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Abstract

To adhere to and capitalize on the benefits of the FAIR (Findable, Accessible, Interoperable and Reusable) principles in agricultural genome-
to-phenome studies, it is crucial to address privacy and intellectual property issues that prevent sharing and reuse of data in research and
industry. Direct sharing of genotype and phenotype data is often prohibited due to intellectual property and privacy concerns. Thus there is
a pressing need for encryption methods that obscure confidential aspects of the data, without affecting the outcomes of certain statistical
analyses. A homomorphic encryption method for genotypes and phenotypes (HEGP) has been proposed for single-marker regression in
genome-wide association studies using linear mixed models with Gaussian errors. This methodology permits frequentist likelihood-based
parameter estimation and inference. In this paper, we extend HEGP to broader applications in genome-to-phenome analyses. We show
that HEGP is suited to commonly used linear mixed models for genetic analyses of quantitative traits including GBLUP and RR-BLUP, as
well as Bayesian variable selection methods (e.g., those in Bayesian Alphabet), for genetic parameter estimation, genomic prediction, and
genome-wide association studies. By advancing the capabilities of HEGP, we offer researchers and industry professionals a secure and efficient
approach for collaborative genomic analyses while preserving data confidentiality.
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Introduction

To conform to and capitalize on the benefits of the FAIR (Find-
able, Accessible, Interoperable and Reusable) principles in agri-
cultural genome-to-phenome studies, it is necessary to address
privacy and intellectual property issues that may prevent shar-
ing and reuse of data in research and industry. First, sharing and
reuse of genotypic and phenotypic data enables reproducible re-
search, where researchers can confirm published analyses with
minimal effort. Second, for traits that are hard or expensive
to measure, a single research group may have limited data for
genetic analysis, which may lead to less reliable and underpow-
ered results. This problem may be alleviated by joint analyses
that include data from multiple contributors.

Although data sharing and reuse will bring significant ben-
efits to genome-to-phenome studies in both academia and in-
dustry, it is often prohibitive to directly share raw genotype and
phenotype data due to privacy concerns, commercial interests,
and data sharing policies, and because the risks of sharing raw
data may not be fully understood by the data owners. For exam-
ple, although individual identifiers can be anonymized, infor-
mation about an anonymized individual might still be disclosed
by comparing its genotypes to known genotyped relatives. To
avoid the concerns about sharing raw data, consortia are often
established, and raw data are only shared with members of the

consortium or with researchers who are approved for access.
In other cases, external researchers may perform analysis on
the data owner’s computer system without access to the raw
data. These approaches, however, still pose risks to privacy and
intellectual property, hampering widespread data sharing and
reuse.

Homomorphic encryption (HE) refers to a type of encryption
of raw data (hereafter referred to as "plaintext") in a manner that
obscures confidential aspects of the data, while certain computa-
tions on the encrypted data (hereafter referred to as "cyphertext")
match the results from the plaintext, when decrypted. While sev-
eral methods for homomorphic encryption have been proposed
for genomic analysis, most limit the types of computations and
analyses that can be conducted on the encrypted data (cypher-
text). For example, for case-control GWAS, HE schemes were
proposed to calculate allelic chi-square test and perform logistic
regression (Lu et al. 2015; Chen et al. 2018; Sim et al. 2020; Blatt
et al. 2020). However, these methods ignore random and fixed
effects that account for family and population admixture. Al-
though linear mixed models are widely used in genetic analyses
such as genomic prediction and GWAS (Bradbury et al. 2007),
the use of HE for mixed models is scarce.

Recently, Mott et al. (Mott et al. 2020b) proposed an encryp-
tion method, called homomorphic encryption for genotypes and
phenotypes (HEGP), that is specifically suited to single-marker
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2 Encrypted Genotypes and Phenotypes for Collaborative Genomic Analyses

regression in GWAS using linear mixed models with Gaussian
errors. HEGP is based on high-dimensional random orthogonal
transformations of the plaintext that encrypts phenotypes, geno-
types, and specified covariates by replacing them with random
linear superpositions, such that cyphertext genotypes and phe-
notypes cannot be linked back to individual identifiers. HEGP
preserves linkage disequilibrium between markers but scram-
bles the genomic relationship between individuals. Moreover,
under a linear mixed model with Gaussian errors, the likelihood
of the cyphertext is unchanged, such that the encryption does
not affect the outcomes of single-marker regression in GWAS
analyses. HEGP differs conceptually from other HE methods
in that some outputs (particularly the parameter estimates) are
unaffected by encryption and do not need to be decrypted.

In this paper, we extend the HEGP scheme for wider appli-
cation in genome-to-phenome analyses. We demonstrate that
HEGP can be effectively applied to many popular mixed mod-
els, beyond single-marker regression. These models, including
Bayesian variable selection methods such as those in Bayesian
Alphabet, are routinely employed in the fields of animal and
crop improvement, for genetic analyses of quantitative traits, in-
cluding genetic parameter estimation, genomic prediction, and
GWAS. We show how most of the quantitative genetics tool-
box used by animal and plant breeders can be integrated with
data-sharing protocols and performed while protecting impor-
tant types of potentially confidential or commercially sensitive
information.

Materials and methods

Homomorphic encryption using high-dimensional ran-
dom orthogonal matrix
We will use y, a vector of length n, to denote the plaintext phe-
notypes for n observations, and M to denote the n × p plaintext
genotype covariate matrix for the n observations across p SNPs.
To infer unknowns in mixed models, these quantities will typi-
cally be used in the multiplicative forms MTM and MTy. Thus,
intuitively, any data encryption scheme that leaves the above
multiplications unchanged would produce the same GWAS and
genomic prediction outcomes.

HEGP uses a high-dimensional random n × n orthogonal
matrix P, such that PTP = I and the determinant |P| = 1. The
suitable choices of P for the purpose of encryption are discussed
in a later section. The plaintext genotypes and phenotypes are
encrypted as

M∗ = PM,

y∗ = Py.
(1)

because

MTM = MTPTPM = (PM)T(PM) = M∗TM∗ (2)

and

MTy = MTPTPy = (PM)Ty∗ = M∗y∗ (3)

In contrast to other methods of homomorphic encryption,
the outputs of HEGP (i.e., marker effect estimates and p-values)
are automatically plaintext, regardless of whether the inputs
are plaintext or cyphertext. This means that there is no need to
decrypt the outputs such as marker effect estimates and hence
no decryption key is distributed. In a later section we will show
that the HEGP does not affect the inference of marker effects,

thus with the plaintext of genotypes, the estimated breeding
values (EBV) can be calculated. Otherwise, the EBV calculated
from the cybertext of genotypes remains cybertext EBV.

Conceptual overview Figure 1 illustrates HEGP for a small ex-
ample of 4 individuals (a-d) and 6 SNPs. By multiplying by
the random orthogonal matrix P, phenotypes and genotypes
in the encrypted data become ‘random’ linear combinations of
phenotypes and genotypes of the original four individuals a-d.

Figure 2 compares plaintext and cyphertext genotypes from
a larger pig data set (Cleveland et al. 2012). Figure 2(a) and (b)
present the heat maps of the plaintext and cyphertext genotypes.
For the plaintext, each row represents an individual and each
column represents the genotypes for a SNP across individuals.
As shown in Figure 2(c) and Figure 2(d), after encryption, the
genotypes transform from trimodal values (0/1/2) to continuous
values that closely resemble a sample from a normal distribution.

The set of orthogonal n × n matrices forms a group under
multiplication and includes the identity matrix, which is clearly
ineffective for encryption. Therefore it is necessary for P to be
randomly generated and independent of the plaintext. A suit-
able method is derived from the Stiefel manifold, or Haar mea-
sure (Hoff 2009; Chikuse and Chikuse 2003), which is measure-
preserving, meaning that the measure (loosely speaking, the
sampling probability) of any data matrix M is the same as the
measure of PM. For this method, first an n × n matrix B is gener-
ated, whose entries are sampled independently from a standard
normal distribution. Next, an n × n random orthogonal matrix
is generated as P = B(BTB)−

1
2 . In detail, (BTB)−

1
2 is computed

as QΛ− 1
2 QT , where Q and Λ are obtained from the eigen de-

composition of BTB, i.e., BTB = QΛQT . Matrix P is easily seen
to be orthogonal (by checking that PTP = I ) and furthermore
can be shown to be randomly sampled from the Stiefel manifold.
The R package rstiefel (Hoff 2012) can be used to generate P.

Relationships between SNPs and between individuals HEGP
preserves relationships between genotypes (i.e., linkage disequi-
librium, r2), but scrambles relationships between individuals.
Any orthogonal transformation preserves the dot product of
two vectors and, geometrically, acts as a rotation of a hyper-
sphere in which SNP genotype vectors and phenotype vectors
are represented as points on its surface. The cosine of the angle
between any pair of points subtended at the origin equals their
Pearson correlation coefficient, or dot product and a rotation
merely changes the coordinate system while leaving angles un-
changed. In HEGP, all marker genotypes (and phenotypes) are
rotated by the same orthogonal matrix as PM = [Pm1, ..., Pmp].
Thus, the LD between jth and kth marker is preserved since

(m∗
j )

T(m∗
k ) = (Pmj)

T(Pmk)

= mT
j mk

(4)

where we use the fact that for any orthogonal matrix, PTP =
I. For illustration, the LD matrices based on the raw and the
encrypted genotypes for 5,000 markers in the pig dataset of
Cleveland et al. (2012) are shown in Figure 3(a). The LD matrix
is calculated as 1

n HTH, where H is the normalized genotype
matrix. The jth marker of the ith individual is normalized as
Hi,j =

Mi,j−2pj√
2pj(1−pj)

, where pj is the allele frequency. In Figure 3(a),

the two LD matrices are almost identical, and the correlation
between elements in the two LD matrices is 1.0.
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Figure 1 Illustration of homomorphic encryption for genotypes and phenotypes. For 4 individuals (a-d), the raw genotypes for 6 SNPs and
the raw phenotypes are provided in the upper part of the figure. The raw data are encrypted by pre-multiplying with a random orthogonal
encryption matrix P, which is displayed in the middle of the figure. The encrypted phenotypes and genotypes, shown in the lower part of
the figure, are "random" linear combinations of the raw phenotypes and genotypes of the original four individuals a-d.

Figure 2 (a) A subset of pig genotypes provided in the data set of Cleveland et al. (2012). Genotypes are coded as 0, 1, and 2, which are
presented by white, grey, and black colors, respectively. Each row represents one individual, and each column represents one marker.
(b) The corresponding encrypted genotypes, encrypted via a high-dimension random orthogonal matrix. The encrypted genotypes are
a continuum of real numbers presented by different colors. (c) Sorted genotypes of one marker, coded as 0/1/2 (left), and its trimodal
distribution (right). (d) The corresponding encrypted genotypes (same order as in (c)) and their bell-shaped distribution.
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4 Encrypted Genotypes and Phenotypes for Collaborative Genomic Analyses

Figure 3 (a) Linkage disequilibrium (LD) matrix calculated using raw genotypes (up), and encrypted genotypes (down). The LD matrix is
preserved using encrypted data, and the correlation between the two LD matrices is 1.0. (b) Genomic relationship matrix (GRM) calculated
using the raw genotypes (up), and encrypted genotypes (down). The GRM is scrambled using encrypted data, and the correlation between
two GRM matrices is close to 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyad210/7470728 by U

niversity C
ollege London user on 03 January 2024



Zhao et al. 5

In contrast to LD relationships, HEGP scrambles relation-
ships between individuals since (PM)(PM)T = P(MMT)PT

and, after transformation, individual records are random linear
combinations of the original records. For demonstration, ge-
nomic relationship matrices (GRM), calculated as 1

p HHT , based
on plaintext and cyphertext genotypes, are shown in Figure 3(b)
for a subset of the pig dataset. The elementwise correlation
between the two GRM is ∼ 0.

Statistical preliminaries
As we will demonstrate, in addition to single-marker regression
for GWAS using linear mixed models with Gaussian errors,
HEGP is compatible with most genetic analyses that use mixed
models, including GBLUP, SNP-BLUP, Bayesian Alphabet, and
others.

Mixed models The mixed model is a cornerstone for many quan-
titative genetic analyses, including genetic parameter estimation,
genomic prediction, and GWAS (Meuwissen et al. 2001; Van-
Raden 2008; Hayes et al. 2009; Fernando et al. 2017; Wang et al.
2012, 2016; Moser et al. 2015a; Legarra et al. 2018). In particular,
GBLUP (Habier et al. 2007; VanRaden 2008; Hayes et al. 2009) is
one of the most widely used linear mixed models for genomic
prediction. The GBLUP model can be written as

y = Xβ + u + e (5)

where y is a vector of phenotypes of length n, and X is the inci-
dence matrix for non-genetic fixed effects, denoted by β. Vector
u contains additive genetic values for n individuals and follows
a multivariate normal distribution u ∼ N(0, Gσ2

u), where G is
the genomic relationship matrix proportional to MMT , where M
is an n × p genotype covariate matrix, and σ2

u is the genetic vari-
ance. Vector e includes n random residuals and follows a normal
distribution, e ∼ N(0, Iσ2

e ), where σ2
e is the residual variance.

Narrow sense heritability is defined to be h2 = σ2
u

(σ2
u+σ2

e )
.

The GBLUP model is equivalent to the following marker
effects model (hereinafter referred to as SNP-BLUP) in terms
of predicting genetic values (Fernando 1998; Habier et al. 2007;
Strandén and Garrick 2009):

y = Xβ + Mα + e (6)

where α is a vector of p additive marker effects, with α ∼
N(0, Iσ2

α). The same point estimates of marker effects α̂ can
be obtained from the estimated genetic values û in GBLUP as
α̂ = MT(MMT)−1û.

The Gaussian prior distribution of marker effects in SNP-
BLUP is just one, analytically tractable, member of the "Bayesian
Alphabet", in which a range of prior distributions, reflecting dif-
ferent assumptions about the genetic architecture of the trait, are
assigned to the marker effects (Meuwissen et al. 2001; Kizilkaya
et al. 2010; Habier et al. 2011; Erbe et al. 2012; Moser et al. 2015b;
Park and Casella 2008; Gianola and Fernando 2019). For exam-
ple, it is sometimes desirable to model the majority of marker
effects as being zero, and to allow occasional markers with large
effects. For some traits, such priors are more biologically mean-
ingful than SNP-BLUP and have been widely used in genomic
prediction and genome-wide association studies.

In this paper, we demonstrate the effectiveness of HEGP
using both SNP-BLUP and BayesCπ (Kizilkaya et al. 2010; Habier
et al. 2011). BayesCπ is a representative of the other "Bayesian

Alphabet" models, so the extension of HEGP to other priors for
marker effects (Meuwissen et al. 2001; Erbe et al. 2012; Moser et al.
2015b; Park and Casella 2008; Gianola and Fernando 2019) does
not present further challenges. BayesCπ (Kizilkaya et al. 2010;
Habier et al. 2011) is typical in that it assigns mixture priors to
marker effects, which are multiplied by the Gaussian likelihood
of the data to generate the posterior. The BayesCπ model must
be fitted using Gibbs sampling, and therefore we must show that
HEGP does not perturb the algorithm and produces numerically
stable and accurate estimates.

At each step of the Gibbs sampler, a given unknown is sam-
pled from its full conditional posterior distributions given the
latest sampled values of all other unknowns. Below we will
show that the full conditional posterior distributions of marker
effects are identical when using raw or encrypted data, such
that the same posterior distributions will be obtained (this also
holds for other parameters of interest). Derivations for other
parameters of interest in SNP-BLUP and BayesCπ can be found
in the Appendix.

Unchanged likelihood using HEGP
In HEGP, the plaintext phenotypes, covariates, and genotype
dosages, and the design matrix for fixed effects are encrypted
by pre-multiplication by the same random orthogonal matrix,
P. The mixed model using cyphertext for both SNP-BLUP and
BayesCπ can be written as

y∗ = X∗β + M∗α + e∗, (7)

In this model, y∗ = Py are the encrypted phenotypes, M∗ =
PM = u∗ the encrypted genotypes, and X∗ = PX the encrypted
design matrix for fixed effects. After encryption, the resid-
ual variance remains unchanged, represented as var(e∗) =
var(Pe) = PTIσ2

e P = Iσ2
e . The genetic variance becomes

var(u∗) = PTGPσ2
u after encryption.

We next show that the likelihood of the data is invariant
under orthogonal transformation. Define the plaintext variance
matrix V = Gσ2

u + Iσ2
e and its cyphertext equivalent V∗ =

PT(Gσ2
u + Iσ2

e )P. Then the determinant of the variance matrix is
invariant because |V∗| = |PTVP| = |PT ||V||P| = |V| and hence
the Gaussian log-likelihood of the plaintext (log L) equals that
of the cyphertext (log L∗):

−2 log L(β) = (y − Xβ)TV−1(y − Xβ) + n log(|V|)
= (y − Xβ)T(PTP)V−1(PTP)(y − Xβ) + n log(|V|)
= (P(y − Xβ))T(PTVP)−1(P(y − Xβ)) + n log(|V∗|)
= (y∗ − X∗β)TV∗−1(y∗ − X∗β) + n log(|V∗|)
= −2 log L∗(β)

(8)

Hence all parameter inference in SNP-BLUP is invariant un-
der orthogonal transformation in the mixed model, resulting in
unchanged estimates for β, for the variance components σ2

e , σ2
u

and heritability h2.

Inference of unknowns in mixed model
In BayesCπ, the prior for the marker effects is a mixture of a
point mass at zero and a univariate normal distribution with a
null mean and a common locus variance σ2

α . The full conditional
posterior distribution of the marker effect for locus j when it is
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6 Encrypted Genotypes and Phenotypes for Collaborative Genomic Analyses

non-zero (i.e., the full conditional posterior distribution of the
marker effect for locus j in SNP-BLUP) can be expressed as

(
αj | ELSE

)
∼ N

α̂j,
σ2

e

mT
j mj +

σ2
e

σ2
α

 , (9)

where ELSE stands for all the other parameters and α̂j is the
solution to(

mT
j mj +

σ2
e

σ2
α

)
α̂j = mT

j

y − Xβ − ∑
j′ ̸=j

mj′ αj′

 . (10)

When encrypted genotypic and phenotypic data are used, the
full conditional posterior distribution of αj, when it is non-zero,
can be written as

(
αj | ELSE

)
∼ N

α̂∗j ,
σ2

e

(m∗
j )

T(m∗
j ) +

σ2
e

σ2
α

 , (11)

where ELSE stands for all the other parameters, and α̂∗j is the
solution to

(
(m∗

j )
T(m∗

j ) +
σ2

e
σ2

α

)
α̂∗j = (m∗

j )
T

y∗ − X∗β − ∑
j′ ̸=j

m∗
j′ αj′


= (m∗

j )
Ty∗ − (m∗

j )
TX∗β − ∑

j′ ̸=j

(m∗
j )

Tm∗
j′ αj′

(12)

We have previously shown that (m∗
j )

T(m∗
k ) = mT

j mk. Similarly,

(m∗
j )

Ty∗ = (Pmj)
TPy

= mT
j y,

(13)

and

(m∗
j )

TX∗ = (Pmj)
TPX

= mT
j X.

(14)

Therefore, the full conditional posterior distribution of αj using
cyphertext, as per equations (11) and (12), is identical to that
obtained using the plaintext, as shown in equations (9) and (10).
Thus, because HEGP does not change the full conditional poste-
rior distributions in Gibbs sampling, the posterior distributions
of marker effects are also identical using plaintext or cyphertext.
The same conclusion holds for all other parameters of interest
(see Appendix). Note that once estimates of marker effects are
obtained, the plaintext of genotypes, if available, should be used
to calculate the estimated breeding values.

Joint analysis using encrypted data from multiple con-
tributors
A single research study may only contain a limited amount of
data that is underpowered for genetic analysis. This issue can
be mitigated through joint analyses using data from multiple
studies, e.g. Yengo et al. (2022a). An attractive feature of HEGP
is that it allows each component of the joint data to be encrypted
independently. Thus, each contributor generates its own private
key and uses it to encrypt its own plaintext prior to sharing it for

joint analysis. The keys are never shared. The process for joint
analysis then proceeds as described in the following.

For clarity, let’s assume there are three contributors. Assum-
ing variance components, such as the marker effect variance
and the residual variance, are identical for all parties, the mixed
model for the joint analysis of cyphertext can be written as

P1y1

P2y2

P3y3

 =


P1X1

P2X2

P3X3

 β +


P1M1

P2M2

P3M3

 α +


P1e1

P2e2

P3e3

 , (15)

where the matrices related to the t-th contributor are labeled
with subscript "t". This equation can be re-written as

P


y1

y2

y3

 = P


X1

X2

X3

 β + P


M1

M2

M3

 α + P


e1

e2

e3

 , (16)

where P is a block-diagonal orthogonal matrix

P =


P1 0 0

0 P2 0

0 0 P3

 . (17)

Thus, conceptually, the stacked cyphertexts are equivalent to
the stacked plaintexts after encryption by the block diagonal
matrix P, which is the orthogonal matrix assembled from the
component random orthogonal matrices P1, P2, and P3. Thus,
as shown in the previous section, unknowns inferred from joint
cyphertext will be identical to those inferred using the joint plain-
text. Note that genomic predictions of the original individuals
require the plaintext genotypes and, thus, each contributor can
only generate these for their own individuals, but using esti-
mates of marker effects obtained from the combined data for
additional accuracy of predictions.

Security of HEGP
The correlation between the centered plaintext genotypes, rep-
resented as mj, and the cyphertext genotypes, represented as
Pmj, is proportional to mT

j Pmj. When P is "far from" an identity
matrix (or scaled identity matrix), such correlations resemble
those between two random vectors. For example, using the pig
genotypes from Cleveland et al. (2012) (n = 3534, p = 50, 436),
the empirical distribution of Pearson correlations between the
plaintext and cyphertext genotypes for each marker are shown in
Figure 4. On average, the correlation between raw and encrypted
genotypes is about 0.001, which is very close to 0, and almost all
(∼ 93%) correlations are inside the interval [−0.03, 0.03]. Thus,
without decryption, cybertext genotypes and phenotypes are
uninterpretable.

Decryption without knowledge of the key To obtain the raw
genotypes from the encrypted genotypes, an orthogonal matrix
Q ∼ PT should be estimated as the key for decryption. When
Q = PT , exactly, the plaintext genotypes will be recovered, since
then QM∗ = PTPM = M. The distance between QM∗ and M
measures how close the decryption is to the raw data. However,
because neither M nor P are shared, it is difficult to evaluate
attempted decryption without a suitable objective function to
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Figure 4 Distribution of correlations between 50,436 pairs of
plaintext and cyphertext genotypes using pig dataset in Cleveland
et al. (2012) (n = 3534, p = 50, 436). The average correlation is
less than 0.001.

minimize. Assuming the distance between the attempted de-
crypted genotype matrix and the plaintext genotype matrix is
known (although it is unknown in practice), several strategies
to decrypt the genotypes were discussed in Mott et al. (2020b).
First, in a brute-force approach, numerous random orthogonal
matrices (i.e., keys) were generated for decryption. However,
massive computing resources would be required to generate
and test all possible keys. Mott et al. (2020b) reported that even
for a dataset with 8 individuals, they could not brute-force the
key. A second approach to uncover the decryption key relies on
the trimodal distribution of the plaintext genotype frequencies
of each marker, assuming all markers are in Hardy-Weinberg
equilibrium with publicly-available allele frequencies (such as
Figure 2(c)). Mott et al. (2020b) attempted to infer the key by
maximizing the kernel density estimator of those non-Gaussian
distributions. However, the results were unsuccessful. Finally,
a decryption challenge for HEGP (Mott et al. 2020a), in which
attempts were invited to decrypt HEGP-encrypted plaintext
genotypes, has so far failed to elicit a successful attack. More
discussion can be found in Mott et al. (2020b).

The only identified weakness of HEGP occurs when the data
includes variants that are private to an individual. In an extreme
case, when each individual has a private variant coded as 1, the

plaintext genotype matrix can be written as M =
[
I | Msub

]
,

where I represents genotypes of the n private variants, and
Msub represents genotypes of all the other markers. In this
situation, P itself will be included in the encrypted genotypes

since M∗ =
[
P | M∗

sub

]
. In practice, this extreme case can be

avoided by using common variants. However, it suggests that
useful information might be extracted from the encrypted data
of lower-frequency variants, suggesting it is best to remove any
variant with a frequency under 0.01 or that is private to fewer
than about 10 individuals. Since these variants are typically
removed during quality control processing, there should be
minimal loss of information.

Data analysis
The pig dataset in Cleveland et al. (2012) was used to validate the
equivalent outcomes from both genomic prediction and GWAS
analyses using plaintext and cyphertext. This dataset contains

3534 genotyped individuals and the number of SNP markers
is 50,436. We simulated phenotypes based on different values
for heritability and numbers of quantitative trait loci (QTL) (i.e.,
causal variants). In detail, phenotypes with heritability equal
0.1, 0.3, 0.5, and 0.7 were simulated, and 1, 10, 50, and 100%
of SNPs were randomly sampled as QTL (16 scenarios). Con-
temporary group effects were included to simulate phenotypes
on individuals from 4 groups. For each simulated scenario, 10
replicates were applied. The genotypes of each marker were cen-
tered to have zero mean. The incidence matrix of fixed effects,
the genotypes, and the simulated phenotypes were encrypted
using a random orthogonal matrix generated as described above.
SNP-BLUP and BayesCπ were applied to analyze the plaintext
and cyphertext using the JWAS package (Cheng et al. 2018, 2022).
In all scenarios, 500,000 MCMC iterations were applied to ensure
convergence.

We first show that the estimated marker effects (α̂) remain
unchanged with the cybertext. Using the plaintext of genotypes
(M), the estimated breeding values (EBV) are calculated as Mα̂,
confirming that the EBVs also remain unchanged. Below we only
present the results from BayesCπ, and the conclusions drawn
were consistent with those from RR-BLUP results.

Results

Estimated marker effects and breeding values Overall, the
marker effects estimated from plaintext and cyphertext were
very similar, with a Pearson correlation of 0.9929. The results
from one replicate in the scenario with h2 = 0.3, QTL% = 1%
are presented in Figure 5(a), and similar results were observed
across all other scenarios. The results for all scenarios are de-
tailed in Table 1, where each value represents the averaged cor-
relation across 10 replicates.

Table 1 Pearson correlations between estimated marker ef-
fects from plaintext vs ciphertext in different simulation
scenarios. Each value is the averaged correlation from 10
replicates.

h2

0.1 0.3 0.5 0.7

QTL%

1% 0.9937 0.9950 0.9957 0.9961

10% 0.9928 0.9927 0.9926 0.9928

50% 0.9898 0.9937 0.9916 0.9911

100% 0.9906 0.9932 0.9925 0.9920

The estimated breeding values (EBV) for all individuals with
genotypes M were calculated as Mα̂plaintext, using marker ef-
fects estimated from plaintext, and as Mα̂cyphertext, using marker
effects estimated from cyphertext. Overall, the correlation be-
tween EBV calculated using the plaintext and those calculated
using the cyphertext was about 0.9996. The results of one repli-
cate from the scenario with h2 = 0.3, QTL% = 1% are shown in
Figure 5(b), and similar results were observed for all the other
scenarios. The results for all scenarios are listed in Table 2, where
each value is the average correlation from 10 replicates.
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8 Encrypted Genotypes and Phenotypes for Collaborative Genomic Analyses

Figure 5 Results from one replicate in the simulation scenario with h2 = 0.3 and QTL% = 1%. Each dot represents a pair of results
calculated from plaintext (x-axis) vs cyphertext (y-axis). The diagonal line indicates when the plaintext and cyphertext result in the same
estimates. (a) Comparison between estimated marker effects α̂plaintext and α̂cyphertext (correlation=0.9971). (b) Comparison between
estimated breeding values Mα̂plaintext and Mα̂cyphertext (correlation=0.9997). The pig genotypes data was used (M). (c) Comparison
between local genetic variances of 2,522 non-overlapped genomic windows (correlation=0.9983).

Table 2 Person correlations between estimated breeding
values (EBV) calculated using marker effects estimated
from cyphertext (Mα̂cyphertext) and EBV calculated using the
marker effects estimated from plaintext (Mα̂plaintext). Each
value represents the average correlation across 10 replicates.

h2

0.1 0.3 0.5 0.7

QTL%

1% 0.9993 0.9997 0.9998 0.9998

10% 0.9992 0.9996 0.9997 0.9997

50% 0.9992 0.9996 0.9997 0.9997

100% 0.9992 0.9995 0.9997 0.9997

Local genetic variances For GWAS, the genetic variance cap-
tured by a genomic window is of interest due to the fact that
highly correlated SNPs within a genomic window jointly affect
the phenotype, and it is difficult to identify the effect of a single
marker (Hayes et al. 2010). In GWAS, local genetic variances
can be used to estimate window-based posterior probabilities
of association (WPPA) (Fernando et al. 2017). Here we divided
the pig reference genome into 2522 non-overlapping genomic
windows, where each window contains about 20 SNPs. The
genetic values that are attributed to each genomic window were
sampled from their posterior distributions using MCMC.

Overall, the correlation between local genetic variances esti-
mated using plaintext or cyphertext was about 0.9923. The re-
sults of one replicate from the scenario with h2 = 0.3, QTL% =
1% are presented in Figure 5(c), and similar results were ob-
served for all other scenarios. The results for each scenario
are listed in Table 3, where each value represents the average
correlation from 10 replicates.

Table 3 Person correlations between local genetic variances
of 2,522 non-overlapping genomic windows calculated from
plaintext or cyphertext. Each value represents the average
correlation from 10 replicates.

h2

0.1 0.3 0.5 0.7

QTL%

1% 0.9954 0.9950 0.9966 0.9968

10% 0.9895 0.9923 0.9929 0.9943

50% 0.9908 0.9946 0.9932 0.9924

100% 0.9728 0.9934 0.9936 0.9933

Joint analysis of cyphertext from multiple contributors
To perform joint cyphertext analysis, the 3,534 individuals in the
pig dataset were split into two datasets (n1 = 500, n2 = 3034),
modelling the scenario of two data contributors. The genotypes
were independently centered within each contributor to have
zero means. The simulated phenotypes data in the scenario
with heritability of 0.3 and 10% QTLs were used. The plain-
text phenotypes, genotypes, and covariates were independently
encrypted by each contributor. For example, for contributor
1, the encrypted genotype data is M∗

1 = P1M1 with P1 of size
n1 × n1, and for contributor 2 the encrypted genotype data is
M∗

2 = P2M2 with P2 of size n2 × n2. Only the cyphertexts were
shared, not the encryption keys P1 or P2. We repeated the previ-
ous analyses using the joint cyphertexts and the joint plaintexts.
Using the joint cyphertexts yielded results very similar to those
using the joint plaintexts.

Moreover, using joint cyphertexts to estimate parameters re-
sulted in significantly higher prediction accuracies than only
using the data from a single data contributor. This is to be ex-
pected, as a larger sample size improves parameter inference.
For the 500 individuals in contributor 1, we calculated their EBV
using marker effects estimated from the joint data (M1α̂joint),
as well as using marker effects estimated from only contribu-
tor 1’s data (M1α̂sub1). The comparison between the accuracy
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of M1α̂joint and M1α̂sub1 is shown in Figure 6, where each dot
represents the result of one replicate. The joint data resulted in
significantly higher accuracy than using data from a single con-
tributor (pairwise t-test P-value < 0.0005). The same conclusions
were drawn for contributor 2.

Figure 6 The prediction accuracies of estimated breeding values
for 500 individuals in a single data contributor. Each dot repre-
sents a pair of results calculated either using only this contrib-
utor’s data (x-axis) or using the joint data from all contributors
(y-axis). Joint analyses had significantly higher accuracies than
those using data from a single contributor (pairwise t-test P-value
< 0.0005).

Discussion

Overview
In this study we have built on the HEGP methodology intro-
duced in Mott et al. (2020b) to show how it can be extended to
the wide class of mixed models including Bayesian Alphabet
models that are commonly used in animal and crop quantitative
genetics. We have also shown how joint analysis of multiple
data sets fits into this framework and confirmed the increase
in prediction accuracy of breeding values expected from joint
analyses with plaintext analyses also holds for cyphertext. Note
that the estimated marker effects using encrypted data are the
same as those using the raw data.

HEGP enables adherence to, and capitalizes on, the benefits
of the FAIR principles in genome-to-phenome studies. In the
context of animal and crop breeding, it also addresses many of
the privacy, intellectual property, and commercial interest issues
that prevent the sharing and reuse of data for both research and
industry applications.

Alternatives
The principal alternative strategy to sharing genotype and phe-
notype data is to share GWAS summary statistics, for example,
marker regression coefficient estimates and their standard errors.
This approach is most suited to single-marker regression analy-
ses that are typical in human studies (MacArthur et al. 2021). To
this end, databases have been built to collect GWAS summary
statistics (Welter et al. 2014; MacArthur et al. 2017; Buniello et al.
2019), and methods have been proposed to facilitate large meta-
analyses needed for the increased power in dissecting the genetic

basis of complex traits (Yang et al. 2012; Vilhjálmsson et al. 2015;
Barbeira et al. 2018; Lloyd-Jones et al. 2019; Privé et al. 2020; Yengo
et al. 2022b; Werme et al. 2022). However, meta-analyses based
on these summary statistics rely heavily on approximations due
to unavailability of the individual-level data. Homomorphic
encryption methods such as HEGP do not require such approxi-
mations, provided they factorize into a prior distribution of the
markers multiplied by the Gaussian likelihood of the data, and
can be fitted by MCMC methods such as Gibbs sampling.

Rounding Errors
In HEGP, the individuals’ plaintext identities, phenotypes,
and genotypes are obscured by pre-multiplying by a high-
dimensional random orthogonal matrix. In the resulting cypher-
text, the relationships between SNPs, and between SNPs and
phenotypes are preserved, but the relationships between indi-
viduals are scrambled - in fact, the concept of an individual is
nonsensical after encryption, as records in the encrypted data are
random linear combinations of the original individuals’ records.
Theoretically, plaintext and cyphertext should yield identical
estimates of marker effects and other parameters, but due to
rounding errors, as well as Monte Carlo errors in the case of
models using MCMC, the estimated marker effects are not iden-
tical but rather very similar, with correlations close to 1.0. In de-
tail, rounding errors occur because the off-diagonal elements of
PTP are very small values, ∼ 10−13. Mott et al. (2020b) reported
that rounding errors were negligible for P with dimensions up
to 10, 000 × 10, 000. To alleviate the problem of rounding errors
for a very large dataset, P can be constructed as a block-diagonal
matrix, where each block is a random orthogonal matrix.

Time complexity
The time taken to generate a random n × n orthogonal matrix
P from the Stiefel manifold is proportional to n3, where n is the
number of individuals, being dominated by the eigen decompo-
sition. The time taken to multiply the plaintext by P to produce
the cyphertext is proportional to pn2, where p is the number
of markers. In a computer server with five cores, generating P
for the pig dataset (n = 3, 534) took less than one minute. For
a dataset with 10,000 individuals, the time to generate P was
about 5 minutes. However, the time to generate P for 50,000
individuals was about 8 hours. As shown in Figure 7, running
time increased rapidly as sample size increased.

In practice, with hundreds of thousands of individuals, many
relatively small random orthogonal matrices (e.g., 50, 000 ×
50, 000) could be generated in parallel, and then a large block-
diagonal orthogonal matrix could be constructed, with each
block being a random orthogonal matrix (i.e, a block-diagonal
random orthogonal matrix). This larger block-diagonal orthogo-
nal matrix, as well as any permutation of such a matrix, can be
used as the encryption key.

The size of the cyphertext is the same as the plaintext and,
therefore, the computational effort required for each iteration
in MCMC is comparable. In our analysis of the pig dataset
(Cleveland et al. 2012), the number of MCMC iterations necessary
to ensure the convergence of the MCMC process was also similar
between analysis of the plaintext and the cyphertext.

Security
With an appropriately sampled HEGP encryption key, the corre-
lation between raw and encrypted data resembles that between
two random vectors. For the pig dataset (Cleveland et al. 2012),
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the absolute Pearson correlation between raw and encrypted
marker genotypes was almost always less than 0.03. To increase
the security of the encrypting and lower the risk of discovery
of the decryption key, genotypes for SNPs with very low minor
allele frequencies should not be shared. Since only cyphertext
are shared, the unknown nature of the plaintext genotypes M
makes it difficult to evaluate decryption attempts. To date, de-
cryption attacks have been proven ineffective Mott et al. (2020b),
even when M was available for evaluation. However, further
exploration is still needed to determine whether HEGP is cryp-
tographically secure.

Protocols for data sharing in HEGP
Finally, we mention some points to consider when sharing HEGP
cyphertext. First, it is necessary for all contributors to agree on
a common set of markers and covariates to be shared, and on
whether phenotypes are to be residualised by removing covari-
ate effects before sharing - in which case the cyphertext versions
of covariates need not be shared - or afterwards, during the joint
analysis. Second, missing genotypes, covariates and phenotypes
must be imputed, either for markers not genotyped in a par-
ticular contributor’s data, or to fill in sporadic missing values
(HEGP does not allow missing data). Third, the sharing topol-
ogy must be agreed upon: each cyphertext could be shared with
all contributors, so that each participant could conduct their own
analysis, or instead, it could be shared only with a trusted third
party who would perform the agreed-upon analysis. Fourth,
although the joint analysis’ parameter estimates etc do not need
decrypting, the parties may want to agree beforehand on their
subsequent use and dissemination.

These considerations would likely require the contributors
to set up a protocol for data sharing, reflecting the sensitivity
and value of the component data sets, and which will likely
vary depending on circumstances and commercial considera-
tions. Notwithstanding the HEGP-specific technical require-
ments, such a protocol should be simpler to implement than
agreements involving the sharing of plaintext data.

Figure 7 Time to generate a random orthogonal matrix from the
Stiefel manifold. The x-axis is the size of P matrix (i.e., number of
individuals), and the y-axis is the computation time.

Data availability

Pig genotypes used in the analysis are publicly available in
Cleveland et al. (2012). The simulated phenotypes and all scripts
are available at https://github.com/zhaotianjing/encryption. The au-
thors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.
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Appendix

Homomorphic encryption for single markers analysis
in GWAS
Mott et al. (2020b) proposed the homomorphic encryption for
genotypes and phenotypes (HEGP) method for single-marker
regression in genome-wide association studies (GWAS) using
linear mixed models with Gaussian errors, where the raw geno-
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types and phenotypes data were pre-multiplied by a high-
dimensional random orthogonal matrix. Mott et al. (2020b)
showed that such encryption does not change the likelihood
of the quantitative trait in the GWAS model, a point we will
illustrate further below. For more details, refer to Mott et al.
(2020b).

In detail, for n individuals genotyped with p markers, the
raw genotypes and phenotypes matrix were pre-multiplied by
the same random orthogonal matrix as

M∗ = PM

y∗ = Py
(18)

where M is an n × p genotype matrix, y is the vector of pheno-
types of length n, P is an n× n random orthogonal matrix whose
columns and rows are orthonormal vectors (i.e, PT = P−1), and
M∗ and y∗ are encrypted genotypes and phenotypes, respec-
tively. The covariate matrix X should be encrypted as well,
producing X∗ = PX.

In GWAS, the linear model used to test the significance of jth
SNP (j = 1, ..., p) is

y = Xβ + mjαj + u + e

= Xβ + mjαj + ϵ
(19)

where y is the phenotype, X is the covariate matrix, β is the fixed
effects of covariates, mj is the (centered and scaled) genotypes
of jth SNP, αj is the regression coefficient of jth SNP. u is a
random vector for polygenic effects with u ∼ N(0, Gσ2

u), and
e is a random vector of residuals with e ∼ N(0, Iσ2

e ). Thus, the
variance of y is var(y) = Gσ2

u + Iσ2
e = V.

Applying orthogonal encryption, the above GWAS model
becomes

Py = PXβ + Pmjαj + Pϵ

y∗ = X∗β + m∗
j αj + ϵ∗

(20)

where the variance of encrypted phenotypes becomes var(Py) =
PVPT . We showed in Equation 8 that the likelihood is invariant
under orthogonal transformation Thus, HEGP leaves likelihood-
based inferences for GWAS model - used to test the significance
of a single marker - unaffected. This includes the maximum like-
lihood parameter estimates and P-values for likelihood-based
tests of significance.

Gibbs sampler for the linear mixed model
The full conditional posterior distributions of parameters of
interest in SNP-BLUP and BayesCπ are shown below. More
details can be found in Fernando and Garrick (2013).

Residual variance The full conditional posterior distribution
of residual variance σ2

e follows a scaled inverse chi-square dis-
tribution with n + νe degrees of freedom and scale parameter
eT e+νeS2

e
n+νe

. That is,

f (σ2
e |ELSE) ∝ (σ2

e )
− n+νe+2

2 exp[− 1
2σ2

e
(eTe + νeS2

e )], (21)

where e is the residuals. Since (e∗)T(e∗) = eTPTPe = eTe, the
full conditional posterior distribution of σ2

e is unchanged with
the encrypted data.

Marker effect variance The full conditional posterior distribution
of σ2

α follows a scaled inverse chi-square distribution with k + να

degrees of freedom and scale parameter αT α+ναS2
α

k+να
, where k =

∑ δj is the number of markers included in the model. In detail,

f (σ2
α |ELSE) ∝ (σ2

α)
− k+να+2

2 exp[− 1
2σ2

α
(αTα + ναS2

α)] (22)

We have proven that α is unchanged with the encrypted data,
thus, the full conditional posterior distribution of σ2

α is also
unchanged.

Fixed effects The full conditional posterior distribution of jth
fixed effects β j follows a univariate normal distribution with

mean
xT

j (y−Mα−∑j′ ̸=j xj′ β j′ )

xT
j xj

and variance σ2
e

xT
j xj

.

Given X∗ = PX, we have

[x∗1 , ..., x∗p] = P[x1, ..., xp]

= [Px1, ..., Pxp]
(23)

Thus, the xT
j xj is unchanged using encrypted data since

(x∗j )
T(x∗j ) = (Pxj)

T(Pxj)

= xT
j xj

(24)

The xT
j y is also unchanged using encrypted data since

(x∗j )
T(y∗) = (Pxj)

TPy

= xT
j y

(25)

Similarly, xT
j M and xT

j xj′ are also unchanged using encrypted
data. Thus, the full conditional posterior distribution of β j is
unchanged.

Indicator variables In BayesCπ, an indicator Bernoulli variable
δj is introduced for locus j that is 1 with probability 1 − π and 0
with probability π. The full conditional posterior distribution of
indicator variable δj is:

f
(

δj = 1 | ELSE
)

=
f1

(
rj | σ2

α , σ2
e

)
f
(

δj = 1
)

f0

(
rj | σ2

e

)
f
(

δj = 0
)
+ f1

(
rj | σ2

α , σ2
e

)
f
(

δj = 1
) , (26)

where f1

(
rj | σ2

α , σ2
e

)
is a univariate normal distribution with

E
(

rj | σ2
α , σ2

e

)
= 0, Var

(
rj | σ2

α , σ2
e

)
=

(
mT

j mj

)2
σ2

α + mT
j mjσ

2
e ,

and f0

(
rj | σ2

e

)
is a univariate normal distribution with

E
(

rj | σ2
e

)
= 0, Var

(
rj | σ2

e

)
= mT

j mjσ
2
e ,

and

rj = mT
j

y − Xβ − ∑
j′ ̸=j

mj′ αj′ δj′

 .

We have showed that rj and mT
j mj are unchanged with en-

crypted data. Thus, the full conditional posterior distribution of
δj is unchanged.
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Inclusion probabilities In BayesCπ, the full conditional posterior
distribution of inclusion probability π follows a Beta distribution
with shape parameter p − k + 1 and k + 1. That is,

f (π|ELSE) ∝ π(p−k)(1 − π)k (27)

Using encrypted data will not affect the full conditional posterior
distribution of π.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyad210/7470728 by U

niversity C
ollege London user on 03 January 2024




