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Abstract: Tetralogy of Fallot (TOF) is the most common complex congenital heart disease with long-
term survivors, demanding serial monitoring of the possible complications that can be encountered
from the diagnosis to long-term follow-up. Cardiovascular imaging is key in the diagnosis and serial
assessment of TOF patients, guiding patients’ management and providing prognostic information.
Thorough knowledge of the pathophysiology and expected sequalae in TOF, as well as the advantages
and limitations of different non-invasive imaging modalities that can be used for diagnosis and follow-
up, is the key to ensuring optimal management of patients with TOF. The aim of this manuscript is
to provide a comprehensive overview of the role of each modality and common protocols used in
clinical practice in the assessment of TOF patients.
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1. Introduction

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease (CHD),
with an incidence of 32.6 per 100 000 live births [1]. The classical TOF includes (i) a ven-
tricular septal defect (VSD), (ii) an overriding aorta, (iii) the presence of right ventricular
outflow obstruction (RVOTO), either at the infundibular, valvular, supravalvular level, or
combined, and (iv) consequent right ventricular hypertrophy (RVH) [2]. Embryologically,
these abnormalities are the result of an antero-cephalic malalignment of the developing
outlet interventricular septum [3]. Other anatomical defects observed in association with
the classic TOF include additional VSDs, atrial septal defect(s) (constituting the so-called
“pentalogy of Fallot”), abnormalities of the tricuspid or pulmonary valves (including pul-
monary atresia), a right-sided aortic arch, and an anomalous origin and course of the
coronary arteries [4–6]. The pulmonary arteries are frequently hypoplastic or stenotic [7].
Most TOF cases are sporadic, with no specific underlying cause identified, although a
genetic substrate (microdeletion of the q11 region of chromosome 22) with an association
with other genetic syndromes (i.e., Di George syndrome) has been described, as well as a
3% risk of recurrency [8]. Usually, TOF patients present with various degrees of cyanosis,
and the diagnosis is frequently made during foetal life or shortly after birth by echocardio-
graphy [2]. Surgical palliation involves a systemic to pulmonary arterial shunt to improve
cyanosis [2]. Repair strategies aim instead at VSD closure with relief of the RVOTO with
either pulmonary valve repair or valve-sparing procedures and a transannular patch [2].
Advances in palliative/reparative techniques have led to a significant improvement in the
TOF patient’s survival, which is otherwise very poor. Nevertheless, patients with repaired
TOF (rTOF) may develop several complications, including residual pulmonary or tricuspid
regurgitation, pulmonary stenosis, RV dilatation and/or dysfunction, left ventricular sys-
tolic dysfunction, and aortic root dilatation, which may require further interventions [7].
Patients with pulmonary prosthetic valves have a higher risk of infective endocarditis [8].
Cardiovascular imaging has a pivotal role in the diagnosis and management of these
patients, including initial diagnosis, risk stratification, pre-interventional planning, and
long-term follow-up. The aim of this review is to provide a comprehensive overview of the
role, advantages, and limitations of each imaging modality in TOF patients, from diagnosis
to long-term follow-up.

2. Transthoracic Echocardiography in Tetralogy of Fallot

Transthoracic echocardiography (TTE) represents the cornerstone imaging technique
throughout the lifetime of patients with TOF, from foetal diagnosis to assessment of late
complications in adulthood. The wide availability, relatively low cost, and absence of
contraindications make it an essential diagnostic tool, both pre-operatively and post-
operatively [5].

The TTE data acquisition protocol should incorporate standard echocardiographic
views from the subcostal, parasternal, apical, and suprasternal windows in combination
with full sweeps and selected single planes.

2.1. Pre-Operative Evaluation

TTE allows for the detailed visualisation and measurement of cardiac structures,
providing essential information on the severity of the pulmonary stenosis, size, and mor-
phology of the ventricular septal defect (VSD), aortic override, and right ventricular outflow
tract (RVOT) obstruction. Even though several anatomical types of VSD have been de-
scribed, the typical VSD in TOF is an anterior malalignment type of outlet VSD, with
the conal septum anteriorly diverging from the muscular septum. This single lesion is
responsible for all the main components of the disease: a <50% override of the aorta over
the muscular ventricular septum, muscular obstruction of the RVOT, and right ventricle
hypertrophy (RVH) [6]. The analysis of the spectral Doppler and colour flow mapping may
add important information. In cases of mild RVOTO, the interventricular shunt will be
mostly left-to-right. As the obstruction increases, the shunt will first become bidirectional
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and then right-to-left, with possible hypercyanotic spells. The high parasternal view and
suprasternal view allow the assessment of additional sources of blood flow, such as patent
ductus arteriosus and aortopulmonary collaterals. The pulmonary valve is often thickened
and dysplastic, with a hypoplastic annulus. If significant annulus hypoplasia exists, a
transannular patch extension may be required at the time of surgical correction. Addition-
ally, TTE aids in the identification of associated lesions, such as anomalous coronary arteries
and additional VSD(s). These lesions significantly impact surgical planning and patient
outcomes [7] and, if neglected, may impact post-op intensive care and require another
surgery, if significant.

During the surgical correction of TOF, real-time transoesophageal echocardiography
(TEE) plays a pivotal role in providing intraoperative guidance. TEE enables the assessment
of the surgical repair, including evaluation of ventricular septal defect closure, confirmation
of adequate relief of RVOTO, and assessment of residual intracardiac shunts.

2.2. Post-Operative and Long-Term Evaluation

Serial echocardiographic examinations help monitor surgical repair and assess residual
defects, such as residual shunts, RVOTO, or pulmonary regurgitation (Figure 1).

Figure 1. Echocardiographic assessment of a patient with TOF and previous transcatheter pulmonary
valve replacement (melody): in the left upper corner a right-ventricular focused four-chamber view;
in the right upper corner a colour Doppler imaging of the right ventricular outflow tract with Melody
valve implantation; in the left lower corner a global longitudinal strain of the right ventricle; in the
right lower corner the TAPSE evaluation and the gradient assessment through the Melody valve.

Post-operatively, residual small shunts may often be detected along the edges of the
VSD patch. These defects generally resolve following the endothelialisation of the patch.
In addition, a small muscular VSD may be detected for the first time after surgery [9].
RVOTO may persist after surgery. While colour mapping aids in recognising the site of the
obstruction at the sub-valvar, valvar, supra-valvar, or pulmonary branch level, continuous
Doppler is particularly valuable in quantifying the severity of this residual lesion. The
assessment of pulmonary regurgitation plays a crucial role in the long-term monitoring of
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TOF patients. Markers of severe pulmonary regurgitation include laminar and low-velocity
regurgitant colour flow, diastolic flow reversal from pulmonary branches, a pressure half-
time of less than 100 ms, and a pulmonary regurgitation index <0.77 (calculated using the
regurgitation time as a percentage of the total diastolic time) [10,11].

TOF patients are prone to developing RV dysfunction and dilation due to chronic
volume and pressure overload. Accurate assessment of RV size and function is critical, es-
pecially because, following TOF surgery, criteria for pulmonary valve replacement include
the development of RV dysfunction or increasing dilatation [12]. However, the evaluation
of RV by two-dimensional TTE is limited by geometric restrictions. For this reason, several
parameters have been proposed to quantify systolic RV function, including the fractional
area change, the tricuspid annular systolic plane excursion, the tissue Doppler’s wave, and
the myocardial performance index [7].

2.3. Advanced Echocardiography in Tetralogy of Fallot

In recent times, there has been a growing emphasis on utilising advanced imaging
methods to achieve a comprehensive and more precise assessment of cardiac function in
TOF patients [13].

Three-dimensional echocardiography has emerged as a crucial tool in the long-term
monitoring of patients with right ventricular outflow tract (rToF) abnormalities, and in cer-
tain instances, it has the potential to replace cardiac magnetic resonance imaging (CMR) [14].
Its primary utility lies in conducting volumetric measurements that yield dependable as-
sessments of the ejection fraction for both the left and right ventricles [15,16], as well as the
volume of all four cardiac chambers [15,16].

Moreover, strain imaging offers a more objective characterisation of myocardial func-
tion [13] and an opportunity to identify early signs of subclinical myocardial damage
through the evaluation of longitudinal, radial, and circumferential strain in the left ventri-
cle [17,18].

Recent studies have discovered relevant correlations between impaired clinical status
and reduced left ventricular (LV) systolic deformation, as measured by speckle-tracking
analysis, in patients with repaired TOF [19]. Furthermore, reduced LV longitudinal, radial,
and circumferential strain have been identified as independent predictors of adverse
clinical outcomes.

A reduction in septal strain has usually been observed, indicating that right ventricular
(RV) dysfunction has a negative impact on left ventricular (LV) function, potentially through
mechanical interdependence between the two ventricles [20].

In a large study involving 151 adult patients with repaired Tetralogy of Fallot (rToF),
RV strains were compared to those of healthy individuals serving as controls. According
to the study results, RV free-wall longitudinal strain is markedly reduced in patients who
experienced either death or heart failure and is associated with adverse cardiac events, as
indicated by a univariate Cox regression analysis [21].

Finally, different studies have observed that the mechanics of both the left atrium (LA)
and right atrium (RA) are impaired in this population [22–24]. In particular, an association
has been identified between abnormal left and right atrial compliance and a history of
life-threatening arrhythmia in individuals with corrected TOF [23,24].

In conclusion, the use of strain parameters in the follow-up of repaired TOF may con-
tribute to a more timely and targeted approach to the clinical management of these patients.

2.4. New Perspectives in the Echocardiographic Assessment in Tetralogy of Fallot

Afterload and preload can affect the estimation of LV systolic function both by us-
ing advanced and conventional echocardiographic parameters [25,26]. Among advanced
echocardiographic parameters, LV global longitudinal strain (GLS) is less influenced by
preload and afterload than LVEF, but is still affected by them [26]. Moreover, left or right
ventricular bundle branch block, which is a very common finding in repaired TOF, can
impact the echocardiographic estimation of LV systolic function and should be accounted
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for [27]. Regarding RV systolic function, even though RV free-wall and GLS showed less
load dependency compared with conventional indices, they are still affected by pulmonary
pressures and therefore RV afterload [28]. Non-invasive myocardial work (MW) indices
have been proposed to overcome the influence of loading conditions on conventional
and advanced echocardiographic indices of systolic function [27,29]. LV MW indices are
corrected for LV afterload, which is estimated based on a reference curve derived from the
non-invasive systolic blood pressure [27]. In addition, based on mitral and aortic valve
events (i.e., opening and closure), the different phases of the cardiac cycle are identified by
the software [27]. Based on these inputs, the software then synchronises the myocardial
deformation throughout the cardiac cycle with the instantaneous LV pressure and creates a
pressure-strain loop, which is used to derive the following non-invasive MW indices [27,29]:
(a) constructive work, which represents myocardial lengthening during diastole and short-
ening during systole; (b) wasted work, which is due to myocardial shortening in diastole
and lengthening in systole; (c) work efficiency, which is the ratio between constructive
work and the sum of constructive and wasted work; and (d) global work index, which is
the area within the pressure-strain loop and represents an index of the global performance
of the LV throughout the cardiac cycle. Although the prognostic value of LV MW indices
has been demonstrated in several cardiovascular diseases [30–32], their use has not yet
been investigated in TOF and may represent an attractive area for future research. Similarly,
MW indices can also be calculated for the RV, setting the cardiac cycle timings based on
pulmonic and tricuspid valve opening and closure and deriving non-invasively the instan-
taneous RV pressure based on PASP [28]. RV myocardial work indices could theoretically
overcome several limitations of conventional echocardiography for the evaluation of RV
function in TOF. Although RV MW indices have shown an important correlation with
invasive indices of RV systolic function and prognostic value, especially in patients with
pulmonary hypertension [28,33], their role in TOF still needs to be investigated.

3. Cardiovascular Magnetic Resonance in Tetralogy of Fallot
3.1. Introduction

CMR is an advanced technique for imaging the cardiovascular system that can assess
the structure, function, and blood flow without the use of radiation [34]. When it comes
to TOF, CMR is especially valuable for analysing the volume and function of the RV, the
pulmonary valve (PV), and the extent of myocardial fibrosis [35]. A CMR study involves
capturing multiple image sequences and can be performed on individuals of any age.
However, in cases of patients with claustrophobia, learning disabilities, or who are very
young and struggling with holding their breath, general anaesthesia may be necessary
to obtain comprehensive diagnostic information. In paediatric centres with high patient
volume, the first CMR is typically conducted around 8–9 years of age, when children
can undergo the examination without anaesthesia. Subsequent CMR studies are usually
performed if new clinical symptoms arise or every 3–5 years, depending on the previous
clinical findings [34,36,37].

3.2. CMR Sequences in Tetralogy of Fallot

In a CMR study for TOF, several cardiac sequences are used, and these may vary
depending on the clinical question, but some common sequences include:

3.2.1. Initial Localisers

The CMR routine commonly starts with single-shot sequences, either dark- or bright-
blooded. In order to plan subsequent sequences and gather data regarding structures other
than the heart, the axial, coronal, and sagittal planes of the thorax are imaged in dark- and
bright-blood single-shot mode. These photos can be taken while holding the breath or
while breathing naturally, depending on the patient’s cooperation [32–36].
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3.2.2. Balanced Steady-State Free Precession (bSSFP) Cine Sequence

The cine sequences are usually acquired during a breath-hold, particularly near the
end of expiration. They are commonly acquired using the fundamental echo views, such
as the four-chamber, LV three chambers, LV two chambers, short-axis (SAX), and RV two
chamber long-axis views. Additionally, cine images can be planned on any useful plane,
depending on the findings and clinical inquiries. These images allow for the evaluation
of wall thickness and regional and global systolic function, as well as the calculation of
the LV and RV end-diastolic and end-systolic volumes and the ejection fraction. End-
inspiration acquisition may be investigated as an alternative to end-expiration in cases of
reduced compliance. New free-breathing cines are another option that is becoming more
prevalent [32–36].

3.2.3. Phase-Contrast (PC) Flow Sequence

This sequence measures blood flow velocities and can assess the severity of any
obstructions or abnormalities in blood flow. The sequences can be run in breath-hold or
free-breathing [32–36,38].

3.2.4. Four-Dimensional (4D) Flow Sequences

Four-dimensional flow MRI (magnetic resonance imaging) allows for the visualisation
and quantification of blood flow in three spatial dimensions over time, hence the term “4D”.
It provides detailed insights into blood flow velocities, directions, and flow patterns in the
heart and the great vessels, which is especially relevant in the context of TOF [39].

3.2.5. Three-Dimensional (3D) Whole Heart SSFP

This sequence gives a comprehensive evaluation of thoracic vasculature, and it offers
detailed morphological information in CHD, particularly of the proximal coronary artery
anatomy and the great vessel morphology and size. It is acquired through free breathing
thanks to a respiratory navigator [40].

3.2.6. Tissue Characterisation Sequences

These sequences have the ability to evaluate the presence of fibrosis or oedema in the
heart. One of them is the late gadolinium enhancement (LGE) images obtained approxi-
mately 10–20 min after injecting a gadolinium-chelate contrast agent (GBCA). Images taken
shortly after the injection, within the first 3–5 min (early gadolinium enhancement—EGE),
are valuable for determining whether there is an intracavity thrombus. This is because both
the myocardium and the cavity will appear enhanced due to the contrast injection, while
the thrombus will appear hypoenhanced since it lacks blood supply.

The different contrast kinetics in normal and abnormal myocardium lead to my-
ocardial enhancement as the contrast agent accumulates in the extracellular space. The
distribution pattern of the contrast agent can offer valuable insights to discriminate between
pathological processes like ischemic cardiac disease, previous inflammatory processes, and
cardiomyopathy. Furthermore, this technique can aid in assessing the risk of arrhythmias.
LGE sequences can be acquired in either breath-hold or free-breathing conditions, ideally
in the same imaging planes as the cine images. This allows for direct comparison and
improves interpretation analysis [41,42].

3.3. CMR Findings in Tetralogy of Fallot

CMR in patients with TOF should be performed in centres with a congenital team
to ensure an adequate level of interpretation of the images [43]. The expected findings
on post-surgical CMRs vary depending on the type of surgery performed. Indeed, TOF
is a spectrum of diseases that can present with minimal antero-cephalic malalignment of
the anterior ventricular septum to severe forms that overlap with the pulmonary atresia
spectrum. The VSD is typically closed using a pericardial/Dacron patch, and if needed, the
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RVOT is enlarged. Depending on the degree of the pre-existing pulmonary stenosis (PS) or
RVOTO, different techniques for RVOT augmentation may be used [44,45].

The surgeon may choose to perform an infundibulectomy with or without a com-
missurotomy in patients with mild RVOT constriction and an adequate pulmonary valve
annulus. Resecting the muscle bundle obstructing the RVOT is required for this. The RVOT
displays normal contractility on CMR pictures captured with bSSFP [44,45].

However, transannular patch repair is a different strategy when there is substantial
stenosis in the RVOT or pulmonary annulus. The pulmonary annulus is opened during
this surgery to reveal the RVOT’s anterior wall. The RVOT’s diameter is then increased
by sewing a pericardial or Gore-Tex patch around the border of the defect. The growth
of PR is one of this procedure’s main drawbacks. The anterior RVOT wall is seen to be
thinned on CMR cine pictures, and PR can be visually assessed. Using PC sequences, the
regurgitant fraction can be measured. On the cine pictures, the transannular patch appears
as an akinetic or dyskinetic zone. Additionally, portions of the patch that are bright on
post-gadolinium LGE pictures are a result of localised fibrosis [44–47].

An extracardiac conduit is inserted from the anterior RV wall/RVOT to the pulmonary
arteries (PAs) in situations of pulmonary atresia or severe TOF spectrum. Usually valved,
these conduits—which may be synthetic or biological—can develop pulmonary regurgi-
tation later on or function as a tiny conduit as people age. Cine or PC sequences can be
used to quantify the stenosis, blockage, or regurgitation of these conduits. However, the
quantification may be incorrect due to conduit artefacts [37,44].

Patients with repaired TOF tend to require multiple PV replacements (PVR), and CMR
plays a pivotal role in selecting the correct replacement timing [44,48,49].

The use of CMR in the most common sequela post-TOF repair is addressed below [50]:
Pulmonary regurgitation: PR is a common complication following the repair of TOF,

and it can have negative effects on the RV, leading to RV dilatation and a negative coupling
effect. Various methods are used to evaluate the severity of pulmonary insufficiency,
combining information from cine and PC sequences in CMR. To assess PR, through-plane
PC imaging is performed at the cross-section of the pulmonary artery just above the
pulmonary valve. PR is calculated as the ratio of retrograde flow volume to antegrade
flow volume. In the absence of shunts, the stroke volumes of both ventricles are equal.
For a visual estimation of PR, an RVOT inplane cine can be useful together with other
sequences [46–48].

Residual RVOT Stenosis: The most common late complication after infundibulectomy.
It leads to right ventricular hypertrophy (RVH), exercise intolerance, and arrhythmias.
CMR cine bSSFP sequences can identify stenosis and RVH. PC sequences can calculate
velocities and gradients across the stenosis [46–48] (Figure 2).

RVOT Aneurysm: Severe RVOT aneurysms can lead to insufficient RV circulation.
CMR cine images and post-gadolinium LGE images can visualise, respectively, the aneurysm
and surrounding fibrosis [46–48].

Tricuspid Regurgitation (TR): TR can be associated with PR. It is important to monitor
it in the presence of PR, as it can indicate the progress of PR or RV dilatation. The best way
to quantify the TR is RVSV—pulmonary forward flow/100. Indeed, a visual assessment is
complementary [46–48].

Right Ventricular Dilatation and Dysfunction: This can result from various factors
such as PR, TR, RVOT aneurysm, and fibrosis of the RV-free wall. CMR cine images
and volumetry assessment quantify RV dilatation and low ejection fraction [46–48]. RV
restrictive physiology (RVRP) refers to abnormalities in RV diastolic function observed
after initial repair and during late follow-up. Initially linked to end-diastolic forward flow
(EDFF) into the Pas, that was notable both at CMR and echocardiography. The RVRP needs
to be suspected when, despite the presence of a long-standing PR, the RV is not dilated.
These are the cases where TR needs to be closely monitored [49].



Children 2023, 10, 1747 8 of 19

Figure 2. A 40-year-old patient born with TOF and an absent pulmonary valve, post complete TOF
repair (7 years of age). Subsequent pulmonary valve replacement with a 23 mm aortic homograft
at the age of 32 due to severe pulmonary regurgitation: (A) bSSFP sequence showing unobstructed
RVOT with patch used during the repair (white arrow) (B) bSSFP cine sequence acquired in the
transaxial plane illustrating dilated PA (right PA (RPA) and left PA (LPA)) and mild acceleration flow
in the main pulmonary artery (yellow arrow). (C) bSSFP cine sequence showing a dilated aortic root.
(D) A second patient was born with TOF and underwent total repair in the first years of life. The 3D
whole heart sequence to show the PAs anatomy.

Recurrent/Residual VSD: Cine pictures reveal dephasing jets over the VSD to evaluate
the shunt, and CMR aids in assessing the integrity of the VSD patch. Estimating Qp:Qs
(pulmonary/systemic output) can be used to determine the importance of the shunt. This
is often accomplished using PC sequences to calculate the ratio of net forward flow in
the pulmonary artery to net forward flow in the aorta. CMR evaluation allows for the
visualisation of small VSDs [46–48].

Conduit Stenosis/Regurgitation, Residual Main Pulmonary Artery (MPA) Stenosis,
Branch Pulmonary Artery Stenosis/Aneurysm (Figure 2): Cine images can identify MPA
and PA anomalies, although a significant limitation can be represented by the presence of
metallic material (stents in PAs, prosthetic valves) [46–48].

Left Ventricular Dysfunction: This is a predictor of poor outcomes. Cine images show
global hypokinesia of the LV with a decreased LV ejection fraction. LGE can reveal the
presence of a scar, which can be secondary to previous surgery (pulmonary artery vent or
surgical emboli) or coronary artery disease [46–48].

Aorta assessment: TOF is part of cono-truncal diseases; hence, a degree of aorta
dilatation is expected (Figure 2). The rate of dissection is significantly lower compared
to the non-congenital population. The ideal sequence to assess the aorta is cine and 3D
SFFP [50].
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LGE is present in adults with repaired TOF, and it is related to adverse markers
of outcome such as ventricular tachycardia, exercise intolerance, and neurohormonal
activation. RV LGE has been significantly associated with arrhythmia [51,52]. Gohnim
et al. build up a risk score calculator to identify patients with rTOF who are at high annual
risk of death by using a weighted-risk score that integrates clinical, LGE in CMR, exercise
performance, and brain natriuretic peptide (BNP) measurement [51].

3.4. Pitfalls in CMR

Both relative and absolute contraindications apply to CMR. For patients with ferromag-
netic implants and those who have non-MRI conditional devices like pacemakers or ICDs, it
is typically not advised [53]. Recent research, however, indicates that in specialised facilities
with high experience, MRIs can be carried out on both conditional and non-conditional MR
equipment [54]. The use of GBCA in CMR is essential for classifying myocardial sequences.
Similar to other non-gadolinium-based contrast media, administering GBCA carries a mi-
nor risk of allergic responses [55]. The clinical advantage of GBCA administration should
be balanced against the minor risk of developing nephrogenic systemic fibrosis (NSF), an
uncommon but serious disease, in individuals with severe renal impairment (eGFR 30
mL/min/1.73 m2). Additionally, the buildup of gadolinium in the brain’s basal ganglia
has been linked to many GBCA doses in a short period of time. The clinical importance
of this discovery, however, has not yet been established [56]. Full CMR scan acquisition
necessitates a high level of patient compliance, which can be difficult, particularly in the
juvenile population. However, the use of free-breathing sequences and the presence of a
highly skilled team enable customisation or brevity of the CMR protocol to obviate the
requirement of general anaesthesia.

4. Cardiac Computed Tomography in Tetralogy of Fallot

Various imaging modalities have been utilised to assess TOF, including echocardiogra-
phy, magnetic resonance (CMR) imaging, and cardiac computed tomography (CCT) [57–59].
Among these, CCT has emerged as a valuable tool for providing detailed anatomical infor-
mation and functional assessment of cardiac structures [59,60].

Compared to echocardiography and CMR, CCT offers several advantages in the
evaluation of TOF. Firstly, it allows for a rapid and precise visualisation of the cardiac
anatomy, including the extent of the VSD, the degree of PAS, and the position of the
aorta [57,59,60]. Secondly, CCT angiography enables the assessment of coronary artery
anomalies, which are common in patients with TOF and play a crucial role in surgical
planning [61]. Moreover, CCT provides valuable functional information, such as ventricular
volumes and ejection fraction, aiding in the assessment of cardiac performance [60,61]. CCT
is particularly useful for visualising the pulmonary arteries and assessing their patency
and size [59], especially in the presence of stents that may hinder lumen visualisation by
CMR. This information is crucial for determining the suitability of corrective surgery and
identifying potential post-surgical complications.

4.1. Protocols

Modern, advanced scanners like the dual-source and wide-detector CT enable swift
coverage of large anatomical volumes with highly detailed spatial resolution and lower
temporal resolution. This results in quicker image acquisition, even in a single heartbeat,
and reduces artefacts caused by heart and respiratory movements, minimising the need for
ECG-gated scans, general anaesthesia, sedation, and breath-holding [59–61]. The typical
scan range spans from the lung apices to the diaphragms, but adjustments can be made
based on the area of interest, particularly for coronary assessment. Customised protocols
are essential for neonates and young children with pre- or postoperative TOF due to their
small size, rapid heart rate, and tendency to move during the procedure [60,62–64].

For detailed cardiovascular assessment and visualisation of coronary arteries, a dosage
of 1–2 mL/kg of non-ionic contrast agent is commonly administered at an injection rate
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of 0.5 to 5 mL per second, depending on the patient’s age and size. In adults, peripheral
intravenous access with an 18-gauge catheter is preferred, while in younger patients, slower
injection rates are used. Power injectors are recommended for access of at least 24-gauge,
and pressure-limited injection via central lines is considered safe [60,63,64]. Typical injection
protocols involve biphasic injections (contrast followed by saline), while triphasic injections
are used for visualising right-heart structures. To trigger the scan, bolus tracking is favoured,
with manual tracking preferred over automatic tracking. Adult protocols typically use
high tube potential (100 kV to 120 kV) to minimise image noise, while paediatric protocols
utilise a lower dose (70–80 kV) unless the child is overweight [60,65,66]. Cardiac gating,
employing prospective electrocardiogram (ECG) triggering or retrospective ECG-gating, is
used to reduce motion artefacts and enable functional assessment. The latest generation
of scanners allows prospective-triggered acquisitions even in paediatric patients with
higher heart rates (over 100 bpm). For complex congenital heart disease cases requiring
high-definition imaging, a “combo” CT protocol may be chosen, consisting of a limited
ECG-triggered scan focusing on the region of interest, followed by a non-gated spiral
examination of the entire thorax during the venous phase [67,68]. Scanners are equipped
with various dose reduction techniques, including anatomy-based tube current modulation
and iterative reconstruction algorithms [65,67,68].

Despite its advantages, exposure to ionising radiation remains a concern for paediatric
patients. However, newer generation scanners significantly reduce organ doses, achieving
a single-heartbeat acquisition of the whole heart volume with an effective dose estimate of
less than 1 mSv [69].

4.2. Pre- and Post-Operative Evaluation

CCT is helpful in both pre- and postoperative assessments of TOF. CCT is invaluable in
pre-surgical planning, enabling surgeons to obtain a clear roadmap of the heart’s complex
anatomy before corrective surgery (Figure 3). It assists in choosing the appropriate surgical
approach and minimising intraoperative risks. An innovative application of CCT in TOF
management involves the integration of CT data with 3D printing technology [70]. This
approach allows for the creation of patient-specific 3D models, facilitating preoperative
planning and enhancing the surgeon’s understanding of complex anatomical variations.

In preoperative patients, CCT provides excellent imaging of the RVOT, the pulmonary
arteries, including distal branches, the pulmonary veins, PDA, or aortopulmonary collater-
als (MAPCAs), or extrinsic vascular tracheobronchial compression [59].

TOF patients may have associated coronary artery anomalies. CCT can potentially
visualise the coronary arteries, aiding in the detection of abnormalities such as coronary
artery anomalies or stenosis [64,65,71]. It is also ideal for assessing aortic arch and great
vessel origins, like anomalous venous drainage or anomalous coronary origin, that should
be known prior to surgery [68,71,72]. Evaluation of the coronary arteries is important for
planning surgical intervention since an anomalous coronary origin occurs in 6–12% of
TOF patients; most aberrant coronaries in TOF cross through the RVOT and may preclude
surgical procedures on the RVOT. Moreover, coronary arteries should be clearly defined
prior to transcatheter pulmonary valve placement due to the potential compression with
device placement [60,64,71,73–76].

In a preoperative setting, CCT represents a useful tool in assessing the extracardiac
structures, such as the PAs (for presence, location, and degree of stenosis), the aortic root
that is relatively common, a patent ductus arteriosus, the aorto-pulmonary collaterals, or
concomitant airway or lung parenchymal abnormalities [61,73].

After surgical correction, CCT can be used for postoperative follow-up to assess the
success of the procedure and detect any potential complications or residual defects [64]. In
postoperative patients, CCT can be used to quantify ventricular volumes, detect postsurgi-
cal complications, and plan for repeat interventions. CCT represents a practical alternative
when echocardiography and CMRI are not indicated or suboptimal and is preferred for
assessing graft material, calcifications, or stents in the conduit [64,65]. CCT in infants could
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also be used to evaluate anatomical relationships with the sternum and the chest after
initial surgical reconstruction and to plan sequential stages of initial repair [61,73].

Figure 3. CCT in a 2-day-old newborn with Tetralogy of Fallot, scanned in sedation and free-breathing
at high heart rate (145 bpm), using a low-dose protocol (80 kV) and prospective ECG triggering. The
main features are also detected and depicted in the images in multiplanar and curved reformation
(MPR-CPR) and maximum intensity projection (MIP): ventricular septal defect and overriding aorta
(black asterisk), PFO (black arrowhead), pulmonary valve atresia and pulmonary artery hypoplasia
(white arrow), and major aortopulmonary collateral arteries (white asterisks). Despite the very high
heart rate, in a low-birth-weight preterm baby (2.3 Kg) scanned at a high heart rate, the left coronary
artery is detectable (white arrowhead).

After complete repair of TOF, common postoperative complications such as RVOT
dilatation, residual VSD, residual or recurrent RVOT stenosis, residual or recurrent PA
stenosis, conduit stenosis, aortic dilation, stents, and implanted devices could be easily
highlighted by CCT, as well as the anatomical assessment prior to transcatheter pulmonary
valve replacement planning or redo sternotomy [61,64–66,74]. While CCT provides excel-
lent anatomical details, it may have limitations in evaluating the dynamic changes and
hemodynamic consequences of TOF. Therefore, other imaging modalities, such as echocar-
diography and cardiac magnetic resonance imaging (MRI), can complement these aspects.

In conclusion, cardiac CT provides detailed anatomical information, assesses coronary
anomalies, and offers functional insights, making it an invaluable tool in the management
of this complex congenital heart disease.

5. Cardiopulmonary Exercise Testing

A certain degree of exercise intolerance has been reported in most patients with rTOF,
and this seems to worsen over time [77,78]. Exercise limitation in this population has a
multifactorial origin: it has been related to the degree of PR [79–81], to biventricular dilata-
tion and function in some studies [80,82–84], although these results were not confirmed in
others [84]; chronotropic impairment [85] and altered lung function [86] also contribute;
and parental and social barriers to physical activity may play a role in increasing physical
deconditioning as well [87].

Subjective evaluation of symptoms in these patients may be inaccurate; thus, exercise
tests are routinely performed to assess them objectively. Particularly, cardiopulmonary
exercise testing (CPET) is currently recommended as part of the follow-up of patients
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with TOF to monitor patients and support treatment decisions, such as pulmonary valve
replacement [88,89].

CPET assesses cardiorespiratory fitness (CRF) using different quantifiable parameters:
maximum oxygen consumption (peak VO2), both as an absolute value (usually expressed
in mL/kg/min) and as a percentage of its predicted value (%); ventilatory efficiency
[expressed as the ventilation to carbon dioxide output (VE/VCO2) slope], ventilatory
thresholds, oxygen uptake efficiency slope (OUES), and other physiological responses to
an exercise stimulus, such as heart rate reserve and exercise oscillatory ventilation [90].
Reference values for peak VO2 are available both for children and adults with rTOF, and,
for the latter, percentiles of expected exercise capacity have also been published [91–93].

A recent review, including 21 studies in adults and children with rTOF, reports a
marked reduction in exercise tolerance and functional capacity, with an overall mean
peak predicted VO2 of 68 ± 2.8%, which is considered a mild impairment [91]. However,
this value should be interpreted cautiously because of the large heterogeneity of data
available in the literature. Indeed, the use of different exercise protocols (bicycle versus
treadmill) [85,93–96] and the evaluation of different parameters in various studies that
include adult [94,96], paediatric [97,98], or mixed patients [85,95,99] operated with different
surgical techniques [96] makes comparisons challenging. Also, most of the available studies
are single-centre and retrospective.

The role of CPET in predicting major adverse cardiovascular events (MACE) in rTOF
has been explored in a few studies, according to a recent meta-analysis [100]. Overall, peak
VO2 or its predicted value, VE/VCO2 slope, and OUES seem to be predictive of death,
event-free survival, and/or cardiac hospitalisations [95,101–103]. However, it is still unclear
how best to integrate these exercise parameters into management algorithms to support
clinical decisions, such as pulmonary valve replacement (PVR) [104]. This would be of great
interest, especially in asymptomatic patients, where the identification of early sub-clinical
dysfunction with objective parameters may represent a boost for PVR. Nevertheless, it
should be noted that a real benefit in terms of exercise capacity and CPET results after PVR
has not been demonstrated yet [105,106].

In conclusion, CPET is a valid test to follow up patients with rTOF, but standardised
protocols and implementation of this technique in daily clinical practices are needed to
improve risk stratification and determine outcomes.

6. Conclusions

Cardiovascular imaging is crucial to the diagnosis, risk stratification, and short- and
long-term management of TOF patients. Several imaging modalities have an established
role in this context. Echocardiography is the first-line imaging modality for diagnosis
and serial rTOF evaluation, and in paediatric patients, it is most of the time the only
imaging modality due to its widespread availability, low cost, and absence of radiation.
Cardiovascular magnetic resonance is being increasingly used as a gold standard for
volumetric assessment and shunt quantification to guide intervention and provide an
assessment of structures difficult to image with echocardiography (i.e., PA branches). In
addition, CMR can uniquely provide tissue characterisation, assessing the presence of
myocardial fibrosis.

CCT is becoming more and more popular in the management of TOF patients for
periprocedural management, in the presence of a stent, in cases of contraindication to
CMR, or whenever there are doubts regarding the coronary arteries. Finally, CPET is a
useful tool to guide therapeutical management and provide prognostic information. The
choice of the most appropriate modality (or combination of modalities) should therefore
take into account multiple factors, including the clinical question to be addressed, patients’
characteristics and contraindications, and local availability and expertise.
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