our static (ω = 0) response to possess a
discontinuity at k = 0, the retarded Green’s functions must
possess a pole at ω = 0, k = 0. This corresponds to a con-
dition that the spectrum be gapless and, in an equilibrium
system with a purely real spectrum, the linearized Bogoliubov
spectrum would be. In a driven-dissipative system such as
ours, however, the spectrum also possesses an imaginary part,
and this is found to be nonzero in the sonic regime (both
analytically and from linewidth measurements in the cited
experimental papers). Thus a linearized Bogoliubov form of
the real part of the spectrum is not a sufficient condition for
superfluidity in such systems: this is an important distinction
between equilibrium and driven-dissipative systems due to the
possibility of complex dispersion relations for the latter.

Overall, it appears that heuristic application of the Landau
criterion correctly identifies points at which no superfluid is
present; it agrees with the response analysis that no super-
fluid is present for V |ψ0|2 < δp. Unfortunately it seems to
also yield false positives, since it predicts superfluidity for
points with V |ψ0|2 > δp (possessing a gapped real spectrum),
whereas the linear response at these points is found to be
nonsuperfluid. The Landau criterion does correctly identify
the frictionless regime V |ψ0|2 = δp, but it appears that this
regime lacks not only a transverse but also a longitudinal
response and is thus not a conventional superfluid but rather a
special case of the rigid state with vanishing linear response
and thus reduced friction.

III. MEAN-FIELD RESPONSE IN THE GAPLESS REGIME

The above analysis was restricted to the case of
J (0)J∗(−0) − V 2|ψ0|4 �= 0, where the complex spectrum is
gapped. At the inversion points, however, this condition fails,
which can be seen in Fig. 4.

To investigate how this change in the spectrum affects the
response to perturbations of coherently pumped polaritons,
we calculate the homogeneous behavior of the mean-field
response function [Eq. (60)] in this regime. Assuming a
uniformly oriented perturbing field u(q), the longitudinal re-
sponse can be found by taking the momentum to zero along
the direction of the perturbation (u ⊥ q = 0, u ‖ q → 0),
and analogously for the transverse response (u ‖ q=0, u ⊥
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q→0). To do this, we separate the response function into its
numerator and denominator,

χh̄,i j (q) = ni j (qx, qy)

d (qx, qy )
, (62)

where the latter is given by

d (qx, qy) =
(

q2
x + q2

y

2m

)2

− (2δp − 4V |ψ0|2)
q2

x + q2
y

2m

− k2
pq2

x

m2
+ 2iκkpqx

m
+ 3V 2|ψ0|4

− 4δpV |ψ0|2 + δ2
p + κ2. (63)

The last line above is zero in the regime we are investigating,
as that is the condition for a gapless spectrum. Consequently,
in the long-range limit, d will go to zero and the response
function will exhibit singular behavior. To discover whether
this may be superfluid behavior, we must look at the limiting
behavior of the numerator.

From Eq. (60), the numerator of the χh̄,xx component is
given by

nxx(qx, qy) = |ψ0|2
2m2

[
q4

x

2m
+ q2

x q2
y

2m

−
(

2k2
p

m
+ δp − 3V |ψ0|2

)
q2

x

+ 2k2
p

m
q2

y + 4ikpκqx − 4k2
p(δp − V |ψ0|2)

]
.

(64)

The limits of this expression are different depending on
whether kp �= 0, the anisotropic case, or whether kp = 0, the
isotropic case. We will deal with each in turn.

A. Anisotropic case

In the anisotropic case, choosing kp in the x direction
without loss of generality, we may study the response to an
x-directed perturbation through nxx. Taking the limits of the
above expressions in the correct order, one finds the following
behavior for the longitudinal and transverse responses:

lim
q→0

χh̄,xx,L(q) = C1

|q| → 0
, (65)

lim
q→0

χh̄,xx,T (q) = C2

(|q| → 0)2
, (66)

for some constants C1 and C2. Performing the equivalent cal-
culations, starting again from Eq. (60), for the off-diagonal
components, χh̄,xy and χh̄,yx, we also encounter divergences,
and it is tempting to ask whether any physical conclusions
can be drawn from any of these cases. The χh̄,yy component of
the response function, however, is equivalent to the isotropic
χh̄,xx case (due to our choice of kp), to which we now turn.

B. Isotropic case

Taking the correct limits in the isotropic case, it is found
that

lim
q→0

χh̄,xx,L(q) = |ψ0|2(δp − 3V |ψ0|2)

m(2δp − 4V |ψ0|2)
, (67)

lim
q→0

χh̄,xx,T (q) = 0, (68)

and that χh̄,xy = χh̄,yx = 0. This would appear to strongly
suggest superfluid behavior. It is not clear, however, whether
this conclusion extends to O(h̄2), and what the mechanism for
this superfluidity would be in the absence of a global U (1)
symmetry.

In the following sections of this paper we will answer
these questions, starting with the anisotropic, finite kp case
in Sec. IV, and continuing with the isotropic kp = 0 case in
Sec. V.

IV. DIVERGING ANISOTROPIC RESPONSE

A. Catastrophe structure of the mean-field solutions

Before directly tackling the origin of the divergent re-
sponse, it is helpful first to analyze further the structure of
the system’s mean field, since it is here that the answer will
be shown to reside. Let us thus return to Eq. (16) for the
homogeneous mean-field solutions

V 2n3 − 2δpV n2 + (
δ2

p + κ2
)
n − F 2

p = 0. (69)

This equation may be rewritten as

∂n
[

1
4V 2n4 − 2

3δpV n3 + 1
2

(
δ2

p + κ2
)
n2 − F 2

p n
] = 0, (70)

indicating that these mean-field solutions correspond to ex-
trema of the effective potential

Ueff(n) = 1
4V 2n4 − 2

3δpV n3 + 1
2

(
δ2

p + κ2)n2 − F 2
p n. (71)

Moreover,

Im ω+(0) = −κ + Im
√

3V 2n2 − 4δpV n + δ2
p, (72)

so a sufficient condition for dynamical instability Im ω+(0) >

0 may be written as

3V 2n2 − 4δpV n + δ2
p < −κ2, (73)

or

∂2
nUeff < 0. (74)

We may reduce Ueff to a standard form by eliminating the
cubic coefficient via a linear variable change n = m + 2δp

3V ,
discarding the constant term (which does not contribute to any
derivatives), and subsequently dividing through by the quartic
coefficient, yielding

U ′
eff(m)

= m4 + 2
(
3κ2 − δ2

p

)
3V 2

m2 +
(

8δp
(
δ2

p + 9κ2
)

27V 3
− 4F 2

p

V 2

)
m.

(75)
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FIG. 5. Since it is globally expressible as the universal unfolding of a cusp catastrophe, there are five distinct topological configurations
for the critical points of the effective potential U ′

eff(m). These are presented in the notation of Appendix C.

Introducing control parameters A(δp) = 2(3κ2−δ2
p )

3V 2 , B(δp, Fp) =
8δp(δ2

p+9κ2 )
27V 3 − 4F 2

p

V 2 , this is

U ′
eff(m) = m4 + A(δp)m2 + B(δp, Fp)m. (76)

The reader familiar with catastrophe theory will recognize this
as the universal unfolding of a cusp catastrophe. Catastrophe
theory is a branch of bifurcation theory, studying how small
changes in an effective potential can yield large changes in
the structure of that potential’s stationary points. This has
clear applications to classical statistical mechanics, where a
system’s equilibrium state is typically determined by min-
ima of a thermodynamic potential, and extends to mean-field
theory when the equations of motion can be reduced to sta-
tionarity equations for an effective potential as above. A short
mathematical introduction to catastrophe theory is given in
Appendix C.

That the potential corresponds to this unfolding globally
rather than in a local neighborhood of a critical point sim-
plifies the analysis. Every possible topological configuration
of extrema is given in Fig. 5, of which there are seen to be
five, and for simplicity we classify points as stable or unstable
based on the partial criterion of Eq. (73).

Non-Morse critical points are points with a vanishing
second derivative, or ∂2

mU ′
eff(m) = 0. Since such points are

structurally unstable relative to the control parameters A and
B, and thus relative to δp and Fp, we see that such points
correspond to phase transitions [60]. Here these are the co-
alesced critical points corresponding to configurations B, C,
D in Fig. 5. Those of double multiplicity, B and C, locally
correspond to fold bifurcations; an infinitesimal perturbation
of the control parameters may split such a point into a stable-
unstable pair (case A) or eliminate it entirely (case E). Such an
elimination results in a discontinuous collapse to the remain-
ing stable critical point, meaning these are zero-order phase
transition points. The point of triple multiplicity D, when it
is non-Morse (if it is Morse, then we are not in the bistable
regime), is just the catastrophe germ for the cusp catastrophe,
and thus corresponds to a continuous phase transition. A gen-
eral infinitesimal perturbation of the control parameters will

continuously split it into two stable and one unstable critical
point, which is the universal unfolding A.

In the rest of the paper, it will be seen that it is the pres-
ence of these structurally unstable non-Morse critical points
and their accompanying phase transitions that is the cause of
the divergences appearing in the anisotropic current-current
linear response. We may note already that the condition for
a diverging linear response, a gapless spectrum, corresponds
to the inequality in Eqs. (72) and (73) becoming an equality.
This is precisely the condition for a non-Morse critical point.

Finally, we may visualize this catastrophe structure by
solving ∂mU ′

eff(m) = 0 for m in terms of A and B, and plotting
the resulting msoln(A, B). This is seen in Fig. 6, where the
resulting surface is called the “critical manifold” and the line
of non-Morse critical points is termed the “locus of bifurca-
tions.” By our stability criterion, the section of the surface
inside the locus of bifurcations always corresponds to unstable
solutions, while the section outside is generally stable (some
of these points are unstable since our criterion is only partial,
but this will not be relevant).

B. The geometric origin of the divergence

1. Nonlinearity at the locus of bifurcations

Having laid the groundwork by identifying the presence of
catastrophes and a locus of bifurcations in our system, we may
now see how this leads to a diverging anisotropic response.

Consider the static mean-field equations for the anisotropic
problem. Recall from Sec. II D 2 that the current-current re-
sponse we seek is a response to the physical field fi(q), so
we add the term

∑
k f (k) · jq(−k) to the action. Moreover,

in the absence of an unphysical field, solutions to Keldysh
mean-field equations have the quantum fields equal to zero
so we preemptively set them so. The resulting equations are

(�p − ε(k) + iκ )ψ (k) − Fpδk,0

− V

2

∑
k′,q

ψ̄ (k′ + q)ψ (k + q)ψ (k′)

+
∑

q

γi(2k − q) fi(q)ψ (k − q) = 0 (77)
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FIG. 6. Critical manifold of the solution msoln(A, B) to
∂mU ′

eff(m) = 0. Solutions corresponding to non-Morse critical points
form a line (blue) on this surface, called the locus of bifurcations; the
name is due to infinitesimal perturbations in A and B at these points
leading to a change in the number of solutions, i.e., to bifurcations.
The critical point on this line corresponding to the cusp catastrophe
germ is labeled by a red sphere.

and its complex conjugate. Splitting fi(k) as fi(k) =
fi(0)δk,0 + fi(k)(1 − δk,0) and temporarily setting the in-
homogeneous components of the force to zero, the equa-
tions may be rewritten as

[�p + γi(2k) fi(0) − ε(k) + iκ]ψ (k) − Fpδk,0

− V

2

∑
k′,q

ψ̄ (k′ + q)ψ (k + q)ψ (k′) = 0. (78)

Finally consider homogeneous solutions:

[(δp + γi(0) fi(0)] + iκ )ψ0 − Fp − V ψ0|ψ0|2 = 0. (79)

We see that the homogeneous component of the force cou-
ples into this equation in the same way as the detuning. We
can thus absorb this into an effective δ′

p = δp + γi(0) fi(0).
Now, note that the mean-field value of the classical current

is given by

jmf,i(q) = γi(0)|ψ0|2δq,0, (80)

so that the mean-field linear response to a homogeneous force
can, with some caution, be viewed as

χmf,i j (0) = γi(0)
∂|ψ0|2
∂ f j (0)

= γi(0)
∂|ψ0|2
∂δ′

p

γ j (0), (81)

and herein lies the connection. Looking at the control surface
again, we see that along the locus of bifurcations ∂m

∂A and
∂m
∂B diverge. This is because, in a neighborhood of any point

FIG. 7. A fixed-A or -B cross section of the critical manifold with
a point of the locus of bifurcations at the origin will have one of the
two general forms shown here. The blue line indicates the case of a
twofold multiplicity point, while the red relates to the point of triple
multiplicity. In both cases derivatives diverge at the origin, i.e., on
the locus.

on the locus, a fixed-A or -B cross section will possess one
of the two forms in Fig. 7. Such a divergence of the linear
response to control parameters is typical of bifurcation points
in catastrophe theory [61].

As a result, if we choose Fp and δp such that m lies on the
locus and m′, defined as m but with δ′

p instead of δp, is a stable
solution, we find

∂|ψ0|2
∂δ′

p

= 2

3V
+ ∂m′

∂A

∂A

∂δ′
p

+ ∂m′

∂B

∂B

∂δ′
p

. (82)

Thus, as f (0) → 0, i.e., δ′
p → δp, ∂|ψ0|2

∂δ′
p

→ ∞. This shows that

the divergence in the current-current response in this case is
intimately tied to the presence of a bifurcation. Far from being
unphysical, the divergence expresses the high degree of non-
linearity present in the vicinity of a non-Morse critical point
corresponding to a phase transition, and the mechanism just
described is typical of the origin of divergent linear responses
at phase transitions.

2. Directional dependence of the response

Equation (81),

χhom-mf,i j = γi(0)
∂|ψ0|2
∂ f j (0)

,

is not entirely well founded. The limit limq→0 χi j (q) is some-
times directional (the definition of superfluid we are using
relies on this fact), but the above expression admits no such
possibility. In the case that this direction dependence is absent,
however, we may show that the result agrees with a more
rigorous treatment using the explicit form of the response
tensor. In this case the response is just a measure of the change
in occupation |ψ0|2 of the macroscopically occupied pump
state in response to an external static drive f j (0).

We begin by calculating ∂|ψ0|2
∂δp

, or ∂n
∂δp

= ṅ, by starting from
the mean-field homogeneous equation:

V 2n3 − 2δpV n2 + (
δ2

p + κ2
)
n − F 2

p = 0. (83)
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FIG. 8. R/A-correlator tadpoles.

Differentiating,

3V 2n2ṅ − 2V n2 − 4δpV nṅ + 2δ′
pn + (

δ2
p + κ2

)
ṅ = 0, (84)

and rearranging (provided the denominator is not 0),

ṅ = 2V n2 − 2δpn

3V 2n2 − 4δpV n + δ2
p + κ2

. (85)

Our expression then yields

χhom-mf,i j

= − |ψ0|2(2δp − 2V |ψ0|2)

4m2
(
3V 2|ψ0|4 − 4δpV |ψ0|2 + δ2

p + κ2
) (kp)i(kp) j,

(86)

which is identical to our O(h̄) diagrammatic result in Eq. (61).
We thus see that, where 3V 2n2 − 4δpV n + δ2

p + κ2 �= 0, the
limit is direction-independent and accurately captured by
our formula. Moreover, we know that ∂2

nUeff(n) = 3V 2n2 −
4δpV n + δ2

p + κ2 = 0 only on the locus of bifurcations, so

χhom-mf,i j = γi(0) ∂|ψ0|2
∂ f j (0) is valid as the locus is approached,

and the divergence indeed arises from our earlier geometric
argument.

V. ISOTROPIC MEAN-FIELD SUPERFLUIDITY

We now turn to the isotropic case. Recalling the discussion
of Sec. III B, we know that for kp = 0 the O(h̄) current-current

response is purely superfluid. This mean-field superfluidity
has a curious origin as the interplay of two opposing pro-
cesses; on the one hand, as the point of interest lies on the
locus of bifurcations, the response for any nonzero pump
momentum diverges for the geometric reasons as discussed in
Sec. IV B. As kp → 0, however, the homogeneous component
of the force couples increasingly weakly to the mean-field
equations [its coupling being γi(0) = kp

2m ], and in the limit
kp = 0 does not appear in them at all. This means that kp → 0
leads to χh̄(0) → 0 off of the locus and the interaction with
the divergence at the locus yields a finite, nonzero superfluid
response at it.

This elegant picture is unfortunately spoiled by higher-
order terms in the perturbation expansion. We will now show
that a divergence persists at O(h̄2), and is related to the ab-
sence of U (1) symmetry in the problem.

A. One-loop Keldysh tadpoles

One-loop tadpoles are truncated Feynman diagrams of the
form . There are are six such tadpoles with R/A
correlators as the loop, presented in Fig. 8, and four with a K
correlator, presented in Fig. 9.

Crucially, the R/A loops are mutually canceling. To see
this, consider the combination of terms coming from tadpoles
(A) and (B) in Fig. 8 when attached to the same external line

FIG. 9. K-correlator tadpoles.
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FIG. 10. O(|q|0) diagrams, with the small circle denoting the tadpole attachment point.

on a diagram:

−GX (0)
∫

dk
(
G11

R (k) + G11
A (k)

) = 0. (87)

Here GX (0) is some correlator corresponding to the attach-
ment, while the loops themselves are seen to cancel by the
Keldysh relation

∫
dω [GR(ω) + GA(ω)] = 0 (note that the

{11} elements of the Keldysh matrices correspond to the true
GR/A). Tadpoles (D) and (E ) cancel in the same manner.

To see that tadpole (C) is zero, we write its attachment out
explicitly:

− GX (0)
∫

dk G12
R (k)

= −GX (0)
∫

dk
(∫

dω
V ψ2

0

J (ω, k)J∗(−ω,−k)− V 2|ψ0|4
)

.

(88)

The denominator of the integrand is quadratic in ω, and the
pole lies in the lower half-plane (the denominator agrees with
that of the true retarded Green’s function). Thus, closing the
contour in the upper half-plane, the integral is zero. The same
reasoning then leads to the vanishing of tadpole (F ).

The K-correlator tadpoles, however, do not cancel in this
way. Moreover, when connected to an external line of a dia-
gram, they introduce a term of the form GR/A(0). Such terms
become singular in the limit of a gapless spectrum (since in
that case the pole is precisely at ω = 0, k = 0) so that, for the
perturbation expansion to remain finite, certain diagrams with
external legs must vanish. We will now argue that this does
not occur.

B. Tadpole diagrams at O(h̄2 )

Associating the connecting edge to the tadpole rather than
to the main diagram, we see that a tadpole contributes h̄ to
any diagram to which it is attached. This means that we are
interested in cancellation of diagrams with a free leg that are
O(h̄) prior to the attachment of the tadpole.

To understand what kinds of diagrams may appear, we
may apply some graph theory. Denote the number of 4-valent
vertices by a and 3-valent vertices by b, the number of current
fields participating in an edge (as opposed to assuming a
mean-field value) by n, and the number of edges and vertices

by e and v, respectively. Then one finds (we subtract 1 because
we do not count the edge connecting the tadpole)

4a + 3b − 1 − n

2
+ n = e, (89)

a + b = v, (90)

e − v = 1. (91)

Here the last condition enforces that the diagram is O(h̄), since
each vertex removes a factor of h̄ and each propagator or edge
adds one. From here a little manipulation yields

2a + b = 3 − n, (92)

which allows us to classify all possible diagrams.
We see that the possible values of n are n = 1, 2, 3. We may

disregard n = 1 because in this case three of the four current
fields are set to mean-field values, meaning the remaining field
is a quantum field. The attaching field of the K-tadpole is,
however, also quantum and the quantum-quantum correlators
are all zero, so that such diagrams vanish. For n = 2, the only
possibility is b = 1, while for n = 3 we must have a = b = 0.
These are thus the only types of diagrams that we need
consider.

Unfortunately even after discarding those which trivially
vanish, this still leaves a comparably large number: 32
diagrams. These diagrams, however, have different asymp-
totic dependencies on |q| → ∞ (the momentum variable of
the response function). Thus, to study whether these dia-
grams cancel, we may group them by this dependence; each
group must cancel independently. Each diagram will possess
two factors of γ (±q). Furthermore, R/A correlators where
the arrows match (G11

R/A and G22
R/A) are O(|q−2|), while the

others (G12
R/A and G21

R/A) are O(|q−4|). We then have six dia-
grams of O(|q|−6), 12 diagrams of O(|q|−4), 10 diagrams of
O(|q|−2), and four diagrams of O(|q|0). These are given in
Figs. 10–13.

We begin by considering the four O(|q|0) diagrams. The
two with a ψc connecting field come out to

i
√

2
[
G11

R (q) + G22
R (q)

]
ψ̄0γi(q)γ j (q), (93)

while the other two yield

i
√

2
[
G11

R (q) + G22
R (q)

]
ψ0γi(q)γ j (q). (94)
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FIG. 11. O(|q|−2) diagrams, with the small circle denoting the tadpole attachment point.

Considering all possible K-tadpole attachments, we obtain the following expression for the sum of these diagrams:

iV
√

2
[
G11

R (q) + G22
R (q)

]
γi(q)γ j (q)

(
ψ̄0
[
G11

R (0)
(

1
2 ψ̄0 Tr

[
G12

K

]+ ψ0 Tr
[
G11

K

])+ G12
R (0)

(
1
2ψ0 Tr

[
G21

K

]+ ψ̄0 Tr
[
G22

K

])]
+ ψ0

(
G21

R (0)
(

1
2 ψ̄0 Tr

[
G12

K

]+ ψ0 Tr
[
G11

K

])+ G22
R (0)

(
1
2ψ0 Tr

[
G21

K

]+ ψ̄0 Tr
[
G22

K

])))
. (95)

Denoting

a = 1
2 ψ̄0 Tr

[
G12

K

]+ ψ0 Tr
[
G11

K

]
, (96)

b = 1
2ψ0 Tr

[
G21

K

]+ ψ̄0 Tr
[
G22

K

]
, (97)

the condition for this sum to be zero may be written as

ψ̄0J∗(0)a + ψ̄0V ψ2
0 b︸ ︷︷ ︸

A

+ψ0V ψ̄2
0 a + ψ0J (0)b︸ ︷︷ ︸

−A

= 0. (98)

Further, recalling that
(
G11

R (k)
)∗ = G22

R (−k), (99)

(
G12

R (k)
)∗ = G21

R (−k), (100)

(
G11

K (k)
)∗ = −G22

K (−k), (101)

(
G12

K (k)
)∗ = −G21

K (−k), (102)

we have a∗ = −b. This means that A = A∗ so A is real.

FIG. 12. O(|q|−6) diagrams, with the small circle denoting the tadpole attachment point.
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FIG. 13. O(|q|−4) diagrams, with the small circle denoting the tadpole attachment point.

Setting A′ = A
|ψ0|2 , another real quantity, this equation may

be rewritten as a matrix expression:

(
J∗(0) −V ψ2

0

−V ψ̄2
0 J (0)

)(
a
a∗

)
=
(

ψ0A′

ψ̄0A′

)
. (103)

Since this supposed cancellation is of interest only on the
locus of bifurcations, we may specialize ψ0 to it. From
Eq. (25) and the fact that the locus of bifurcations corre-
sponds to a gapless complex spectrum, we find the condition
(n = |ψ0|2)

3V 2n2 − 4δpV n + δ2
p + κ2 = 0. (104)

This may be combined with Eq. (14) to yield

ψ0 = −√
n

V n − δp

(V n − δp)2 + κ2
− i

√
n

κ

(V n − δp)2 + κ2
,

(105)

V ψ2
0 = V n

(V n − δp)2 − κ2

(V n − δp)2 + κ2
+ iV n

2κ (V n − δ)

(V n − δp)2 + κ2
, (106)

V ψ2
0 = − 2V n(V n − δp)

(V n − δp)2 + κ2︸ ︷︷ ︸
=−1

J∗(0) = J∗(0). (107)

From the last equation above we see that the matrix is degen-
erate, and the existence of a solution to (103) is not certain.
To check this, we may decomplexify the matrix equation

via (
Mr

11 + iMi
11 Mr

12 + iMi
12

Mr
21 + iMi

21 Mr
22 + iMi

22

)(
x + iy
l + im

)
=
(

v + iw
p + iq

)

⎛
⎜⎜⎜⎜⎜⎝

Mr
11 −Mi

11 Mr
12 −Mi

12

Mi
11 Mr

11 Mi
12 Mr

12

Mr
21 −Mi

21 Mr
22 −Mi

22

Mi
21 Mr

21 Mi
22 Mr

22

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

x
y
l
m

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

v

w

p
q

⎞
⎟⎟⎠.

Applying this to (103) yields

2

⎛
⎜⎜⎜⎜⎝

Im J (0)

Re J (0)

Im J (0)

− Re J (0)

⎞
⎟⎟⎟⎟⎠ Im a =

⎛
⎜⎜⎜⎝

Re ψ0

Im ψ0

Re ψ0

− Im ψ0

⎞
⎟⎟⎟⎠A′. (108)

Using (107), we must have

A′ = 2
Im J (0)

Re ψ0
Im a = 4V

√
nκ Im a, (109)

A′ = 2
Re J (0)

Im ψ0
Im a = 2V

√
n

(
κ − (V n − δp)2

κ

)
Im a.

(110)

Since κ > 0, 4κ �= 2(κ − (V n−δp)2

κ
) so we must have Im a =

A′ = 0. Since Im a = 0 implies A′ = 0, we need consider only
this condition:

Im
(

1
2 ψ̄0 Tr

[
G12

K

]+ ψ0 Tr
[
G11

K

]) = 0. (111)
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Defining

D(k) = |J (k)J∗(−k) − V 2|ψ0|4|2, (112)

this is

−2iκ
∫

dk
1

D(k)

(
[|J (−k)|2 + V 2|ψ0|4 − ε(k)V |ψ0|2]ψ0

+ [V 2|ψ0|2]ψ3
0

) ∈ R. (113)

To proceed, it is helpful to calculate
∫

dω 1
D(ω,k) and∫

dω ω2

D(ω,k) (the denominator here is even in ω so any term of

the form
∫

dω ω
D(ω,k) is zero). This may be accomplished by

casting D(k) in residue form via the equation for the spectrum
(25):

D(ω, k) = (ω − ω−
k )(ω − ω+

k )[ω − (ω−
k )∗][ω − (ω+

k )∗].
(114)

At large ω this is O(ω−4), so we may close the contour of
integration in the upper half-plane (we assume for the moment
that the complex spectrum is stable and gapped), yielding

∫
dω

1

D(k)
= 2π i

[(ω+
k )∗ − ω−

k ][(ω+
k )∗ − ω+

k ][(ω+
k )∗ − (ω−

k )∗]
+ 2π i

[(ω−
k )∗ − ω−

k ][(ω−
k )∗ − ω+

k ][(ω−
k )∗ − (ω+

k )∗]
, (115)

∫
dω

ω2

D(k)
= 2π i((ω+

k )∗)2

[(ω+
k )∗ − ω−

k ][(ω+
k )∗ − ω+

k ][(ω+
k )∗ − (ω−

k )∗]
+ 2π i((ω−

k )∗)2

[(ω−
k )∗ − ω−

k ][(ω−
k )∗ − ω+

k ][(ω−
k )∗ − (ω+

k )∗]
. (116)

Denoting

z =
√

[ε(k) − δp + 2V |ψ0|2]2 − V 2|ψ0|4, (117)

ω± = −iκ ± z, (118)

we find∫
dω

1

D(k)
= 8πκ

z4 − 2z2[(z∗)2 − 4κ2] + [(z∗)2 + 4κ2]2
,

(119)∫
dω

ω2

D(k)
= 4πκ[z2 + (z∗)2 + 2κ2]

z4 − 2z2[(z∗)2 − 4κ2] + [(z∗)2 + 4κ2]2
.

(120)

The above results were worked out on the assumption that
the spectrum is stable and gapped. This may be viewed as a
regularization of the gapless case, and we may now study the
behavior of the above expressions for a gapless spectrum and
k → 0. In this case, some algebra yields∫

dω
1

D(k)
∼ mπ

2(2V |ψ0|2 − δp)κ

1

|k|2 + ε
, (121)

∫
dω

ω2

D(k)
∼ π

2κ
. (122)

Here ε is a quantity that tends to zero as we go from a gapped
to a gapless spectrum. The important consequence of this
is that for a gapless spectrum, traces over the first of these
quantities yield logarithmic divergences:∫

dk
1

D(k)
=
∫ �

0
dk k

∫
dω

1

D(ω, k)

∼ mπ

2(2V |ψ0|2 − δp)κ

∫ ε′

0
dk

k

k2 + ε

+
∫ �

ε′
dk k

∫
dω

1

D(ω, k)

= mπ

4(2V |ψ0|2 − δp)κ
log

(
ε′2 + ε

ε

)

+
∫ �

ε′
dk k

∫
dω

1

D(ω, k)
. (123)

Above ε′ is some energy scale small enough for our small
|k| approximation to be valid, � is the cutoff of the effective
field theory, and we have used rotational invariance to write
the momentum integral as a one-dimensional integral over |k|.
For a fixed κ , ε may be shown to be polynomial in δp, so
that this logarithmic divergence differs from the polynomial
divergences of the zero momentum correlators.

Traces over ε(k)
D(k) are also seen to be finite [compare (121),

noting that ε(k) ∼ |k|2 and the dk integral has a cutoff], so
that the logarithmically divergent terms in (113) are seen to
be

−2iκV 2|ψ0|2
(
2|ψ0|2ψ0 + ψ3

0

) ∫
dk

1

D(k)
. (124)

The gapped-spectrum regularization of
∫

dk 1
D(k) is real, so

that the only way for the above expression to be real [recall
that (113) being real is the condition for tadpole cancellation]
is for |ψ0|2ψ0 + ψ3

0 to be purely imaginary. From (105), this is
possible only if V n − δp = ± κ√

3
. Solving this equation [also

recall that V n is given by (31) at the inversion points] yields a
single solution of δp = √

3κ when the inversion points coin-
cide.

For any other relative magnitudes of δp and κ , the condition
fails to hold and the tadpole diagrams fail to cancel (moreover,
they also possess the additional logarithmic divergences found
above). This means that generically, as one approaches a non-
Morse critical point of the system, the current-current linear
response is perturbatively divergent beyond O(h̄), nullifying
the mean-field result indicative of superfluidity.

The fact that the cancellation occurs at δp = √
3κ , the

point corresponding to the monostable to bistable continuous
phase transition, may suggest that something interesting may
be occurring here. To this end we consider the remaining

214513-16



GEOMETRIC AND FLUCTUATIONAL DIVERGENCES IN … PHYSICAL REVIEW B 108, 214513 (2023)

terms

−2iκ
∫

dk
1

D(k)
(ω2 + ε(k)2 + ε(k)(3V |ψ0|2 − 2δ))ψ0.

(125)

The bracket is multiplying ε(k) is zero for δ = √
3κ (since

V |ψ0|2 = 2
3δ in this case), so we are left with

−2iκψ0

∫
dk

1

D(k)
(ω2 + ε(k)2). (126)

This is an integral of a real non-negative quantity and thus
clearly greater than zero (the integrand is zero only at ω =
|k| = 0). For δp = √

3κ , ψ0 ∝ 1 − √
3i, so that the above

expression cannot be purely real. This means that, even if
the logarithmic divergences cancel at δp = √

3κ , the algebraic
tadpole divergences do not and so the response still diverges.

Before proceeding, we should comment on our use of
a classical drive term Fp despite performing calculations to
O(h̄2). Because all expectation values we calculate are in
terms of the polariton fields only, any connected diagram
involving the drive fields would contain either at least two
polariton-drive correlators or a drive tadpole. We know that
there are no tadpoles at mean field in the current-current
response, so the drive fields would contribute only at O(h̄2),
namely, to the fluctuation calculations above. At that order,
the drive tadpoles would replace polariton tadpoles in any
diagram in which they appeared. Since these tadpoles would
have a significantly different form to the polariton tadpoles,
they would fail to cancel the divergences in the latter that
we demonstrate, and our analysis would remain unchanged.
The presence of two polariton-drive correlators would also
not affect the divergences, and thus our analysis above is
insensitive to this classical field simplification.

C. Perturbative results and RG at non-Morse critical points

The above perturbative result is sufficient to cast serious
doubt on the mean-field assertions of superfluidity we were
investigating. That the higher-order fluctuation corrections are
divergent is an example of the Ginzburg criterion at a phase
transition, and indicates that mean field and, by extension,
perturbation theory are not to be trusted. Mathematically, this
is because perturbative results can be highly misleading in the
vicinity of non-Morse critical points. Conventional perturba-
tion theory relies on the Morse Lemma to locally approximate
the integrand as Gaussian: if the lemma does not apply, inte-
grals over the non-Morse or catastrophe part of the integrand
may yield divergences in the perturbative scheme.

For integrals with a finite or countable number of modes
such as simple path integral problems in quantum mechanics,
the appearance of elementary catastrophes in the action yields
certain special functions (e.g., the Airy function above) in
an exact evaluation of the propagator or partition function,
when a perturbative evaluation would fail [62]. In those simple
cases, however, the essential variables or field modes were
discrete and the action is purely real. Problems with a con-
tinuum of modes are typically studied via the renormalization
group (RG), in light of which we may now consider the above
result. Since RG is a subject considerably too vast to introduce
here in a self-contained manner, it is suggested that the reader
interested in this section but unfamiliar with RG first consult
[63], which uses the same terminology and notation as we do
here.

Consider the continuous phase transition at δp = √
3κ , and

the following part of the Keldysh action:∫
dtd2x (ψ̄q(i∂t + ∇2)ψc + 2iκ|ψq|2). (127)

With two fields we are free to fix the behavior of two couplings
under the RG flow and may also choose the dynamical expo-
nent via anisotropic scaling. Choosing to fix the couplings of
ψ̄q∇2ψc, |ψq|2, and choosing the dynamical exponent to be
z = 2 yields the following naive scaling dimensions:

[ψc] = 0, (128)

[ψq] = 2. (129)

If we consider a field coupled to a quantum current, this will
add terms to the action of the form∫

dt d2x f a(x, t )ψ̄q∇aψ
c, (130)

with [ψq∇ψc] = 3. If we consider very long-wavelength
fields f a, such that they may be considered essentially con-
stant, f a will then correspond to a relevant coupling; the
addition of this term to the action at criticality will drive
the system to a different RG fixed point, likely altering its
behavior in a nonanalytic way. For this reason we expect
the long-wavelength linear response to such a coupling to be
divergent at the phase transition (in classical statistical me-
chanics such linear responses are typically second derivatives
of an effective energy with names like “heat capacity” and
“compressibility,” explaining why these transitions are often
“second order”).

By the above argument, that the low-wavelength current-
current response at this phase transition diverged in our
perturbative calculation is unsurprising. That it diverged at all
wavelengths, however, is of interest. To get a more physical
sense of why this occurs, let us focus on the divergent subex-
pression of (95):

ψ̄0
(
G11

R (0)
(

1
2 ψ̄0 Tr

[
G12

K

]+ ψ0 Tr
[
G11

K

])+ G12
R (0)

(
1
2ψ0 Tr

[
G21

K

]+ ψ̄0 Tr
[
G22

K

]))
+ ψ0

(
G21

R (0)
(

1
2 ψ̄0 Tr

[
G12

K

]+ ψ0 Tr
[
G11

K

]
) + G22

R (0)
(

1
2ψ0 Tr

[
G21

K

]+ ψ̄0 Tr
[
G22

K

]))
. (131)
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A little inspection shows that this is actually the O(h̄) cor-
rection to 〈ψc(0)ψ̄c(0)〉, generated by diagrams of the form
(mean field ψ ) × tadpole, which tells us that 〈ψc(0)ψ̄c(0)〉
also perturbatively diverges. This is a classic manifestation of
the Ginzburg criterion, with the field fluctuations exceeding
the mean-field value at the transition. Looking at Figs. 3 and
10–13, we see that to O(h̄2) every diagram of the current-
current is proportional either |ψ0|2 or to this O(h̄) correction.
Intuitively this makes sense: the current response is propor-
tional to the amount of condensate “available” to respond.
Thus, if 〈ψc(0)ψ̄c(0)〉 is divergent at a phase transition in a
perturbative scheme, so too ought to be the current-current
response.

The physical perturbative argument and RG theory argu-
ment combined give compelling evidence for the incorrect-
ness of the mean-field superfluid result, and the absence of
superfluid at this point. While the RG argument is not directly
applicable to the rest of the locus of bifurcations, these points
are all dynamically unstable and correspond to first-order
phase transitions: one would thus a priori expect the linear
response at them to also be nonanalytic, and the perturbative
calculation seems to support this.

D. Comparison with incoherent drive

It is instructive to contrast the above cancellation fail-
ure with the case of isotropic incoherently driven polaritons,
for which [31] established the presence of superfluid-
ity. The Keldysh action of this model may be written
as

Sinc =
∑

k

(
ψ̄c

k ψ̄
q
k

)( 0 g̃−1(k)
(g̃−1)∗(k) 2iκ

)(
ψc

k

ψ
q
k

)

− V

2

∑
k,k′,q

(
ψ̄c

k−qψ̄
q
k′+q

[
ψc

k ψ
c
k′ + ψ

q
k ψ

q
k′
]+ c.c.

)
,

(132)

g̃−1 = ω + μ − ε(k) − iκ + ip(ω + μ), (133)

p(ω) = γ − ηω, μ = γ − κ

η
. (134)

Here the Fp pump term of the coherent model has been re-
placed by the incoherent ip(ω + μ) pump term, where μ is
a chemical potential calculated from the condition for the
existence of a macroscopically occupied mean field:

μ + ip(μ) − iκ = V |ψ0|2 ⇒ p(μ) = κ. (135)

Due to the great similarity of this effective action to that for
coherently driven polaritons (9), the diagrammatics are iden-
tical up to a redefinition of |ψ0|2 and J (k). For the incoherent
model these are given by

J̃ (k) = ω + μ − ε(k) + iκ − ip(ω + μ) − 2V |ψ̃0|2, (136)

V |ψ̃0|2 = μ. (137)

The condition for tadpole cancellation (98) studied in the
preceding section carries over to the incoherent model via
the J → J̃ , ψ0 → ψ̃0 replacement. Since J̃ (0) = −V |ψ̃0|2,
the condition is satisfied and the diagrams do not cause a
divergence in the gapless regime of the incoherent model.

From our above discussion we see that this also means a zero
O(h̄) correction to 〈ψc(0)ψ̄c(0)〉. Thus there is a well-defined
value for the condensate, the current-current response is thus
finite, and superfluidity is present as expected.

VI. CONCLUSION

Early work [49,50] argued, via an appeal to the Landau cri-
terion for a complex-valued spectrum, that coherently pumped
systems below the OPO threshold could display superfluid
behavior in a wide range of pump regimes despite the breaking
of U (1) symmetry by the drive. We have reviewed these argu-
ments in the context of subsequent work [51], which focused
on a more rigorous definition of superfluidity via a system’s
current-current response tensor as opposed to the Landau
criterion, and showed that the steady states identified by the
Landau criterion were not superfluid but rather a kind of rigid
state which does not respond to either longitudinal or trans-
verse perturbations (as opposed to a superfluid, which should
respond longitudinally but not transversely). The present pa-
per’s main focus is in turn concentrated on a restricted pump
regime, namely inversion points of the bistability curve, where
the excitation spectrum is gapless and mean-field calculations
of the response tensor suggest superfluidity can nevertheless
be found.

In the general anisotropic pump regime, we found that
such inversion points exhibit diverging current-current re-
sponses. While the physical significance of these divergences
was initially unclear, we demonstrated that they arise from a
cusp-catastrophe structure present in the mean-field values of
the system’s fields. The inversion points of interest correspond
to the cusp’s “locus of bifurcations,” a line of solutions where
small variations in system parameters lead to drastic changes
in behavior due to possible bifurcations of the mean-field
solution. It is generically true that at such points the linear
response of the variables undergoing the bifurcation, here
the system fields, diverges and we show how to relate the
divergence of the linear current-current response to this.

Beyond that, in the isotropic case, we found that the
mean-field current-current response at an inversion point is
indicative of superfluidity. We show, however, that higher-
order perturbative corrections at these points are divergent.
These divergences may be viewed through either the lens of
renormalization, which shows them to be driven by the current
being a relevant operator, or via perturbation theory. In the
latter, they arise due to a failure of Keldysh tadpole diagrams
to cancel in a consistent manner. This cancellation failure
induces a divergence in the condensate magnitude, which then
yields a divergence in the current-current response. These
divergences indicate that the mean-field superfluid result is not
reliable, as is to be expected since the inversion points in fact
correspond to phase transitions.

While in both cases the divergences arise from the phase-
transition nature of points along the locus of bifurcations, we
see that there are two different mechanisms at play: a purely
geometric, catastrophe-theoretic mechanism which manifests
at the mean-field level in the anisotropic regime, and a
fluctuational “Ginzburg criterion” one that appears in both the
isotropic and anisotropic regimes.
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We have thus shown that initially promising mean-field
results indicating superfluidity in the system are invalid,
and there remain no known superfluid regimes in coherently
driven exciton-polaritons. Nevertheless, there are remaining
possible avenues of research. First, we have throughout con-
sidered a Markovian photon reservoir for the system, having
demonstrated that an experimentally natural thermal reservoir
will exhibit this property. Nevertheless, a number of re-
cent works have considered the possibility of non-Markovian
reservoir engineering (see [64] and Refs. 50–56 therein) to
achieve various desired many-body states. While this seems
unlikely to overcome the absence of U (1) symmetry in the
system, it may nevertheless be worth investigating. Such an
investigation, however, would be significantly more compli-
cated than that in our present paper, as the resulting Keldysh
action would be nontime local.

Another possible direction would be nonhomogeneous sys-
tems. For example, [65] considered scattering against a defect
outside a coherently pumped spot, and observed suppressed
scattering in the small region around the pump spot where
the fluid velocity was below the sound velocity of the sonic
regime. Since the U (1) symmetry of the fluid outside the
pump region was not directly broken by the pump, there may
be a possibility of engineering nonhomogeneous systems with
regions of the polariton fluid being coherently pumped and
others exhibiting superfluidity. While this may prove not to
be the case (interactions with fluid flowing out of the pump
spot may somehow still break the U (1) symmetry of the fluid
outside), it is a possible interesting avenue to explore.
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APPENDIX A: EFFECTIVE KELDYSH ACTION

1. Nonequilibrium field theory

Zero-temperature perturbative QFT is often concerned
with calculating time-ordered expectations of operators in a
ground state |�〉:

〈T O1(t1) . . . On(tn)〉

= 〈�|U (∞, tn)On . . .U (t2, t1)O1U (t1,−∞)|�〉
〈�|U (∞,−∞)|�〉 . (A1)

For a Hamiltonian consisting of creation and annihilation op-
erators, the operator 〈�|U (∞,−∞)|�〉 may be converted to
a coherent state path integral expression (up to a phase factor
that cancels in the ratio above) of the form

〈�|U (∞,−∞)|�〉 ∝
ψ (∞)=ψout∫

ψ (−∞)=ψin

D[ψ, ψ̄] eiS = G(ψout, ψin ), (A2)

S =
∫

dt dx (ψ̄ i∂tψ − H (ψ̄, ψ )), (A3)

via Trotter decomposition [62], where the boundary condi-
tions ψin, ψout depend on the initial and final states. The
numerator in the above ratio may then be calculated (up to
the same phase factor) by taking functional derivatives of this
object with a modified action:

〈�|U (∞, tn)On · · ·U (t2, t1)O1U (t1,−∞)|�〉

∝ δ

δJ1(t1)
· · · δ

δJn(tn)
GJ (ψout, ψin )

∣∣∣∣
J=0

, (A4)

SJ = S +
n∑

i=1

JiOi(ψ̄, ψ ). (A5)

The nonequilibrium situation is remarkably similar, but
with a density matrix ρ−∞ instead of a pure initial state
|i〉. Supposing that the system obeys dynamical semi-group
evolution ρt = Et−t ′ [ρt ′], Trotter decomposition again allows
a path integral representation for objects of the form

Tr
(
E∞−tn

[
On · · · Et2−t1

[
O1Et1+∞[ρ−∞]

]])
. (A6)

In the case of Lindbladian evolution, a recipe for this is pro-
vided in [63]. In our case, since we have access to the driven
Hamiltonian

H =
∑

k

(ωLP(k + kp) − ωp)a†
kak

+ V

2

∑
k,k′,q

a†
k−qa†

k′+qakak′ +
∑

k

ωA(p + kp)A†
pAp

+
∑
k,p

ζk,p(eiωpt a†
kAp + A†

pake−iωpt ) + Fp(a†
0 + a0),

(A7)

we may instead apply the Feynman-Vernon method [66]. To
this end, we first consider the evolution of an unphysical
density matrix ρ0 = |ψa〉〈ψb|. To calculate the trace at time
T , we may use the closed-system propagator to evolve each
side:

Tr ρT =
∫

dψT dψ̄T 〈ψT |U (T, 0)|ψa〉〈ψb|U (T, 0)†|ψT 〉.
(A8)

We know from (A3) how to represent each of the appearing
objects as a functional integral. We then arrive at [going from
a (T, 0) to a (∞,−∞) time range]

Tr ρ∞ =
∫

ψ+(−∞)=ψa
ψ−(−∞)=ψb

D[ψ+, ψ̄+, ψ−, ψ̄−] eiS, (A9)

S =
∫

dt dx (ψ̄+i∂tψ
+ − H (ψ̄+, ψ+)

− ψ̄−i∂tψ
− + H (ψ̄−, ψ−)), (A10)

with ψ+ coming from the path integral for 〈ψT |U (T, 0)|ψa〉
and ψ− from the path integral for 〈ψb|U (T, 0)†|ψT 〉.
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This construction is sometimes visualized as a time contour
(the “Keldysh contour”) consisting of two parts. The first, the
“forward contour,” runs from t = −∞ to t = ∞ while the
second, the “backward contour,” then runs back from t = ∞
to t = −∞. It is then stated that the ψ+ fields lie on the for-
ward contour while the ψ− fields lie on the backward contour.

The origin of this terminology may be seen by rearranging
(A8) for a time range (∞,−∞) as

Tr ρ∞ =
∫

dψ∞ dψ̄∞ 〈ψb|U (−∞,∞)|ψ∞〉
× 〈ψ∞|U (∞,−∞)|ψa〉 (A11)

and applying the resolution of identity for coherent states:

Tr ρ∞ = 〈ψb|U (−∞,∞)U (∞,−∞)|ψa〉. (A12)

The expression on the right-hand side now looks like an evo-
lution in time of the ψa state from t = −∞ to t = ∞ along
the forward contour followed by an evolution back in time
from t = ∞ to t = −∞ along the backward contour; ψ+
corresponds to the path integral for the first time evolution
operator (the forward contour one) and ψ− to the second
operator (the backward contour one).

While the Keldysh contour picture is frequently referenced
in the literature, it does not have a real physical meaning. As
is clear from (A8), there is no backward evolution in time
of a pure state but rather a forward evolution of a density
matrix. The physical meaning of ψ+ is thus not of a field
existing on a forward-evolving time contour but rather a field
corresponding to the degrees of freedom of one of the Hilbert
spaces (the left one) comprising the product Hilbert space
in which the density matrix lies. Similarly, ψ− corresponds
to the degrees of freedom of the right Hilbert space. Never-
theless, the contour terminology is entrenched and we may
occasionally use it.

Finally, we may discard some of the initial conditions
and perform a change of variables. The former may be done
because we shall be interested in an effective action for the
evolution of a driven-dissipative subsystem of this system.
Such systems typically possess a unique steady state [67]
independent of the initial conditions, and this is the state in
which we will be calculating correlators (since we have taken
an infinite time interval). However, this must be done with
care. The evolution will become driven-dissipative only after
some bath is integrated out, and so initial conditions can be
discarded only after this step; the initial conditions for the
bath may contribute to a correct derivation of an effective
action.

The latter is a variable change known as the Keldysh
rotation and allows for the easy calculation of the system’s
retarded, advanced, and kinetic Green’s functions. The trans-
formation is unitary (hence the name “rotation”):

(
ψc

ψq

)
=
( 1√

2
1√
2

1√
2

− 1√
2

)(
ψ+
ψ−

)
, (A13)

and it may be shown that in these new variables [68]

iGR(r) = 〈ψc(r)ψ̄q(0)〉, (A14)

iGA(r) = 〈ψ̄c(r)ψq(0)〉, (A15)

iGK (r) = 〈ψc(r)ψ̄c(0)〉, (A16)

0 = 〈ψq(r)ψ̄q(0)〉. (A17)

The fields ψc and ψq are known as the classical and quantum
fields in Keldysh parlance. While their primary importance
in this paper will be their utility for calculating the above
Green’s functions, it bears to explain their naming and some of
their other properties. This will hopefully also serve to show
the connection between Keldysh theory and driven-dissipative
Gross-Pitaevskii equations for those readers more familiar
with the latter.

The typical structure of a bosonic Keldysh action is

1

h̄

∫
dt dd x [ψ̄qCGPE[ψc] + ψq · CGPE[ψc]

+ K[ψc]|ψq|2 + O(|ψq|3)], (A18)

where we have temporarily reinserted h̄, CGPE stands for
“complex Gross-Pitaevskii equation,” and K[ψc] relates to
the dissipation in the problem. If we rescale ψq → h̄ψq and
K → K/h̄ (the latter amounting to measuring the dissipation
in units of energy [68]), we find the action to now be∫

dtdd x [ψ̄q · CGPE[ψc] + ψqCGPE[ψc]

+ K[ψc]|ψq|2 + O(h̄3|ψq|3)]. (A19)

We thus see that in the h̄ → 0 limit, all terms in ψq of order
higher than quadratic vanish. This is one of the reasons ψq

is referred to as the quantum field—it is not present beyond
quadratic order in the classical limit. Of the remaining terms,
if K[ψc] = 0, the functional integral over ψq yields functional
Dirac delta functions [via the functional version of the identity∫

dxeixy = 2πδ(y)] strictly enforcing the CGPE for the clas-
sical field ψc. If the dissipative K term is not zero, it can be
shown to convert the CGPE to a stochastic CGPE. This term
thus introduces classical thermal or driven-dissipative effects
into the problem [68].

This brings us to a second reason for the names of these
fields. By the symmetry of the problem with respect to the
forward and backward contours, it can be shown that 〈ψ+〉 =
〈ψ−〉 and thus 〈ψc〉 = √

2〈ψ+〉, 〈ψq〉 = 0. In this way, the
classical field ψc is what captures the mean field of the prob-
lem (as we saw, it is the field that obeys the CGPE in the
classical limit) while the quantum field is always zero in the
mean field or classical limit.

2. Deriving the action

We are now ready to apply this method to (A7). Denoting
the polariton and bath fields by ψ and τ respectively, and
grouping them via � = (ψc, ψq ), τ = (τ c, τ q ), we find the
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full action to be

S[�, τ] =
∫

dt

[∑
k

�̄(t, k)[i∂t + ωp − ωLP(k + kp)]σ1�(t, k) −
√

2Fp[ψ̄q(t, 0) + ψq(t, 0)]

+
∑

p

τ̄(t, p)[i∂t − ωτ (p)]σ1τ(t, p) −
∑
k,p

ζk,p(τ̄(t, p)σ1�(t, k)e−iωpt + eiωpt �̄(t, k)σ1τ(t, p))

−
∑

k,k′,q

V

2
(�T (t, k)�(t, k′)ψ̄c(t, k − q)ψ̄q(t, k′ + q) + c.c.)

]
, (A20)

where σi denote the corresponding Pauli matrices. We may split off the part of this action containing the bath fields,

Sbath[�, τ] =
∫

dt

[∑
p

τ̄(t, p)[i∂t − ωτ (p)]σ1τ(t, p) −
∑
k,p

ζk,p(τ̄(t, p)σ1�(t, k)e−iωpt + eiωpt �̄(t, k)σ1τ(t, p))

]
, (A21)

and note that this term is quadratic in them. Performing the corresponding Gaussian integral yields

Sbath[�] = −
∫

dt dt ′ ∑
k,k′,p

�̄(t, k)σ1ζk,pζk′,peiωpt Gb(t − t ′)e−iωpt ′
σ1�(t ′, k′), (A22)

where Gb(t − t ′) = δ(t − t ′){[i∂t ′ − ωτ (p)]σ1}−1. At this
stage, we must recall that the initial combined density matrix
of the system and reservoir also makes a contribution to the
functional integral; the combined system is nondissipative so
there is no unique steady state that would allow us to discard
the initial conditions.

The first assumption we will make is that the system begins
in a tensor product state of the form

ρsystem ⊗ ρbath.

This may be naturally achieved by supposing that we consider
the combined system from the moment the system and bath
first begin interacting. From here, we concentrate on ρbath

since we will eventually be able to disregard ρsystem. This is be-
cause it will be ρsystem evolving in the final driven-dissipative
problem, at which point there will be a unique steady state
allowing us to disregard the initial density matrix.

The initial bath density matrix enters the problem by
amending the term we have written as

{[i∂t − ωτ (p)]σ1}−1.

With the density matrix accounted for and performing a
Fourier transform, eiωpt Gb(t − t ′)e−iωpt ′

instead becomes [68]

G̃b(ω + ωp)

=
(−2π iF (ω + ωp)δ(ω + ωp − ωτ ) 1

ω+ωp−ωτ +iε
1

ω+ωp−ωτ −iε 0

)
,

(A23)

where F (ω) is the “distribution function” corresponding to the
bath density matrix. We now seek to show that, for reasonable
choices of this initial distribution, the interaction of the po-
laritons with the reservoir will be Markovian and the resulting
action will be time-local.

We can simplify further by assuming the coupling between
the bath and the system is independent of the polariton mo-
mentum, ζk,pζk′,p = ζ 2

p , and by suggesting that, if the bath

frequencies ωτ (p) form a dense spectrum and the coupling
constants ζp = ζ (ωτ ) are smooth functions of these, we can
replace the sum over bath modes with the integral

∑
p

ζ 2
p →

∫
dωτ ζ (ωτ )2Nτ (ωτ ), (A24)

where Nτ (ωτ ) is the bath density of states. The action then
becomes

Sbath[�] = −
∫

dω
∑

k

�̄(ω, k)

(
0 dA(ω)

dR(ω) dK (ω)

)
�(ω, k),

(A25)

with dA(ω), dR(ω), and dK (ω) obtained via the Sokhotski-
Plemelj theorem as

dR/A(ω) = P
∫

dωτ

ζ (ωτ )2Nτ (ωτ )

ω + ωp − ωτ

∓ iπζ (ω + ωp)2Nτ (ω + ωp), (A26)

dK (ω) = −2π iF (ω + ωp)ζ (ω + ωp)2Nτ (ω + ωp). (A27)

In order for the final action to be time-local or “Markovian,”
the bath must appear to be frequency-independent to the sys-
tem. To this end, recall that the system’s spectrum (that of the
interacting lower polaritons) acts like the continuum analog
of the natural frequency of an oscillator: the bath will interact
with the system preferentially at these frequencies [68].

Due to our gauge transformation, the spectrum of the
interacting polaritons is ωLP(k + kp) − ωp. This has also,
however, shifted F , ζ , and Nτ in the d functions (A26) and
(A27) via ω → ω + ωp. Thus we may consider the variation
of N (ωLP(k)), N (ωLP(k)), and N (ωLP(k)) over the range of
the lower polariton spectrum, assuming that kp is negligible
relative to our momentum cutoff and that the interacting spec-
trum has roughly the same range as the bare spectrum (this is
true in our weakly interacting case).
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For exciton-polaritons, the bottom of the bare spectrum
(and ωp, since we pump resonantly) is typically on the order
of 1.5 eV [13] and the spectrum is bounded above by the
exciton spectrum, the bottom of which is ∼10 meV higher.
With exciton masses typically being between 0.1me and 1me,
where me is the electron mass, we may crudely estimate the
variation of the exciton spectrum up to the momentum cutoff
of h

100 Å as

1

0.2me

(
h

100 Å

)2

≈ 0.15 eV. (A28)

Together with the ghost branch of the polariton spectrum, this
gives an approximate range of variation of 1.5 ± 0.15 eV. We
would thus like to argue that the variation of N , ζ , and F is
negligible on it.

For a 3D photonic bath, the density of states N (ω) will
be quadratic in ω, and a quick calculation shows that Nmax ≈
1.5Nmin on this range. Around the midpoint of these values,
N (ωp), the variation is on the order of 20%; for our purposes
this sufficiently little variation to take this as constant.

We now turn to the frequency dependence in the bath’s
distribution function F and decay coupling ζ . This is the point
at which assumptions must be made about the initial density
matrix. The most natural initial distribution for the bath would
be thermal; it is a large reservoir which has equilibrated with
its environment before coming into contact with the system.
In this case the distribution function is F (ω) = 2no(ω) + 1,
where no is the occupation number of the given energy level.
If the bath is in thermal equilibrium at an energy scale sig-
nificantly lower than the range of variation of the polariton
spectrum, then at all relevant energies the occupation number

no will be identically zero and the distribution function will be
F (ω) = 1. At the same time, we may expect the decay of the
high energy polaritons to not occur preferentially into any of
the equally empty photonic modes and thus set ζ (ω) = ζconst.
In this case, setting κ = N (ωp)ζconst and F (ω) = 1, we obtain
from (A26) and (A27)

dR/A(ω) = ∓iκ, (A29)

dK (ω) = −2iκ. (A30)

We see that stipulating such an initial distribution yields a
fully Markovian bath. It remains to check that the thermal
distribution is indeed lower energy than the polaritons. With
an average thermal photon energy of kT , at room temper-
ature (300 K) this energy is 25 meV, which is significantly
lower than the smallest energy in the cutoff polariton spec-
trum (roughly 1.35 eV). Thus the distribution has negligible
occupation at the relevant energy levels as required.

While we have discussed a thermal distribution above, it
being a natural experimental distribution, our arguments carry
over to any distribution which may be expressed in terms of
occupation numbers and which has occupancy only at ener-
gies significantly below those of the polaritons.

In this Markovian approximation, the final form of the
action is

Seff =
∫

dk (ψ̄c
k ψ̄

q
k )

(
0 g−1(k)

(g−1)∗(k) 2iκ

)(
ψc

k

ψ
q
k

)
− V

2

∫
dk dk′ dq

(
ψ̄c

k−qψ̄
q
k′+q

[
ψc

k ψ
c
k′

+ ψ
q
k ψ

q
k′
]+ c.c.

)−
√

2Fp
(
ψ̄

q
0 + ψ

q
0

)
, (A31)

where g−1(k) = ω + �p − ωLP(k + kp) − iκ .

APPENDIX B: NAMBU DIAGRAMMATICS FOR THE KELDYSH ACTION

In the main body of the paper, a path integral over the action (9) is considered. This action may be written in terms of
fluctuations (δψc, δψq ) around the mean-field result (ψc, ψq ) = (

√
2ψ0, 0) worked out from (16). From here on we simply

write (ψc, ψq ) for these fluctuations. Such an expansion around the mean field will, however, contain quadratic fluctuation
terms which do not fit the pattern of the quadratic term in the above action. These may be gathered in the following “Nambu”
form [recall that J (k) = ω + �p − ε(k) + iκ − 2V |ψ0|2]:

1

2

∫
dkdk′

⎛
⎜⎜⎜⎝

ψ̄c(k′)
ψc(−k′)
ψ̄q(k′)

ψq(−k′)

⎞
⎟⎟⎟⎠

T⎛⎜⎜⎜⎝
0 0 J (k) −V ψ2

0

0 0 −V ψ̄2
0 J∗(−k)

J∗(k) −V ψ2
0 2iκ 0

−V ψ̄2
0 J (−k) 0 2iκ

⎞
⎟⎟⎟⎠δ(k − k′)

⎛
⎜⎜⎜⎝

ψc(k)
ψ̄c(−k)
ψq(k)

ψ̄q(−k)

⎞
⎟⎟⎟⎠, (B1)

but this introduces a certain redundancy of degrees of freedom. This redundancy arises from the fact that the complex variables
in the Nambu vector �(k) = (ψc(k), ψ̄c(−k), ψq(k), ψ̄q(−k)) appear on both the left- and right-hand sides of the matrix as
(k, k′) vary. As a result, the Gaussian functional integral cannot be immediately performed via the standard form for z†M−1z
actions. Moreover, the associated measure D�(k)D�̄(k′) is redundant if a full range is taken for (k, k′).

The solution is to note that the action is invariant under the transformation (k, k′) → (−k′,−k). This transformation may
be used to partition R8 into two disjoint sets � and �′ such that they transform into each other under it. There will be some
ambiguity for elements of the form (k,−k) since they are invariant under it, but they represent a set of measure 0 and may thus
be neglected. With this partition, the action may be rewritten as (note the elimination of the 1

2 factor to preserve the action due
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to the halving of the integration volume)

∫
�

dkdk′

⎛
⎜⎜⎜⎝

ψ̄c(k′)
ψc(−k′)
ψ̄q(k′)

ψq(−k′)

⎞
⎟⎟⎟⎠

T⎛⎜⎜⎜⎝
0 0 J (k) −V ψ2

0

0 0 −V ψ̄2
0 J∗(−k)

J∗(k) −V ψ2
0 2iκ 0

−V ψ̄2
0 J (−k) 0 2iκ

⎞
⎟⎟⎟⎠δ(k − k′)

⎛
⎜⎜⎜⎝

ψc(k)
ψ̄c(−k)
ψq(k)

ψ̄q(−k)

⎞
⎟⎟⎟⎠, (B2)

and the functional measure is also taken over �, eliminating its redundancy and reproducing the original measure.
It remains to observe that, were we to multiply this functional integral by another where we took �′ as the integration range,

we would again obtain a functional integral with action (B2) but the integration range unrestricted. Moreover, since in this new
integral the field ψ (−k′), (k, k′) ∈ � in the left vector and ψ (−k′), (−k′,−k) ∈ �′ in the right vector originate from two separate
original integrals and are thus independent, the integral has no redundancy and is simply equal to the functional determinant of⎛

⎜⎜⎜⎜⎝
0 0 J (k) −V ψ2

0

0 0 −V ψ̄2
0 J∗(−k)

J∗(k) −V ψ2
0 2iκ 0

−V ψ̄2
0 J (−k) 0 2iκ

⎞
⎟⎟⎟⎟⎠δ(k − k′). (B3)

Since the value of the original integral should not depend on whether � or �′ was used, this means that it is equal to the square
root of this functional determinant. We have seen in Appendix A that the path integral in this form corresponds to the trace of a
time-evolved density matrix, so that this square root should be equal to 1.

From here we may add source terms of the form⎛
⎜⎜⎜⎝

J1(k)
J2(−k)
J3(k)

J4(−k)

⎞
⎟⎟⎟⎠

T⎛⎜⎜⎜⎝
ψc(k)

ψ̄c(−k)
ψq(k)

ψ̄q(−k)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

ψ̄c(k)
ψc(−k)
ψ̄q(k)

ψq(−k)

⎞
⎟⎟⎟⎠

T⎛⎜⎜⎜⎝
J5(k)

J6(−k)
J7(k)

J8(−k)

⎞
⎟⎟⎟⎠ (B4)

to either the � or �′ action, depending on which range of wave vectors we wish to study, and then perform the integral over the
sum of the two actions. This will be a standard Gaussian integral with source terms, yielding

G[J1, J2, J3, J4, J5, J6, J7, J8] = exp

⎡
⎢⎢⎢⎢⎢⎣−i

∫
�̃

dk dk′

⎛
⎜⎜⎜⎜⎝

J1(k′)

J2(−k′)

J3(k′)

J4(−k′)

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0 0 J (k) −V ψ2

0

0 0 −V ψ̄2
0 J∗(−k)

J∗(k) −V ψ2
0 2iκ 0

−V ψ̄2
0 J (−k) 0 2iκ

⎞
⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎝
J5(k)

J6(−k)

J7(k)

J8(−k)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦,

(B5)

where we have denoted the integration range of the action to which we added the source terms by �̃. From here we observe that
for (k, k′) ∈ �̃ (denoting the other integration range by �̃c, the corresponding action by S�̃c , and the action with source terms
and integration range �̃ by S�̃,J ),〈(

ψc
k

)a(
ψ̄c

−k

)b(
ψ

q
k

)c(
ψ̄

q
−k

)d(
ψ̄c

k

)e(
ψc

−k

) f (
ψ̄

q
k

)g(
ψ

q
−k

)h〉
= δa

δJ1(k)a

δb

δJ2(−k)b

δc

δJ3(k)c

δd

δJ4(−k)d

δe

δJ5(k)e

δ f

δJ6(−k) f

δg

δJ7(k)g

δh

δJ8(−k)h︸ ︷︷ ︸
∂J

∫
�̃

D[ψc, ψ̄c, ψq, ψ̄q] exp[iS�̃,J ]

= ∂J

⎛
⎜⎜⎜⎝
∫

�̃c

D[ψc, ψ̄c, ψq, ψ̄q] exp[iS�̃c ]︸ ︷︷ ︸
1

∫
�̃

D[ψc, ψ̄c, ψq, ψ̄q] exp[iS�̃,J ]

⎞
⎟⎟⎟⎠

= ∂JG[J1, J2, J3, J4, J5, J6, J7, J8]. (B6)

This quadratic generating function structure for expectation values means that Wick’s theorem will hold for diagrammatic
calculations and, by selectively choosing �, �′, and to which action to add the source terms, we may use the above formula to
work out the expectation of the product of any pair of field modes. This yields the following correlators:〈(

ψc
k

ψ̄c
−k

)(
ψ̄

q
k ψ

q
−k

)〉 = iGR(k) = i

J (k)J∗(−k) − V 2|ψ0|4
(

J∗(−k) V ψ2
0

V ψ̄2
0 J (k)

)
, (B7)
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FIG. 14. Trivalent vertices of the quartic interaction.

〈(
ψ

q
k

ψ̄
q
−k

)(
ψ̄c

k ψc
−k

)〉 = iGA(k) = i

J (−k)J∗(k) − V 2|ψ0|4
(

J (−k) V ψ2
0

V ψ̄2
0 J∗(k)

)
, (B8)

〈(
ψc

k

ψ̄c
−k

)(
ψ̄c

k ψc
−k

)〉 = iGK (k) = 2κ

|J (k)J∗(−k) − V 2|ψ0|4|2
(

J∗(−k)J (−k) + V 2|ψ0|4 [J∗(−k) + J∗(k)]V ψ2
0

[J (−k) + J (k)]V ψ̄2
0 J∗(k)J (k) + V 2|ψ0|4

)
, (B9)

〈(
ψ

q
k

ψ̄
q
−k

)(
ψ̄

q
k ψ

q
−k

)〉 = 0. (B10)

Since we expanded around the mean field, linear terms are removed from the action and quadratic ones have already been
included in the matrix above, so it remains to consider the expansion of the quartic term

−V

2

∫
dk dk′ dq

(
ψ̄c

k−qψ̄
q
k′+q

[
ψc

k ψ
c
k′ + ψ

q
k ψ

q
k′
]+ c.c.

)
(B11)

into trivalent and tetravalent vertices to complete the standard diagrammatics. There are six topologically distinct trivalent
vertices, and four tetravalent vertices, presented in Figs. 14 and 15 with their vertex factors. Standard rules for symmetry factors
relating to exchange of vertices and edges then apply; symmetry multipliers have been included in the vertex factors, and it
remains to divide a given diagram by its symmetry factor. Finally, since the expansion is taken around a nonzero value of ψc,
diagrams may contain free ψc fields, corresponding to a factor of ψ0, signified by circles with a line through them for ψc and a
cross for ψ̄c.

APPENDIX C: CATASTROPHE THEORY

Elementary catastrophe theory studies structurally unstable
local behavior of functions. For systems controlled by the
extremization of some effective potential, such local behavior
of the extremum is frequently important [61]: for dynamical
systems, the local behavior of potential minima affects their
stability, while in the Landau mean-field theory of phases such
behavior may lead to phase transitions. In the main body of
the paper we find a situation where steady-state properties of
a nonequilibrium may be obtained from the minima of a cor-
responding effective potential, and apply catastrophe theory
to understand the resulting phenomena. We thus review catas-
trophe theory and its applications in this Appendix, following
the exposition given in [61].

In its most elementary form, catastrophe theory is the ex-
tension of two fundamental results on the local behavior of
functions, namely, a corollary of the Rectification Theorem
for vector fields [69] and the Morse Lemma [60].

Theorem 1 (Rectification Theorem (Corollary)). Let f (x)
= f (x1, x2, . . . , xn) be a smooth function with nonzero gra-
dient at x0:

∇ f |x0 �= 0. (C1)

Then there exists a neighborhood of x0 and a smooth change
of coordinates, y = (y1, y2, . . . , yn), y = y(x), on this neigh-
borhood so that

f (y) = y1. (C2)
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FIG. 15. Tetravalent vertices of the quartic interaction.

Theorem 2 (Morse Lemma). Let f (x) = f (x1, x2, . . . , xn)
be a function with vanishing gradient and nonsingular Jaco-
bian matrix at x0:

∇ f |x0 = 0, (C3)

det[∂2 f /∂xi∂x j]|x0 �= 0. (C4)

Then there exists a neighborhood of x0 and a smooth change
of coordinates, y = (y1, y2, . . . , yn), y = y(x), on this neigh-
borhood so that

f (y) = y2
1 + y2

2 + · · · + y2
m − y2

m+1 − · · · − y2
n, (C5)

where the number of positive and negative signs matches the
Jacobian signature.

The first of these theorems describes the most common
situation, away from a function’s critical points, while the
second describes the local behavior of nondegenerate, or
“Morse,” critical points. In particular, the Morse Lemma and
related family of “Preparation Theorems” facilitate famous
integral approximation methods such as Laplace’s Method,
the Method of Stationary Phase, and the Method of Steep-
est Descent, which are common in thermodynamic and QFT
calculations.

A key feature of noncritical points and Morse critical
points is known as “structural stability.” Using the above the-
orems it may be shown that the addition of an infinitesimal
perturbation to a function cannot change their nature; if a
function f (x) possesses a noncritical or a Morse critical point
at x0, then for sufficiently small ε, so will f (x) + εg(x) (the
position of the critical point may shift infinitesimally but it
will remain Morse).

Catastrophe theory, then, is concerned with situations
where such structural stability is absent and so-called “catas-
trophes” may occur from infinitesimal perturbations. The bulk

of elementary catastrophe theory is contained in two further
theorems, the Thom Splitting Lemma and Thom Classifica-
tion Theorem.

Theorem 3 (Thom Splitting Lemma). Let f (x) = f (x1, x2,

. . . , xn) be a function with vanishing gradient and singular
Jacobian matrix at x0:

∇ f |x0 = 0, (C6)

det[∂2 f /∂xi∂x j]|x0 = 0. (C7)

If the Jacobian matrix possesses l vanishing eigenvalues, then
there exists a neighborhood of x0 and a smooth change of
coordinates, y = (y1, y2, . . . , yn), y = y(x), on this neighbor-
hood so that the function splits as

f (y) = fNM (y1, . . . , yl ) + M(yl+1, . . . , yn), (C8)

M(y) = y2
l+1 + y2

l2 + · · · + y2
l+m − y2

l+m+1 − · · · − y2
n, (C9)

fNM ∈ O(y3), (C10)

where M(y) is a structurally stable Morse component (the
number of positive and negative signs again matches the sig-
nature of the Jacobian’s nonzero eigenvalues) while fNM is a
structurally unstable non-Morse component.

The coordinates appearing in M are known as “inessential”
since they do not participate in the dramatic structural insta-
bilities associated with non-Morse behavior. Conversely, the
coordinates appearing in fNM are known as “essential.” The
Thom Classification Theorem seeks to classify the possible
forms of the non-Morse component in the presence of external
“control parameters,” namely, variables c upon which a func-
tion f (x; c) depends but which are not coordinates [e.g., the
mean and variance of a normal distribution Norm(x; μ, σ )].
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Theorem 4 (Thom Classification Theorem). Let fNM (x; c)
= f (x1, . . . , xl ; c1, . . . , ck ) be a function of l coordinates and
k control parameters, possessing a non-Morse critical point
at x0. Then there exists a neighborhood of x0 and a smooth
change of coordinates, y = (y1, y2, . . . , yn), y = y(x), on this
neighborhood so that the function takes the form of an ele-
mentary catastrophe function Cat:

fNM (y; c) = Cat(y, c), (C11)

Cat(y, c) = CG(y) + Pert(y, c). (C12)

Every elementary catastrophe function consists of a catas-
trophe germ, CG, depending only on the coordinates, and a
perturbation Pert, which is linearly dependent on the control
parameters.

The possible canonical forms of catastrophe germs and
perturbation terms are exhaustively catalogued for small
numbers of coordinates and control parameters [61]. The
addition of the most general perturbation to a given catas-
trophe germ is known as its universal unfolding. Structural
instability comes from the dramatic effects of infinitesimal
variations in the control parameters on the topology of the
function’s critical points. Such variations may locally cre-
ate, merge, and annihilate critical points, in stark contrast
to the stable regimes around noncritical and Morse critical
points.

There exists a simple graphical notation for such topologi-
cal configurations of critical points in the case of a function of
a single coordinate. The idea is to draw a chain of circles cor-
responding to critical points, connected by lines and ordered
from left to right per the ordering of the critical points along
the real line. When the maximum possible number of critical
points is present, maxima are denoted by a minus inside a
circle and minima by a plus. In configurations where two or
more critical points have just merged (creating a structurally
unstable non-Morse critical point), the plus or minus is re-
placed by the number of merged critical points. If a critical
point is annihilated in a configuration, that circle is removed.
An example is given in Fig. 16. More sophisticated notation
exists for the multivariate case [60] but will not be used in this
paper.

We conclude this section by proving an important result
that is used in the main paper. Suppose that a function f (x; c)
possesses a critical point at xc(c), whose position depends
smoothly on c and such that xc(c0) = x0. We will now prove
that the linear response dxc/dc diverges if the critical point
becomes non-Morse.

Expand f (x; c) in a Taylor series in both coordi-
nates and control variables, taking δx and δc such that

+ - + - +
2 + - +
+ - +

FIG. 16. Plot of a degree six polynomial for various values of
its coefficients and the corresponding topological diagrams, showing
how the diagrams change as the leftmost critical points merge and
then annihilate. From top to bottom, the topological diagrams corre-
spond to the red, blue, and green plots, respectively.

xc(c0 + δc) = x0 + δx:

f (x0 + δx; c0 + δc)

= [
f + δxi∂i f + δca∂a f + 1

2δxiδx j∂i j f + δxiδca∂ia f

+ 1
2δcaδcb fab + O(3)

]∣∣
x=x0,c=c0

. (C13)

From this one obtains an expression for d
dx f (x0 + δx, c0 +

δc), which must be zero due to how we have chosen the
increments:

d

dxi
f (x0 + δx, c0 + δc)

= [∂i f + δx j∂i j f + δca∂ia f + O(3)]| x=x0
c=c0

. (C14)

∂i f |x=x0
= 0 by the condition that x0 is a critical point, so we

find

δx j∂i j f + δca∂ia f = 0, (C15)

which yields
dxc,i

dca
= −[∂2 f ]−1

i j ∂ ja f . (C16)

If the critical point is non-Morse then ∂2 f will be degenerate,
and its inversion in the above formula will yield a divergent
linear response.
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