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Abstract 
Background:  Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine histopa-
thology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, the classification of 
brain tumors integrates both histopathological and molecular information. We hypothesize that DL can predict molec-
ular alterations as well as WHO subtyping of brain tumors from hematoxylin and eosin-stained histopathology slides.
Methods:  We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, comprising 
N = 2845 patients.
Results:  We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q codeletion, 
were predictable from histology with an area under the receiver operating characteristic curve (AUROC) of 0.95, 
0.90, and 0.80 in the training cohort, respectively. These findings were upheld in external validation cohorts with 
AUROCs of 0.90, 0.79, and 0.87 for prediction of IDH, ATRX, and 1p19q codeletion, respectively.
Conclusions:  In the future, such DL-based implementations could ease diagnostic workflows, particularly for situ-
ations in which advanced molecular testing is not readily available.

Key Points

•  Deep Learning can predict both molecular alteration status and subtype of diffuse adult-
type gliomas directly from histopathology whole slide images.

•  This is the first study to predict subtype and molecular status according to the 2021 WHO 
CNS 5th edition.

Direct image to subtype prediction for brain tumors 
using deep learning  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited.
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Diffuse gliomas are the most frequent primary malignant 
brain tumors in adults and broad demographic shifts mean 
that their incidence is expected to increase.1,2 Due to the 
aggressive nature, infiltrative growth and central location, 
these tumors generally have a poor prognosis. Clinical out-
come for these entities largely depends on subtype, the 
diagnosis of which has historically been based on histolog-
ical assessment.1,2

In 2021, the World Health Organization (WHO) released 
the 5th edition of the diagnostic criteria for adult-type dif-
fuse gliomas. These criteria are based on a combination of 
molecular alterations and histopathological assessment, 
which determines WHO CNS subtype and grade.3 In addi-
tion, methylation profiles can be used to define the glioma 
diagnosis.2

Based on their molecular profile, a significant propor-
tion of adult-type gliomas can be subtyped by IDH (IDH1 
or IDH2) and ATRX mutation status, as well as 1p19q 
codeletion. Glioblastomas CNS WHO 4 are currently de-
fined by the absence of IDH and H3 mutations and occur-
rence of at least one of the following histopathological 
(microvascular proliferations, necrosis) or molecular 
(chromosome +7/−10 signature, EGFR amplification, TERT 
promoter mutation) alterations. IDH-mutant gliomas are 
subclassified into astrocytomas or oligodendrogliomas. 
The classification of IDH-mutant oligodendrogliomas 
CNS WHO 2/3 are defined by demonstration of a com-
bined whole arm deletion of chromosomes 1p and 19q. 
Immunohistochemically retained nuclear ATRX ex-
pression as a surrogate of ATRX-wildtype status is a 
very strong correlate for 1p19q codeletion status in 
IDH-mutant gliomas.2 IDH-mutant astrocytomas CNS 
WHO 2/3/4 are molecularly defined by retained 1p19q 
chromosomes and the presence of ATRX-mutation, or 
its immunohistochemical surrogate of nuclear ATRX-
staining loss. The grading of IDH-mutant astrocytomas 
also relies on a combination of histomorphological, as 
well as molecular traits: the presence of CDKN2A/B ho-
mozygous deletion and/or necrosis and/or microvascular 
proliferation defines a CNS WHO grade 4 lesion in IDH-
mutant astrocytomas.2

This evolution in the diagnostic approach represents 
a further shift away from the traditional histopatholog-
ical process where pathologists typically assign subtypes 
based on specific tumor features, including morphology. 
The integration of genetic alterations into the diagnostic 
process reflects improved understanding of these tumors 

allowing for greater diagnostic precision. However, the 
necessity for molecular assessment and in some cases, 
methylation array profiling, also makes the process more 
expensive.4 These diagnostic requirements are further con-
founded by the fact that many advanced genetic tests are 
not available in all healthcare systems. For a fully integrated 
diagnosis, multiple different assays may be required to 
characterize different molecular features. This may further 
drive up costs associated with molecular testing, serving 
to widening the already pronounced inequities in precision 
medicine.5 Furthermore, the requirement for multiple tests 
could delay treatment by up to several weeks, with adverse 
sequelae for the patient.6

An increasing body of evidence indicates that Deep 
Learning (DL) techniques are able to predict the pheno-
types linked to individual molecular alterations directly 
from routine hematoxylin and eosin (H&E) stained histo-
pathology slides.7 This has the potential to accelerate di-
agnostic workflows and reduce the costs associated with 
molecular testing.8 These studies have shown that clin-
ically relevant features, such as biomarkers and subtype, 
can be predicted directly from histopathology slides for 
many tumor types,7,9,10 including in brain tumors.11,12 DL is 
a machine learning (ML) method from the field of artificial 
intelligence (AI) and is a common and powerful way to ex-
tract quantitative information from image data.13 A typical 
DL workflow involves three main stages; preprocessing of 
the data, training and testing of an algorithm, and assess-
ment of model performance through interpretation of sta-
tistical results.13

To assess the current status of DL research in diag-
nostic neuropathology, we performed a systematic lit-
erature review (Supplementary Figures S1 and S2). DL 
applications in brain tumors have mostly focused on clas-
sification tasks. The most common classification tasks 
consisted of molecular status prediction (n = 13) followed 
by grade (n = 10) and subtype prediction (n = 4). This dem-
onstrates that brain tumors remain understudied in the 
field of computational pathology. This is particularly evi-
dent when compared to breast or colorectal cancer, which 
have been investigated in hundreds of computational pa-
thology studies.7 The brain cancer-related studies identified 
via literature review were generally performed on small 
datasets,11,14–16 without external validation,17–19 or used 
networks that were not pretrained on histopathology im-
ages.18,20–22 This demonstrates a pressing need to address 
brain tumor research using larger, more heterogeneous 

Importance of the Study

The 2021 update to the World Health Organization (WHO) 
classification system for central nervous system (CNS) 
tumors places further emphasis on molecular charac-
terization in the diagnosis of adult-type diffuse gliomas. 
However, molecular assays are not necessarily avail-
able in all healthcare systems. Deep Learning (DL) 
offers an alternative approach for predicting molecular 
status directly from digitized histopathology slides. This 

study demonstrates that DL can accurately predict not 
only the subtype of glioma but also the status of indi-
vidual molecular alterations. To our knowledge, this is 
the first study predicting clinically relevant markers ac-
cording to the WHO fifth edition. This work provides fur-
ther evidence supporting the use of digital workflows to 
support decision-making in clinical medicine.
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cohorts, employing up-to-date methods. To our knowledge, 
there are no previously published studies attempting to 
predict subtype in adult-type diffuse gliomas on the basis 
of the WHO 2021 5th edition.

To this end, we collected and analyzed three inde-
pendent datasets of digitized routine histological whole 
slide images (WSI) with the primary aims of predicting ge-
netic alterations and differentiating brain tumor subtypes 
by using DL.

Materials and Methods

Ethics Statement

This study was performed in accordance with the 
Declaration of Helsinki. The research involved analysis 
of anonymized archival digital images of human tissue. 
Ethical approval was obtained at collaborating centers 
prior to collection and pseudonymization. Data were 
obtained from University College London as part of the UK 
Brain Archive Information Network (BRAIN UK), which is 
funded by the Medical Research Council and Brain Tumour 
Research. BRAIN UK reference number: 22-011—Artificial 
intelligence-based reconstruction of the WHO 2021 di-
agnostic algorithm for adult-type diffuse gliomas. The 
overall analysis was approved by the Ethics commission 
of the Medical Faculty of Technical University of Dresden 
 (BO-EK-444102022). The STARD 2015 checklist can be found 
in Supplementary Table S2.

Cohort Description

The first cohort was obtained from University College 
London (UCL) via Brain UK (REF:22/011). This cohort con-
sisted of n = 1882 digitized H&E histopathology WSIs from 
n = 1877 patients with corresponding clinicopathological 
and molecular data. These are nonconsecutive cases col-
lected from routine diagnostic work between 2011 and 
2019. The dataset, curated from 40 sites across seven 
countries, encompasses both typical clinical cases and 
a small number of rare entities. All cases in which a di-
agnosis of an adult-type diffuse glioma was made were 
included in our study. These cases had an integrated mo-
lecular diagnosis according to WHO 2021, updated from a 
diagnosis according to WHO 2016, i.e., all cases were ret-
rospectively assessed to comply with the CNS WHO 2021 
classification.

The second cohort was derived from The Cancer Genome 
Atlas (TCGA, n = 864) network, www.cbioportal.org, for the 
tumor entities of low-grade glioma (LGG, n = 493) and glio-
blastoma (GBM, n = 371). The dataset is composed of cases 
contributed from 38 sites across seven countries. All cases 
in which a diagnosis of an adult-type diffuse glioma or a 
relevant genetic alteration was made, and were included in 
our study. Digitized histopathological WSIs with matching 
clinical–pathological and molecular data were obtained 
from www.cbioportal.org. Classification for this cohort was 
made according to WHO 2016. Molecular alteration data 
available for this cohort were used to update the subtype 

diagnosis to comply with WHO 2021, with assistance from 
an expert neuropathologist (SB). The third cohort was the 
Clinical Proteomic Tumor Analysis Consortium (CPTAC, 
n = 99) from https://www.cancerimagingarchive.net/ 
collections/. All cases that were tested for CDKN2A/B ho-
mozygous deletion were included in our study. Matching 
clinicopathological and molecular data were downloaded 
from www.cbioportal.org. Data were obtained from these 
online sources as of March 13, 2022.

Information on the diagnostic process was sourced from 
WHO via their website https://tumourclassification.iarc.who.
int/login. An overview of the neuropathological approach to 
diffuse adult-type gliomas can be found in Figure 1A and 1B. 
The diagnostic criteria informed which molecular data we 
collected for this study. Full details of the data collected 
and data preprocessing can be found in Supplementary 
Methods. An overview of the subtype data available in 
the UCL and TCGA cohorts can be found in Figure 1C and 
1D. Further cohort data and consort charts can be found in 
Table 1 and Supplementary Figure S3, respectively.

Deep Learning Methods

We have previously established10,23 and validated24,25 a DL 
pipeline to predict molecular alterations directly from his-
topathology images, including neuropathology.26 Here, 
we used an attention-based multiple-instance learning 
approach (attMIL).26,27 Preprocessing included normal-
ization28 and tessellation of WSIs before features were 
extracted from each tile.29 The attMIL model makes pre-
dictions for a patient, based on a collection of tiles ex-
tracted from the patient’s slides. We call the aggregate of 
a patient’s features a bag, with the features itself being 
the bag’s instances. Because it is probable that not all of 
the instances have the same amount of information on the 
patient-level label, our model considers the entire bag at 
once. This enables it to consider information which may 
only be present in some of the instances while ignoring in-
stances which contain little to no valuable information.30 
Figure 1E gives an overview of our approach. Full details of 
these methods can be found in Supplementary Methods. 
Our preprocessing and attMIL scripts are freely available 
on github (https://github.com/KatherLab/marugoto).

Statistical Analysis

Model performance was assessed with the Area Under the 
Receiver Operating Curve (AUROC), which is the primary 
statistical endpoint in most studies on AI-based medical 
image analysis.7 A bootstrap 95% confidence interval (CI) 
is also given to provide a measure on AUROC accuracy. 
Furthermore, we provide additional statistics including 
sensitivity, specificity, accuracy and precision.

Data and Code Availability

Access to the UCL data can be requested via the Brain UK 
study proposal platform at https://www.southampton.
ac.uk/brainuk/index.page. Data from the TCGA and CPTAC 
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Simplified Overview of the WHO 2021 Diagnostic 
Algorithm
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Figure 1. Overview of our experimental approach. The flow-chart Figure 1A and 1B outline the 2016 and 2021 WHO diagnostic algorithm for dif-
fuse adult-type gliomas, for the targets that we included in our experiments. In the 2016 algorithm, gliomas were tested for IDH mutation status 
before the morphological features were assessed to determine grade. Both IDHmut and IDHwt tumors with high-grade (grade IV) features 
were designated glioblastoma. Tumors with lower grade (grade II or III) morphology were designated as astrocytoma, unless 1p19q codeletion 
was present. Lower grade tumors with IDHmut and 1p19q codeletion were designated oligodendrogliomas. In the 2021 system, molecular al-
teration status determines the subtype of glioma. Astrocytomas are IDHmut and ATRXmut. If CDKN2A or CDKN2B homozygous deletion 
are additionally present in an astrocytoma, this automatically upgrades the tumor to grade 4. Absence of CDKN2A/B homozygous deletion and 
absence of high-grade morphology indicates a grade 2 or 3 astrocytoma. Oligodendrogliomas are IDHmut, 1p19q codeleted (complete loss of 
both arms), TERTmut and ATRXwt. Glioblastomas are IDHwt with either classic morphology on histology (microvascular proliferation and/
or necrosis) or at least one of TERTmut, EGFR amplification, +7/−10 genotype. Abbreviations: MUT, mutated form; WT, wildtype form; ND, not 
deleted. The doughnut graphs in Figure 1C and 1D shows the data split by both 2016 and 2021 subtype diagnosis for the UCL and TCGA cohorts, 
respectively. Subtype diagnosis was available for both 2016 and 2021 criteria for the UCL dataset. In the TCGA dataset, the molecular alteration 
status for IDH, 1p19q and/or ATRX was used to formulate the 2021 subtype. Figure 1E provides an overview of our Deep Learning pipeline. The 
first step is preprocessing where digital WSIs are tessellated into tiles and features extracted for each tile. These features are then given to 
our network and used for training, testing, or deployment, depending on the type of experiment being run. Further details of our Deep Learning 
methods can be found in Supplementary Methods.
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cohorts can be accessed via the cBioPortal website (www.
cbioportal.org or literature31).

Experimental Design

Our aim was to use DL for subtype and molecular status 
prediction in adult-type diffuse gliomas according to the 
WHO 2021 5th edition. We investigated two approaches for 
subtype prediction:

1. Direct prediction: The tumor subtype is predicted from 
the WSI directly, according to both 2016 and 2021 WHO 
approaches. The 2016 results were used as the baseline 
from which to compare the 2021 results.

2. Sequential prediction: Each alteration in the diagnostic 
pathway is predicted separately. As a result of this output, 
the diagnostic pathway can be reproduced in a stepwise 
fashion, where the combination of alteration present 
and/or absent would then determine the subtype.

Both experimental approaches were run with internal 
cross-validation and external validation settings. The UCL 
cohort was chosen as the primary cohort for internal cross-
validation and as a training set for external validation, due 
to having a larger number of patients and more balanced 
classes, with the exception of Ch +7/−10 and CDKN2A/B, 
as described in Supplementary Figure S3. Details of the 
cohorts that were used for each experiment are listed in 
Table 2.

Results

Direct Prediction: 2016 and 2021 WHO Subtypes

The 2016 WHO subtypes of brain tumors are based on mo-
lecular alteration status plus histomorphology. DL utilizes 
the characteristics of an image to inform classification de-
cisions. Hence, a DL model should be able to predict these 
subtypes from images more readily than the other targets. 
Once established, these results can be used as a baseline 
from which to assess our further experiments.

In the cross-validation setting, our approach yielded 
AUROCs of 0.89 (CI ± 0.02), 0.94 (CI ± 0.01), and 0.93 
(CI ± 0.01) for detection of astrocytoma, glioblastoma, 
and oligodendroglioma, respectively (experiments 1–3 
in Table 2 and Figure 2). We also predicted the 2016 sub-
type in an external validation setting. These experiments 
yielded AUROCs of 0.86 (CI ± 0.03), 0.91 (CI ± 0.03), and 
0.86 (CI ± 0.04) for astrocytoma, glioblastoma, and oligo-
dendroglioma, respectively (experiments 14–16 in Table 2 
and Figure 2).

We next investigated prediction of the 2021 subtype in 
an internal cross-validation, and our approach was able 
to yield AUROCs of 0.92 (CI ± 0.03), 0.95 (CI ± 0.02), and 
0.93 (CI ± 0.02) for astrocytoma, glioblastoma, and oligo-
dendroglioma, respectively (experiments 4–6 in Table 2 
and Figure 2).

We then performed external validation, which gave 
AUROCs of 0.84 (CI ± 0.03), 0.90 (CI ± 0.02), and 0.91 

Table 1. Provides information on the number of patients within each cohort for which genetic alteration data were collected. In the TCGA cohort, 
the low-grade glioma (LGG) and high-grade glioma (GBM) datasets were combined. As the subtype according to WHO CNS5 was not available in the 
TCGA dataset, molecular alteration data for IDH, 1p19q, and ATRX were used to formulate the WHO CNS5 diagnosis. This process was completed 
with guidance from a Neuropathologist. Consort charts for each cohort can be found in Supplementary Figure S2. The CPTAC cohort was only used in 
the CDKN2A/B external validation experiment and thus case numbers for the other mutations were not applicable.

UCL, n = 1882 TCGA, n = 864 CPTAC, n = 99

Altered Unaltered N/d Altered Unaltered N/d Altered Unaltered N/d

Core diagnostic 
alterations

IDH 1116 755 11 410 318 136 N/a N/a N/a

ATRX 584 887 411 207 521 136 N/a N/a N/a

1p19q 316 683 883 162 542 160 N/a N/a N/a

Additional 
 diagnostic alter-
ations

TERT 524 277 1081 7 721 136 N/a N/a N/a

EGFR 454 1115 313 207 650 7 N/a N/a N/a

Ch + 7/-10 N/d N/d N/d 247 461 156 N/a N/a N/a

CDKN2A/B 7 54 1821 266 592 6 56 40 3

WHO subtype 
2016

Astrocytoma 600

7

180

280 N/aGlioblastoma 822 231

Oligodendroglioma 453 173

WHO subtype 
2021

Astrocytoma 666

7

276*

148 N/aGlioblastoma 756 279*

Oligodendroglioma 453 161*

Ch +7/−10 indicates trisomy of chromosome 7 with monosomy of chromosome 10. For gene amplifications, altered represents amplification and unal-
tered no amplification. For chromosomal alterations, altered indicates deletion and/or gain and unaltered indicates normal ploidy.
*Subtype was formulated using molecular alteration data provided with the cohort.
Abbreviations: N/d, no data available; N/a, data not applicable.
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(CI ± 0.03) for prediction of astrocytoma, glioblastoma, and 
oligodendroglioma, respectively (experiments 17–19 in 
Table 2 and Figure 2).

When comparing these results to our baseline 2016 re-
sults, the performances were very similar. The external vali-
dation AUROCs for astrocytoma and glioblastoma (2016 vs 
2021) were within 0.02, and the internal validation AUROCs 
were within 0.03 and 0.01 for astrocytoma and glioblas-
toma, respectively (Figure 2A and 2B, 2E and 2G). For oligo-
dendroglioma, the AUROCs remained congruous across the 
internal validation experiments (2016 vs 2021); however, on 

external validation, the AUROC for the 2021 experiment was 
0.05 greater than in the 2016 experiment (Figure 2C and 2G).

Sequential Prediction: Molecular Alterations

For our sequential prediction experiments, we began by 
predicting the core diagnostic molecular alterations (IDH, 
1p19q, and ATRX) in a cross-validation setting. Prediction 
of IDH within this cohort was highly successful giving an 
AUROC of 0.95 (CI ± 0.02), with ATRX and 1p19q giving 

Table 2. Results of internal and external validation experiments. This table provides results for all experiments and details of the cohorts used for 
each experiment. The molecular alteration experiments were run as individual experiments. The subtype experiments were run as one experiment, 
but results are listed for the prediction of each subtype individually. Experiments 1 to 13 were run in an internal validation setting. A five-fold internal 
cross-validation experiment was conducted, where the data are split randomly into five parts, with four parts being used for training the network and 
the remaining part used to test the model performance. This was repeated five times with the test data being rotated each time. Experiments 14 to 25 
were external validation experiments, with training and deployment on the cohorts listed. For external validation, all data from one cohort were used 
to train the model and then deployed on an independent test cohort. We used UCL as a training cohort and TCGA and/or CPTAC as test sets, with the 
exception of CDKN2A/B, as we only had data within one cohort.

c Exp. no. Target Train cohort Deploy cohort AUROC 95% CI

Internal validation experiments 1 2016 Astrocytoma UCL n/a 0.89 0.02

2 2016 Glioblastoma UCL n/a 0.94 0.01

3 2016 Oligodendroglioma UCL n/a 0.93 0.01

4 2021 Astrocytoma UCL n/a 0.92 0.03

5 2021 Glioblastoma UCL n/a 0.95 0.02

6 2021 Oligodendroglioma UCL n/a 0.93 0.02

7 IDH UCL n/a 0.95 0.02

8 ATRX UCL n/a 0.91 0.03

9 1p19q UCL n/a 0.80 0.03

10 TERT UCL n/a 0.74 0.03

11 EGFR UCL n/a 0.83 0.04

12 Ch + 7/-10 TCGA n/a 0.91 0.03

13 CDKN2A/B TCGA n/a 0.82 0.02

Exp. no. Target Train cohort Deploy cohort AUROC 95% CI

External validation experiments 14 2016 Astrocytoma UCL TCGA 0.86 0.03

15 2016 Glioblastoma UCL TCGA 0.91 0.03

16 2016 Oligodendroglioma UCL TCGA 0.86 0.04

17 2021 Astrocytoma UCL TCGA 0.84 0.03

18 2021 Glioblastoma UCL TCGA 0.90 0.02

19 2021 Oligodendroglioma UCL TCGA 0.91 0.03

20 IDH UCL TCGA 0.90 0.02

21 ATRX UCL TCGA 0.79 0.04

22 1p19q UCL TCGA 0.87 0.03

23 TERT UCL TCGA 0.60 0.27

24 EGFR UCL TCGA 0.85 0.03

25 CDKN2A/B TCGA UCL + CPTAC 0.73 0.07

Experiments where the target is a 2016 subtype refers to gliomas that were diagnosed according to the 2016 WHO diagnostic guidelines. Likewise, 
experiments, where the target is a 2021 subtype, refer to gliomas that were diagnosed according to the 2021 WHO diagnostic guidelines. Further 
details on the diagnostic approaches can be found in Figure 1A and 1B.
Abbreviations: Exp. No., experiment number; AUROC, area under the receiver operating characteristic curve. AUROC is the rate at which a model 
can correctly predict the target. 95% CI, 95% confidence interval. The 95% CI is a range of the AUROC ± amount indicated by 95% CI. We can be 95% 
certain that the true AUROC falls within this range. Target, the feature that the network was aiming to predict in that experiment.
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AUROCs of 0.91 (CI ± 0.03) and 0.80 (CI ± 0.03), respec-
tively. For external validation of the core molecular al-
terations, results were similar to external validation for 
subtype prediction, with AUROCs of 0.90 (CI ± 0.02), 0.79 
(CI ± 0.04), and 0.87 (CI ± 0.03) for IDH, ATRX, and 1p19q 
prediction, respectively (experiments 7–9 and 20–22 in 
Table 2 and Figure 3 A–C).

Furthermore, we performed subgroup analyses to as-
certain how well the model was able to predict molecular 
alterations within a subgroup composed of each tumor 
subtype. However, unfortunately, our results did not 
find a strong link between any alteration and tumor sub-
type. ROC curves for these experiments can be found in 
Supplementary Figure S3.

We also aimed to investigate prediction of four additional 
molecular alterations; TERT mutation, amplification of 
EGFR, CDKN2A/B homozygous deletion, and chromosome 
trisomy 7 with monosomy 10 (ch +7/−10). For EGFR ampli-
fication, internal validation gave an AUROC 0.83 (CI ± 0.04) 
and external validation yielded an AUROCs of 0.85 
(CI ± 0.03) (experiments 11 and 24 in  Table 2 and Figure 3D). 
Unfortunately, we were unable to fully assess predictability 
of TERT mutation, CDKN2A/B homozygous deletion, and 
ch +7/−10 due to low prevalence of cases in our datasets. 
Preliminary results using the available data for these alter-
ations are available in Supplementary Figure S4.

Comparison of Approaches: Direct versus 
Sequential

In order to compare our two approaches, we stacked the 
external validation predictions for the three core alter-
ations IDH, ATRX, and 1p19q to determine a final subtype 
prediction according to WHO CNS 2021. We then per-
formed statistical analysis of these stacked predictions 
and compared them to statistical analysis of the external 
validation results for the 2021 direct prediction experi-
ment (Figure 4). Overall, the results for the sequential pre-
diction were superior to the direct prediction in all metrics 
(Figure 4), except for precision (0.92 in sequential, 0.95 in 
direct) and specificity (0.97 in sequential, 0.99 in direct) of 
glioblastoma prediction, and sensitivity for oligodendro-
glioma prediction (0.84 for direct and 0.83 for sequential). 
Excellent performance for specificity in both the direct and 
sequential approaches was noted.

Interpretability: Plausible Features can be Linked 
to Predictions

To provide insight into the morphological features driving 
our network’s predictions, we produced heatmaps for a 
random sample of external validation WSIs for each target. 
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Figure 2. Results for subtype experiments. This figure shows Receiver Operating Characteristic (ROC) Curves and Confusion Matrices (CM) for 
both 2016 and 2021 subtype experiments. Subtype experiments were run as a single experiment. The AUROCs visualize results for each subtype 
individually, whereas the CMs and additional statistics in Figure 4 relate to overall model performance. CMs and additional statistics were calcu-
lated with a threshold of 0.5. In each ROC plot (A-C, E-G), the thin lines indicate ROC curves for internal validation experiments. Internal validation 
was performed as five-fold cross-validation. The line with shading indicates the external validation results; where the line is the external valida-
tion ROC curve and the shaded area around this line indicates the bootstrap CI. The AUC ± bootstrap CI is given in the bottom right of each plot. 
Please note, AUC refers to the area under the ROC curve and is thus the same as AUROC. D and H are heatmap confusion matrices for the 2016 
and 2021 subtype experiments, respectively. The confusion matrices are constructed from the model prediction output for the external validation 
experiments, i.e., the class with the highest probability in external validation was selected as the predicted class.
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These were then reviewed by an expert neuropathologist 
(SB, Supplementary Figure S7).

In the oligodendroglioma and 1p19q cases, so-called “fried 
egg” cells (densely packed cells with round nuclei and peri-
nuclear clearing that resemble fried eggs) were consistently 

highlighted in our heatmaps, indicating that they are impor-
tant for the prediction of these targets. This was the case for 
oligodendroglioma subtype prediction in both 2016 and 2021 
experiments. Similarly, the IDH-wildtype and glioblastoma 
heatmaps (both 2016 and 2021 classifications) focused on 
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Figure 3. Results for molecular alteration experiments. (A)–(D) show Receiver Operating Characteristic (ROC) Curves for the molecular alter-
ation experiments. In each ROC plot, the thin lines indicate ROC curves for internal validation experiments. Internal validation was performed as 
five-fold cross-validation. The line with shading indicates the external validation results; where the line is the external validation ROC curve and 
the shaded area around this line indicates the bootstrap CI. The AUC ± bootstrap CI is also given in the bottom right of each plot. Please note, AUC 
refers to the area under the ROC and is thus the same as AUROC. E–H are confusion matrices (CMs) for each molecular alteration experiment. 
The CMs are constructed from the model prediction output for the external validation experiments, i.e., the class with the highest probability in 
external validation was selected as the predicted class. CMs were calculated with a threshold of 0.5. Abbreviations: MUT, mutant; WT, wildtype; 
ALT, altered; UA, unaltered.
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Figure 4. Statistical heatmaps. This is a heatmap of the further statistical analysis for our results. (A) shows results for the direct prediction of 
the 2021 subtypes. (B) shows results for the final prediction following the sequential approach. Here, the 2021 subtype was calculated by stacking 
the final predictions for the IDH, ATRX, and 1p19q experiments. Results for IDH prediction were considered first, followed by ATRX and 1p19q 
which were assessed together. Statistics were calculated with a threshold of 0.5.
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areas of microvascular proliferation and pseudopalisading 
necrosis. Interestingly, ATRX mutation heatmaps were 
mostly “cold.” In some cases, gemistocytes appeared to be 
relevant to classification, but these cells were not present in 
all cases (Supplementary Figure S5).

Discussion

The aim of this work was to recreate the diagnostic neuro-
pathological workflow for diffuse adult-type gliomas with 
DL. Hence, we utilized a large dataset acquired through 
the Brain UK consortium—the UCL dataset—and demon-
strated the efficacy of an attention-based DL pipeline on 
this task. We subsequently illustrated the general applica-
bility of our pipeline by deploying on independent data 
using the publicly available TCGA and CPTAC datasets.

Through these methods, we were able to demonstrate 
that DL can infer both genetic alteration status and WHO 
subtype directly from WSI. Our results for subtype predic-
tion and the three core diagnostic alterations were consist-
ently above 0.79 in both internal and external validation. 
While an AUROC of 0.5 would indicate a random classifier, 
AUROCs of 0.7–0.8 indicate that a phenotype associated 
with the target is detectable to some degree by DL.32 Thus, 
we postulate that our model successfully identified and 
leveraged relevant phenotypes for these targets.

A variance in AUROC between internal- and external-
validation experiments was notable for some targets. This 
is a common issue termed domain shift.33 Domain shift can 
occur due to multiple factors, particularly due to variations 
in tissue processing methods, staining and scanner prop-
erties between cohorts.33 While we employed multiple ap-
proaches to alleviate this problem, including training with 
a diverse cohort and normalizing tiles, model generaliza-
tion remains an open problem in the field.33

Visual interpretability performed as part of this study 
highlighted morphologies that are recognized as being 
associated with specific subtypes as important to model 
decision-making. Fried egg cells and chicken-wire vas-
culature were found to correlate with prediction of 1p19q 
codeletion and oligodendroglioma subtype. Microvascular 
proliferation and necrosis correlated with IDH-wildtype 
and glioblastoma predictions, while gemistocytes and 
Rosenthal fibers correlated with astrocytoma and IDHmut 
predictions (Supplementary Figure S7). These features are 
used to make morphological diagnoses by neuropatholo-
gists.2 This indicates that our network used morphology 
in decision-making similarly to that of a neuropathologist 
and supports the correctness of our model.

Our study assessed two experimental approaches. Our 
direct approach predicted tumor subtype directly from WSI, 
whereas the sequential approach predicted mutational al-
teration statuses. Statistical analysis of these approaches 
indicated that overall, the sequential approach performed 
better. The sequential approach provides the added benefit 
of interpretability, as it allows pathologists to understand 
which alterations are present in a WSI, and thus support 
the final predicted subtype diagnosis. However, the excel-
lent specificity of the direct approach for glioblastoma pre-
diction should be noted. Glioblastoma is important to rule 
out in the clinical setting due to the poor prognosis.34

The limitations of our study primarily relate to our data. 
We were unable to evaluate all targets in the 2021 WHO 
CNS classification due to lack of data. Classes were par-
ticularly unbalanced for alterations such as CDKN2A/B in 
the UCL cohort and TERT in the TCGA and CPTAC cohorts, 
which can create biased predictions. Similarly, we were not 
able to externally validate ch +7/−10 as we only had data 
in the TCGA cohort. Furthermore, our study only included 
adult-type diffuse gliomas without considering other dif-
ferential diagnoses, as would take place in clinical practice.

Further work would include acquiring more data from 
different sites. This would allow us to improve balance 
in our classes and provide more varied training data, in-
cluding common differentials. This should help address the 
issue of domain shift and make our network more appli-
cable to additional cohorts.

In conclusion, our study demonstrates that DL can pre-
dict the WHO CNS 2021 subtypes with high accuracy in a 
single and external cohort. Although a small number of 
studies have previously predicted WHO 2016 subtype and 
some molecular alterations, to our knowledge, no external 
validation experiments for 2016 subtype prediction have 
been previously performed. Furthermore, this is the first 
study to predict WHO 2021 subtype and the three core di-
agnostic alterations in one study.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).
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