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A B S T R A C T

We present an asymptotic and numerical study of the evolution of an incoming wavefield which
has a caustic close to a curve with an inflection point. Our results reveal the emergence of a
wavefield which resembles that of a shadow boundary but has a maximum amplitude along the
tangent at the inflection point.

. Introduction

In this brief paper we present an asymptotic and numerical study of a two-dimensional wavefield with a caustic near the cubic
urve 𝑦 + 1

3 𝛾𝑥
3 = 0 as 𝑥 → −∞ in the far field. The problem was introduced in [1] along with an explicit integral representation in

1, (4.7)] for the wavefield in a small neighbourhood of the origin, where the cubic has an inflection point and the caustic terminates.
nfortunately, [1, (4.7)] contained some errors, but also gave little insight into the outgoing field as 𝑥 → +∞. This paper both
orrects the errors in [1, (4.7)] and provides a detailed asymptotic description and a numerical solution of the outgoing wavefield.

The main rationale for this paper is that improved understanding of this wavefield may give intuition about the far-field solution
f the famous Popov inflection point problem, which describes the scattering of an incident whispering gallery wavefield propagating
long a concave portion of a scatterer boundary when it reaches an inflection point of the boundary. This canonical problem, which
emains unsolved in closed form, has a lengthy history, the most recent review of which is [2]. The Popov problem seeks a wavefield
n the region 𝑦 > − 1

3 𝛾𝑥
3 satisfying either a Dirichlet or Neumann boundary condition on the curve 𝑦 + 1

3 𝛾𝑥
3 = 0, and tending to an

iry function close to this curve as 𝑥 → −∞. In this paper we consider the evolution of an Airy function wavefield past the inflection
oint of the cubic in the absence of any boundary.

In Section 2 we introduce appropriate local curvilinear coordinates (𝑆,𝑁) based on the cubic curve, and then derive a
epresentation for the wavefield close to the inflection point in the form of an integral involving a complicated phase function
f 𝑆 and 𝑁 , correcting [1, (4.7)]. We then consider the outgoing field in the limit as 𝑆 → ∞, which we show to have a transition
etween bright and dark in the vicinity of the positive 𝑥-axis. In Section 3 we reformulate the solution in terms of integrals studied
n [3], which are appropriate for the numerical scheme introduced in [4], allowing us to present a validation of the asymptotic
nalysis. Finally, in Section 4 we offer some conclusions.

. Asymptotic behaviour of the wavefield near the inflection point

We align a two-dimensional Cartesian frame so that, for sufficiently small values of 𝑥 and 𝑦, the caustic has equation 𝑦+ 1
3 𝛾𝑥

3 = 0,
< 0, for some positive constant 𝛾. Local scalings on these coordinates, which both preserve this cubic profile exactly and allow
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us to model wave propagation through the inflection point at the origin are found to be 𝑥 = 𝑘−1∕5𝑋, 𝑦 = 𝑘−3∕5𝑌 , with 𝑋, 𝑌 = 𝑂(1).
One can then seek an approximate solution to the Helmholtz equation (𝛥 + 𝑘2)𝜙 = 0 of the form 𝜙 ∼ 𝑒𝑖𝑘𝑥�̃� (𝑋, 𝑌 ) as 𝑘 → ∞, with �̃�
satisfying the parabolic wave equation

𝜕2�̃�
𝜕𝑌 2

+ 2𝑖 𝜕�̃�
𝜕𝑋

= 0. (2.1)

An alternative approach, adopted and reviewed in [1], is to switch to local curvilinear coordinates intrinsic to the curve
+ 1

3 𝛾𝑥
3 = 0 involving arc-length 𝑠 and normal distance 𝑛 along and from it, respectively. It then follows that, correct up to and

ncluding terms of 𝑂
(

𝑘−1
)

as 𝑘 → ∞,

𝑥 ∼ 𝑠 + 𝛾𝑛𝑠2 − 1
10

𝛾2𝑠5, 𝑦 ∼ 𝑛 − 1
3
𝛾𝑠3.

hus, with the scalings 𝑠 = 𝑘−1∕5𝑆, 𝑛 = 𝑘−3∕5𝑁 (|𝑆|, |𝑁| = 𝑂(1)) and seeking an alternative local solution 𝜙 ∼ 𝑒𝑖𝑘𝑠𝐴 (𝑆,𝑁), we have
hat, to lowest order,

𝑖𝑘𝑥 = 𝑖𝑘𝑠 + 𝑖
(

𝛾𝑁𝑆2 − 1
10

𝛾2𝑆5
)

,

�̃� (𝑋, 𝑌 ) = 𝑒−𝑖
(

𝛾𝑁𝑆2− 1
10 𝛾

2𝑆5
)

𝐴 (𝑆,𝑁) ,

𝑋 = 𝑆, 𝑌 = 𝑁 − 1
3
𝛾𝑆3.

t then follows that (2.1) can be re-written in terms of 𝑆 and 𝑁 as
(

𝜕2

𝜕𝑁2
+ 2𝑖

( 𝜕
𝜕𝑆

+ 𝛾𝑆2 𝜕
𝜕𝑁

)

)(

𝑒−𝑖
(

𝛾𝑁𝑆2− 1
10 𝛾

2𝑆5
)

𝐴 (𝑆,𝑁)
)

= 0,

which leads to the Popov equation

𝜕2𝐴
𝜕𝑁2

+ 2𝑖 𝜕𝐴
𝜕𝑆

+ 4𝛾𝑁𝑆𝐴 = 0. (2.2)

In order to match with the incoming Airy function we require that

𝐴 ∼ 2𝜋 (−4𝛾𝑆)1∕3 Ai
[

(−4𝛾𝑆)1∕3 𝑁
]

, 𝑆 → −∞, (2.3)

where the first (−𝑆)1∕3 term reflects the dependence of the incoming field on the curvature of the associated caustic as 𝑆 → −∞
and the constants in the pre-factor multiplying the Airy function are inserted for later convenience. Since the data is analytic, we
expect the solution of (2.2) to be analytic for all 𝑆,𝑁 .

The Fourier transform procedure outlined in [1] may now be used to show that the desired solution of (2.2) is

𝐴 = ∫

∞

−∞
𝑒−

𝑖
2𝐸 𝑑𝜆, (2.4)

where

𝐸 = 𝑆
(

𝜆 + 𝛾𝑆2)2 −
2𝛾
3

(

𝜆 + 𝛾𝑆2)𝑆3 + 1
5
𝛾2𝑆5

+ 8
15𝛾1∕2

(

𝜆 + 𝛾𝑆2)5∕2 + 2𝑁𝜆;

here,
(

𝜆 + 𝛾𝑆2)1∕2 is positive when 𝜆 + 𝛾𝑆2 > 0 and equal to −𝑖|𝜆 + 𝛾𝑆2
|

1∕2 when 𝜆 + 𝛾𝑆2 < 0, and the integral is taken just above
the negative real 𝜆 axis and along the positive 𝜆 axis. This equation corrects [1, (4.7)].

In order to deal with the branch point at 𝜆 = −𝛾𝑆2, it is convenient to write

𝐴 =

(

∫

∞

−𝛾𝑆2
+∫

−𝛾𝑆2

−∞

)

𝑒−
𝑖
2𝐸 𝑑𝜆 = 𝐼+ + 𝐼− . (2.5)

his decomposition can be justified by deforming the integration path from one along ℑ𝜆 > 0 and showing that the contribution
rom the region near 𝜆 = −𝛾𝑆2 is negligible as ℑ𝜆 ↓ 0. The remainder of this section will be based on (2.5).

.1. The limit 𝑆 → −∞

Noting that when 𝑆 is large and negative,
(

𝜆 + 𝛾𝑆2)5∕2 = −𝛾5∕2𝑆5
(

1 + 𝜆
𝛾𝑆2

)5∕2
, we can expand 𝐸 for large negative 𝑆 in 𝐼+. This

ives that 𝐸 ∼ 2𝑁𝜆 − 𝜆3

6𝛾𝑆 +⋯ and a formal asymptotic expansion shows that the leading term in 𝐼+ is

∫

∞

−𝛾𝑆2
𝑒−𝑖(𝑁𝜆− 𝜆3

12𝛾𝑆 )𝑑𝜆,

which, by putting 𝜆 = (−4𝛾𝑆)1∕3 𝜏, is asymptotic to

(−4𝛾𝑆)1∕3
∞
𝑒
−𝑖
(

𝜏3
3 +(−4𝛾𝑆)1∕3𝑁𝜏

)

𝑑𝜏 = 2𝜋 (−4𝛾𝑆)1∕3 Ai
(

(−4𝛾𝑆)1∕3 𝑁
)

2

∫−∞
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as 𝑆 → −∞. Thus, since 𝐼− tends to zero as 𝑆 → −∞, 𝐴 matches with (2.3) as expected. An estimate of the rate at which the Airy
function is attained for large values of −𝑆 would involve a complicated analysis which we will not attempt in this paper.

2.2. The limit 𝑆 → +∞

The situation is more interesting when 𝑆 → +∞, when it is convenient to write 𝜆 + 𝛾𝑆2 = −𝑆2𝑇 for 𝑇 ≥ 0 in 𝐼− so that

𝐼− = 𝑆2𝑒𝑖𝛷 ∫

∞

0
𝑒
−𝑆5

(

𝑖
2
(

𝑇 2−2𝐾𝑇
)

+ 4
15𝛾1∕2

𝑇 5∕2
)

𝑑𝑇 . (2.6)

here 𝛷 = 𝛾𝑁𝑆2 − 𝛾2𝑆5

10 and

𝐾 = 𝑁
𝑆3

−
𝛾
3

is a measure of transverse distance from the 𝑥-axis. Similarly, writing 𝜆 + 𝛾𝑆2 = 𝑆2𝑇 for 𝑇 ≥ 0 in 𝐼+ leads to

𝐼+ = 𝑆2𝑒𝑖𝛷 ∫

∞

0
𝑒
− 𝑖

2 𝑆
5
(

𝑇 2+2𝐾𝑇+ 8
15𝛾1∕2

𝑇 5∕2
)

𝑑𝑇 . (2.7)

.2.1. 𝐾 ≥ 0, 𝐾 of 𝑂(𝑆−2) or larger
We begin by considering 𝐼− which we see from (2.6) has a stationary phase point at 𝑇 = 𝐾. The contribution from this point

to the value of the integral is exponentially small as long as 𝑆2𝐾 ≫ 1 and, in this case, the main contribution to 𝐼− comes from a
region near 𝑇 = 0 where 𝑇 5∕2 is negligible to lowest order. However the 𝑇 2 term in the exponent needs to be retained to ensure
onvergence of the integral. Hence the leading term in the integral is

∫

∞

0
𝑒−

𝑖
2 𝑆

5(𝑇 2−2𝐾𝑇
)

𝑑𝑇 = 1
𝑆5𝐾 ∫

∞

0
𝑒𝑖
(

�̄�− 𝜖
2 �̄�

2
)

𝑑�̄� ,

here �̄� = 𝑆5𝐾𝑇 and 𝜖 = 1
𝑆5𝐾2 . We now note that

∫

∞

0
𝑒𝑖
(

�̄�− 𝜖
2 �̄�

2
)

𝑑�̄� = lim
𝛿↓0 ∫

∞

0
𝑒(𝑖−𝛿)�̄�

(

1 − 𝑖𝜖�̄� 2

2
+⋯

)

𝑑�̄�

= lim
𝛿↓0

(

1
𝛿 − 𝑖

− 𝑖𝜖
(𝛿 − 𝑖)3

+⋯
)

= 𝑖 − 𝜖 +⋯ .

The device of introducing the parameter 𝛿 is one way of deriving higher order terms in asymptotic expansions of stationary phase
integrals, as described in [5]. It gives us the result that

𝐼− ∼ 𝑒𝑖𝛷 𝑖
𝑆3𝐾

(

1 + 𝑖
𝑆5𝐾2

+⋯
)

, 𝑆 → +∞, 𝑆2𝐾 ≫ 1, (2.8)

and it can also be used to obtain higher order corrections for the estimates we will derive in the rest of this paper.
The result corresponding to (2.8) for 𝐼+ can be read off by replacing 𝐾 by −𝐾 and it tells us that 𝐴 = 𝐼+ + 𝐼− = 𝑜(𝑆−8𝐾−3) when

𝑆 → +∞ with 𝐾 ≥ 0 and 𝑆2𝐾 ≫ 1.
None of these results applies when 𝐾 is of 𝑂(𝑆−2) or smaller. In this regime, we write 𝐾 = 𝑆−2�̂� and 𝑇 = 𝑆−2𝑡, so that

𝐼− = 𝑒𝑖𝛷 ∫

∞

0
𝑒
−𝑆 𝑖

2
(

𝑡2−2�̂�𝑡
)

− 4
15𝛾1∕2

𝑡5∕2
𝑑𝑡. (2.9)

The dominant contribution as 𝑆 → +∞ now comes from the stationary-phase point at 𝑡 = �̂� and we soon find 𝐼− is given by

𝐼− ∼ 𝑒𝑖𝛷
( 2𝜋
𝑆

)1∕2
𝑒

(

𝑖𝑆�̂�2
2 − 4�̂�5∕2

15𝛾1∕2
− 𝑖𝜋

4

)

. (2.10)

oreover, the use of the regularisation leading to (2.8) reveals that the next order term in the stationary phase expansion of 𝐼−
is of relative order 𝑆−1. However, there is also a contribution from the end point 𝑡 = 0, which can be estimated as in (2.8) to
give a leading order term 𝑒−𝑖𝛷

𝑖𝑆�̂�
. This can be shown to cancel with a corresponding term in 𝐼+ in which there is no stationary phase

contribution. Hence we conclude that, with an expected relative error of 𝑂(𝑆−1),

|𝐴| ∼
( 2𝜋
𝑆

)1∕2
𝑒

(

− 4�̂�5∕2

15𝛾1∕2

)

(2.11)

s 𝑆 → +∞ with 𝐾 ≥ 0 and �̂� = 𝑂(1).
We note that the derivation of (2.10) from (2.9) involves the assumption that the stationary phase point �̂� is sufficiently far

from the origin that �̂� ≫ 𝑂(𝑆−1∕2). We will examine the region where �̂� = 𝑂(𝑆−1∕2) shortly.
3
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2.2.2. 𝐾 ≤ 0, |𝐾| of 𝑂(𝑆−2) or larger
The calculations above can be repeated to show that the contributions to both 𝐼+ and 𝐼− near 𝑇 = 0 cancel at least to leading

rder as 𝑆 → +∞. Hence we need only consider 𝐼+, which has a stationary phase contribution.
It is now more convenient to write 𝜆 + 𝛾𝑆2 = 𝑆2𝜏2 so that

𝐼+ = 2𝑆2𝑒𝑖𝛷 ∫

∞

0
𝑒−

𝑖
2 𝑆

5𝑔(𝜏) 𝜏 𝑑𝜏, (2.12)

here

𝑔(𝜏) = 2𝐾𝜏2 + 𝜏4 + 8
15𝛾1∕2

𝜏5. (2.13)

ence there is always one stationary phase point in 𝜏 > 0, 𝜏 = 𝜏0(𝐾) say, which is the positive root of

𝐾 + 𝜏0
2 + 2

3𝛾1∕2
𝜏0

3 = 0 (2.14)

nd is such that 𝜏0(0) = 0 and 𝜏0 = 𝑂(|𝐾|

1∕3) as 𝐾 → −∞. The leading order term in the expansion of the integral in (2.12) is thus

𝑒−
𝑖𝜋
4 𝜏0𝑒

− 𝑖
2 𝑆

5𝑔(𝜏0)
(

4𝜋
𝑆5𝑔′′(𝜏0)

)1∕2
, (2.15)

here 𝑔′′
(

𝜏0
)

= 8𝜏02
(

1 + 𝜏0
𝛾1∕2

)

. Hence

|𝐴| ∼
√

2𝜋
𝑆(1 + 𝜏0

𝛾1∕2
)
, 𝑆 → +∞, 𝐾 < 0, (2.16)

nd so, as 𝐾 ↑ 0, |𝐴| ∼
√

2𝜋
𝑆1∕2 , which is equal to (2.11) when �̂� = 0. However, the comments made after (2.11) apply equally to the

derivation of (2.15) which only holds if 𝑆5∕2𝜏0 ≫ 1, and we will describe the inner layer when 𝐾 = 𝑂(𝑆−5∕2) in the next subsection.
Meanwhile we note that the results (2.11) and (2.16) indicate that the far-field as 𝑆 → +∞ is dominated by the region in which
is negative and of O(1). Plots of the numerical evaluation of 𝐴 will be given in the next section and comparison will be made

ith (2.11) and (2.16).

.2.3. 𝐾 = 𝑂(𝑆−5∕2)
In this region, the sign of 𝐾 is no longer important and we will simply consider (2.6) and (2.7) when 𝐾 = 𝑆−5∕2�̄�. Writing

= 𝑆−5∕2𝑡 then, to leading order as 𝑆 → +∞,

𝐼+ ∼ 𝑒𝑖𝛷𝑆−1∕2
∫

∞

0
𝑒−𝑖𝑡

2∕2−𝑖�̄�𝑡 𝑑𝑡

∼ 𝑒𝑖𝛷𝑆−1∕2𝑒𝑖�̄�
2∕2

∫

∞

�̄�
𝑒−𝑖𝑣

2∕2 𝑑𝑣 (2.17)

here 𝑣 = �̄� + 𝑡. Repeating the exercise for 𝐼− gives

𝐼− ∼ 𝑒𝑖𝛷𝑆−1∕2𝑒𝑖�̄�
2∕2

∫

∞

−�̄�
𝑒−𝑖𝑣

2∕2 𝑑𝑣 (2.18)

nd hence

𝐼+ + 𝐼− ∼ 𝑆−1∕2𝑒𝑖𝛷+𝑖�̄�2∕2
∫

∞

−∞
𝑒−𝑖𝑣

2∕2 𝑑𝑣 =
√

2𝜋𝑆−1∕2𝑒𝑖𝛷+𝑖�̄�2∕2−𝑖𝜋∕4. (2.19)

Thus the amplitude |𝐴| in this region is independent of �̄� and matches with (2.11) as �̄� → +∞ and with (2.16) as �̄� → −∞.
Even though the amplitude of the far-field solution can be described analytically, we have only worked to the lowest order when

obtaining the asymptotic expansions for 𝐴 and this has resulted in 𝐴 having discontinuous slope as a function of 𝐾. We expect the
solution of (2.2) to be analytic everywhere and that the asymptotic approximation will become increasingly smooth when taken to
higher orders but, as mentioned after (2.8), this is a challenging task. Hence it is helpful to compare these predictions with numerical
calculations, which we do in the next section.

3. Numerical validation

In this section we compare the asymptotic approximations obtained in the previous section with accurate numerical evaluations
of the integral (2.4), obtained using the PathFinder software [6]. This implements the algorithm described in [4], which automates
the numerical steepest descent method for oscillatory integrals (see e.g. [7, §5]), automatically performing appropriate contour
deformations and dealing robustly with multiple coalescing stationary points.

To obtain an integral in a form amenable to evaluation using PathFinder, which in its current form applies only to integrals with
polynomial phase, we apply a change of variable to rewrite (2.4) as

𝑖(𝛾𝑁𝑆2−𝛾2𝑆5∕10) ̃ 3
4

𝐴(𝑆,𝑁) = −2𝑒 𝐴32(𝑆,𝑁 − 𝛾𝑆 ∕3), (3.1)
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Fig. 1. Plot of |𝐴| as a function of 𝑆 and 𝑁 , along with the curve 𝐾 = 0, i.e. the cubic 𝑁 − 𝛾
3
𝑆3 = 0, for 𝛾 = 4∕9.

Fig. 2. The real part of the approximate Helmholtz equation solution −2𝑒𝑖𝑘𝑥�̃�32(𝑘1∕5𝑥, 𝑘3∕5𝑦) for 𝛾 = 4∕9 and 𝑘 = 40.

where, adapting the notation of [3],

�̃�32(𝑋, 𝑌 ) = ∫𝛤32
𝑡𝑒𝑖(−𝑌 𝑡

2−𝑋𝑡4∕2+4𝑡5∕(15𝛾1∕2))𝑑𝑡, (3.2)

with 𝛤32 being any contour starting at 𝑡 = 𝑒𝑖9𝜋∕10∞ and ending at 𝑡 = 𝑖∞. The tilde on �̃�32 is included to indicate that the integral
𝐴32 of [3] has been modified to include a non-trivial amplitude function 𝐹 (𝑡) = 𝑡. We note that �̃�32(𝑋, 𝑌 ) solves the parabolic wave
Eq. (2.1).

In Fig. 1 we show a plot of |𝐴| as a function of the curvilinear coordinates 𝑆 and 𝑁 , and in Fig. 2 we show the corresponding
approximate Helmholtz equation solution 𝑒𝑖𝑘𝑠(𝑥,𝑦)𝐴(𝑆(𝑥, 𝑦), 𝑁(𝑥, 𝑦)) as a function of the Cartesian coordinates (𝑥, 𝑦). In Fig. 3 we plot
|𝐴| as a function of 𝑁 on the line 𝑆 = −10, alongside the Airy function approximation (2.3). In Fig. 4 we plot |𝐴| as a function of �̂�
on the lines 𝑆 = 5 and 𝑆 = 10, accompanied by the approximations (2.11) (for �̂� > 0, |�̂�| ≫ 𝑆−1∕2), (2.16) (for �̂� < 0, |�̂�| ≫ 𝑆−1∕2),
and (2.19) (for �̂� = 𝑂(𝑆−1∕2)). This reveals how, as 𝑆 increases, the wavefield evolves from a beam-like structure to become more
like a shadow boundary. In all comparisons we see excellent agreement between the asymptotics and numerics.

4. Conclusions

Motivated by the Popov problem of finding the outgoing wavefield generated by a whispering gallery wave as it approaches an
inflection point, this paper addresses the wavefield that emerges when an incoming Airy function wave is centred on a curve whose
curvature decreases to zero. An exact solution can be found in terms of the complicated integral (2.4) whose integrand contains
a branch point. An asymptotic calculation using the stationary phase method reveals that the radiated field is strongest near the
tangent at the inflection point but, unlike a Gaussian beam, it has an asymmetric structure whose largest amplitude is attained
near this tangent and eventually resembles a shadow boundary. We have also computed the integral using the method of [4] after
making a change of variable so as to obtain a representation without branch points. This has yielded wave profiles that compare
favourably with the asymptotic predictions.
5
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Fig. 3. (a) Plot of |𝐴| as a function of 𝑁 for fixed 𝑆 = −10 and 𝛾 = 4∕9, showing the agreement with (2.3). On this scale, the two curves are almost
indistinguishable. (b) Zoom of (a) for 𝑁 ∈ [−10,−9].

Fig. 4. Plots of |𝐴| as a function of �̂� = 𝑆2𝐾 = 𝑁
𝑆
− 𝛾

3
𝑆2 for 𝑆 = 5 and 𝑆 = 10, and 𝛾 = 4∕9, showing the comparison with (2.11) (for �̂� > 0), (2.16) (for �̂� < 0)

and (2.19) (for �̂� ≈ 0).
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