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ABSTRACT
Coupled trajectory mixed quantum–classical (CTMQC) dynamics is a rigorous approach to trajectory-based non-adiabatic dynamics, which
has recently seen an improvement to energy conservation via the introduction of the CTMQC-E algorithm. Despite this, the method’s two key
quantities distinguishing it from Ehrenfest dynamics, the modified Born–Oppenheimer momentum and the quantum momentum, require
regularization procedures in certain circumstances. Such procedures in the latter can cause instabilities, leading to undesirable effects, such as
energy drift and spurious population transfer, which is expected to become increasingly prevalent when the system gets larger as such events
would happen more frequently. We propose a further modification to CTMQC-E, which includes a redefinition of the quantum momentum,
CTMQC-EDI (double intercept), such that it has no formal divergences. We then show for Tully models I–III and the double arch model that
the algorithm has greatly improved total energy conservation and negligible spurious population transfer at all times, in particular in regions
of strong non-adiabatic coupling. CTMQC-EDI, therefore, shows promise as a numerically robust non-adiabatic dynamics technique that
accounts for decoherence from first principles and that is scalable to large molecular systems and materials.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0183589

I. INTRODUCTION

The treatment of electronically non-adiabatic phenomena,
such as photoexcitation1 and charge transport in (bio)molecules
and materials,2–4 requires approaches that go beyond the
Born–Oppenheimer approximation.5 Fully quantum dynamical
non-adiabatic methods are available at various levels of approx-
imation, ranging from Multi-Configurational Time-Dependent
Hartree (MCTDH)6 to ab initio multiple spawning (AIMS)7 and
ab initio multiple cloning (AIMC),8 but the nuclear dynamics
problem can become computationally prohibitive for systems with
a large number of degrees of freedom, e.g., materials. In this case,
one often resorts to quantum–classical non-adiabatic dynamics
methods where electrons are treated quantum mechanically
and nuclei as classical particles with some of their quantum
character incorporated by simulating a swarm of classical
trajectories.

Various quantum–classical procedures have been proposed
and successfully implemented, most prominently Ehrenfest
dynamics9 and Tully Trajectory Surface Hopping (SH).10 How-
ever, both methods have well-documented deficiencies. Most
problematic is the overcoherence of the electronic wavefunction
causing the electronic temperature to tend to infinity at long times.
Decoherence-corrected Ehrenfest and surface hopping schemes
remedy this problem often very successfully, but these are ad hoc
correction schemes not derived from first principles, and although
they often show excellent performance for trajectory-ensemble
averages, the details of the underlying electron-nuclear dynamics
may not be very accurate. Recently, a spin mapping approach to
surface hopping (MASH) has been proposed, which has deter-
ministic trajectories and a natural decoherence mechanism.11 In
this theory, decoherence is realized through resampling techniques
known as quantum-jumps; they are rigorously applicable because
of MASH’s connection to the short-time Quantum–Classical
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Liouville Equation (QCLE).12 Although initially restricted to two
state systems, it has been successfully generalized to multi-state
systems.13 Results from this method appear promising, as they can
reproduce full quantum mechanics results in some cases.

The correct description of electron-nuclear dynamics, espe-
cially as it affects decoherence, can be central to our interpretations
of what is happening in non-adiabatic systems. It is therefore
desirable to have an algorithm, which can incorporate these effects,
which is understood from first principles, and retains its computa-
tional advantage over full quantum dynamical methods. Coupled
Trajectory Mixed Quantum–Classical (CTMQC) dynamics14 may
be viewed as an extension of Ehrenfest dynamics,9 which includes
a first-principles approach to the decoherence problem as it is
derived from the exact factorization15 of the wavefunction into
nuclear and electronic subsystems. The algorithm is obtained
following a number of well-defined approximations, principally by
taking the classical limit of the equation of motion for the nuclear
wavefunction. Trajectories become coupled as a consequence of
the quantum momentum, which depends on the gradient of the
square-root of the nuclear density, which is then approximated from
the swarm of classical trajectories. CTMQC is, thus, in principle, a
systematically improvable method, in contrast to SH.

CTMQC has been tested extensively on model systems16–19

and even on higher-dimensional systems.20 In these implementa-
tions, CTMQC excellently captures the populations of and coher-
ence between electronic states, often outperforming methods such
as SH-EDC (Energy Decoherence Correction)21 if the errors from
each metric are considered simultaneously.19 Additionally, the fact
that the theory is derivable provides a bridge between itself and
full quantum mechanics, allowing for systematic improvements to
the algorithm; a CTMQC algorithm capable of including quantum
nuclear tunneling has been proposed and implemented for a spin-
boson model, and the improvement was shown to have excellent
agreement with exact quantum mechanics, especially pertaining to
the transmission probabilities of trajectories and the evolution of
the nuclear wavepacket. Notably, this improvement was attained
by simply lifting the assumption that the quantum potential is
negligible and by approximating it using the nuclear wavepacket
reconstructed from coherent states centered on the classical
trajectories.22

The original CTMQC algorithm suffers from two key limita-
tions: energy non-conservation and numerical instabilities arising
from the divergence of the quantum momentum. The former of
these problems has been addressed with the modified algorithm
CTMQC-E, which was shown to improve energy conservation
substantially in Tully model III (extended coupling region model)
and in a retinal chromophore model.23 Moreover, it has recently
been shown that the improvements of CTMQC-E compared with
CTMQC for more complex model systems than the Tully models
has a large impact on the accuracy of the methods in repro-
ducing electronic populations and nuclear densities.24 However,
energy is only conserved in regions where the kinetic energy
of a trajectory is non-zero and where an expression for the
quantum momentum that prevents spurious population transfer
can be used (see below for a definition and detailed discussion of
spurious population transfer). If either one of these conditions is
not met, then energy drift will occur. Although this may not have a
significant impact on low-dimensional systems, large systems with

thousands of degrees of freedom run over picosecond timescales,
such as would be typically simulated for nanoscale systems, will
accumulate large energy deviations, and thus, unphysical dynamics
is likely to happen. The dynamics are also impacted by the treat-
ment of the quantum momentum even when energy conservation
is well-satisfied. We aim to address these problems by investi-
gating how the quantum momentum’s numerical instabilities are
treated.

Here, we propose a redefinition of the quantum momentum,
which we refer to as the Double Intercept (DI) method, which
removes divergences formally and greatly reduces spurious popula-
tion transfer at all times, especially in regions of strong non-adiabatic
coupling (NAC), where current implementations fail to do so. We
show that this results in a marked improvement to the energy
conservation in all of Tully models I–III10 and the double arch
model25 for low and high momentum cases and explain why this
is a generic feature of the algorithm that we expect to extend to
more complex systems. This method is then compared with the
cut-off procedure similar to the one used in the g-CTMQC code26

and another novel regularization procedure, which we introduce in
this work.

This paper is structured as follows. In Sec. II, we first
provide the theory of CTMQC with how one arrives at the quantum
momentum expression requiring regularization; we then provide a
brief overview of CTMQC-E, and then, we introduce the methods
to address the divergences. After computational details in Sec. III,
we present the results of our simulations in Sec. IV, in particular for
DI with E: CTMQC-EDI. Finally, in Sec. V, a summary is given to
appraise the methods and suggest further work.

II. THEORY
A. CTMQC

CTMQC is a deterministic coupled trajectory-based mixed
quantum–classical scheme wherein electronic dynamics follow
extended Ehrenfest equations, with novel terms in the equations
of motion arising from the coherence of electronic states and the
quantum momentum.14,18,20 Specifically, the evolution of the coeffi-
cients of the electronic wavefunction in the Born–Huang expansion,
ΦR(r, t) = ∑m Cm(R, t)ϕR,m(r) (where R, r denote nuclear and elec-
tronic positions and ϕR,m denote the Born–Oppenheimer or adia-
batic electronic state eigenfunctions),19 may be split into Ehrenfest
(Eh) and exact factorization (XF) contributions,

d
dt

C(α)m (t) =
d
dt

C(α)m,Eh(t) +
d
dt

C(α)m,XF(t), (1)

defined by23

d
dt

C(α)m,Eh(t) ≡
−i
h̵

E(α)m (t)C
(α)
m (t) −∑

l

Nn

∑
ν=1

Ṙ(α)ν (t) ⋅ d
(α)
ν,mlC

(α)
l (t)

(2)
and

d
dt

C(α)m,XF(t) ≡∑
l

Nn

∑
ν=1

P(α)ν (t)
h̵Mν

⋅ (f(α)ν,m(t) − f(α)ν,l (t))C
(α)
l (t)ρ

(α)
lm (t),

(3)
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where R(α)ν (t) and Ṙ(α)ν (t) are the position and velocity of
nucleus ν with mass Mν on classical trajectory α, E(α)m is the
Born–Oppenheimer (or adiabatic) potential energy for electronic
state m on trajectory α, d(α)ν,ml is the non-adiabatic coupling vec-

tor between the adiabatic electronic states m and l, ρ(α)lm (t)
≡ C(α)∗l (t)C(α)m (t) is the electronic density matrix, and P(α)ν (t)
= −h̵∇ν ln ∣χ(R, t)∣ is the quantum momentum corresponding to
the nuclear wavefunction χ(R, t). The XF contributions in Eq. (3)
also contain what is referred to as the Born–Oppenheimer momen-
tum, f(α)ν,m(t), since in the original algorithm, it is approximated via
f(α)ν,m(t) ≈ ∫

t
−∇νE(α)m dτ. Note that we distinguish when a quantity

is only dependent on the nuclear configurations, as with the BO
energies, and when it is also dependent explicitly on time, as with
the BO momentum.

The Ehrenfest contributions in Eq. (2) lead to mixing of, and
population transfer between, adiabatic states in regions of strong
NAC [second term on the right-hand side (RHS) of Eq. (2)], while
the XF contribution in Eq. (3) is responsible for the decoherence of
individual trajectories to adiabatic states once the nuclei have left
regions of strong NAC. Here, we define coherence as the modulus
square of the off-diagonal elements of the electronic density matrix,
∣ρ(α)lm (t)∣

2
= ∣C(α)l (t)∣

2
∣C(α)m (t)∣2, l ≠ m. Since the rate of change of

the populations in such regions will be dependent on the coherence
between the states, it is intuitive that equilibrium populations are
only reached when coherence terms vanish.

Nuclear forces are derived from the classical limit of the nuclear
evolution equation appearing in the exact factorization of the
time-dependent Schrödinger equation.14,15 Importantly, the forces
derive directly from the electronic wavefuntion via a Berry vector
potential. Once again, these contributions to the force can be split
into (Eh) and (XF) contributions,14,18,20,23

F(α)ν (t) = F(α)ν,Eh(t) + F(α)ν,XF(t), (4)

with the respective definitions

F(α)ν,Eh(t) ≡ −∑
m

ρ(α)mm(t)∇νE(α)m

+∑
m,l

ρ(α)ml (t)(E
(α)
m − E(α)l )d

(α)
ν,ml (5)

and

F(α)ν,XF(t) ≡∑
m,l

⎡
⎢
⎢
⎢
⎢
⎣

Nn

∑
μ=1

P(α)μ (t)
h̵Mμ

⋅ (f(α)μ,m(t) − f(α)μ,l (t))
⎤
⎥
⎥
⎥
⎥
⎦

× ∣ρ(α)ml (t)∣
2
(f(α)ν,m(t) − f(α)ν,l (t)). (6)

All XF-based terms are proportional to the electronic coherence
matrix and thus only contribute when the coherence between states
on a given trajectory is non-zero.

From Eqs. (3)–(6), it is clear that an accurate approxima-
tion for the quantum momentum is central to the success of the
algorithm. However, during simulations, we do not have access to

the nuclear density directly. One approximation is to reconstruct
the nuclear density from the swarm of classical trajectories using
Gaussians centered on the classical nuclei. The corresponding quan-
tum momentum is a quasi-linear function of the nuclear position
containing a slope

̵h
2σν(t)2 and an intercept term Y(α)ν (t),

P(α)ν (t) =
h̵

2σν(t)2 R(α)ν (t) −Y(α)ν (t), (7)

where for an explicit expression of the intercept in terms of the
Gaussians centered on the nuclei, we refer to Ref. 20. σν(t) is the
width of the Gaussian centered on nucleus ν. It may be treated as
time-independent in the so-called “frozen Gaussian” approxima-
tion27 or as time- and trajectory-dependent (σ(α)ν (t)), but we neglect
this detail to simplify our arguments; the same conclusions apply in
the latter, more general case. We do, however, note that the width
may vary in each dimension independently, so we later use σj to refer
to a width in Cartesian direction j ∈ 3Nn.

The expression for the intercept term derived as described
above is known to cause population transfer on average between
adiabatic states even in regions where the NACs are zero. This is
an undesirable result that is not reflected in full quantum dynam-
ics simulations. To remedy this problem, the following condition is
imposed in CTMQC:16,19,23

if d(α)ν,ml = 0 ∀ ν, m, l, α→ ⟨
d
dt
∣C(α)m (t)∣

2
⟩
(α)
= 0 ∀ m, (8)

where ⟨⋅ ⋅ ⋅⟩(α) refers to an average over all trajectories. We refer to
this as the spurious population transfer condition. The condition
may be considered an intuitive consequence of the restoration of
the adiabatic approximation in regions where the NACs are close
to zero. Inserting the condition, Eq. (8) in Eqs. (1)–(3), one obtains
a more explicit form of the spurious transfer condition,

⟨∑
l

Nn

∑
ν=1

2P(α)ν (t)
h̵Mν

⋅ (f(α)ν,m(t) − f(α)ν,l (t))∣ρ
(α)
lm (t)∣

2
⟩

(α)

= 0 ∀ m, (9)

where the quantum momentum P(α)ν is given by Eq. (7). After
asserting that the condition of zero population transfer, Eq. (9), is
separately zero for each pairwise contribution from adiabatic states
(m, l) as well as for each degree of freedom j ∈ 3Nn, accompanied by
a pairwise and trajectory independent intercept for each degree of
freedom, Y(α)ν → Y j,ml, the spurious transfer condition becomes

⟨P(α)j,ml(t)( f (α)j,m(t) − f (α)j,l (t))∣ρ
(α)
ml (t)∣

2
⟩
(α)
= 0 ∀ m, l, j, (10)

and the expression for the quantum momentum is obtained as19,20

P(α)j,ml(t) =
h̵

2σj(t)2 R(α)j (t) − Yj,ml(t), (11)
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with the intercept term uniquely determined as

Yj,ml(t) =
h̵

2σj(t)2

⟨R(α)j (t)( f (α)j,m(t) − f (α)j,l (t))∣ρ
(α)
ml (t)∣

2
⟩
(α)

⟨( f (β)j,m(t) − f (β)j,l (t))∣ρ
(β)
ml (t)∣

2
⟩
(β)

.

(12)

The above parameterization breaks the definition of the quan-
tum momentum as a logarithmic derivative of the nuclear density.
The main problem is, however, in the nature of the intercept term
Eq. (12) since it is divergent if the denominator tends to zero and
the numerator remains finite. This is where the instabilities in the
algorithm can arise. Unfortunately, this is not an uncommon occur-
rence, as in our analysis of the Tully models, we found that all
models encountered these instabilities, apart from a few cases, such
as the high momentum case in Tully model III (extended coupling
region).10

To address these problems, a cut-off procedure is commonly
used. For example, the g-CTMQC code26 employs the following
criteria: the intercept term is compared to the position of a trajec-
tory, and if this trajectory is more than a certain number of standard
deviations, σj(t), from the intercept, then the following definition is
used instead:20

Y(α)j (t) =
h̵

2σj(t)2

∑
Ntraj

β=1 R(β)j (t)Gσ(R(α)(t) − R(β)(t))

∑
Ntraj
γ=1 Gσ(R(α)(t) − R(γ)(t))

, (13)

where Gσ(R(α)
(t) − R(β)

(t)) represents the multidimensional Gaus-
sian with standard deviation σ centered at R(β)

(t). If this definition
is also more than the chosen number of standard deviations away,
then the quantum momentum is set to zero. The procedure is based
on the fact that a trajectory far enough away from all the others
can be considered as independent and thus would not experience
decoherence effects due to the branching of trajectories unless it
came into contact with them again later in the simulation. The
procedure also defines an absolute cutoff to the value of the quantum
momentum, which is given by plugging this threshold criterion into
the expression for the quantum momentum in Eq. (11), which gives
Pcutoff, j(t) = 10̵h

2σ j(t)
. The key drawback is that the quantum momen-

tum with the intercept in Eq. (13) no longer, in general, satisfies the
spurious population transfer condition of Eq. (8). This gives rise to
fairly large energy drifts, as we will show below, even if the total
energy correction scheme (CTMQC-E) is applied.

B. CTMQC-E
The quantum–classical expression for the energy on a single

trajectory is given by the sum of the population weighted adiabatic
energies and the kinetic energy of the classical nuclei,18,23

Eα
= E(α)kin +∑

m
ρ(α)mm(t)E

(α)
m , (14)

where E(α)kin ≡ ∑
Nn
ν=1

1
2 Mν∣Ṙ(α)ν ∣

2. The conserved quantity is the trajec-
tory average,

d
dt
⟨E(α)⟩(α) = 0. (15)

This is more faithful to the Ehrenfest theorem in full quantum
mechanics, by contrast to applying energy conservation on each
trajectory independently.23 Equation (15) leads to a sum of expres-
sions, some of which derive from Ehrenfest and some of which
arise purely from the XF-based terms. It can be shown that since
the Ehrenfest contribution to the force derives from the gradient of
the potential energy expression, then the total time derivative of the
Ehrenfest contributions will cancel each other analytically on each
trajectory. Therefore, the analytical contribution to energy deviation
is the contribution from the XF terms solely,

⟨Ė⟩ = ⟨∑
m,l

3Nn

∑
j=1

P(α)j,ml(t)

h̵Mj
∣ρ(α)ml (t)∣

2
( f (α)j,m(t) − f (α)j,l (t))

× [

3Nn

∑
k=1
( f (α)k,m(t) − f (α)k,l (t))Ṙ

(α)
k (t) + (E

(α)
m − E(α)l )]⟩

(α)

.

(16)

The strategy employed by the CTMQC-E algorithm is to make the
above expression formally equivalent to Eq. (8), and when the lat-
ter is expanded into its component form, Eq. (10), we see that if the
product on the second line of Eq. (16) is trajectory independent, then
the expressions will be equivalent up to a time-dependent function.
Therefore, Eq. (12) will prevent both spurious population transfer
and energy drift incurred by the quantum momentum terms. The
value which is chosen for the product on the second line of Eq. (16)
is arbitrary, but in each case, the value is achieved by redefining
the BO momenta f (α)j,m(t)→ f̃ (α)j,m(t). If one chooses it to be equal to
its trajectory average with respect to the original BO momenta and
simultaneously chooses the redefined BO momentum to be parallel
to the velocity, then this will yield the BO momentum presented in
the CTMQC-E paper,23

f̃(α)ν,m(t) =
(−E(α)m + ⟨[∑

3Nn
k=1 f (β)k,m(t)Ṙ

(β)
k (t) + E(β)m (t)]⟩

(β)
)

2E(α)kin

×MνṘ(α)ν (t). (17)

Clearly, this redefinition is ill-defined on trajectories with zero
kinetic energy and thus a cutoff is used for the denominator, below
which the original definition of the BO momentum is used.23

C. CTMQC-DI and CTMQC-EDI
The way in which divergences of the intercept term of Eq. (12)

are handled in the cut-off method is known to cause instabilities in
CTMQC and CTMQC-E. Here, we define two novel procedures to
address this: the Double Intercept (DI) method and Regularization
(R).

In the DI method, we consider the spurious population transfer
condition [Eq. (10)], but we now assert a stricter condition wherein
the population transfer is forbidden on average on the subsets of
trajectories where f (α)j,m(t) − f (α)j,l (t) < 0 and f (α)j,m(t) − f (α)j,l (t) > 0
separately,

⟨P(α)j,ml(t)( f (α)j,m(t) − f (α)j,l (t))∣ρ
(α)
ml (t)∣

2
⟩
(+)

(α)
= 0 ∀ m, l, j (18)
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and

⟨P(α)j,ml(t)( f (α)j,m(t) − f (α)j,l (t))∣ρ
(α)
ml (t)∣

2
⟩
(−)

(α)
= 0 ∀ m, l, j, (19)

where the superscript (±) denotes the subset. The new intercepts are
given, respectively, as

Y(±)j,ml(t) =
h̵

2σj(t)2

⟨R(α)j (t)( f (α)j,m(t) − f (α)j,l (t))∣ρ
(α)
ml (t)∣

2
⟩
(±)

(α)

⟨( f (β)j,m(t) − f (β)j,l (t))∣ρ
(β)
ml (t)∣

2
⟩
(±)

(β)

.

(20)

The above equation is the key analytical result of this paper. It may
be coupled to CTMQC-E by replacing the BO momenta with their
modified expressions: f (α)j,m(t)→ f̃ (α)j,ml(t), defined in Eq. (17). We
refer to the resulting algorithm as CTMQC-EDI.

In the DI method, divergences are resolved
because on each subset, the weight factor w

(α),(±)
j,ml (t)

≡ 1
Ntraj

( f (α)
j,m(t)− f (α)

j,l (t))∣ρ
(α)
ml (t)∣

2

⟨( f (β)
j,m(t)− f (β)

j,l (t))∣ρ
(β)
ml (t)∣

2
⟩

(±)

(β)

is finite for all values of its denomi-

nator. In fact, the weight factor takes values wα,(±)
j,ml (t) ∈ [0, 1], ∀ α,

with the property that the weights sum to unity. Thus, we
have also defined a natural cutoff to each branch of the
quantum momentum, which is given by max (∣P(α),(±)j,ml (t)∣)

= max(
̵h

2σ j(t)2 ∣R
(α)
j (t) − R(±)j (t)∣), where R(±)j (t) are the set of

nuclear positions on the respective subsets. Therefore, the sum that
defines the intercept term on each is always finite.

The prescription of (±) subsets depends on the ordering of
the indices m, l. When one reverses the ordering m↔ l, one should
also take the superscript (±)→ (∓). Thus, the intercept term has
the property Y(±)j,ml = Y(∓)j,lm . A given trajectory, α, and direction, j,
can belong to the positive or negative branch depending on the
index ordering, but this has no impact on the numerical value of
the quantum momentum; we still have the property that P(α)j,ml(t)

= P(α)j,lm(t) ∀ α, j, l, m.
If a trajectory has a BO momentum difference of zero, then it

is not included in either calculation of the intercepts. These trajecto-
ries, in fact, follow Ehrenfest dynamics exactly, as can be seen from
Eq. (3) for the evolution of adiabatic coefficients and Eq. (6) for the
nuclear forces. Any choice of quantum momentum in these regions
will yield the same dynamics, so we set the quantum momentum to
zero here.

The quantum momentum can discontinuously change upon
switching branches; however, this, nonetheless, analytically results
in continuous forces and evolution of adiabatic states as the
force expression (6) and electronic evolution (3) rely only on
P(α)j,ml( f (α)j,m(t) − f (α)j,l (t)) being continuous in time, which is
generally satisfied because in order for a trajectory to switch branch,
it must go through ( f (α)j,m(t) − f (α)j,l (t)) = 0 continuously. Therefore,
the new prescription for the quantum momentum in CTMQC-DI
and CTMQC-EDI is well defined and no longer causes divergences
in wavefunction evolution or force calculation.

D. CTMQC-R and CTMQC-ER
An alternative way to remove divergences in the intercept term

in Eq. (12) is to apply a regularization (R) procedure. We define the
dimensionless function,

x(α)j,ml(t) ≡
σj(t)⟨( f (γ)j,m(t) − f (γ)j,l (t))∣ρ

(γ)
ml (t)∣

2
⟩
(γ)

⟨(R(α)j (t) − R(β)j (t))( f (β)j,m(t) − f (β)j,l (t))∣ρ
(β)
ml (t)∣

2
⟩
(β)

,

(21)

such that the quantum momentum is given by

P(α)j,ml(t) =
h̵

2σj(t)
1

x(α)j,ml(t)
. (22)

The benefit of this definition is that we may now identify the diver-
gence as a 1

x divergence at x = 0, and presuming that x(α)j,ml(t) is
a smooth function of the BO momentum, nuclear positions, and
coherence, this divergence should be approached smoothly for an
infinitesimal time step. It also provides the benefit that any regular-
ized function replacing 1

x will contain a dimensionless regulariza-
tion parameter. For our later analysis, we choose to regularize the
quantum momentum via

P(α)j,ml(t) =
h̵

2σj(t)

x(α)j,ml(t)

(x(α)j,ml(t)
2
+ ϵ2
)

, (23)

where ϵ is a parameter that is chosen much smaller than the typical
values of x(α)j,ml(t). Now, the quantum momentum smoothly interpo-

lates between its maximum value defined as ±
̵h
2ϵ

1
2σ j(t)

and zero. A
similar regularization procedure may be used when regularizing the
division by velocity in the CTMQC-E algorithm, but this was not
implemented. We will refer to this algorithm as regularized CTMQC
or in short, CTMQC-R. Once again, it may be trivially coupled to
the CTMQC-E algorithm, in which case we refer to this method as
CTMQC-ER.

III. COMPUTATIONAL DETAILS
We tested our implementation using well-known Tully mod-

els I–III10 and the double arch model,25 which are a set of one-
dimensional models with a single nuclear degree of freedom, of mass
M = 2000 (a.u), and two adiabatic states. Given the low dimension-
ality of these models, exact results can be obtained using standard
direct propagation techniques of the Schrödinger equation. Initial
conditions for our swarm of classical trajectories were obtained
from a Wigner distribution corresponding to a nuclear wavepacket
given by

χ(R, 0) =
1

(πΣ2
)

1
4

exp [−
(R − R0)

2

2Σ2 + ik0(R − R0)], (24)

where in all cases we chose Σ =
√

2 (a.u). The width parameter mod-
ulating the strength of the quantum momentum in Eq. (11) was
frozen (i.e., treated time-independent), σj(t) = σ, and chosen such
that the reconstructed initial nuclear density given by the sum of
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Gaussians centered on the initial sampled positions of the nuclei
reproduced the exact initial nuclear density in Eq. (24) as close as
possible. All simulations were carried out for a swarm of Ntraj = 200

trajectories and a width of σ =
√

1
5 . We found that populations

and coherences were well-converged with just 200 trajectories (see
Fig. S1). We note that other choices of σ = 3

10 (a.u) or σ = 1
2 (a.u)

yield similar results.
Electronic populations were initialized in the ground state:

∣C(α)0 (0)∣
2
= 1 ∀ α. Nuclear dynamics were propagated using the

velocity-Verlet algorithm and the wavefunction coefficients were
evolved using the RK4 algorithm. In all cases, electronic and nuclear
dynamics were evolved using the same time steps. This time step was
Δt = 10 (as), except when testing convergence with time step we used
Δt ∈ (2, 10, 20, 30, 40, 50) (as).

Simulations were carried out for all three divergence pro-
cedures defined above. (i) CTMQC-DI and CTMQC-EDI using
Eq. (20) for the intercepts; when the denominator in this expres-
sion went to zero, we assigned a value of 0 to that intercept. As
argued above, this choice is arbitrary and has no effect on dynamics.
(ii) CTMQC-R and CTMQC-ER using Eq. (23) with ϵ = 0.05 so
that the peak value of the quantum momentum matched that of the
cut-off method. (iii) Simulations with the standard cut-off method,
here simply referred to as CTMQC and CTMQC-E, where we chose
a cutoff for the denominator of the intercept term in Eq. (12) and
for the number of standard deviations from the center of the quan-
tum momentum such that they matched the current default values
used in the g-CTMQC code: a cut-off radius of 10σ, corresponding
to a quantum momentum cutoff of 5̵h

σ .26 The denominator cutoff
was 10−8 (a.u).

For the double arch model, we found that ϵ = 0.05 and a cutoff
of 10σ resulted in the quantum momentum switching definitions too
frequently, so we used ϵ = 0.005 and a cutoff corresponding to 1000σ
instead. The double arch model’s values for the quantum momenta
were generally higher than for the other models, so a “divergence”
of the quantum momentum was identified even when it was not the
case.

IV. RESULTS
In the following, we present results for Tully model I, the single

avoided crossing, in the high momentum case [k0 = 25 (a.u)]. The
results and conclusions drawn for this model were representative
of the ones for all other Tully models, which are presented in the
supplementary material (Figs. S2–S5). Before we compare the differ-
ent divergence schemes, we explain the dynamics observed in terms
of the Ehrenfest and XF contributions to CTMQC.

We may think of the dynamics in Tully I as going through three
key regions defined by the potential energy surfaces and NACV in
Fig. 1(a). In the region R ∈ [−20,−5] (a.u), the coupling between
states is weak, as quantified by the NACV, and this means that
there is no population transfer on any of the trajectories because the
dominating term in the evolution of the coefficients is the phase
term in Eq. (2). This explains why the black line in Fig. 1(b) is ini-
tially flat for the first 30 (fs). Since the system is initialized with
the full population in the ground state, the XF contributions of
Eq. (3) also vanish since there is no electronic coherence between
states as can be seen initially in Fig. 1(e) on the black line. An

FIG. 1. Performance of different coupled trajectory mixed quantum–classical
(CTMQC) simulation methods on Tully model I. (a) Sketch of the Single Avoided
Crossing (SAC) potential energy surfaces (black), with the initial nuclear density
(blue). The d10(R) NACV (orange) is scaled by a factor of 1

50
. Mean ground

state populations, ⟨∣C(α)
0 (t)∣

2
⟩
(α)

, in bold for the exact (green)16 and respec-

tive quantum momentum methods (b) CTMQC-EDI (black), (c) CTMQC-ER (red),
and (d) CTMQC-E with the cut-off method (blue), each plotted alongside individ-
ual coupled trajectories (gray). (e) Coherence, ⟨∣C(α)

0 (t)∣
2
∣C(α)

1 (t)∣
2
⟩
(α)

, using

the same color-coding as above. Note the absence of spurious “wiggles” in the
populations of single trajectories at around 40 fs (avoided crossing region) for the
CTMQC-EDI method in (b). See the supplementary material (Figs. S2–S5) for all
other Tully models and the double arch model.

analogous argument for the forces leads to the conclusion that the
force acting on the nucleus derives entirely from the ground state in
this region; F(α)(t) ≈ − ∂

∂R E0(R(α)(t)) ∀ α, as can be derived from
Eqs. (2) and (3).

In the region R ∈ [−5, 5] (a.u), the NACV is at its strongest
owing to the proximity of the potential energy surfaces, and thus,
we have a population transfer to the excited state for some trajec-
tories mediated by the NACV contribution; the second term on the
RHS of Eq. (2). We see this population transfer regime in Fig. 1(b)
for the black line between 35 and 45 (fs), and notably, this aver-
age population is representative of the individual contributions from
the gray lines. In this region, the XF contributions are still small
because the BO momentum contributions, ( f (α)1 (t) − f (α)0 (t)), in
Eq. (3) have not had time to accumulate. For this reason, we can
think of this region as the one in which the building of coherence
between states via the NACV is the dominant mechanism mediating
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population transfer. A corresponding increase in coherence for the
black line in Fig. 1(e) is indicative of this behavior. By a similar
argument, the forces in this region are dominated by the mean
contribution from each adiabatic state.

In the region R ∈ [5,∞), the XF contributions come into play
because the coherence between electronic states, ∣ρ(α)10 (t)∣

2, is gen-
erally high and the BO momentum has had time to accumulate
over the trajectory and now dominates over the diminished NACV
contributions. We see from Eq. (3) that this mechanism leads to
decoherence at a rate proportional to the coherence between the
electronic states. We see this desired decay of coherence in Fig. 1(e)
after ∼45 (fs) has elapsed. The role of the quantum momentum,
P(α)10 (t), for this particular model can be understood from the fact
that each contribution inherits the same sign for the BO momentum
difference and that, given the flat potential energy surfaces in this
region, it does not change sign. Therefore, the quantum momen-
tum is involved in a “self-organization” process, in which trajectories
will decohere to the excited state or the ground state depending on
whether they trail or lead the intercept term of Eq. (20) and depend-
ing on whether they exist on the positive or negative branch. It is
important that a correct proportion of the trajectories will decohere
to one state or the other; this is ensured by the spurious popu-
lation transfer condition, Eq. (8), resulting in nearly unchanged
populations in this region [black line in Fig. 1(b)]. During
this organizing process, the force contribution of Eq. (6) serves to
push the nuclei toward the center of the nuclear density, which
eventually leads to a splitting of the trajectories of the swarm, as they
follow forces deriving from the different potential energy surfaces
once the electronic coherence has fully decayed, and the adiabatic
approximation has been restored. Many of the same conclusions
we draw here can be used to understand the general mechanisms
that CTMQC describes, although we note that, for example, in this
model we had flat potential energy surfaces in the region dominated
by the quantum momentum, allowing us to attribute the sign of
the decoherence term entirely to the sign of the quantum momen-
tum; this would not be the case if the potential energy surfaces
were well-separated but, nonetheless, had large gradients since this
would allow the BO momentum difference to change sign in this
region.

All divergence methods reproduce the mean populations,
Figs. 1(b)–1(d), and coherence, Fig. 1(e), well compared with exact
results. Additionally, the results are nearly identical regardless of
the application of the energy correction. This property was noted of
the extended coupling region Tully model.23 In the supplementary
material, Figs S2–S5, we demonstrate that this is true of all of the
Tully models for the initial nuclear momenta tested. However, the
quantum momentum divergence, characterized by the denominator
of Eq. (12) going to zero, occurs at ∼38 (fs) in the cut-off and reg-
ularization methods, and this is where the coherences in Fig. 1(e)
from the different methods diverge from each other. For regulariza-
tion parameters that correspond to a higher cutoff to the quantum
momentum, it is likely that one will observe a spurious dip in the
coherences in this region; such behavior was observed in Ref. 16.
We see a signature of this behavior in the individual trajectories
for our choice of regularization parameters, as many of the
trajectories jump at this divergence [thin grey lines in Figs. 1(c)
and 1(d)]. This undesirable behavior is less pronounced if using
the cut-off method compared with the regularization method but is

still present. CTMQC-EDI [Fig. 1(b)] has the smoothest individual
trajectories and has no signatures of the divergence apparent in the
populations.

CTMQC-EDI has a very similar qualitative behavior to the
other two divergence methods despite its contrasting definition.
We attribute this to the fact that CTMQC-EDI is only activated in
regions where the BO momentum difference, (f̃ (α)1 (t) − f̃ (α)0 (t)),
between adiabatic states contains trajectories of each sign. Gener-
ally, in the Tully models, most trajectories eventually fall into the
same branch after leaving the NAC region, in which case it behaves
identically to the original definition of the quantum momentum
containing the intercept term from Eq. (12). In fact, for our pre-
sented model, all trajectories eventually fell into the positive branch
for the 1,0 index ordering. One would expect the behavior of
CTMQC-EDI compared with regularization and cut-off methods, to
vary at long times if a reasonable proportion of trajectories occupied
each branch, but it is not necessarily true that one method would
perform better than another in this circumstance. However,
given that divergences of the quantum momentum may only
occur if trajectories exist in both branches, the regulariza-
tion and cut-off methods would be more subject to numerical
instabilities.

Figure 2(a) demonstrates that all algorithms perform simi-
larly in terms of norm conservation, which improves with the
time step. The results are unaffected by the use of the energy cor-
rection algorithm. In Fig. 2(b), absolute energy drift is improved
by the CTMQC-E algorithm for all methods, while leaving the
norm conservation unchanged. Yet, the improvement in energy

FIG. 2. Norm and total energy conservation of different CTMQC methods against
the integration time step, for Tully model I. Deviations of the electronic wavefunc-
tion norm from unity over the full simulation and averaged over trajectories (a),
as well as total energy conservation (b), ΔEsim ≡ ⟨E(α)

(tfinal) − E(α)
(0)⟩

(α),

where Eα is given by Eq. (14). Standard deviations were computed from ten initial
seeds for the Wigner distribution corresponding to Eq. (24) and are indicated by
error bars but are small and may not be visible. Color coding is as follows: CTMQC-
EDI (black solid line), CTMQC-ER (red solid line), CTMQC-E with the cut-off
method (blue solid line), CTMQC-DI (black dashed line), CTMQC-R (red dashed
line), and CTMQC with the cut-off method (blue dashed line). When the energy cor-
rection is applied, the electronic wavefunction is renormalized to decouple errors
in norm and energy drift.

J. Chem. Phys. 159, 234118 (2023); doi: 10.1063/5.0183589 159, 234118-7

© Author(s) 2023

 04 January 2024 00:21:47

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

conservation obtained with CTMQC-EDI is two orders of magni-
tude better than with the other intercept methods. Importantly, the
energy conservation can be systematically improved by decreasing
the integration time step, whereas no such improvement is obtained
with the other two intercept methods. Moreover, in CTMQC-EDI,
the performance in energy (and norm) conservation is least sensi-
tive to the initial conditions chosen (smallest error bars in Fig. 2),
suggesting of the high numerical stability and robustness of this
method.

Figure 3(a) demonstrates the reason for the improved energy
conservation using CTMQC-EDI observed in Fig. 2(b). At 38 (fs),
the intercept of the quantum momentum, Eq. (12), diverges. In
the cut-off method, the definition of the intercept is switched to
Eq. (13), and in the regularization method, Eq. (23), the regulariza-
tion becomes active. Both procedures lead to a violation of Eq. (8) or,
equivalently, of Eq. (10) and spurious population transfer at 38 (fs)
[corresponding to peaks in Fig. 3(a)]. By contrast, in CTMQC-EDI,
the intercepts defined by Eq. (20) remain finite and Eq. (8) remains
fulfilled at any time because of the stricter conditions defined by
Eqs. (18) and (19). Notice that the spurious population condition, on
the left-hand side of Eq. (10), appears in the expression for change
in total energy, given by the first term on the right-hand side of
Eq. (16), and that conservation of total energy in the CTMQC-E
methods is guaranteed only if these terms are zero. Since they are no
longer zero when switching definitions via the cut-off method or by
interpolating using the regularization method, total energy is no
longer conserved [see Fig. 3(b) blue and red solid lines, respec-
tively, at 38 (fs)]. Hence, the -E extension to the algorithms cures the
energy conservation only prior and after this point in time where
no definition switching or regularization occurs and Eq. (16) is
fulfilled [Fig. 3(b); compare solid with dashed lines]. By contrast,
CTMQC-EDI does not suffer from this problem and the total energy
remains conserved at any time [Fig. 3(b), black solid line]. This also

FIG. 3. Spurious population transfer and total energy conservation of different
CTMQC methods against time, for Tully model I. (a) Spurious population trans-
fer indicator defined as Ntraj⟨

2
M
P(α)

10 (t)( f (α)
1 (t) − f (α)

0 (t))∣ρ
(α)
10 (t)∣

2
⟩
(α)

and

(b) trajectory-averaged energy drift defined as ΔE(t) ≡ ⟨E(α)
(t) − E(α)

(0)⟩
(α)

with Eα given by Eq. (14). Color code and line styles as in Fig. 2. See the
supplementary material (Figs. S2–S5) for all other Tully models and the double
arch model.

explains why we do not see an improvement in the energy conserva-
tion with the time step [Fig. 2(b)] despite the energy correction for
regularization and cut-off methods; in these cases, the vast majority
of energy drift occurs due to the spurious population transfer, which
occurs regardless of the time step used as the dynamics are well
converged even for 50 (as) time steps. The exact extent to which
spurious population transfer occurs depends on a variety of
factors, but principally on what defines the cutoff to the quantum
momentum. If the cutoff is increased, then the spurious nature of
the divergence can be greatly reduced, and the corresponding jump
that would be observed in the energy would also be reduced. This is,
however, merely due to the fact that one does not switch (or interpo-
late to in the case of the regularization method) to a non-conserving
definition of the quantum momentum as often and, therefore, runs
the risk of causing increasingly unstable dynamics as the quantum
momentum is allowed to increase to the new threshold, which is, in
principle, arbitrarily large compared to the other terms contribut-
ing to the population transfer. There is always, therefore, an internal
tension between conserving energy and stabilizing the dynamics.
CTMQC-EDI, on the other hand, always satisfies the spurious
population transfer condition [Eq. (8)] with deviations never
exceeding 10−12 (fs)−1.

V. CONCLUSION
In summary, we proposed a new treatment of the quantum

momentum in the CTMQC algorithm via a redefinition, which
removed the need for switching definitions or regularization of
the quantum momentum. We have proven that the new method,
CTMQC-DI, has the same desirable qualities as the contempo-
rary methods, namely, norm conservation and analytic continuity
of forces and populations, while eliminating spurious population
transfer. CTMQC-DI also shows good agreement with exact quan-
tum mechanics for populations and coherences. Just like CTMQC,
the algorithm is deterministic; nuclear dynamics are continuous
and follow forces derived directly from the electronic wavefunc-
tion instead of a surface wavefunction, while electronic dynamics are
also continuous at all times. Once coupled to the recently developed
CTMQC-E algorithm, it was shown that the energy conservation
was significantly improved over previous methods and was the only
method that reliably improved with the decreasing time step. Our
algorithm should also serve to stabilize the electronic evolution in
surface hopping based coupled trajectory schemes, such as coupled
trajectory-trajectory surface hopping (CT-TSH),19 in the same way
that it does for CTMQC. Energy non-conservation is still a possibil-
ity if the kinetic energy of the system goes to zero on a given tra-
jectory [see the right-hand side of Eq. (17)], but this becomes more
infrequent when the system gets larger. For this reason, we expect
that the advantage with respect to energy conservation incurred
by the redefinition will improve when the system size gets larger.
CTMQC-EDI, therefore, shows promise as a non-adiabatic dynam-
ics technique for molecular28 and large scale quantum systems.
Future efforts will be focused on implementing CTMQC-EDI for
simulation of charge and exciton transport processes in nanoscale
molecular materials where the electronic structure problem can be
relatively easily parameterized as, e.g., in fragment orbital-based
surface hopping (FOB-SH).29–32
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SUPPLEMENTARY MATERIAL

In the supplementary material, we demonstrate the con-
vergence of average populations and coherence against varying
numbers of trajectories for Tully I and we also include a summary of
the results obtained for each of the models (Tully I–III and double
arch).
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