Constraining Ultra Light Dark Matter with the Stellar Kinematics in the Galactic Centre

Firat Toguz

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Mullard Space Science Laboratory
University College London

January 2, 2024
I, Firat Toguz, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the work.
Abstract

We use the stellar kinematics in the Milky Way’s Galactic centre to test the existence of a dark matter ‘soliton core’, as predicted in ultra-light dark matter (ULDM) models, which are currently an attractive model to resolve the small-scale problems of the cold dark matter model. We first use the Milky Way’s nuclear star cluster (NSC) to test the existence of the ULDM by applying a spherical isotropic Jeans model to fit the NSC line-of-sight velocity dispersion data, assuming priors on the precisely measured Milky Way’s supermassive black hole (SMBH) mass and the well-measured NSC density profile. We find that the current observational data reject the existence of a soliton core for a single ULDM particle with mass in the range $10^{-20.40} \text{ eV} \lesssim m_{\text{DM}} \lesssim 10^{-18.50} \text{ eV}$, assuming that the soliton core structure is not affected by the Milky Way’s SMBH. We then fix the NSC as an external component and use Action-based Galaxy Modelling Architecture (AGAMA) package to model the nuclear stellar disk (NSD) to test the existence of a soliton core at a broader range of $m_{\text{DM}}$. We assess the existence of a soliton core in the centre of the Milky Way by fitting the surface density, mean line-of-sight velocity, and vertical velocity dispersion of the NSD stars. We use the surface density and proper motion data from the updated version of the VISTA Variables in the Vía Láctea Infrared Astrometric Catalogue data, and the line-of-sight velocities provided by Apache Point Galactic Evolution Experiment. We find that these observational data reject the ULDM particle mass range between $10^{-23.20} \text{ eV}$ and $10^{-20.0} \text{ eV}$. Hence, combining the constraints from the NSC, we conclude that the current observational data reject the ULDM particle mass range from $10^{-23.20} \text{ eV}$ and $10^{-18.50} \text{ eV}$. Overall, this work clearly indicates that a model explaining the dark matter as a single
Abstract

ULDM particle mass is not a viable solution to explain the nature of the dark matter in the Universe.
Impact Statement

The research presented in this thesis extends our knowledge in the nature of dark matter. Dark matter stands as the primary component responsible for the formation and existence of galaxies, including our own Milky Way. The profound impact of dark matter on cosmic structures, coupled with its potential to address significant problems in physics, such as the unification of gravity with other fundamental forces described by quantum mechanics. Consequently, this profound significance motivates and inspires a new generation of scientists and engineers in future space explorations, as well as providing an intriguing topic for public outreach. Hence, this research has a substantial positive impact on our culture. With regards to the academic impact, the work in this thesis suggests that a type of dark matter, called ultra-light dark matter (ULDM) is unlikely to be a viable candidate of dark matter particles. Hence, this research contributes to rejecting one of the current attractive dark matter scenarios, and encourages the exploration of other dark matter scenarios. Our work also highlights that the astronomy data are valuable to study the nature of dark matter. The statistical methods applied to use the large observational data, as well as carefully taking into account their measurement uncertainties, are also demonstrated to be important to assess the significance of the data to constrain the theoretical models. Therefore, this thesis also provides a valuable impact on highlighting the importance of the statistical data analysis technique, and its transferable techniques to the applications of data science for many other disciplines, including more societal topics, such as finance, economics, and education.
UCL Research Paper Declaration
Form

1. 1. For a research manuscript that has already been published (if not yet published, please skip to section 2):

   (a) What is the title of the manuscript?
       Constraining ultra light dark matter with the Galactic nuclear star cluster

   (b) Please include a link to or doi for the work:
       https://academic.oup.com/mnras/article/511/2/1757/6511568

   (c) Where was the work published?
       Monthly Notices of the Royal Astronomical Society

   (d) Who published the work?
       Oxford University Press

   (e) When was the work published?
       19 January 2022

   (f) List the manuscript’s authors in the order they appear on the publication:
       Firat Toguz, Daisuke Kawata, George Seabroke, Justin I. Read

   (g) Was the work peer reviewed?
       Yes

   (h) Have you retained the copyright?
       No
(i) **Was an earlier form of the manuscript uploaded to a preprint server (e.g. medRxiv)?** If 'Yes', please give a link or doi

https://arxiv.org/abs/2106.02526

If 'No', please seek permission from the relevant publisher and check the box next to the below statement:

☐ *I acknowledge permission of the publisher named under 1d to include in this thesis portions of the publication named as included in 1c.*

2. **For a research manuscript prepared for publication but that has not yet been published** (if already published, please skip to section 3):

   (a) **What is the current title of the manuscript?**

   (b) **Has the manuscript been uploaded to a preprint server (e.g. medRxiv)?**

       If 'Yes', please please give a link or doi:

   (c) **Where is the work intended to be published?**

   (d) **List the manuscript’s authors in the intended authorship order:**

   (e) **Stage of publication:**

3. **For multi-authored work, please give a statement of contribution covering all authors** (if single-author, please skip to section 4): Firat Toguz did bulk of the work, preparation of the manuscript, written the code, and produced the figures. Daisuke Kawata has supported the development of the code and preparation of the paper. George Seabroke and Justin I. Read helped with the scientific discussions of the paper.

4. **In which chapter(s) of your thesis can this material be found?**

    Chapter 2

    **e-Signatures confirming that the information above is accurate** (this form should be co-signed by the supervisor/ senior author unless this is not appropriate, e.g. if the paper was a single-author work):
Candidate: FIRAT TOGUZ
Date: 06/09/2023

Supervisor/Senior Author signature: Daisuke Kawata
Date: 06/09/2023
Acknowledgements

First and foremost, I wish to convey my deep appreciation to my supervisors, Prof. Daisuke Kawata and Dr. George Seabroke, for their outstanding guidance, invaluable insights, and unwavering support during my PhD. I am super fortunate to have two supervisors who have dedicated their time and expertise to have a positive influence in my professional growth and development as a scientist. Daisuke, you will forever hold a special place in my heart. Your support has been exceptional, and I will always remember the unwavering support you provided, whether it was during the day, evening, or even in midnight. Thank you Daisuke for also being a life-saviour, many times I was stuck in darkness and you manage to show me where the light was. I would also like to thank Prof. Kinwah Wu for not only making me fall in love with physics at the age of 15, but also supported me and put me back on track when I felt lost at the beginning of my PhD.

I acknowledge Ochsenbein et al. (2000) as this research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. This work is based on the data from the ESO Public Survey program ID 179.B-2002 taken with the VISTA telescope. I acknowledge Jason L. Sanders and Leigh Smith for providing me the VIRAC2 data. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.sdss4.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science,
Carnegie Mellon University, Center for Astrophysics — Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.

I want to thank my peers and friends at MSSL, including Ahlam Alqasim, Aisha Almannaei, and Joel Baby Abraham. Thank you Ahlam Alqasim and Aisha Almannaei for the enjoyable discussions we shared in the office; both of your presence always brightened my day. Thank you Joel Baby Abraham for being a great friend and being there during the highs and lows of my PhD.

I would also like to thank my wonderful friend, Rutvij Bhasavar. You have given me immense academic support and also reduced my stress through the funny conversations we had.

To my dear childhood friends, Huseyin Cizer and Emre Dasikan, this PhD journey would not have been possible without your invaluable support you provided by meeting up together, having great discussions, making funny jokes, and laughing.

I extend my deepest appreciation to my wife, Berna Toguz, my parents, Nazli Toguz and Fevzi Toguz, and my siblings, Dilek Toguz, Muzaffer Toguz, Sarigul Toguz, and Dijle Toguz for their amazing support and belief in me throughout my entire PhD journey. To my beloved wife, your enduring faith in me, support and
standing by me during moments of stress and pressure outside of PhD have been my rock. Your understanding of sociology and mental health has definitely saved me from real trouble, you were like a counsellor. Thank you for also being patient and understanding when there were many times I was extremely busy when writing up this thesis and therefore could not spend quality time with you. To my parents, your motivation and insistence on my physical well-being, consistently encouraging me to exercise and take walks, have been invaluable. Finally, to my brothers and sisters, you have been the epitome of what siblings should be, always checking in on my well-being.
## Contents

1 Introduction ................................................. 1  
   1.1 Dark Matter ............................................. 1  
   1.2 Evidence of Dark Matter ................................. 1  
       1.2.1 Coma Cluster ...................................... 1  
       1.2.2 Rotation Curves .................................... 2  
   1.3 Lambda-Cold Dark Matter ................................. 3  
   1.4 Problems of CDM at Small Scales ......................... 4  
       1.4.1 Missing Satellite Problem ......................... 4  
       1.4.2 Cusp-Core Problem ................................. 4  
       1.4.3 Too-Big-To-Fail .................................... 6  
   1.5 Possible Solutions to Small Scale Problems ............... 8  
       1.5.1 Baryonic Effects ................................... 8  
       1.5.2 Warm Dark Matter .................................. 8  
       1.5.3 Ultra-Light Dark Matter ............................. 9  
   1.6 Nuclear Star Cluster .................................... 12  
       1.6.1 Structure and the Chemical Composition of the NSC ... 14  
       1.6.2 NSC and ULDM ...................................... 16  
   1.7 Nuclear Stellar Disk ..................................... 17  
       1.7.1 Structure and the Chemical Composition of the NSD ... 17  
   1.8 The Work of this Thesis .................................. 19  

2 Constraining Ultra Light Dark Matter with the Galactic Nuclear Star Cluster ... 21
# Contents

2.1 Introduction .................................................. 21

2.2 Method .......................................................... 22
   2.2.1 Jeans Equation ............................................ 23
   2.2.2 Velocity Dispersion Data ............................... 25
   2.2.3 NSC Density profiles .................................... 26
   2.2.4 Dark Matter Density profiles ......................... 28
   2.2.5 Fitting Methodology .................................... 29

2.3 Results ......................................................... 31

2.4 Discussion ..................................................... 39
   2.4.1 Mock Data Validation .................................... 39
   2.4.2 Systematic uncertainty of the black hole mass ...... 45
   2.4.3 The lower Milky Way mass case ...................... 46

2.5 Conclusions .................................................... 47

3 Observational Data for the Nuclear Stellar Disk 49
   3.1 Introduction .................................................. 49

   3.2 Observational Data ......................................... 50
      3.2.1 VIRAC2 .................................................. 50
      3.2.2 APOGEE DR17 .......................................... 52
      3.2.3 Previous Dynamical Modelling of the NSD ........ 53

   3.3 Assumed Parameters ........................................ 54

   3.4 Surface Density Distribution of the NSD ................ 57

   3.5 The Vertical Velocity Dispersion Distribution of the NSD ... 60

   3.6 The Rotation Curve of the NSD ........................... 72

4 Constraining Ultra Light Dark Matter with the Stellar Kinematics in the Nuclear Stellar Disk 82
   4.1 Introduction ................................................ 82

   4.2 Method ........................................................ 83
      4.2.1 Supermassive Black Hole .............................. 84
      4.2.2 NSC Density Profile ................................... 85
Contents

4.2.3 Distribution Function for the Nuclear Stellar Disk . . . . . . 86
4.2.4 Density Profiles of Dark Matter . . . . . . . . . . . 87
4.2.5 Fitting Methodology . . . . . . . . . . . . . . . . . 89
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . 92
4.3.1 Two inferred cases for ULDM . . . . . . . . . . . . . 93
4.3.2 The Gap Solution . . . . . . . . . . . . . . . . . . . 106
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Conclusion and Further Work 114
5.1 Thesis Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 120
List of Figures

1.1 Red dashed line: Expected rotation curve from the mass distribution of visible matter. Blue solid line: Observed rotation curve. . . . . . 3

1.2 Mass ranges of different dark matter models. ULDM is the ultra-light dark matter, WDM is the warm dark matter and CDM is cold dark matter. $M_{\text{pl}}$ is the Planck scale. . . . . . . . . . . . . . . . . . 4

1.3 Left: A representation of spatial distribution of the satellites of the Milky Way according to simulations of a Universe with $\Lambda$CDM. Right: A representation of spatial distribution of the satellites of the Milky Way according to observations. . . . . . . . . . . . . . . . . 5

1.4 Density profile that is cuspy (blue) and core-like (red). . . . . . . 6

1.5 Rotation curves for cuspy (blue) and core density profile (red). . . 7
1.6 Summary of rejected ULDM particle masses from various astronomical probes. The Lyman-α forest observation rejects $m_{\text{DM}} < 10^{-20.5}$ eV (Iršič et al., 2017; Kobayashi et al., 2017; Armengaud et al., 2017). The observed spin of black holes constrain the superradiance of black holes, and rejects $m_{\text{DM}} > 10^{-19.20}$ eV (Stott & Marsh, 2018), including the Event Horizon Telescope observation of M87, which rejects $10^{-21.07} < m_{\text{DM}} < 10^{-20.34}$ eV (Davoudiasl & Denton, 2019). Rotation curves of nearby galaxies also reject $m_{\text{DM}} < 10^{-21.0}$ eV (Bar et al., 2019a). Schutz (2020) suggests that $m_{\text{DM}} < 10^{-20.70}$ eV is rejected by the satellite luminosity function inferred from the perturbed stellar streams (Banik et al., 2019) and lensed images (Gilman et al., 2020), similarly to constraints on the WDM mass (Section 1.5.2). González-Morales et al. (2017) reject $m_{\text{DM}} > 10^{-22.40}$ eV from the stellar kinematics of the Fornax and Sculptor dwarf spheroidal galaxies. Hayashi et al. (2021) find that the stellar kinematics of Segue I is consistent with $10^{-19.40} < m_{\text{DM}} < 10^{-18.0}$ eV. We naively take this as the required ULDM mass range, and consider that the other mass ranges are rejected, if the Segue I stellar kinematics is purely due to the soliton core. Zoutendijk et al. (2021) reject $m_{\text{DM}} < 10^{-20.40}$ eV from the stellar kinematics of the ultra-faint dwarf galaxy, Eridanus.
1.7 The density profile for the Milky Way’s NSC (blue dashed), and for the central dark matter density profile assuming $\Lambda$CDM (brown, Navarro et al., 1996) and dark matter with a ULDM particle mass of $10^{-23.0} \text{eV}$ (light blue), $10^{-21.0} \text{eV}$ (magenta), $10^{-20.0} \text{eV}$ (orange), $10^{-19.0} \text{eV}$ (green), $10^{-18.0} \text{eV}$ (red) and $10^{-16.0} \text{eV}$ (purple). Notice that over the fixed radial range probed by the NSC stellar kinematic data (vertical black lines of $r = 0.1 \text{pc}$ and $r = 3 \text{pc}$), only ULDM models with mass in a specific range will affect the stellar kinematics. The red horizontal solid line indicates the size of the NSD. ......................................................... 15

1.8 The Galactic centre components: SMBH (the size of the symbol does not indicate the size of SMBH), NSC and NSD. .............. 18

2.1 The distribution of stars whose line-of-sight velocities are measured in Fritz et al. (2016). The data are decomposed into 32 bins, with approximately 79 stars per bin. .................................................. 24

2.2 The observed line-of-sight velocity dispersion profile data (black dots with error bars). Overplotted is the velocity dispersion profile from 100 randomly selected model parameters sampled by the MCMC (red lines). ......................................................... 31

2.3 Marginalised posterior probability distribution of the model parameters of $\log(\rho_{b, NSC})$, $\log(m_{\text{DM}})$, $\gamma$ and $m_{\text{BH}}$ obtained by MCMC fitting to the observed velocity dispersion from the line-of-sight velocity data in Fritz et al. (2016). .................................................. 32

2.4 Marginalised posterior probability distribution of the model parameter $\log(m_{\text{DM}})$ from Fig. 2.3, but with finer bins. The solid black lines demark $\log[m_{\text{DM}}(\text{eV})] = -20.40$ and $-18.50$. ................. 33
2.5 The cumulative mass profile, $M_{\text{tot}}(< r)$, for the total (black solid line), NSC (blue solid line) and dark matter with a ULDM particle mass of $10^{-18.50}$ eV and $10^{-21.0}$ eV (orange solid and magenta dot-dashed lines, respectively). The solid vertical black line shows $r = 3$ pc. The NSC mass profile is computed with $\log[\rho_b,\text{NSC}(M_\odot\text{ pc}^{-3})] = 4.21$. The total mass is computed for the case of the ULDM mass of $m_{\text{DM}} = 10^{-21.0}$ eV, including the SMBH. ................................................................. 34

2.6 The cumulative mass profile, $M_{\text{tot}}(< r)$, for the total (black), NSC (blue) and dark matter mass with the particle mass of $10^{-20.50}$ eV (orange). The solid vertical black line shows $r = 3$ pc. The total mass is computed for the case of the ULDM mass of $m_{\text{DM}} = 10^{-20.50}$ eV, including the SMBH. ................................................................. 35

2.7 Upper panel: Observed line-of-sight velocity dispersion as a function of the projected radius (black dots with error bars). Orange solid/red dot-dashed/yellow dotted/blue dashed line indicates the velocity dispersion profile expected from the combination of the soliton core with $m_{\text{DM}} = 10^{-20.50}$ eV, NSC and SMBH/NSC and SMBH/SMBH only/NSC only. NSC contribution is computed with $\log[\rho_b,\text{NSC}(M_\odot\text{ pc}^{-3})] = 3.60$. Lower panel: Same as the upper panel, but the soliton core with $m_{\text{DM}} = 10^{-19.50}$ eV and $\log[\rho_b,\text{NSC}(M_\odot\text{ pc}^{-3})] = 4.21$ are used for the soliton core and NSC contributions. ................................................................. 36

2.8 The mock line-of-sight velocity dispersion profile data of model A (black dots with error bars) overplotted with the velocity dispersion profile from 100 randomly selected model sampled by the MCMC (red lines) and the true velocity dispersion profile (blue line). ....... 37
2.9 Marginalised posterior probability distribution of the model parameters of $\log(\rho_{b,\text{NSC}})$, $\log(m_{\text{DM}})$, $\gamma$ and $m_{\text{BH}}$ obtained by the MCMC fit to the velocity dispersion data of model A. The cyan line with cyan solid square shows the true values of the parameters. . . . . . . 38

2.10 Marginalised posterior probability distribution of the model parameter $\log(m_{\text{DM}})$ for model A from Fig. 2.9, but with finer bins. The solid black lines demark the range $\log[m_{\text{DM}}(\text{eV})] = -20.40$ and $-18.50$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 Marginalised posterior probability distribution of the model parameters of $\log(\rho_{b,\text{NSC}})$, $\log(m_{\text{DM}})$, $\gamma$ and $m_{\text{BH}}$ obtained by the MCMC fitting to the velocity dispersion data of model B. The cyan line with cyan solid square shows the true values of the parameters. . . . . . . 42

2.12 Marginalised posterior probability distribution of the model parameters of $\log(\rho_{b,\text{NSC}})$, $\log(m_{\text{DM}})$, $\gamma$ and $m_{\text{BH}}$ obtained by the MCMC fit to the velocity dispersion data of model C. The cyan line with cyan solid square shows the true values of the parameters. . . . . . . 43

2.13 Marginalised posterior probability distribution of the model parameter $\log(m_{\text{DM}})$ for model C from Fig. 2.12, but with finer bins. The solid black lines demark $\log[m_{\text{DM}}(\text{eV})] = -20.40$ and $-18.50$. . . . 44

2.14 Marginalised posterior probability distribution of the model parameter $\log(m_{\text{DM}})$ for lower black hole mass case. The marginalised posterior probability distribution is divided into 250 bins. Solid black line indicates $\log[m_{\text{DM}}(\text{eV})] = -20.40$ and $-18.50$. . . . . . 46

2.15 Marginalised posterior probability distribution of the model parameter $\log(m_{\text{DM}})$ for higher black hole mass case. The marginalised posterior probability distribution is divided into 250 bins. Solid black line indicates $\log[m_{\text{DM}}(\text{eV})] = -20.40$ and $-18.50$. . . . . . 47
2.16 Marginalised posterior probability distribution of the model parameter \( \log(m_{DM}) \) for the MCMC fitting result with a lower Milky Way mass of \( M_h = 9 \times 10^{11} \, M_\odot \), taken from Vasiliev et al. (2021). Solid black line indicates \( \log(m_{DM}(\text{eV})) = -20.4 \) and \(-18.5\). . . . . . 48

3.1 Colour-magnitude diagram for stars from VIRAC1 and VIRAC2 (only in the region enclosed by red lines). Red open box highlights our selection of the NSD AGBb star candidates from VIRAC2. Green open area: highlights the sequence of red clump stars expected in the NSD. Red are the areas with the highest number density, blue and black are the lowest number density. . . . . . . . . . . 52

3.2 The number density distribution of the stars selected as the AGBb candidates in Fig. 3.1. The red open rectangle highlights our selection region of this study. . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 The distribution of the APOGEE DR17 selected in Section 3.2.2. The filled circles are colour coded by \( V_{LOS} \). . . . . . . . . . . . . . 57

3.4 The number density distribution of the stars selected in Section 3.2.1 in a two dimensional grid from \(-0.1 \, \text{kpc} \lesssim X \lesssim 0.1 \, \text{kpc} \) and \(-0.05 \, \text{kpc} \lesssim Z \lesssim 0.05 \, \text{kpc} \) with Sgr A* being at the centre, at \((0, 0) \, \text{kpc}\). The number density distribution of the stars is not smooth, where green square open boxes are some examples showing dark patches caused by the extinction. The colour bar indicates the number of stars in each approximately sized \(0.01 \times 0.01 \, \text{kpc} \) grid. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 The number density distribution of the stars selected in Section 3.2.1 in a two dimensional grid from \(-0.1 \, \text{kpc} \lesssim X \lesssim 0.1 \, \text{kpc} \) and \(-0.05 \, \text{kpc} \lesssim Z \lesssim 0.05 \, \text{kpc} \) that is symmetrical after the number of stars are re-assigned to take the highest number of stars among the symmetric grids (see the text of Section 3.4 for more details). The colour bar indicates the number of stars in each approximately sized \(0.01 \times 0.01 \, \text{kpc} \) grid. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Same as Fig. 3.5, but shown a quarter of the data. The $X$ and $Z$ direction has 10 and 5 grids respectively. The colour bar indicates the number of stars in each approximately sized $0.01 \times 0.01$ kpc grid.

3.7 Observed number density distributions as a function of $X$ at different position in $Z$ of $Z = 0.005$ kpc (black dots), $Z = 0.015$ kpc (red dots), $Z = 0.025$ kpc (yellow dots), $Z = 0.035$ kpc (green dots), $Z = 0.045$ kpc (blue dots). The uncertainty is too small and it is smaller than the symbols. The largest uncertainty of a density grid is the density grid at $Z = 0.005$ kpc and $X = 0.005$ kpc.

3.8 Left panel: An example of the $V_X$ distribution at $X = -0.086$ kpc and $Z = -0.005$ kpc grid that appears to be less affected by extinction. Right panel: An example of the $V_X$ distribution at $X = 0.086$ kpc and $Z = -0.005$ kpc grid that appears to miss the significant number of stars in the negative $V_X$ likely due to the extinction blocking the light from the stars in the far side of the NSD like the example of the line-of-sight shown in the purple vertical arrow in Fig. 3.9.
3.9 Schematic view of kinematics of the NSD stars when looked down from the Galactic North Pole. Red arrow shows the direction of rotation of stars. The examples of the two line-of-sights are shown by the green and purple arrows pointing toward the Sun’s direction. The distribution of $V_X$ along the green arrow is expected to be the two peak as shown in the bottom left, because the extinction is less severe and the stars in the near-side ($Y < 0$) and farther-side ($Y > 0$) can be observed. On the other hand, the distribution of $V_X$ along the purple arrow is expected to be a single peak as shown in the bottom right, because the extinction is more severe as indicated with the grey clouds highlighted as ”Dust and gas” and the stars in the far-side ($Y > 0$) are difficult to be observed. The grey circle indicates the circle with the radius of $R$, which is the smallest NSD radius for the stars with line-of-sight along the green arrow, where $X_{los}$.

3.10 Examples of $V_Z$ distribution (blue filled histogram) at different grids overplotting with a best fit Gaussian profile (orange line). $N_s$ is the number of stars in a grid. Top panels: the observed $V_Z$ distribution for all the stars in each grid. Second panels: the $V_Z$ distribution of stars in each grid after applying $2\sigma$ sigma clipping. Third panels: the $V_Z$ distribution of stars in each grid after applying $2.25\sigma$ sigma clipping. Bottom panels: the $V_Z$ distribution of stars in each grid after applying $2.5\sigma$ sigma clipping.

3.11 Examples of $V_Z$ distribution (blue filled histogram) at different grids overplotting with a best fit Gaussian profile (orange line). $N_s$ is the number of stars in a grid. Top panels: the observed $V_Z$ distribution for all the stars in each grid. Second panels: the $V_Z$ distribution of stars in each grid after applying $2\sigma$ sigma clipping. Third panels: the $V_Z$ distribution of stars in each grid after applying $2.25\sigma$ sigma clipping. Bottom panels: the $V_Z$ distribution of stars in each grid after applying $2.5\sigma$ sigma clipping.
3.12 Examples of $V_Z$ distribution (blue filled histogram) at different grids overplotting with a best fit Gaussian profile (orange line). $N_s$ is the number of stars in a grid. Top panels: the observed $V_Z$ distribution for all the stars in each grid. Second panels: the $V_Z$ distribution of stars in each grid after applying 2$\sigma$ sigma clipping. Third panels: the $V_Z$ distribution of stars in each grid after applying 2.25$\sigma$ sigma clipping. Bottom panels: the $V_Z$ distribution of stars in each grid after applying 2.5$\sigma$ sigma clipping. 70

3.13 Marginalized posterior probability distribution of the parameters of the Gaussian distribution when fitted to the $V_Z$ distribution data at $X = 0.025$ kpc and $Z = 0.005$ kpc grid after 2.25$\sigma$ sigma clipping. 71

3.14 $\sigma_z$ in a two dimensional grid with number of grids in $X$ and $Z$ direction being 10 and 5, respectively. 73

3.15 Vertical velocity dispersion as a function of $X$ at different positions in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). 74

3.16 The distribution of the APOGEE DR17 selected in Section 3.2.2 in two dimension. The filled circles are colour coded by $V_{LOSnew}$. 75

3.17 Examples of $V_{LOSnew}$ distribution (blue filled histogram) at different grids overplotting with a best fit Gaussian profile (orange line). $N_s$ is the number of stars in a grid. Top panels: the observed $V_{LOSnew}$ distribution for all the stars in each grid. Second panels: the $V_{LOSnew}$ distribution of stars in each grid after applying 2.25$\sigma$ sigma clipping. Third panels: the $V_{LOSnew}$ distribution of stars in each grid after applying 2.5$\sigma$ sigma clipping. Bottom panels: the $V_{LOSnew}$ distribution of stars in each grid after applying 2.75$\sigma$ sigma clipping. 76
3.18 Black dots: the line-of-sight velocity distribution of the APOGEE DR17 selected in Section 3.2.2. Orange dots with error bars: the mean line-of-sight velocity evaluated after $2.75\sigma$ sigma clipping at 5 different grids along the X-direction.

3.19 Black dots: the distribution of the APOGEE DR17 selected in Section 3.2.2. Green dots with error bars: the mean line-of-sight velocity evaluated after $2.25\sigma$ sigma clipping at 5 different grids along the X-direction. Red dots with error bars: the mean line-of-sight velocity evaluated after $2.5\sigma$ sigma clipping at 5 different grids along the X-direction. Because they overlap each other, to make the red and green dots visible, the mean line-of-sight velocity for $2.5\sigma$ is shifted towards the right by $X = 0.005$ kpc so that the similarities and the difference between the line-of-sight velocity for $2.25\sigma$ and $2.5\sigma$ can be seen more clearly.

3.20 Marginalized posterior probability distribution of the parameters of the Gaussian distribution when fitted to the $V_{\text{LOS}}$ distribution data at $X = 0.05$ kpc.

3.21 $\mu_{\text{LOS}}$ in a two dimensional grid with number of grids in X and Z direction being 10 and 5, respectively.

3.22 Blue dots with error bars showing the mean line-of-sight velocity with 10 grids along the X-direction.

4.1 The number density distribution of the stars obtained in Chapter 3. The colour bar indicates the number of stars in each approximately sized $0.01 \times 0.01$ kpc grid. The black square grid represents the central 10 pc that is removed from our model fitting.

4.2 Marginalised posterior probability distribution of the model parameters of $m_{\text{DM}}, M_{\text{NSD}}, R_{\text{disk}}, H_{\text{disk}}, \sigma_{r,0}, R_{\sigma,r}$ and $N_{m}$ obtained by MCMC fitting to the projected number density, $\sigma_{Z}$ and $\mu_{\text{LOS}}$. 
4.3 Marginalised posterior probability distribution of the model parameter $\log(m_{DM})$ from Fig. 4.2, but with finer bins. The solid black lines demark $\log[m_{DM}(eV)] = -23.20$ and $-20.0$. The dotted black lines represents $\log[m_{DM}(eV)] = -23.40$. The dashed black lines represents $\log[m_{DM}(eV)] = -19.80$. The solid purple line indicates $\log[m_{DM}(eV)] = -19.60$. The solid red line indicates $\log[m_{DM}(eV)] = -23.50$.  

4.4 The density profile for the Milky Way’s NSC (blue dashed), and for the central dark matter density profile assuming $\Lambda$CDM (brown, Navarro et al., 1996) and dark matter with a ULDM particle mass of $10^{-23.4}$ eV (black), $10^{-23.0}$ eV (light blue), $10^{-21.0}$ eV (magenta), $10^{-20.0}$ eV (orange), $10^{-19.0}$ eV (green), $10^{-18.0}$ eV (red) and $10^{-16.0}$ eV (purple).

4.5 Observed number density distributions as a function of $X$ at different positions in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The uncertainty is too small and it is smaller than the symbols for the most of the cases. The model density distributions with $m_{DM} = 10^{-23.40}$ eV and the best fitting values summarised in Table 4.1 are represented by the solid lines whose colours indicate the same $Z$ positions as the observational data. The dashed lines are the model density distribution with the best fitting values corresponding to $m_{DM} = 10^{-23.40}$ eV, though $m_{DM} = 10^{-23.40}$ eV soliton core is not included, but the NFW dark matter profile is applied.
4.6 Blue dots with error bars showing the mean line-of-sight velocity with 10 grids along the X-direction. Model mean line-of-sight velocity with $m_{\text{DM}} = 10^{-23.40}$ eV and the best fitting values summarised in Table 4.1 at 10 grids along the X-direction and 5 grid along the Z-direction are presented by solid lines whose colours indicate the different Z positions as shown in the top-left corner of the panel. The dashed lines are the model mean line-of-sight velocity with the best fitting values corresponding to $m_{\text{DM}} = 10^{-23.40}$ eV, though $m_{\text{DM}} = 10^{-23.40}$ eV soliton core is not included, but the NFW dark matter profile is applied.

4.7 Observed velocity dispersion as a function of X at different positions in Z of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The model velocity dispersion with $m_{\text{DM}} = 10^{-23.40}$ eV and the best fitting values summarised in Table 4.1 as a function of X at different positions in Z are represented by the solid lines whose colours indicate the same Z positions as the observational data. The dashed lines are the model velocity dispersion with the best fitting values corresponding to $m_{\text{DM}} = 10^{-23.40}$ eV, though $m_{\text{DM}} = 10^{-23.40}$ eV soliton core is not included, but the NFW dark matter profile is applied.

4.8 Same as Fig. 4.6, but the solid lines are for the model with $10^{-20.50}$ eV soliton core and the best fit parameters corresponding to the $\log [m_{\text{DM}}(\text{eV})] = -23.40$ model (Table 4.1).

4.9 Same as Fig. 4.7, but the solid lines are for the model with $10^{-20.50}$ eV soliton core and the best fit parameters corresponding to the $\log [m_{\text{DM}}(\text{eV})] = -23.40$ model (Table 4.1).
4.10 Same as Fig. 4.5, but the solid lines are for model with $m_{\text{DM}} = 10^{-19.80}$ eV and the corresponding best fitting values summarised in Table 4.1. The dashed lines are the model density distributions with the best fitting values corresponding to $m_{\text{DM}} = 10^{-19.80}$ eV, though $m_{\text{DM}} = 10^{-19.80}$ eV soliton core is not included, but the NFW dark matter profile is applied.

4.11 Same as Fig. 4.6, but the solid lines are for model with $m_{\text{DM}} = 10^{-19.80}$ eV and the corresponding best fitting values summarised in Table 4.1. The dashed lines are the model mean line-of-sight velocity with the best fitting values corresponding to $m_{\text{DM}} = 10^{-19.80}$ eV, though $m_{\text{DM}} = 10^{-19.80}$ eV soliton core is not included, but the NFW dark matter profile is applied.

4.12 Same as Fig. 4.7, but the solid lines are for model with $m_{\text{DM}} = 10^{-19.80}$ eV and the corresponding best fitting values summarised in Table 4.1. The dashed lines are the model velocity dispersion with the best fitting values corresponding to $m_{\text{DM}} = 10^{-19.80}$ eV, though $m_{\text{DM}} = 10^{-19.80}$ eV soliton core is not included, but the NFW dark matter profile is applied.

4.13 Left panel: Observed density distribution as a function of $X$ at different position in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The uncertainty is too small and it is smaller than the symbols for the most of the cases. The model density distributions with $m_{\text{DM}} = 10^{-22.0}$ eV and the other parameter values summarised in Table 4.1 are represented by the solid lines whose colours indicate the same $Z$ positions as the observational data. Right panel: same as the left panel, but for the model with $m_{\text{DM}} = 10^{-21.0}$ eV.
4.14 Left panel: Blue dots with error bars showing mean line-of-sight velocity with 10 grids along the X-direction. The model mean line-of-sight velocity with $m_{DM} = 10^{-22.0}$ eV and the other parameter values summarised in Table 4.1 at 10 grids along the X-direction and 5 grid along the Z-direction are presented by solid lines whose colours indicate the different Z positions as shown in the bottom right corner of the panel. Right panel: same as the left panel, but for the model with $m_{DM} = 10^{-21.0}$ eV.

4.15 Left panel: Observed velocity dispersion as a function of X at different positions in Z of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The model velocity dispersion with $m_{DM} = 10^{-22.0}$ eV and the other parameter values summarised in Table 4.1 as a function of X at different positions in Z are represented by the solid lines whose colours indicate the same Z positions as the observational data. Right panel: same as the left panel, but for the model with $m_{DM} = 10^{-21.0}$ eV.

4.16 Observed density distribution as a function of X at different position in Z of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The uncertainty is too small and it is smaller than the symbols for the most of the cases. The model density distributions with NFW only and the other parameter values summarised in Table 4.1 are represented by the solid lines whose colours indicate the same Z positions as the observational data.
4.17 Blue dots with error bars showing mean line-of-sight velocity with 10 grids along the $X$-direction. The model mean line-of-sight velocity with NFW only and the other parameter values summarised in Table 4.1 at 10 grids along the $X$-direction and 5 grid along the $Z$-direction are presented by solid lines whose colours indicate the different $Z$ positions as shown in the top-left corner of the panel.

4.18 Observed velocity dispersion as a function of $X$ at different positions in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The model velocity dispersion with NFW only and the other parameter values summarised in Table 4.1 as a function of $X$ at different positions in $Z$ are represented by the solid lines whose colours indicate the same $Z$ positions as the observational data.
5.1 Summary of rejected ULDM particle masses from various astronomical probes with including both our results in Chapter 2 and Chapter 4. The Lyman-α forest observation rejects $m_{\text{DM}} < 10^{-20.50}$ eV (Iršič et al., 2017; Kobayashi et al., 2017; Armengaud et al., 2017). The observed spin of black holes constrain the superradiance of black holes, and rejects $m_{\text{DM}} > 10^{-19.20}$ eV (Stott & Marsh, 2018), including the Event Horizon Telescope observation of M87, which rejects $10^{-21.07} < m_{\text{DM}} < 10^{-20.34}$ eV (Davoudiasl & Denton, 2019). Rotation curves of nearby galaxies also reject $m_{\text{DM}} < 10^{-21.0}$ eV (Bar et al., 2019a). Schutz (2020) suggests that $m_{\text{DM}} < 10^{-20.70}$ eV is rejected by the satellite luminosity function inferred from the perturbed stellar streams (Banik et al., 2019) and lensed images (Gilman et al., 2020), similarly to constraints on the WDM mass (Section 1.5.2). González-Morales et al. (2017) reject $m_{\text{DM}} > 10^{-22.4}$ eV from the stellar kinematics of the Fornax and Sculptor dwarf spheroidal galaxies. Hayashi et al. (2021) find that the stellar kinematics of Segue I is consistent with $10^{-19.40} < m_{\text{DM}} < 10^{-18.0}$ eV. We naively take this as the required ULDM mass range, and consider that the other mass ranges are rejected, if the Segue I stellar kinematics is purely due to the soliton core. Zoutendijk et al. (2021) reject $m_{\text{DM}} < 10^{-20.40}$ eV from the stellar kinematics of the ultra-faint dwarf galaxy, Eridanus. . . . . . .117
List of Tables

2.1 Model parameters of the mock data. . . . . . . . . . . . . . . . . . 35

4.1 Best fit values for model parameters and log-likelihood values. . . 95
Chapter 1

Introduction

1.1 Dark Matter

To this day, the source of the 85% of gravity in our universe is still a mystery. There are many different ideas that could possibly explain this mystery. One idea is that Einstein’s theory of general relativity may be incomplete and that a new, upgraded theory of gravity is required. Majority of astrophysicists however, believe the existence of an invisible matter that does not emit, reflect or absorb electromagnetic radiation and therefore cannot be detected directly from observation. This matter is called dark matter and it is the main component that makes up all the structures we see in the universe today.

1.2 Evidence of Dark Matter

Although dark matter is unseen, the effects of dark matter can be seen indirectly through gravitational effects on luminous matter. In this section, some of the main evidences of dark matter will be briefly explained.

1.2.1 Coma Cluster

The Coma Cluster is a group of about thousand galaxies that is gravitationally bound together. The first evidence of dark matter came in 1933 when the Swiss astrophysicist Fritz Zwicky measured the radial velocities of the galaxies in the Coma Cluster and used the virial theorem to compute the mass of the Coma Cluster (Zwicky, 1933, 2009). Zwicky realised that the velocity of the galaxies are very high such
that the gravitational strength from the visible galaxies are not strong enough to hold
the galaxies bound together. The mass of the cluster should be over about 400 times
more in order for the gravitational strength to hold the clusters together. Zwicky
concluded that there must be an extra component of mass that is non-luminous
which provides the enough mass to hold the visible galaxies together, this non-
luminous mass is called “dark matter”.

1.2.2 Rotation Curves

Most of the matter in galaxies, particularly spiral galaxies, is concentrated at the
centre. Due to this, it was expected for the orbital velocity of stars to decrease as
the distance from the centre increases. The rotation curve is given by the following
formula

\[ v(R) = \sqrt{\frac{GM(R)}{R}}, \]  \hspace{1cm} (1.1)

where \( v(R) \) is the velocity of stars, \( R \) is the radial distance from the centre and \( M(R) \)
is the mass contained in a sphere within \( R \). The mass is expected to increase with
\( R \) at the inner parts of the galaxy since the inner parts stars are clearly present and
contribute to the dynamics significantly. However, \( M(R) \) should start to increase
slower than \( \propto R \) in the outskirts of the galaxy where there are fewer observed stars.

Therefore, we expect the relationship between the rotation velocity of the gas and
distance from the centre of the galaxy to follow the red dashed line in Fig. 1.1. In
1970s, Rubin & Ford (1970) measured the rotation curves of spiral galaxies and
discovered that the velocity of gas does not decrease as increase in distance from
the centre of galaxy. Instead, the velocities of gas stays the same, giving a flat
rotation curve as seen by the blue solid line in Fig. 1.1. The gas is clearly moving
significantly faster than expected and should be able to escape the gravitational
potential of the galaxy since the gravitational contribution from the luminous matter
alone is inadequate to explain the high velocities of gas in the outer parts of the
galaxy. To be able to explain the flatness of the curve and how the gas are held
together, there needs to be a new mass component that is distributed as \( M(R) \propto R \).
1.3 Lambda-Cold Dark Matter

Lambda-Cold dark matter ($\Lambda$CDM) with $\Lambda$ being the cosmological constant, and CDM is a type of dark matter that is composed of particles travelling slowly compared to speed of light - this is why this type of dark matter is called “cold”. The primary candidate of $\Lambda$CDM is weakly interacting massive particle (WIMP) which is a stable, neutral particle with mass in the order of from GeV to more than TeV (see Fig. 1.2). In recent works, it has been shown that $\Lambda$CDM model successfully describes the cosmic microwave background (CMB) (e.g. Bennett et al., 2013; Planck Collaboration et al., 2020) and large scale structure (e.g. Percival et al., 2001; Tegmark et al., 2004; Weinberg et al., 2015). However, tensions between theory and observations persist at small scales (e.g. Bullock & Boylan-Kolchin, 2017, for a review).
1.4 Problems of CDM at Small Scales

1.4.1 Missing Satellite Problem

Mateo (1998) used the most recent distance and radial velocity data at the time to update the number of satellite dwarf galaxies in the Local Group, which was found close to 40 satellite galaxies are in the Local Group. A year later, Klypin et al. (1999) and Moore et al. (1999) used numerical simulations of hierarchical universe models with $\Lambda$CDM to study the substructure of galaxies. It was found that numerical simulations of a Milky Way-like galaxy in $\Lambda$CDM predict that $\sim$ a thousand dark matter subhalos large enough to host a visible galaxy ($M_{\text{halo}} \sim 10^7 M_\odot$) should be found orbiting within the Milky Way. However, this is disagreeing with observations and hence this problem is called the missing satellite problem - an image representation can be seen in Fig. 1.3. According to Tollerud et al. (2008) there could be hundreds of faint dwarf galaxies and that future surveys could prove this. More recently, Drlica-Wagner et al. (2020) used the Dark Energy Survey (DES) and Pan-STARRS1 (PS1) data which covers about $\sim$ 80% of the sky in which the number of satellite dwarf galaxies has now increased to about $\sim$ 70, still in serious tension with the theoretical predictions.

1.4.2 Cusp-Core Problem

A cuspy density profile means a density profile rising quickly towards the centre whereas core-like density profile is when the density is flattened at the centre of the galaxy (Fig. 1.4). The rotation curve of a galaxy with a cuspy profile rises rapidly, whereas in galaxies with core-like density profile, the rotation curve slowly rises, as shown in Fig. 1.5.

The pure dark matter $N$-body simulations of structure formation in $\Lambda$CDM
were done in the early 1990s where the $N$-body simulations predict that bound dark matter halos have a centrally divergent ‘cuspy’ density profile with inner distribution following a power law, $\rho \sim r^\alpha$, with $\alpha = -1$ (Dubinski & Carlberg, 1991; Navarro et al., 1997).

However, in the mid 1990s, observations showed that the inner distribution follows a core-like profile, $\alpha = 0$. This tension between the cuspy density profile of dark matter halo predicted by the numerical simulations and the cored density profile found by observation rose the so-called cusp-core problem. For example, Flores & Primack (1994) and Moore (1994) compared the rotation curve data of dwarf spirals with the theoretically predicted rotation curve and discovered that the theoretical rotation curve rises faster with the increasing radius in the inner region of the galaxy with respect to the observed rotation curve data. In more recent results, although some observations of the rotation curves of nearby low-surface brightness galaxies still favour a much lower density inner ‘core’ (e.g. de Blok et al., 2001; Kuzio de Naray et al., 2008), some studies also argued that the central density profiles in galaxies are cuspy-like (e.g. Richardson & Fairbairn, 2014). This dispute is due to the current data available not strong enough to make a crystal clear distinction whether the galaxies have a central cusp or core-like profile.
Interestingly, future advanced astrometric telescopes can provide proper motion data strong enough to clearly distinguish between a central cuspy and core profile of a galaxy. For example, de Martino et al. (2022) constructed mock data representing the expected proper motion data from the future astrometric Theia-like missions and found that proper motion of about 2000 stars in dwarf galaxies is enough to tell us in full accuracy whether dwarf galaxies have a cuspy or core-like profile.

1.4.3 Too-Big-To-Fail

The mass of the Milky Way satellites from simulations should be about the same as the observed satellites. The Milky Way subhalo satellites found to be in similar mass as some of the satellite galaxies from simulations. However, simulations also predicts satellite halos with much larger mass than observed halos. This means that we should be able to also detect more of these larger mass subhalos, because these halos are too big to fail to form the stars. However, these halos are not observed in
the Milky Way and it seems that these larger mass subhalos are not formed, although the smaller dark matter halos seem to form with a large number of stars, which are luminous enough to be detected.

The problem is the following: How can larger mass subhalos with deeper gravitational well fail to form galaxies where as smaller mass subhalos with less deeper gravitational well is able to form the galaxies? The larger mass subhalos should be able to form the galaxies as it is “too big to fail (TBTF)” (e.g. Boylan-Kolchin et al., 2011, 2012; Garrison-Kimmel et al., 2014). There is an interesting relationship between the TBTF problem and the cusp-core problem. Ogiya & Burkert (2015) found that the dark matter models with densities being core-like solves the TBTF problem. The idea is that the density of dark matter halo are initially cuspy and then transitions to core-like profile through stellar feedback which led to reduction of galaxy formation (Kato et al., 2016). This suggests that finding a solution to the cusp-core problem could solve the TBTF problem. More discussion about the baryonic effects are provided in the following sections.

Figure 1.5: Rotation curves for cuspy (blue) and core density profile (red).
1.5 Possible Solutions to Small Scale Problems

1.5.1 Baryonic Effects

The above small scale issues of ΛCDM model may owe entirely to ‘baryonic effects’ (i.e. due to gas cooling, star formation and stellar feedback) not included in early structure formation models. Galaxy formation is expected to become increasingly inefficient at low mass due to a combination of stellar feedback and ionising radiation from the massive stars and quasars (e.g. Efstathiou, 1992; Benson et al., 2002; Sawala et al., 2016). Indeed, recent dynamical estimates of the masses of the Milky Way’s dwarf companions suggests that there is no missing satellite problem at least down to a halo mass of $M_{200} \sim 10^9 M_\odot$ (Read & Erkal, 2019), where $M_{200}$ is the mass of the dark matter halo that is defined as the spherical region with the density being approximately about 200 times the critical density of the universe.

Furthermore, repeated gas inflow/outflow, driven by gas cooling and stellar feedback, can cause the central gravitational potential in dwarf galaxies to fluctuate with time. This pumps energy into the dark matter particle orbits which prevents the cuspy dark matter to form, but leading to cored dark matter density profile (Navarro et al., 1996; Read & Gilmore, 2005; Pontzen & Governato, 2012; Di Cintio et al., 2014). There is mounting observational evidence that this ‘dark matter heating’ effect has occurred in nearby dwarf galaxies; this may be sufficient to fully solve the cusp-core problem (e.g. Read et al., 2019).

1.5.2 Warm Dark Matter

ΛCDM’s small scale issues have inspired a host of novel dark matter models designed to lower the inner density of dark matter halos and/or reduce the number of dark matter subhalos. These include warm dark matter (WDM e.g. Dodelson & Widrow, 1994; Bode et al., 2001) and ultra-light dark matter (ULDM e.g. Ferreira, 2020; Hui, 2021). In WDM, dark matter is assumed to be relativistic for a time in the early Universe, suppressing the small scale power spectrum and leading to fewer, lower-density, satellite galaxies as compared to CDM. This can naturally occur if, for example, dark matter is a light thermal relic particle.
1.5. Possible Solutions to Small Scale Problems

For thermal relic masses of about $\sim 1\text{keV}$ (Fig. 1.2), WDM has the potential to resolve the missing satellite problem (e.g. Knebe et al., 2002; Lovell et al., 2021, 2014), although this depends on the assumed total mass of the Milky Way (e.g. Kennedy et al., 2014). Indeed, the observed number of the Milky Way satellite galaxies puts a lower limit of the WDM mass (e.g. Polisensky & Ricotti, 2011). Newton et al. (2020) favoured a lower limit of $3.99\text{keV}$, marginalising the uncertainty in the Milky Way mass, and taking into account the expected inefficiency of dwarf galaxy formation (see also an even stronger constraint of $> 6.5\text{keV}$ in Nadler et al., 2021). A similar lower limit on the WDM mass was imposed by the other astronomical probes, such as Lyman-α forest data (Iršič et al., 2017), strong gravitational lensing (Gilman et al., 2020) and density fluctuations in Galactic stellar streams (Banik et al., 2019).

However, $\sim \text{keV}$-scale WDM is not able to solve the cusp-core problem on its own (see e.g. Weinberg et al., 2015, for a review). Macciò et al. (2012) showed that a WDM mass of about $0.1\text{keV}$ is required to generate $\sim \text{kpc}$-sized cores in dwarf galaxies, but such a low mass WDM particle is incompatible with the above observational constraints.

1.5.3 Ultra-Light Dark Matter

ULDM has emerged as a novel dark matter model that can solve both the cusp-core and missing satellite problems on its own, without recourse to baryonic effects. ULDM is a type of dark matter that is made up of bosons with mass in the range of $10^{-22.0} \text{eV} < m_{\text{DM}} < 1\text{keV}$ (e.g. Ferreira, 2020; Hui, 2021; Lin, 2019; Battaglieri et al., 2017, for a review).\(^1\) On large scales, ULDM behaves just like CDM, i.e. it successfully explains large scale structure and the CMB. However, in high density regions like the centres of dark matter halos, the de Broglie wavelength of the ULDM particles becomes larger than the mean inter-particle separation, and the ULDM undergoes Bose-Einstein condensation. Consequently, ULDM introduces a new scale length – the Jeans length, $\lambda_J$ – set by the de Broglie wavelength and the

\(^1\)ULDM is also often called Fuzzy dark matter. However, throughout this thesis, we use ULDM only to avoid a confusion.
dark matter density (Hu et al., 2000a):

$$\lambda_J \sim 55[m_{DM}/(10^{-22} \text{ eV})]^{-1/2}(\rho/\rho_b)^{-1/4} \times (\Omega_{\text{ULDM}}h^2)^{-1/4} \text{kpc},$$

(1.2)

where $\rho$ is the matter density, $\Omega_{\text{ULDM}}$ is the mass fraction for the ULDM particle with respect to the critical density, and $\rho_b \sim 2.8 \times 10^{11}(\Omega_{\text{ULDM}}h^2) M_\odot \text{ Mpc}^{-3}$ is the background density.

Perturbations larger than $\lambda_J$ will collapse similarly to CDM, while perturbations smaller than $\lambda_J$ are stabilized by quantum pressure due to the uncertainty principle (e.g. Hu et al., 2000b). At low dark matter density, close to the background density of the Universe, the Jeans mass can be computed from the Jeans length, as follows (e.g. Hui et al., 2017):

$$M_J = \frac{4\pi}{3}\rho \left(\frac{1}{2}\lambda_J\right)^3 \simeq 1.5 \times 10^7 M_\odot (1+z)^{3/4} \left(\frac{\Omega_{\text{ULDM}}}{0.27}\right)^{1/4} \times \left(\frac{H_0}{70 \text{ km s}^{-1} \text{ Mpc}^{-1}}\right)^{1/2} \left(\frac{10^{-22} \text{ eV}}{m}\right)^{3/2},$$

(1.3)

where $H_0$ is the Hubble constant. This Jeans mass corresponds to the minimum halo mass which can collapse in the ULDM model; it leads to a smaller number of dwarf galaxies as compared to the CDM model. In this way, ULDM can resolve the missing satellite problem (e.g. Kulkarni & Ostriker, 2020). According to Nadler et al. (2021), the observed number of Milky Way satellites required a ULDM particle mass higher than $2.9 \times 10^{-21.0} \text{ eV}$.

Another consequence of ULDM is that, at the scale of the de Broglie wavelength within the collapsed halo, the Bose-Einstein condensation develops a ‘soliton core’ at the centres of galaxies (e.g. Hu et al., 2000b; Schive et al., 2014b). The soliton core has a half-mass radius of about 300 pc in a $M_{200} \sim 10^9 M_\odot$ dwarf galaxy.
halo for a ULDM model with \( m_{DM} = 10^{-22.0} \) eV (see eq. 2.11 in Section 2.2.4). This soliton core can mitigate the cusp-core problem. Schive et al. (2014b) suggested that \( m_{DM} = 8 \times 10^{-23.0} \) eV ULDM can explain the observed mass profile of the Fornax dwarf galaxy (e.g. Amorisco et al., 2013; Read et al., 2019). However, Safarzadeh & Spergel (2020) argued that no single ULDM particle mass can explain the current observations of the ultra-faint dwarfs and the Fornax and Sculptor dwarf spheroidal galaxies simultaneously (see also Hayashi et al., 2021), unless the baryonic physics changes the density profile of the dark matter halo (see above) or the observational constraints are relaxed.

Many different astronomical techniques has been used to constrain ULDM as summarised in Fig. 1.6. Kobayashi et al. (2017) used the Lyman-\( \alpha \) forest to constrain the ULDM which they obtained a rejection limit of \( m_{DM} > 10^{-21.0} \) eV. Black holes can constrain ULDM through the process of superradiance. Essentially, superradiance is when the angular momentum of the spinning black hole will be lost efficiently if a boson with a particular mass surrounds it. Stott & Marsh (2018) observed the spin of black holes to constrain the superradiance of black holes and found a rejection limit of \( m_{DM} > 10^{-19.20} \) eV. Similarly, Davoudiasl & Denton (2019) used the Event Horizon Telescope observation of M87 that provided the first direct image of black hole. From this information, they obtained a rejection range of \( 10^{-21.07} < m_{DM} < 10^{-20.34} \) eV. Bar et al. (2019a) used the rotation curves of nearby galaxies and obtained a rejection limit of \( m_{DM} < 10^{-21.0} \) eV. Through the use of satellite luminosity function inferred from the perturbed stellar streams (Banik et al., 2019) and lensed images (Gilman et al., 2020), Schutz (2020) found a range of \( m_{DM} < 10^{-20.70} \) eV being rejected. González-Morales et al. (2017) used stellar kinematics of the Fornax and Sculptor dwarf spheroidal galaxies and rejected ULDM mass limit of \( m_{DM} > 10^{-22.40} \) eV. Likewise, Hayashi et al. (2021) used Jeans analysis of the stellar kinematics of 18 ultra-faint dwarf (UFD) galaxies and concluded a range of \( 10^{-19.40} < m_{DM} < 10^{-18.0} \) eV to be consistent with the stellar kinematics. Zoutendijk et al. (2021) rejected \( m_{DM} < 10^{-20.40} \) eV from the stellar kinematics of the ultra-faint dwarf galaxy, Eridanus.
Taking these results at a face value, no single particle ULDM model can satisfy all current observational constraints. Thus – at least as a full solution to $\Lambda$CDM’s small scale puzzles – ULDM appears to be on the ropes. However, all of the current constraints on ULDM come with their own potential systematics. As such, independent observational constraints are invaluable in determining once and for all whether we can discard ULDM as a full solution to $\Lambda$CDM’s small scale puzzles. In this thesis, we consider whether the Milky Way’s nuclear star cluster (NSC) and nuclear stellar disk (NSD) can provide a new and competitive probe of ULDM models. Due to it being only 8 kpc away from us, the stellar kinematics of the central region of the Milky Way can be more precisely measured than for more distant dwarf galaxies ($d \sim 100$ kpc). Hence, the inner gravitational potential of the Milky Way can be derived from precise measurements of the stellar kinematics and density distribution of tracer stars in the centre of the Galaxy.

1.6 Nuclear Star Cluster

The study of the NSC and the NSD (see Section 1.7) is also important because it can help constrain the evolution and formation of galaxies. The NSC was first discovered by Becklin & Neugebauer (1968) through detecting an infrared source that is centred around the supermassive black hole (SMBH) in our Milky Way. The Milky Way’s NSC is a dense and massive star cluster (e.g. Bland-Hawthorn & Gerhard, 2016, for a review) that harbours the Milky Way’s SMBH, called “Sagittarius A*” (e.g. Genzel et al., 1996; Ghez et al., 2008), whose mass of $M_{\text{BH}} = 4.261 \pm 0.012 \times 10^6 \, M_\odot$, is now precisely measured by the GRAVITY collaboration (Gravity Collaboration et al., 2020), a cryogenic, interferometric beam combiner of all four UTs of the European Southern Observatory (ESO), Very Large Telescope (VLT) with adaptive optics. The coexistence of SMBH and NSC also occurs outside of our Milky Way within galaxies such as elliptical and spiral galaxies (Seth et al., 2008). However, it is more unlikely to find a NSC in early-type galaxies such as the elliptical galaxies. This could be due to the way elliptical galaxies are formed through mergers of relatively massive galaxies. Merging of galaxies can lead to the
1.6. Nuclear Star Cluster

Figure 1.6: Summary of rejected ULDM particle masses from various astronomical probes. The Lyman-\(\alpha\) forest observation rejects \(m_{\text{DM}} < 10^{-20.5}\) eV (Iršič et al., 2017; Kobayashi et al., 2017; Armengaud et al., 2017). The observed spin of black holes constrain the superradiance of black holes, and rejects \(m_{\text{DM}} > 10^{-19.20}\) eV (Stott & Marsh, 2018), including the Event Horizon Telescope observation of M87, which rejects \(10^{-21.07} < m_{\text{DM}} < 10^{-20.34}\) eV (Davoudiasl & Denton, 2019). Rotation curves of nearby galaxies also reject \(m_{\text{DM}} < 10^{-21.0}\) eV (Bar et al., 2019a). Schutz (2020) suggests that \(m_{\text{DM}} < 10^{-20.70}\) eV is rejected by the satellite luminosity function inferred from the perturbed stellar streams (Banik et al., 2019) and lensed images (Gilman et al., 2020), similarly to constraints on the WDM mass (Section 1.5.2). González-Morales et al. (2017) reject \(m_{\text{DM}} > 10^{-22.40}\) eV from the stellar kinematics of the Fornax and Sculptor dwarf spheroidal galaxies. Hayashi et al. (2021) find that the stellar kinematics of Segue I is consistent with \(10^{-19.40} < m_{\text{DM}} < 10^{-18.0}\) eV. We naively take this as the required ULDM mass range, and consider that the other mass ranges are rejected, if the Segue I stellar kinematics is purely due to the soliton core. Zoutendijk et al. (2021) reject \(m_{\text{DM}} < 10^{-20.40}\) eV from the stellar kinematics of the ultra-faint dwarf galaxy, Eridanus.
SMBHs from each galaxy to become a binary black holes. This process could send outwards energy to the surroundings causing the central stellar density to decrease and hence wiping out the NSC (Milosavljević & Merritt, 2001).

Axisymmetric Jeans models and two integral distribution function models were constructed based on stellar number counts, proper motions, and line-of-sight velocity data. Based on these models, a NSC mass of about $10^7 M_\odot$ was derived (e.g. Fritz et al., 2016; Bland-Hawthorn & Gerhard, 2016; Chatzopoulos et al., 2015; Feldmeier-Krause et al., 2017b). The formation of the NSC is still unclear. There are two particular ideas. One proposed idea is mergers of star clusters. Star clusters formed outside of the centre of the galaxy fell into the centre of the galaxies and merged with each other, leading to the formation of the NSC (Tremaine et al., 1975). The other proposed idea is the NSC being formed in situ, from gas flows towards the centre of the galaxy (Milosavljević, 2004).

1.6.1 Structure and the Chemical Composition of the NSC

Fritz et al. (2016) constructed a stellar density map of the Galactic central 1000″ by using the star counts from Visible and Infrared Survey Telescope for Astronomy (VISTA), Wide Field Camera 3 with Infrared (WFC3/IR), and Very Large Telescope (VLT) with NAOS-CONICA (NACO) data. The stellar density map showed that the structure of the NSC is not a perfect sphere, it is rather a flattened sphere with a minor to major axis ratio of $q = 0.80 \pm 0.04$. Not only the NSC in the Milky-Way Galaxy is flattened, many NSCs are found to be flattened in many edge-on spiral galaxies (Seth et al., 2006). The diameter of the NSC in the Milky Way is approximately about a few arcminutes, about 4.8 pc (e.g. Gallego-Cano et al., 2020), with an effective radius of about 3.5 pc (Böker et al., 2004). Through Mid-Infrared (MIR) wavelengths at 2.15 μm and 4.5 μm, the luminosity of the NSC was found to be about $4.1 \pm 0.4 \times 10^7 L_\odot$ (Schödel et al., 2014).

The NSC is surrounded by the NSD (see Fig. 1.8 and Section 1.7), with radius of about 230 pc (e.g. Launhardt et al., 2002; Bland-Hawthorn & Gerhard, 2016). A lot of theoretical and analytical studies have been made in how the stars in the NSC are distributed. For a dynamically relaxed cluster around a SMBH, the theoretical
1.6. Nuclear Star Cluster

Figure 1.7: The density profile for the Milky Way’s NSC (blue dashed), and for the central dark matter density profile assuming $\Lambda$CDM (brown, Navarro et al., 1996) and dark matter with a ULDM particle mass of $10^{-23.0}$ eV (light blue), $10^{-21.0}$ eV (magenta), $10^{-20.0}$ eV (orange), $10^{-19.0}$ eV (green), $10^{-18.0}$ eV (red) and $10^{-16.0}$ eV (purple). Notice that over the fixed radial range probed by the NSC stellar kinematic data (vertical black lines of $r = 0.1$ pc and $r = 3$ pc), only ULDM models with mass in a specific range will affect the stellar kinematics. The red horizontal solid line indicates the size of the NSD.

work predicted the distribution of stars to follow a cuspy profile (e.g. Bahcall & Wolf, 1976; Murphy et al., 1991; Preto & Amaro-Seoane, 2010). However, observations showed that it is core-like (Fritz et al., 2010). However, observations showed that it is core-like (Fritz et al., 2016).

Most of the stars in the NSC are metal rich stars, with a metal rich to metal poor star ratio of about 2.6 (Schultheis et al., 2021). The majority ($\sim 80\%$) of the stellar mass of the NSC formed more than 5 Gyrs ago (e.g. Gallego-Cano et al., 2018). Thus, we can expect that the NSC is dynamically relaxed and therefore, a good target for equilibrium mass modelling (e.g. Binney & Tremaine, 2008). Most of these stars are spectral type of K and M giant helium burning stars in the category of “red clump” with temperatures of about $\sim 3000 - 5000$ K (e.g. Genzel et al., 2010; Feldmeier-Krause et al., 2017a). There are also young stars in the NSC that
are concentrated more towards the centre (≈ within the central 0.5 pc), where some of these young stars are observed as Wolf-Rayet and O and B-type whose ages around 3–8 Myr. The lower limit for the total mass of the young cluster in the NSC is about 12,000 M\(_\odot\) (e.g. Feldmeier-Krause et al., 2015; Lu et al., 2013; Paumard et al., 2006). Note that the Wolf-Rayet and OB stars are not all the stars in the NSC, but the total mass comes from many fainter stars which are not possible to be observed easily, but their contribution to the total mass of the NSC is significant.

### 1.6.2 NSC and ULDM

The number density of NSC stars dominate over other Milky Way stellar components up to about 3 pc, and within 0.1 pc it is difficult to resolve the density profile or stellar kinematics (e.g. Fritz et al., 2016; Gallego-Cano et al., 2020). As such, we can assume that almost all of the stars observed within 3 pc from the Milky Way’s SMBH are NSC stars, and use these to trace the inner dynamical mass profile of the Galactic centre. In ULDM models, the dark matter mass profile on this small scale can be affected by the soliton core if the ULDM mass is less than about 10\(^{-19}\) eV, as suggested by Fig. 15 of Bar et al. (2018). In addition to this, in Fig. 1.7, we show the NSC density profile obtained in Toguz et al. (2022) and the ULDM dark matter density profile with \(m_{DM} = 10^{-23.0}\) eV, 10\(^{-21.0}\) eV, 10\(^{-20.0}\) eV, 10\(^{-19.0}\) eV, 10\(^{-18.0}\) eV, 10\(^{-16.0}\) eV and the so-called Navarro–Frenk–White (NFW) profile (Navarro et al., 1996) representing the CDM. It can be seen from Fig. 1.7 that an ULDM soliton core with a mass range of about 10\(^{-20.0}\) < \(m_{DM}\) < 10\(^{-19.0}\) eV can affect the stellar kinematics in the NSC in the radial range of 0.1 < \(r\) < 3 pc. Hence, a dynamical model of the NSC promises a new and competitive probe of ULDM. It is intriguing to note that as depicted in Fig. 1.7, there is a potential for ULDM to manifest as a composite comprising mixtures of distinct soliton cores of the same type. Nevertheless, for the purpose of simplicity, in this thesis our focus is exclusively on a single ULDM particle mass.


1.7 Nuclear Stellar Disk

The NSD is a dense stellar structure that is flattened and dominates gravitationally in the Milky Way between the Galactocentric radius of about 30 pc $\lesssim R \lesssim 300$ pc (e.g. Launhardt et al., 2002; Bland-Hawthorn & Gerhard, 2016). The NSD is also found in the extragalactic systems, particularly in barred galaxies (e.g. Erwin & Sparke, 2002; Gadotti et al., 2019), and considered to form when the bar formed (Baba & Kawata, 2020). The NSD has a total mass of about $M_{\text{NSD}} = 6.91 \pm 2 \times 10^8 \, M_\odot$ (Sormani et al., 2020b) and a radius of about 230 pc and a scale height of $\sim 45$ pc (e.g. Launhardt et al., 2002). The SMBH, NSC and NSD are the main components of the centre of the Milky Way with SMBH and NSC being embedded in the NSD (see Fig. 1.8). A ring-like molecular gas, namely, central molecular zone (CMZ) with mass about $3 \times 10^7 \, M_\odot$ (Molinari et al., 2011), occupies the same space as the NSD with similar scale-height.

According to simulations of the Milky-Way like galaxies, the NSD is formed by the galactic bar (Carles et al., 2016; Seo et al., 2019). Essentially, the galactic bar causes gas and dust funneling to the centre of the galaxy with a rate of about 1 $M_\odot$ yr$^{-1}$. This gas and dust overtime gather and grows and as a consequence forms the CMZ (Kim et al., 2012; Shin et al., 2017; Sormani et al., 2020a). Continuous star formation takes place in the CMZ and eventually forming the NSD. There are strong evidence that there is a link between the CMZ and the NSD. For example, simulations of the CMZ has shown that the stars in NSD may come from the stars born in the dense gas of CMZ (e.g. Sormani et al., 2020a). Further to confirm this, Schönrich et al. (2015) found that the gas rotating in the CMZ is similar to what is expected for the NSD, suggesting a possibility of NSD being originated by the stars being born in the CMZ (Sormani et al., 2020b). Since the formation of the NSD is directly linked to the galactic bar, the age of the galactic bar can be derived through using the oldest population of stars in the NSD (Baba & Kawata, 2020).

1.7.1 Structure and the Chemical Composition of the NSD

Most of the stars in the NSD are metal rich stars with velocity dispersion of stars decreasing with increasing metallicity (Schultheis et al., 2021). The metal rich to
1.7. Nuclear Stellar Disk

Figure 1.8: The Galactic centre components: SMBH (the size of the symbol does not indicate the size of SMBH), NSC and NSD.

metal poor star ratio of the NSD is about 1.6, much lower value than 2.6 for NSC. This indicates that the chemistry and formation of the NSC and NSD is different form each other (Schultheis et al., 2021).

Schönrich et al. (2015) used the line-of-sight kinematics of the NSD stars and discovered the NSD to be an axisymmetric, kinematically cool rotating component with rotation velocity of about 120 km s$^{-1}$. Most of the stars ($\sim$ 80%) in the NSD are old stars and formed about 8 Gyrs ago (Nogueras-Lara et al., 2020). However, there are important amount of stars with age about 1 Gyrs that takes in to account about $\sim$ 5% of the NSD mass. Furthermore, the NSD appears to be the region with most active star formation (Nogueras-Lara et al., 2020).

Since the majority of the stars are old stars, the NSD can also be assumed to be dynamically equilibrium (e.g. Sormani et al., 2020b, 2022), making it a great component to be used to test the existence of the ULDM just like the NSC. According to Fig. 15 of Bar et al. (2018) and Fig. 1.7, $10^{-21.0}$ eV soliton core becomes
dominant around 200 pc which means the stellar kinematics in the galactic centre with the NSD will be able to constrain this type of soliton core since the NSD is dominant in this region.

1.8 The Work of this Thesis

In Chapter 2, we use the Milky Way’s NSC to test the existence of a dark matter ‘soliton core’, as predicted in ULDM models. We will show that the soliton core size is proportional to $m_{\text{DM}}^{-1}$, while the core density grows as $m_{\text{DM}}^{2}$, the NSC (dominant stellar component within $\sim 3$ pc) is sensitive to a specific window in the dark matter particle mass, as discussed in subsection 1.6.2. We apply a spherical isotropic Jeans model to fit the NSC line-of-sight velocity dispersion data, assuming priors on the precisely measured Milky Way’s SMBH mass and the well-measured NSC density profile. We find that the current observational data reject the existence of a soliton core for a ULDM particle with a single mass in the range $10^{-20.40}$ eV $\lesssim m_{\text{DM}} \lesssim 10^{-18.5}$ eV, assuming that the soliton core structure is not affected by the Milky Way’s SMBH. We test our methodology on mock data, confirming that we are sensitive to the same range in ULDM mass as for the real data. Dynamical modelling of a larger region of the Galactic centre, including the NSD, promises tighter constraints over a broader range of $m_{\text{DM}}$, which we consider and explain in Chapter 3 and Chapter 4.

In Chapter 3, we discuss the observational data for the NSD and we describe our analysis of the surface density of stars and the distribution of velocity dispersion within 100 pc of the Galactic center region. This analysis utilizes the updated VISTA Variables in the Vía Láctea Infrared Astrometric Catalogue data (VIRAC2) and the line-of-sight velocity data from Apache Point Galactic Evolution Experiment Data Release 17 (APOGEE DR17).

In Chapter 4, we use the Milky Way’s NSD to test the existence of a dark matter ‘soliton core’. We fit the observational data with the theoretical model of the same distribution function model as what is used in Sormani et al. (2022), and examine if or not there is any sign of the existence of ULDM in the observational data.
of stellar density and kinematics in the Galactic centre. We find that the current observational data of the NSD can reject a ULDM particle mass between $10^{-23.20}$ eV $\lesssim m_{\text{DM}} \lesssim 10^{-20.0}$ eV.

In Chapter 5, we discuss the conclusion of the studies in this thesis and we discuss the direction of the future work.
Chapter 2

Constraining Ultra Light Dark Matter with the Galactic Nuclear Star Cluster

This chapter is based on Toguz et al. (2022).

2.1 Introduction

In this chapter, we consider whether the Milky Way’s nuclear star cluster (NSC) can provide a new and competitive probe of ultra-light dark matter (ULDM) models. Due to it being only about 8 kpc away from us, the stellar kinematics of the central region of the Milky Way can be more precisely measured than for more distant dwarf galaxies (d~100 kpc). Hence, the inner gravitational potential of the Milky Way can be derived from precise measurements of the stellar kinematics and density distribution of tracer stars in the centre of the Galaxy. Taking advantage of the recent precise measurement of the Milky Way’s supermassive black hole (SMBH) mass, and the density profile of the NSC, in this chapter we study if a ULDM soliton core can be detected or rejected by the existing kinematical data for NSC stars, as measured by Fritz et al. (2016). Bar et al. (2019b) rejected $2 \times 10^{-20.0} < m_{DM} < 8 \times 10^{-19.0}$ eV from the stellar dynamics around Sgr A* ($< \sim 0.3$ pc) of the Milky Way. As mentioned in Section 1.6.2, the NSC stars dominate over other Milky Way stellar components within about 3 pc (Gallego-Cano et al., 2020), and
we can assume that the stars within 3 pc belong to the NSC. Therefore, our study is expected to provide a stronger constraint compared to Bar et al. (2019b) by using the NSC stellar kinematics within about 3 pc. Through the use of Bayesian Statistics and Markov Chain Monte Carlo (MCMC) algorithm, we compare and fit the model with the observed mean line-of-sight velocity dispersion at different radial bins to constrain the ULDM soliton core with a mass range of about $10^{-20.0} < m_{DM} < 10^{-19.0}$ eV. This chapter is structured as follows. In Section 2.2, we describe the observational data and our fitting methodology. In Section 2.3, we describe our results. In Section 2.4, we use mock data to test the validity of our results. Finally, in Section 2.5 we present our conclusions. Throughout this chapter, we consider that dark matter consists of a single mass ULDM particle.

2.2 Method

To derive the total mass distribution in the NSC, we use a spherically symmetric and isotropic dynamical model. Because the NSC is dominant only within about 3 pc (Gallego-Cano et al., 2018), we focus on the mass distribution within 3 pc in this chapter. As mentioned in Section 1.6, the structure of the NSC is not a perfect sphere. However, in this chapter we consider that the NSC is nearly spherical, and can be approximated, therefore, by a spherical model (e.g. Read & Steger, 2017). Fritz et al. (2016) used the projected radial and tangential velocity dispersion from the proper motions of the NSC stars to show that the NSC is close to isotropic. Hence, we also assume the NSC stellar kinematics is isotropic. Using the spherical isotropic Jeans equation, we can derive the total mass of the Galactic centre as a function of the 3D radius, $r$, from the surface density profile and projected velocity dispersion profile of the stars within the NSC. Although Fritz et al. (2016) also provide the proper motions of the NSC stars, we use only the line-of-sight velocity dispersion because we assume an isotropic spherical model and the uncertainties of the line-of-sight velocities are clearly defined, while the uncertainties of the tangential velocities from the proper motions are difficult to be properly assess due to their dependence on the unknown distances. The com-
ponents of the Galactic centre that affect the stellar kinematics are the SMBH, NSC and any central dark matter, including a soliton core if the correct dark matter model is ULDM. The total mass, $M_{\text{tot}}(<r)$, in the Galactic centre is given by $M_{\text{tot}}(<r) = M_{\text{BH}} + M_{\text{NSC}}(<r) + M_{\text{DM}}(<r)^1$.

We adopt the recently precisely measured mass of the SMBH of $M_{\text{BH}} = 4.261 \pm 0.012 \times 10^6 \, M_\odot$ (Gravity Collaboration et al., 2020) as a strong prior (see Section 2.2.5). Gravity Collaboration et al. (2020) noted that the systematic uncertainty is larger than this statistical uncertainty. In Section 2.4.2, we demonstrate that the results of this chapter do not change if the black hole mass is varied over this larger systematic uncertainty of about $0.06 \times 10^6 \, M_\odot$. The stellar mass of the NSC within $r$, $M_{\text{NSC}}(<r)$, can be computed from the observed stellar number density profile, fitting a constant stellar mass and number density ratio. Although a CDM halo (Navarro et al., 1997) provides a negligible mass contribution within the NSC ($<0.1\%$), if the dark matter is ULDM, with a particle mass of around $10^{-20.0} \, \text{eV}$, there should be a significant contribution of the soliton core of ULDM within the NSC. In the following subsections, we describe Jeans equation (Section 2.2.1), the velocity dispersion data of the NSC (Section 2.2.2), the stellar density profile of the NSC (Section 2.2.3), our ULDM model (Section 2.2.4), and our fitting methodology (Section 2.2.5).

### 2.2.1 Jeans Equation

For a steady state spherical stellar system that is isotropic, the Jeans equation is given by (e.g. Binney & Tremaine, 2008)

$$\frac{1}{n(r)} \frac{\partial (n(r)\sigma(r)^2)}{\partial r} = - \frac{GM_{\text{tot}}(<r)}{r^2},$$

(2.1)

where $\sigma(r)$ is the velocity dispersion of stars in NSC, $n(r)$ is the 3D number density profile of NSC stars, and $M_{\text{tot}}(<r)$ is the enclosed total mass of the system within

---

1There is a circumnuclear gas disk within $\sim 3 \, \text{pc}$, whose mass could be as large as $10^6 \, M_\odot$ (e.g. Christopher et al., 2005). Since the estimate of the gas mass is uncertain, and this mass is about 10 % of our derived total mass within 3 pc, we do not include the contribution of the gas component to the total potential. This simplification makes more room for the ULDM soliton core to contribute the total mass, which leads to more conservative bounds on the ULDM particle mass.
2.2. Method

Figure 2.1: The distribution of stars whose line-of-sight velocities are measured in Fritz et al. (2016). The data are decomposed into 32 bins, with approximately 79 stars per bin.

Integrating both sides of equation (2.1) gives a velocity dispersion profile of

\[
\sigma(r) = \sqrt{\frac{1}{n(r)} \int_r^\infty \frac{GM_\text{tot}(< r)n(r)}{r^2} dr}\]

(2.2)

Through an Abel transformation of equation (2.2), the line-of-sight velocity dispersion is described as (Binney & Mamon, 1982)

\[
\frac{1}{2} \sigma^2_{\text{LOS}}(R) \Sigma(R) = \int_R^\infty \frac{n(r)\sigma^2(r)r}{\sqrt{r^2 - R^2}} dr.
\]

(2.3)
Then, the line-of-sight velocity dispersion is derived as

$$\sigma_{\text{LOS}}(R) = \sqrt{\frac{2}{\Sigma(R)} \int_{R}^{\infty} \frac{n(r)\sigma^2(r)r}{\sqrt{r^2 - R^2}} dr},$$

(2.4)

where $R$ is the projected 2D radius, and $\Sigma(R)$ is the projected NSC surface number density profile, which is given by

$$\Sigma(R) = 2 \int_{R}^{\infty} \frac{rn(r)}{\sqrt{r^2 - R^2}} dr.$$  

(2.5)

### 2.2.2 Velocity Dispersion Data

We use the line-of-sight velocity data measured by Fritz et al. (2016) with the integral field spectrometer, VLT/SINFONI. Fritz et al. (2016) obtained the line-of-sight velocities for 2,513 late-type giant stars within $R < 95''$ from Sgr A*. Note that in this chapter, we use the notation $r$ for the 3D spherical radius, and $R$ for the projected 2D radius from Sgr A*. The distribution of stars whose line-of-sight velocities are provided by Fritz et al. (2016) is shown in Galactic coordinates in Fig. 2.1. The stellar distribution appears to be clumpy, because this shows only stars whose line-of-sight velocity is observed, which depends on the telescope’s field of view and the observational strategy. When analysing the Fritz et al. (2016) data, we assume 1 degree corresponds to 144 pc at the distance to the Galactic centre and the radial velocity of the Sun is 11.1 km s$^{-1}$ (Schönrich et al., 2010). We use a KD-Tree decomposition to bin the data (Fig. 2.1), so that there are 32 bins, and each bin has about 79 stars. We found that this is a good compromise to maximise the number of bins, but minimise the Poisson noise in each bin.

For the sample of stars in each bin, the line-of-sight velocity dispersion is normally computed using the following formula

$$\sigma = \sqrt{\langle v_{\text{LOS}}^2 \rangle - \langle v_{\text{LOS}} \rangle^2},$$

(2.6)

where $v_{\text{LOS}}$ is the line-of-sight velocity of the star. Following Fritz et al. (2016), to
take into account the contribution of the rotation approximately, we instead use

\[ \sigma_{\text{LOS}} = \sqrt{\langle v_{\text{LOS}}^2 \rangle}, \]  

(2.7)

i.e. ignoring \( \langle v_{\text{LOS}} \rangle^2 \) in equation (2.6). This is based on the approximation often used as effective velocity dispersion in the kinematical analysis of the external galaxies (e.g. Gültekin et al., 2009). The effective velocity dispersion of galaxies consists of \( \sigma_c^2 + V_{\text{rot}}^2 \), where \( \sigma_c \) is the velocity dispersion of the central bulge of galaxy and \( V_{\text{rot}} \) is the rotational component of the bulge. We assume \( V_{\text{rot}}^2 \) being \( \langle v_{\text{LOS}} \rangle^2 \) since \( \langle v_{\text{LOS}} \rangle \) corresponds to the projected rotation curve and therefore from equation (2.6), \( \langle v_{\text{LOS}}^2 \rangle = \sigma_c^2 + \langle v_{\text{LOS}} \rangle^2 = \sigma_c^2 + V_{\text{rot}}^2 \), considering the kinetic energy being proportional to \( \sigma_c^2 + \langle v_{\text{LOS}} \rangle^2 \) (Binney & Tremaine, 2008).

We find that the mean uncertainty of the velocity dispersion measurements from the observational errors of line-of-sight velocities is about 1.7 km s\(^{-1}\), which is smaller than the mean Poisson error of about 8 km s\(^{-1}\). For this reason, we assume that the error on each bin owes solely to the Poisson error. Following Fritz et al. (2016), we measure the Poisson error of the velocity dispersion with \( \sigma_{\text{LOS,err},i} = \sigma_{\text{LOS,fit}}(R_i)/\sqrt{2N_i} \), where \( N_i \) is the number of stars in \( i \)-th bin and \( R_i \) is the mean projected radius of the stars in \( i \)-th bin. \( \sigma_{\text{LOS,fit}}(R) \) is the fitted 3rd order polynomial velocity dispersion profile. Because \( \sigma_{\text{LOS,err}} \) changes depending on \( \sigma_{\text{LOS,fit}}(R) \), we iteratively derive \( \sigma_{\text{LOS,err},i} \).

We compute the line-of-sight velocity dispersion and uncertainties as described above, which are plotted against the mean radius of the stars within each bin in Fig. 2.2. We fit these observed velocity dispersion with the model described in Section 2.2.1.

### 2.2.3 NSC Density profiles

Following Gallego-Cano et al. (2018), we describe the 3D density profile, \( \rho_{\text{NSC}}(r) \), of the NSC with a 3D Nuker law (Lauer et al., 1995)

\[ \rho_{\text{NSC}}(r) = \rho_{b,\text{NSC}}2^{(\beta-\gamma)/\alpha} \left( \frac{r}{r_b} \right)^{-\gamma} \left[ 1 + \left( \frac{r}{r_b} \right)^{-\gamma} \right]^{(\gamma-\beta)/\alpha}, \]  

(2.8)
where $r_b$ is the break radius, $\rho_{b,\text{NSC}} = \rho_{\text{NSC}}(r_b)$ is the mass density of the NSC at the break radius, $\gamma$ and $\beta$ are the exponent of the inner and outer power-law slope, respectively, and $\alpha$ describes the sharpness of the transition between the inner and outer power-law profiles. Gallego-Cano et al. (2018) fitted the NSC stellar distribution from the high-resolution near-infrared photometric data with the 2D projected density profile of equation (2.8). We rely on the precise measurement of the NSC density profile from Gallego-Cano et al. (2018), and when we fit the velocity dispersion, we fix the density profile parameters with their best fit profile.

Gallego-Cano et al. (2018) demonstrated that the NSC number density profile depends on the selection of the observational data, which indicates the systematic uncertainties of the measurements of the density profile of the NSC. We take one of the best fitting models from Gallego-Cano et al. (2018): $\alpha = 10$, $\beta = 3.4$, $\gamma = 1.29$ and $r_b = 4.3$ pc (ID10 of Table 5 in Gallego-Cano et al., 2018). This is the case that excludes contamination from pre-main sequence stars. We consider this to be most appropriate for our kinematic sample, since the kinematic data of Fritz et al. (2016) are for late-type giants. This model also leads to the smallest $\gamma$ value, allowing for the maximal amount of dark matter within the NSC and, thereby, ensuring maximally conservative constraints on the ULDM mass. However, we tested also a value of $\gamma = 1.43$, taken from a different best-fitting model from Gallego-Cano et al. (2018), and find that our results are not sensitive to these choices.

Although the stellar number density profile is well observed by Gallego-Cano et al. (2018), we need to convert it to the mass density profile to obtain the NSC mass contribution to the gravitational potential in the Jeans equation. Because the mass to light ratio of the observed stars are uncertain, we adopt $\rho_{b,\text{NSC}}$ as a parameter when fitting the velocity dispersion profile, and marginalise over the mass scaling of the density profile. To take into account the observational uncertainty of the number density profile, we also take $\gamma$, which controls the profile in the radial range of our interest, as a fitting parameter with the prior of $\gamma = 1.29 \pm 0.05$ (Gallego-Cano et al., 2018).
2.2. Method

2.2.4 Dark Matter Density profiles

Dark matter halos in ULDM are well described by a Navarro–Frenk–White (NFW Navarro et al., 1997) density profile at large radii, $\rho_{\text{NFW}}$, and a ‘soliton core’ density profile, $\rho_{\text{DM,s}}$, at small radii (Schive et al., 2014b). The NFW profile is given by

$$\rho_{\text{NFW}}(r) = \frac{\rho_0}{r/s} \left(1 + \frac{r}{r_s}\right)^2,$$

where $\rho_0$ is the characteristic density and $r_s$ is the scale radius. The cumulative mass of the NFW profile is given by

$$M_{\text{NFW}}(<r) = \int_0^r 4\pi r'^2 \rho_{\text{NFW}}(r') dr'.$$

Schive et al. (2014a) suggested that the density profile of the soliton core obeys the following equation (e.g. Safarzadeh & Spergel, 2020)

$$\rho_{\text{DM,s}}(r) = \frac{1.9\{10[m_{\text{DM}}/(10^{-22} \text{ eV})]\}^{-2} r_c^{-4}}{[1 + 9.1 \times 10^{-2}(r/r_c)^2]^{8/3}} \times 10^9 M_\odot \text{ kpc}^{-3},$$

where $r_c$ is the core radius of the halo (Schive et al., 2014b). These relations lead to a soliton core mass of

$$M_c \approx \frac{1}{4} M_h^{1/3} (4.4 \times 10^7 [m_{\text{DM}}/(10^{-22} \text{ eV})]^{-3/2})^{2/3},$$

where $M_c \equiv M(<r_c)$ gives the central core mass (see also Safarzadeh & Spergel, 2020).

The total cumulative dark matter mass is, therefore, given by

$$M_{\text{DM}}(<r) = M_{\text{NFW}}(<r) + \int_0^r 4\pi r'^2 \rho_{\text{DM,s}}(r') dr'.$$
where $\rho_{\text{DM,s}}$ is the soliton core density profile of equation (2.11). We adopt a total mass of the Milky Way of $M_h = 1.4 \times 10^{12} \, M_\odot$, with $\rho_0 = 0.00854 \, M_\odot \, \text{pc}^{-3}$ and $r_s = 19.6 \, \text{kpc}$, obtained from McMillan (2017). Once these parameters are fixed, the only free parameter is $m_{\text{DM}}$ which controls the shape of the soliton core. As mentioned above, the NFW profile provides a negligible contribution to the total mass within 3 pc, and therefore our analysis is insensitive to $\rho_0$ or $r_s$. However, $M_h$ contributes to the soliton core radius and therefore density profile, and it scales as $\rho_{\text{DM,s}} \propto M_h^{4/3}$ within the core radius. Hence, a larger Milky Way mass produces a denser soliton core, and a larger mass range of the ULDM can, therefore, contribute to the mass within the NSC region – i.e. a larger mass range of the ULDM can be constrained by the NSC data. In fact, the total mass of the Milky Way is still in debate (e.g. Erkal et al., 2020). Recently, Vasiliev et al. (2021) claims that the virial mass of the Milky Way is as small as $9 \times 10^{11} \, M_\odot$. In Section 2.4.3, we show the results with $M_h = 9 \times 10^{11} \, M_\odot$, and demonstrate that our results are not sensitive to $M_h$ as long as it is within the current expected range of $M_h$.

2.2.5 Fitting Methodology

We fit the measured line-of-sight velocity dispersion data in Fig. 2.2 with equation (2.4) with our fitting parameters of $m_{\text{DM}}$, $\rho_{b,\text{NSC}}$, $\gamma$ and $m_{\text{BH}}$. We include the SMBH mass of $m_{\text{BH}}$ as a fitting parameter, because the SMBH mass is dominant at radii $r \leq 1 \, \text{pc}$. We use Bayesian statistics to obtain the marginalised probability distribution function for these parameters, $\theta_m = (m_{\text{DM}}, \rho_{b,\text{NSC}}, \gamma, m_{\text{BH}})$

$$P(\theta_m|D) = \mathcal{L}(D|\theta_m)P(\theta_m)/P(D),$$  \hspace{1cm} (2.15)

where $D$ is the data, i.e. the line-of-sight velocity dispersion in different radial bins (Fig. 2.2), $P(\theta_m|D)$ is the posterior probability of the parameters $\theta_m$ given data $D$, $\mathcal{L}(D|\theta_m)$ is the likelihood, $P(\theta_m)$ is prior and $P(D)$ is the model evidence. Since it does not depend on $\theta_m$, and it is considered to be constant under a single model hypothesis, we ignore the model evidence.
2.2. Method

To obtain $P(\theta_m|D)$, we run a MCMC fit, with a likelihood function given by

$$\mathcal{L}(D|\theta_m) = \prod_{i} \frac{1}{\sqrt{2\pi}\sigma_{err,i}^2} \exp\left(-\frac{(\sigma_m(R_i, \theta_m) - \sigma_{obs,i})^2}{2\sigma_{err,i}^2}\right),$$

(2.16)

where $\sigma_{obs,i}$ is the observed line-of-sight velocity dispersion data at $R_i$, $\sigma_{err,i}$ is the measurement error on each bin, $N_D$ is the number of the data points, and $\sigma_m(R_i, \theta_m)$ is the model line-of-sight velocity dispersion at $R_i$ (with parameters $\theta_m$).

We use log$(\rho_{b,NSC})$ and log$(m_{DM})$ as our fitting parameters with flat priors of $3 < \log[\rho_{b,NSC}(M_{\odot} \text{ pc}^{-3})] < 7$ and $-23 < \log[m_{DM}(\text{eV})] < -16$, since we find that the likelihood changes more smoothly in log$(\rho_{b,NSC})$ and log$(m_{DM})$. The range of log$[\rho_{b,NSC}(M_{\odot} \text{ pc}^{-3})]$ is chosen as above, because outside of this range is unrealistic from the NSC photometric observations (e.g. Schödel et al., 2014). Since $\gamma$ and $m_{BH}$ are well-constrained by the other observations, as described above, we adopt Gaussian priors for these two parameters. The Gaussian prior for $\gamma$ has a mean and dispersion of 1.29 and 0.05, respectively. The mean and dispersion for the Gaussian prior on $m_{BH}$ are set to be $4.26 \times 10^6 M_\odot$ and $0.012 \times 10^6 M_\odot$, respectively.

As explained in Section 1.6, Fig. 1.7, the NSC could be affected by a ULDM soliton core with a mass range of about $10^{-20.0} < m_{DM} < 10^{-19.0} \text{ eV}$ within the radial range of $0.1 < r < 3 \text{ pc}$. In other words, the NSC kinematics in this radial range has the potential to constrain the existence of $10^{-20.0} < m_{DM} < 10^{-19.0} \text{ eV}$ ULDM, as discussed in Bar et al. (2018). Fig. 1.7 also shows that the soliton core with $m_{DM} < 10^{-23.0} \text{ eV}$ or $m_{DM} > 10^{-16.0} \text{ eV}$ has negligible density within $0.1 < r < 3 \text{ pc}$ as compared to the expected NSC density. Hence, we consider that our prior range on log$(m_{DM})$ is large enough to capture the region we hope to constrain.

We use emcee (Foreman-Mackey et al., 2013) for our MCMC sampler, with 32 walkers and 4000 steps per walker. We discard the first 1000 steps as our ‘burn-in’. We confirm that after 1000 steps the MCMC results are stable.
2.3 Results

Fig. 2.2 shows our modelled line-of-sight velocity dispersion profiles (equation 2.4) for 100 random parameter values sampled from our MCMC steps, as compared to the observed velocity dispersion data. Notice that there is a good agreement between the sampled line-of-sight velocity dispersion profiles and the observational data.

Fig. 2.3 shows the marginalised posterior probability distribution of our fitting parameters of $\log(\rho_{b,NSC})$, $\log(m_{DM})$, $\gamma$ and $m_{BH}$. Notice that $\gamma$ and $m_{BH}$ are well constrained. We compute the mean and standard deviation of the posterior probability distributions of these parameters and obtain the best-fitting parameter values and $1\sigma$ uncertainties of $\gamma = 1.28 \pm 0.04$ and $m_{BH} = (4.26 \pm 0.01) \times 10^6 \, M_\odot$. Our results show that the best-fitting values of $\gamma$ and $m_{BH}$ are consistent with our priors, i.e. the observed inner slope of the NSC measured by Gallego-Cano et al. (2018)
2.3. Results

Figure 2.3: Marginalised posterior probability distribution of the model parameters of $\log(\rho_{b,\text{NSC}})$, $\log(m_{\text{DM}})$, $\gamma$ and $m_{\text{BH}}$ obtained by MCMC fitting to the observed velocity dispersion from the line-of-sight velocity data in Fritz et al. (2016) and the black hole mass measured by Gravity Collaboration et al. (2020).

Fig. 2.4 shows a close-up view of the marginalised probability distribution of $\log(m_{\text{DM}})$ with a histogram with a smaller bin size, where we can see two interesting results. First is the gap of the posterior probability distribution of $\log(m_{\text{DM}})$ around the range of $-20.40 \lesssim \log[m_{\text{DM}}(\text{eV})] \lesssim -18.50$, which is highlighted by the black vertical lines of $\log[m_{\text{DM}}(\text{eV})] = -20.40$ and $-18.50$ in Fig. 2.4. This result indicates that the observational data reject the ULDM particle mass between about $10^{-20.40} \text{ eV}$ and $10^{-18.50} \text{ eV}$.

Note that the upper and lower limits of $\log(m_{\text{DM}})$ in Fig. 2.4 come from the upper and lower limit of the flat prior we imposed. The roughly flat probability
2.3. Results

Figure 2.4: Marginalised posterior probability distribution of the model parameter \( \log(m_{DM}) \) from Fig. 2.3, but with finer bins. The solid black lines demark \( \log[m_{DM}(eV)] = -20.40 \) and \(-18.50\).

Distributions at higher than about \(-18.50\) and lower than about \(-21.0\) mean that the observational data cannot distinguish the difference in the ULDM particle mass in these ranges. Fig. 2.5 shows the cumulative mass profiles of the NSC, dark matter and the total mass as a function of the Galactocentric 3D radius. For the NSC profile, we take \( \log[\rho_{b,NSC}(M_\odot pc^{-3})] = 4.21 \), which is the mean \( \log(\rho_{b,NSC}) \) of our MCMC samples with \( \log[m_{DM}(eV)] > -18.0 \) or \( \log[m_{DM}(eV)] < -21.0 \). This leads to a NSC mass within \( r = 3 \) pc of about \( 5.03 \times 10^6 M_\odot \), which is larger than the value of about \( 3.965 \times 10^6 M_\odot \) measured by Fritz et al. (2016) within 75 arcsec \( (r \sim 3 \text{ pc}) \). This is likely due to different density profiles we are using. For example, Fritz et al. (2016) used a lower \( \gamma \) value of \( \gamma = 0.81 \). We tested our results with a Gaussian prior for \( \gamma \) with the mean value of 0.81 and we confirmed that the NSC mass within 3 pc reduced to \( 3.91 \times 10^6 M_\odot \), which is similar to the measured value by Fritz et al. (2016).
2.3. Results

Figure 2.5: The cumulative mass profile, $M_{\text{tot}}(<r)$, for the total (black solid line), NSC (blue solid line) and dark matter with a ULDM particle mass of $10^{-18.50} \text{ eV}$ and $10^{-21.0} \text{ eV}$ (orange solid and magenta dot-dashed lines, respectively). The solid vertical black line shows $r = 3 \text{ pc}$. The NSC mass profile is computed with $\log[\rho_{\text{NSC}}(M_\odot \text{ pc}^{-3})] = 4.21$. The total mass is computed for the case of the ULDM mass of $m_{\text{DM}} = 10^{-21.0} \text{ eV}$, including the SMBH.

Fig. 2.5 also shows the cumulative mass profile of the ULDM with $m_{\text{DM}} = 10^{-21.0} \text{ eV}$ and $m_{\text{DM}} = 10^{-18.50} \text{ eV}$, where both cumulative masses reach about $4.4 \times 10^5 \text{ M}_\odot$ at 3 pc. These two ULDM soliton cores are much smaller than both the NSC mass within the same radius and the SMBH mass. Because the size of the soliton core increases with decreasing particle mass of the ULDM (equation 2.12), the soliton core mass within $r < 3 \text{ pc}$ decreases with the decreasing ULDM particle mass. Consequently, the ULDM particles mass with $m_{\text{DM}} < 10^{-21.0} \text{ eV}$ does not affect the velocity dispersion of the NSC. This explains the equally accepted probability distribution of $m_{\text{DM}} < 10^{-21.0} \text{ eV}$ in Fig. 2.4. On the other hand, the ULDM particles mass with $m_{\text{DM}} > 10^{-18.50} \text{ eV}$ leads to too small of a soliton core to affect the stellar dynamics in the central region. This explains the equally accepted
Figure 2.6: The cumulative mass profile, $M_{\text{tot}}(<r)$, for the total (black), NSC (blue) and dark matter mass with the particle mass of $10^{-20.50}$ eV (orange). The solid vertical black line shows $r = 3$ pc. The total mass is computed for the case of the ULDM mass of $m_{\text{DM}} = 10^{-20.50}$ eV, including the SMBH.

Table 2.1: Model parameters of the mock data.

<table>
<thead>
<tr>
<th>Model name</th>
<th>$\log[m_{\text{DM}}$(eV)]</th>
<th>$\log[\rho_b,\text{NSC}(M_\odot \text{ pc}^{-3})]$</th>
<th>$\gamma$</th>
<th>$m_{\text{BH}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$-20.50$</td>
<td>3.60</td>
<td>1.29</td>
<td>4.26</td>
</tr>
<tr>
<td>B</td>
<td>$-19.50$</td>
<td>4.50</td>
<td>1.29</td>
<td>4.26</td>
</tr>
<tr>
<td>C</td>
<td>$-23.0$</td>
<td>4.21</td>
<td>1.29</td>
<td>4.26</td>
</tr>
</tbody>
</table>

probability distribution at $m_{\text{DM}} > 10^{-18.50}$ eV. Hence, if the ULDM particle mass is larger than $m_{\text{DM}} = 10^{-18.50}$ eV or smaller than $m_{\text{DM}} = 10^{-21.0}$ eV, our current data of the NSC stellar dynamics cannot find or reject their existence.

The second striking result of Fig. 2.4 is the peak around $\log[m_{\text{DM}}$(eV)]] = $-20.50$. At first sight, this appears to statistically favour a soliton core due to ULDM with a mass of $m_{\text{DM}} = 10^{-20.50}$ eV. Fig. 2.6 shows the cumulative mass profile for the total mass, dark matter halo mass including the soliton core with $m_{\text{DM}} = 10^{-20.50}$ eV and the NSC mass with $\log[\rho_b,\text{NSC}(M_\odot \text{ pc}^{-3})] = 3.60$, which
Figure 2.7: Upper panel: Observed line-of-sight velocity dispersion as a function of the projected radius (black dots with error bars). Orange solid/red dotted/yellow dotted/blue dashed line indicates the velocity dispersion profile expected from the combination of the soliton core with $m_{\text{DM}} = 10^{-20.5}$ eV, NSC and SMBH/NSC and SMBH only/NSC only. NSC contribution is computed with $\log \rho_{b,\text{NSC}} (M_\odot \, \text{pc}^{-3}) = 3.60$. Lower panel: Same as the upper panel, but the soliton core with $m_{\text{DM}} = 10^{-19.5}$ eV and $\log \rho_{b,\text{NSC}} (M_\odot \, \text{pc}^{-3}) = 4.21$ are used for the soliton core and NSC contributions.
is the mean of \( \log(\rho_{b,\text{NSC}}) \) of the MCMC sample with \(-21.0 \leq \log[m_{\text{DM}}(\text{eV})] \leq -20.40\). Fig. 2.6 shows that the NSC mass is smaller than that in Fig. 2.5, and the \( m_{\text{DM}} = 10^{-20.50} \) eV soliton core has a suitable size to compensate the deficit of the mass within \( r < 3 \) pc. The upper panel of Fig. 2.7 also shows that the additional mass from the \( m_{\text{DM}} = 10^{-20.50} \) eV soliton core helps to increase the velocity dispersion at an outer radius (\( r > 0.5 \) pc) to match with the observational data more than the expected velocity dispersion from the NSC and SMBH only.

Consequently, the NSC mass within 3 pc is about \( 1.25 \times 10^6 \, M_\odot \), which is significantly smaller than the aforementioned NSC mass measured by Fritz et al. (2016). The cumulative mass of the NSC in Fig. 2.6 is also much smaller than the NSC mass of \( (2.1 \pm 0.7) \times 10^7 \, M_\odot \) within about 8.4 pc, as measured in Feldmeier-Krause et al. (2017b). Although these studies use dynamical models that assume that the NSC is the dominant source of the central gravitational potential, the pho-
Figure 2.9: Marginalised posterior probability distribution of the model parameters of $\log(\rho_{b,NSC})$, $\log(m_{DM})$, $\gamma$ and $m_{BH}$ obtained by the MCMC fit to the velocity dispersion data of model A. The cyan line with cyan solid square shows the true values of the parameters.

Astrometric observations of Schödel et al. (2014) also suggested a total NSC mass of $(2.5 \pm 0.4) \times 10^7$ M$_\odot$, assuming a constant mass to light ratio. Hence, it is unlikely that the NSC mass is as small as the case of Fig. 2.6. Thus, the peak of $m_{DM} = 10^{-20.50}$ eV is not likely to be a viable solution. Still, it is difficult to measure the mass to light ratio precisely, and there could be some systematic biases in these previous measurements. Also, it is unlikely that the peak at $m_{DM} = 10^{-20.50}$ eV is due to the artificially trapped MCMC walkers close to the gap of the posterior. This is because when we observe the $m_{DM}$ values of the walkers as a function of steps, we see some of the walkers occasionally cross the gap and move to the other side of the gap. Also, if the posterior probability is flat at
2.4. Discussion

2.4.1 Mock Data Validation

In Section 2.3, we found a gap in the probability distribution function of ULDM masses that rejects a ULDM particle in the mass range $10^{-20.40} \lesssim \log[m_{\text{DM}}(\text{eV})] \lesssim -18.50$. We also found a peak in the probability distribution around $\log[m_{\text{DM}}(\text{eV})] = -20.50$ that we argued owed to a degeneracy between $\rho_{b,\text{NSC}}$ and $m_{\text{DM}}$.

To test the validity of above results, we construct mock velocity dispersion data similar to the observational data, using the same model as in Section 2.2. We then fit the data as in Section 2.3. We adopt the same parameters for the SMBH, NSC and dark matter model as in Section 2.2.

We construct three different models with different values of $\rho_{b,\text{NSC}}$ and $m_{\text{DM}}$, as shown in Table 2.1. We then generate the mock velocity dispersion profile data for each model by solving equation (2.4) for 32 bins spaced out in exactly the same
Figure 2.10: Marginalised posterior probability distribution of the model parameter $\log(m_{DM})$ for model A from Fig. 2.9, but with finer bins. The solid black lines demark the range $\log[m_{DM}(eV)] = -20.40$ and $-18.50$.

way as for the observational data. We then add a random displacement to the velocity dispersion of each bin, within the measurement error of each bin, taken to be the same as for the observational data.

We use the same fitting methodology with the same priors, as described in Section 2.2.5, except that now the observational data are replaced by mock data for three models, labelled A, B and C (Table 2.1).

Model A employs $m_{DM} = 10^{-20.50}$ eV and $\log[\rho_{b,NSC}(M_\odot pc^{-3})] = 3.60$, which is the mean value of our MCMC samples around $m_{DM} = 10^{-20.50}$ eV found in Section 2.3. This model is to test if the probability distribution of $\log[m_{DM}(eV)]$ would be similar to what is obtained in Fig. 2.4, when a soliton core of the $m_{DM} = 10^{-20.50}$ eV UDLM exists.

Fig. 2.8 overplots the model line-of-sight velocity dispersion profiles from the 100 random parameter values sampled from the results of MCMC with the
mock velocity dispersion data for model A. Fig. 2.8 shows that there is a good agreement between the sampled line-of-sight velocity dispersion profiles and the mock data roughly within the uncertainties of the mock data. Fig. 2.9 shows the marginalised posterior probability distribution of our fitting parameters of $\log(\rho_{b,\text{NSC}})$, $\log(m_{\text{DM}})$, $\gamma$ and $m_{\text{BH}}$ for model A with the cyan line with the cyan solid square representing the true values of the parameters.

The obtained best-fitting parameter values and 1σ uncertainties are $\gamma = 1.29 \pm 0.05$ and $m_{\text{BH}} = (4.26 \pm 0.01) \times 10^6 \, M_\odot$, which are consistent with the true values within our 1σ uncertainty regions. Just like the results in Section 2.3, there is a degeneracy between $\log(\rho_{b,\text{NSC}})$ and $\log(m_{\text{DM}})$. In the probability distribution between $\log(\rho_{b,\text{NSC}})$ and $\log(m_{\text{DM}})$, when $\log[m_{\text{DM}}(\text{eV})]$ is around the true value of $-20.50$, $\log(\rho_{b,\text{NSC}})$ corresponds to $\log[\rho_{b,\text{NSC}}(M_\odot \, \text{pc}^{-3})] = 3.74 \pm 0.37$, which is within one sigma of the true value of $\log[\rho_{b,\text{NSC}}(M_\odot \, \text{pc}^{-3})] = 3.60$.

The close-up plot of the marginalised probability distribution of $\log(m_{\text{DM}})$ is shown in Fig. 2.10, and there is a similar peak around about $10^{-20.50}$ eV when compared to Fig. 2.4. Also, Fig. 2.10 shows the gap between $\sim -20.40 \lesssim \log[m_{\text{DM}} (\text{eV})] \lesssim -18.50$, and roughly flat probability distribution at $\log[m_{\text{DM}} (\text{eV})] < -21.0$ and $\log[m_{\text{DM}} (\text{eV})] > -18.50$, as seen in Fig. 2.10. This implies that the result in Section 2.3 is consistent with the expected result when there is a soliton core with ULDM particle mass around $10^{-20.50}$ eV.

Model B adopts $\log[\rho_{b,\text{NSC}}(M_\odot \, \text{pc}^{-3})] = 4.50$ and $m_{\text{DM}} = 10^{-19.50}$ eV, to see if the data are capable of detecting a soliton core with $m_{\text{DM}} = 10^{-19.50}$ eV. If it is confirmed, we can be confident that the gap we obtained in Fig. 2.4 in Section 2.3 is not due to an artificial feature, but rather it is meaningful to reject the existence of a soliton core over this mass range. The choice of this higher $\log[\rho_{b,\text{NSC}}(M_\odot \, \text{pc}^{-3})]$ compared to models A and C is to make the NSC more gravitationally dominant, i.e. to make it more challenging to recover the soliton core contribution.

Although not shown for brevity, we confirm that there is a good agreement between the sampled line-of-sight velocity dispersion profiles and the mock data of model B within the uncertainties of the mock data. Fig. 2.11 shows the
Figure 2.11: Marginalised posterior probability distribution of the model parameters of log($\rho_b$, NSC), log($m_{DM}$), $\gamma$ and $m_{BH}$ obtained by the MCMC fitting to the velocity dispersion data of model B. The cyan line with cyan solid square shows the true values of the parameters.

The marginalised posterior probability distribution of our fitting parameters for model B with the cyan line with the cyan solid square representing the true values of the parameters. The best fitting values and the respective uncertainties of the parameters are $\log(\rho_b, \text{NSC}(M_\odot \text{ pc}^{-3})) = 4.56 \pm 0.07$, $\log(m_{DM}(\text{eV})) = -19.51 \pm 1.09$, $\gamma = 1.30 \pm 0.05$ and $m_{BH} = (4.26 \pm 0.01) \times 10^6 \text{ M}_\odot$, which are consistent with the true value within our 1\(\sigma\) uncertainty regions. This demonstrates that our MCMC fitting can recover the true parameter values well, especially the ULDM particle mass, which is the main focus of this chapter. This means that the current observational data are good enough to identify a soliton core of $m_{DM} = 10^{-19.50} \text{ eV}$, if it exists.
2.4. Discussion

Figure 2.12: Marginalised posterior probability distribution of the model parameters of $\log(\rho_{b, NSC})$, $\log(m_{DM})$, $\gamma$ and $m_{BH}$ obtained by the MCMC fit to the velocity dispersion data of model C. The cyan line with cyan solid square shows the true values of the parameters.

Model C employs $m_{DM} = 10^{-23.0} \text{ eV}$. As we discussed in Section 2.3, this particle mass of ULDM produces a negligible soliton core mass compared to the SMBH and NSC mass (see also Fig. 1.7), i.e. mimicking the case of no detectable soliton core. Hence, this model is designed to test what our MCMC fitting results will look like if there is no soliton core. Model C adopts $\log[\rho_{b, NSC}(M_\odot \text{ pc}^{-3})] = 4.21$, which is found to be the best fitting parameter in Section 2.3, when the soliton core is negligible.

Although not shown for brevity, we confirm that there is a good agreement between the sampled line-of-sight velocity dispersion profiles and the mock obser-
Figure 2.13: Marginalised posterior probability distribution of the model parameter \( \log(m_{DM}) \) for model C from Fig. 2.12, but with finer bins. The solid black lines demark \( \log[m_{DM}(eV)] = -20.40 \) and \(-18.50\).

vational data for model C. Fig. 2.12 shows the marginalised posterior probability distribution of our fitting parameters for model C with the cyan line with the cyan solid square representing the true values of the parameters. Except for \( \log(m_{DM}) \) (that is now expected to be challenging to detect), the true parameter values are well recovered.

Contrary to our MCMC results for the observational data (Fig. 2.3), the probability distribution of \( \log(m_{DM}) \) does not show a clear degeneracy with \( \log(\rho_{b,NSC}) \). The close-up view of the marginalised probability distribution of \( \log(m_{DM}) \) is shown in Fig. 2.13. Similar to model A, Fig. 2.13 shows a clear gap between about \( \log[m_{DM}(eV)] = -20.40 \) and \(-18.50\), unlike model B that has a soliton core with \( m_{DM} \approx 10^{-19.50} \) eV. Hence, we can confidently conclude that the gap can be used to reject a soliton core with ULDM particle mass in the range between \( m_{DM} \approx 10^{-20.40} \) eV and \( 10^{-18.50} \) eV. On the other hand, comparing with
model A (Fig. 2.10), there is no clear peak of the probability distribution around $\log[m_{DM}(\text{eV})] = -20.50$ in model C. This means that the $10^{-20.50}$ eV ULDM particle mass is equally possible to be $m_{DM} < 10^{-21.0}$ eV or $m_{DM} > 10^{-18.50}$ eV. In other words, the current quality of the data cannot identify or reject the ULDM particle mass outside of the gap, i.e. $m_{DM} < 10^{-20.40}$ eV or $m_{DM} > 10^{-18.50}$ eV, including $10^{-20.50}$ eV.

Interestingly, the fact that the result for the observational data (Fig. 2.4) has a clear peak around $\log[m_{DM}(\text{eV})] = -20.50$ indicates two potential scenarios: there is a soliton core with $m_{DM} = 10^{-20.50}$ eV, or there is an extra mass contribution, compared to the pure NSC model of model C, to mimic the $m_{DM} = 10^{-20.50}$ eV soliton core. The extra mass contribution could be the nuclear stellar disk (NSD) because the mass of the NSD might become significant around $\sim 3$ pc (Gallego-Cano et al., 2018). It is noteworthy that the additional mass needed are unlikely to be attributed to the black holes falling within 3 pc due to dynamical friction. The mass contributed by such clusters of black holes is insufficient to invalidate the necessity of the NSD.

### 2.4.2 Systematic uncertainty of the black hole mass

There is a strong correlation between the distance to the Galactic centre, $R_0$, and $m_{BH}$ measurements by Gravity Collaboration et al. (2020), as shown in their Fig. E2. Gravity Collaboration et al. (2020) estimated that there is a systematic uncertainty of 45 pc for $R_0$, which propagates to a larger systematic uncertainty on the SMBH mass than the uncertainty considered in this chapter. We test the effect of this relatively large systematic uncertainty by considering two cases. The first case takes a distance to the Galactic centre of $R_0 = 8.20$ kpc, which is systematically shorter than our fiducial assumed distance. By fitting the correlation between $R_0$ and $m_{BH}$ by eye from Fig. E2 of Gravity Collaboration et al. (2020), this corresponds to a SMBH mass of $m_{BH} = 4.20 \times 10^6 M_\odot$. The different $R_0$ also affects the conversion of arcsec to pc, and we adjust the project radial distance of the stars from Sgr A* and the break radius of the NSC density profile. The second case applies a larger distance to the Galactic centre of $R_0 = 8.29$ kpc. This leads to $m_{BH} = 4.32 \times 10^6 M_\odot$. 
Figs. 2.14 and 2.15 show the marginalised probability distribution of $\log(m_{\text{DM}})$ for the former and latter cases, respectively, after fitting the data with the same method as in Section 2.2. These results show almost identical results to Fig. 2.4. This confirms that the systematic uncertainty on $R_0$ and $m_{\text{BH}}$ in Gravity Collaboration et al. (2020) is still small enough that it does not affect our conclusions.

### 2.4.3 The lower Milky Way mass case

Vasiliev et al. (2021) recently suggested that the Milky Way’s virial mass is as small as $9 \times 10^{11} \, M_\odot$. Fig. 2.16 shows the marginalised probability distribution of $\log(m_{\text{DM}})$ obtained by the MCMC fitting to the observed velocity dispersion with adapting $M_h = 9 \times 10^{11} \, M_\odot$. The result is similar to our fiducial result of Fig. 2.4 with $M_h = 1.4 \times 10^{12} \, M_\odot$, which is rather high side of the current estimates of the Milky Way mass. This demonstrates that our result is not sensitive to the assumed
2.5 Conclusions

We test the existence of a soliton core due to ULDM in the centre of the Milky Way by fitting the line-of-sight velocity dispersion data of the NSC stars, taken from Fritz et al. (2016). We assume a spherical isotropic Jeans model, using strong priors on the accurately measured NSC stellar number density profile and the mass of the SMBH. We fit the NSC density, $\rho_{b,\text{NSC}}$, ULDM particle mass, $m_{\text{DM}}$, the inner slope of the NSC density profile, $\gamma$, and the SMBH mass, $m_{\text{BH}}$. The resultant marginalised probability distribution function of $m_{\text{DM}}$ shows a peak around about $10^{-20.50}$ eV and a gap between about $10^{-20.40}$ eV and $10^{-18.50}$ eV, rejecting ULDM over this mass range. We show that this result is insensitive to our model assumptions and priors (see Sections 2.4.2 and 2.4.3). We also construct mock velocity dispersion data with $M_h$ value within the current expected range of $M_h$ of the Milky Way.  

![Figure 2.15: Marginalised posterior probability distribution of the model parameter log($m_{\text{DM}}$) for higher black hole mass case. The marginalised posterior probability distribution is divided in to 250 bins. Solid black line indicates log[$m_{\text{DM}}$(eV)] = −20.40 and −18.50.](image-url)

$M_h$ value within the current expected range of $M_h$ of the Milky Way.
2.5. Conclusions

Figure 2.16: Marginalised posterior probability distribution of the model parameter \( \log(\text{m}_{\text{DM}}) \) for the MCMC fitting result with a lower Milky Way mass of \( M_\odot = 9 \times 10^{11} \, M_\odot \), taken from Vasiliev et al. (2021). Solid black line indicates \( \log(\text{m}_{\text{DM}}(\text{eV})) = -20.40 \) and \(-18.50 \).

The \( 10^{-20.50} \) eV soliton core is unlikely to be a feasible solution because it results in an NSC mass significantly smaller than what has been observed in previous studies. It is also possible that the gravitational potential of \( 10^{-20.50} \) eV soliton core could be a representation of another component within the centre of our Galaxy, namely, the NSD. Because of this, in order to verify the existence of the \( 10^{-20.50} \) eV soliton core and to explore a broader range of ULDM masses, Chapter 3 and 4 detail our approach of utilizing the NSD to impose constraints on the ULDM particle mass.
Chapter 3

Observational Data for the Nuclear Stellar Disk

3.1 Introduction

As discussed at the end of Chapter 2, to constrain the ultra-light dark matter (ULDM) mass less than $10^{-20.0}$ eV from the Milky Way data, we need to look at the structure larger than the nuclear star cluster (NSC). As summarised in Section 1.7, there is the nuclear stellar disk (NSD) in the central region of the Milky Way, and the NSD is the dominated stellar system in the radial range from 30 pc to 300 pc. Both photometric and spectroscopic observations indicate that the NSD is a kinematically relaxed (close to) axisymmetric stellar system (e.g. Launhardt et al., 2002; Nishiyama et al., 2013; Schönrich et al., 2015; Gallego-Cano et al., 2020). Hence, it is a good stellar system to study the gravitational potential within a few 100 pc of the Milky Way (e.g. Sormani et al., 2020a, 2022). This is similar size to the expected soliton core sizes if ULDM consists of the particle mass of less than $10^{-20.0}$ eV. Therefore, in this and next chapters we study how the dynamics of the NSD constrain the existence of the ULDM in these mass range.
3.2 Observational Data

3.2.1 VIRAC2

The VISTA Variables in the Vía Láctea (VVV) Survey (Minniti et al., 2010) uses the Visible and Infrared Survey Telescope for Astronomy (VISTA) which is a reflecting telescope that is located at the European Southern Observatory’s Paranal Observatory in Chile. VISTA has a primary mirror with a diameter of 4.1 meters. It covers a wavelength range of about 0.8µm to 2.3µm for infrared which includes five near-infrared bands: Z, Y, J, H, and Ks. The VVV survey observations started in 2010 with the aims of studying the structure of the Milky Way Galaxy and to study the stellar populations of the Milky Way bulge. It has covered about over 500 deg$^2$ along the Galactic plane and observable from the Southern hemisphere.

The VVV Infrared Astrometric Catalogue (VIRAC1) is a proper motion catalogue of the VVV survey constructed by Smith et al. (2018). Smith et al. (2018) measured the proper motion of stars in the Milky Way by epoch astrometry for Ks band, where the positions of stars in the VVV survey measured over the span of 5 years from 2010 to 2015 were compared and proper motion of the stars were able to be measured. VIRAC2 is an updated version of VIRAC1. It is more precise and covers larger area, including the additional epoch of the VISTA Variables in the Vía Láctea Extended (VVVX) survey which are taken since 2016. The astrometric accuracy is improved by using the absolute reference frame provided by the Gaia mission (Sanders et al., 2019). VIRAC2 catalogue within $|l| < 1.5^\circ$ and $|b| < 1.5^\circ$ is provided by Jason L. Sanders and Leigh Smith.

We use the VIRAC2 proper motion data for 879,028 stars in the asymptotic giant branch bump (AGBb). AGB stars are with low to intermediate mass stars where these stars finished burning helium in the core and started to cool and expand as luminosity increases in which the path of these stars almost align with the red-giant branch in the Hertzsprung Russell diagram, hence why these stars are called asymptotic giant branch stars (Siess, 2006). AGBb stars are a particular feature in the colour magnitude diagram of stars in the AGB phase, and it is a state for some of AGB stars just before a sudden increase in luminosity due to rate of helium burning.
in the shell around the core increasing. Furthermore, the luminosity of the AGBb stars is almost constant with a weak relationship with its metallicity, suggesting that the AGBb stars can be treated as a standard candle (Pulone, 1992). It is also found more recently that the calibrated metallicity dependence makes it satisfactory to be a standard candle (Dréau et al., 2022). AGBb is a good stellar population to select the stars at similar distance to study their stellar distribution and kinematics.

We select AGBb stars from VIRAC2 catalogue by selecting stars within $10.8 < Ks - 1.33(H - Ks) < 11.8$. Additionally, stars within $H - K < 0.3$ are ignored, to remove the foreground stars. Fig. 3.1 shows the distribution of the colour and magnitude of VIRAC1 stars within $|l| < 1.5^\circ$ and $|b| < 1.5^\circ$ from Smith et al. (2018), overplotting the VIRAC2 stars selected with the above color and magnitude criteria. VIRAC2 data are not publicly available yet, and we received the VIRAC2 data for the AGBb stars selected by the above criteria from J. Sanders. Hence, in Fig. 3.1, we use VIRAC1 data, which is publicly available, to show the colour magnitude distribution of the other populations of the VVV survey data. There is a clear sequence of higher number of stars from $Ks \sim 12$ mag and $H - Ks \sim 0.5$ mag to $Ks \sim 15$ mag and $H - Ks \sim 2.0$ mag as highlighted by the region enclosed by the red lines. This is the sequence of AGBb. These stars are likely to be located at the similar distance to the distance to the Galactic centre. However, their colours and apparent magnitudes are different because of the dust extinction, which makes the stars fainter and redder. The difference in extinction makes this sequence of the colour and magnitude of the AGBb. The high number density of the stars in this region expected by the AGBb stars at the distance to the Galactic centre means that the stars in this region is dominated by the AGBb stars in the Galactic centre. We assume that the majority of the selected stars in this region are at the distance of the NSD, and we will use these stars to analyse the stellar density distribution in Section 3.3 and the velocity dispersion distribution in Section 3.4.

Fig. 3.1 also shows the sequence of red clump stars, which are enclosed by green lines. Red clump stars are stars that have exhausted hydrogen in their cores and now burning helium. Red clump stars have a similar intrinsic luminosity irre-
3.2. Observational Data

Figure 3.1: Colour-magnitude diagram for stars from VIRAC1 and VIRAC2 (only in the region enclosed by red lines). Red open box highlights our selection of the NSD AGBb star candidates from VIRAC2. Green open area: highlights the sequence of red clump stars expected in the NSD. Red are the areas with the highest number density, blue and black are the lowest number density.

Perspective of their age or metallicity. We are not using the red clump stars as they are less luminous and therefore we may be missing the stars suffering from higher extinction, where the NSD is more dominant.

3.2.2 APOGEE DR17

The Sloan Digital Sky Survey (SDSS, York et al., 2000) is an astronomical survey that aims to create a detailed 3D map of the Universe by describing the distribution of luminous and non-luminous matter, for a better understanding of dark matter. SDSS started with a 2.5-meter telescope at Apache Point Observatory (APO) in New Mexico, USA. The operation of SDSS first started in 2000 and has evolved through 5 stages, with currently the SDSS-V being most recent one (Kollmeier et al., 2019). The SDSS-V aims to provide optical and infra-red spectra for over 6 million objects. It is currently an all-sky, multi-epoch spectroscopic survey. The
survey started its observation from 2020 and expects to finish after five years.

Schönrich et al. (2015) used SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) data which is a near-infrared spectroscopic survey that measures the line-of-sight velocity of stars. From this, Schönrich et al. (2015) computed the average line-of-sight velocity at both positive and negative longitude in $|l| < 1$ deg and latitude $|b| < 1$ deg. They found that the stars with higher $K$-band extinction, $A_K > 3$, show a clear rotation like features, i.e. the stars are moving away from us in the positive longitude, while the stars are moving toward us in the negative longitude after correcting the solar motion. This means that the stars with $A_K > 3$ are dominated by the stars in the NSD, and the NSD has a clear rotation velocity of about 120 km s$^{-1}$ (Schönrich et al., 2015).

This rotation of the NSD is important information to construct the dynamical model of the NSD and infer the total enclosed mass as a function of radius from the Galactic centre. We use the SDSS-IV APOGEE Data Release 17 (APOGEE DR17) (Abdurro’uf et al., 2022; Majewski et al., 2017) data to analyse the line-of-sight velocity distribution of the NSD stars to derive the mean line-of-sight velocity as a function of the Galacto-centric radius, following Schönrich et al. (2015) and Sormani et al. (2020b). We select bright giant stars likely in the NSD with the criteria where the stars are within $H - K > -0.0233K + 1.63$ (Nogueras-Lara et al., 2020) and $\text{VSCATTER} < 30$ km s$^{-1}$, to eliminate binary stars or spurious data. This colour selection ensures that the selected stars are deeply enshrouded by the dust and has a redder colour expected for the stars in the NSD, like Schönrich et al. (2015) chose the stars with high $K$-band extinction. We consider that the selected stars are dominated by the NSD stars and analyse the line-of-sight velocity as a function the radius in Section 3.6.

### 3.2.3 Previous Dynamical Modelling of the NSD

Sormani et al. (2020b) modelled the NSD using Jeans dynamical models to fit the line-of-sight velocity data of APOGEE and SiO maser stars with several 3D stellar density distribution obtained in the previous studies which includes Launhardt et al. (2002); Chatzopoulos et al. (2015); Gallego-Cano et al. (2020). As a result, they
measured the mass of the NSD to be $M(<100\text{pc}) = (4 \pm 1) \times 10^8 \, M_\odot$ which is consistent with Launhardt et al. (2002). They also found that the NSD seems to have a vertically biased velocity structure with $\sigma_z / \sigma_R > 1$, where $\sigma_z$ and $\sigma_R$ are vertical and radial velocity dispersions, respectively.

Sormani et al. (2022) used the distribution function modelling which overcomes the limitations of the Jeans equations, to model an axisymmetric self-consistent NSD. Sormani et al. (2022) also modelled the Galactic bar to take into account the contamination of the stars in the Galactic bar. By fitting the models to the line-of-sight velocities from the Very Large Telescope (VLT), $K$-band Multi Object Spectrograph (KMOS) survey of the NSD stars (Fritz et al., 2021) and VIRAC2 proper motions, they found that the NSD mass is about $M = 10.5 \times 10^8 \, M_\odot$. Similarly to Sormani et al. (2020b), Sormani et al. (2022) also showed that the NSD velocity dispersion is vertically biased.

In the following chapters, we model the NSD by following the footsteps of Sormani et al. (2022). However, we introduce the ULDM soliton core to their distribution function model. Then we fit the surface stellar density distribution and the velocity dispersion distribution from the VIRAC2 data, and line-of-sight velocity data of APOGEE DR17 to constrain the ULDM particle mass. It is important to note that Sormani et al. (2022) did not fit the density distribution explicitly. However, we fit the stellar density and kinematic distribution simultaneously. In the rest of this chapter, we describe the parameters we assume (Section 3.3), how we measure the surface density distribution (Section 3.4), the velocity dispersion distribution (Section 3.5), and the mean rotation profile (Section 3.6) of the NSD to compare with our distribution function dynamical model in the next chapter.

### 3.3 Assumed Parameters

In this chapter, we assume the distance from us to the centre of our Galaxy to be $R_0 = 8.275 \, \text{kpc}$ (GRAVITY Collaboration et al., 2021). The Sgr A* is not at the centre of the Galactic coordinate, $(l, b) = (0, 0)^\circ$. Rather it is at $(l_{\text{SgrA*}}, b_{\text{SgrA*}}) = (-0.05576432, -0.04616002)^\circ$. We consider that Sgr A* is located at the centre of
3.3. Assumed Parameters

the Galaxy. To redefine the new coordinate to set Sgr A* at \((l^*, b^*) = (0, 0)^\circ\), we subtract the position of the stars in the Galactic coordinate by the position of the Sgr A* as follows \((l^*, b^*) = (l - l_{SgrA*}, b - b_{SgrA*})\).

The motion of the stars obtained in the VIRAC2 proper motion data (Section 3.2.1) and the APOGEE DR17 line-of-sight velocity (Section 3.2.2) are the velocity of the stars with respect to the Sun’s motion. To obtain their velocity in the Galactic rest-frame, which is required to compare with a dynamical model of the NSD, we need to subtract the Sun’s motion. We first consider that the apparent motion of the Sgr A* is purely due to the Sun’s motion with respect to the supermassive black hole (SMBH) fixed at the centre of the Galaxy. The SMBH has an apparent motion of about \((\mu_l, SgrA*, \mu_b, SgrA*) = (-6.411, -0.291) \text{ mas yr}^{-1}\), where \(\mu_l, SgrA*\) and \(\mu_b, SgrA*\) are the apparent motion in the longitude and latitude direction for the Sgr A*, respectively (Reid & Brunthaler, 2020). We then subtract the proper motion of stars along the longitude, \(\mu_{l, \text{star}}\), and latitude, \(\mu_{b, \text{star}}\), by the apparent motion of the Sgr A* as follows

\[
(\mu_l^*, \mu_b^*) = (\mu_l, \text{star}, \mu_b, \text{star}) - (\mu_l, SgrA*, \mu_b, SgrA*).
\]  

(3.1)

In terms of line-of-sight velocity, we need to take into account the Sun’s motion toward the Galactic centre. We consider that the Sun is moving toward the Galactic centre by 11.1 km s\(^{-1}\) (Schönrich et al., 2010). To obtain the line-of-sight velocity with respect to the Galactic rest-frame, we take this into account by adding this line-of-sight velocity to the observed line-of-sight velocities of the stars.

In this thesis, for simplicity, we ignore the apparent angle difference, because we focus on the small region around the Galactic centre. We consider that the line-of-sight direction is always parallel to the Sun-Galactic centre line irrespective of their longitudinal or latitudinal position. When we compare with the model, we use a Galactocentric Cartesian \(X, Y, Z\) coordinate. We set \(X\) is the direction of the Galactic longitude, \(l^*\); \(Y\) is aligned with the Sun and the Galactic centre line, and toward the Galactic centre from the Sun is positive; \(Z\) is the direction of the Galactic latitude, and toward the Galactic North pole is positive. We also consider that all the
3.3. Assumed Parameters

Figure 3.2: The number density distribution of the stars selected as the AGBb candidates in Fig. 3.1. The red open rectangle highlights our selection region of this study.

Stars are at the distance of the Galactic centre, i.e. \( R_0 = 8.275 \) kpc, which assumes that all the stars are at \( Y = 0 \). We compute the velocity toward \( X \) and \( Z \) from the proper motion as follows

\[
V_X (\text{km s}^{-1}) = 4.74047 \mu_l^* \text{mas yr}^{-1} R_0 \text{kpc}, \tag{3.2}
\]

\[
V_Z (\text{km s}^{-1}) = 4.74047 \mu_b^* \text{mas yr}^{-1} R_0 \text{kpc}. \tag{3.3}
\]

We also consider \( V_Y = V_{\text{LOS}}^* \). We convert \((l^*, b^*)^\circ\) to \((X, Z)\) kpc with the angular distance scale at \( R_0 = 8.275 \) kpc, i.e. \((X, Z)\) (kpc) = \(0.144 \text{ (kpc deg}^{-1}) \times (l, b)\). The number density distribution of the selected NSD stars from the VIRAC2 data can be seen in Fig. 3.2. Also, the distribution of selected NSD stars from the APOGEE DR17 data colour-coded with the line-of-sight velocities of stars, \( V_{\text{LOS}}^* \), can be seen in Fig. 3.3.
3.4 Surface Density Distribution of the NSD

Fig. 3.2 shows that the NSD is clearly seen in the central region, and their stellar density is higher especially in the area enclosed by the red open rectangle within $|l| < 0.7^\circ$ and $|b| < 0.35^\circ$. Sormani et al. (2020b) also estimated that the NSD population is dominant (more than 75% in their selected Galactic centre stars) in this region. Hence, in this thesis, to minimise the contamination from the stars in the other components, such as the Galactic bar, we focus on the NSD data within $|l| < 0.7^\circ$ and $|b| < 0.35^\circ$, which corresponds to about $|X| < 0.1011$ kpc and $|Z| < 0.0505$ kpc. Fig. 3.4 shows the surface number density of our selected VIRAC2 stars (Section 3.2.1) in a two dimensional grid from about $-0.1011$ kpc $< X < 0.1011$ kpc with 20 grids and about $-0.0505$ kpc $< Z < 0.0505$ kpc with 10 grids. We decided to use this large square grids of the data with each grid of the size of about $0.01$ kpc $\times$ $0.01$ kpc. Hereafter, for brevity, we will assume that we are focusing in a two dimensional grid of $-0.10$ kpc $\lesssim X \lesssim 0.10$ kpc and $-0.05$ kpc $\lesssim Z \lesssim 0.05$ kpc. The number of stars indicated in Fig. 3.4 is the number of stars within this size of grid, and therefore it shows the surface density of the stars within

$V_{\text{LOS}}$. 

**Figure 3.3:** The distribution of the APOGEE DR17 selected in Section 3.2.2. The filled circles are colour coded by $V_{\text{LOS}}$. 

3.4 Surface Density Distribution of the NSD
about 0.01 × 0.01 kpc. We use the same grids for the velocity dispersion data where this large grid ensures that there are enough number of stars in each grid to confidently obtain the velocity dispersion. Also, this large size grids ensures that both the density and velocity dispersion changes relatively smoothly both in the X and Z directions, after making the necessary correction as described below.

Fig. 3.2 and Fig. 3.4 clearly show that the data is affected by extinction as highlighted as “dark patches”. To mitigate the lack of the stars in these dark patches, we use the assumption of the NSD being axisymmetry, so that the projected edge-on density distribution is symmetric about both X and Z-axes. We first split these grids into four quadrants of X > 0 and Z > 0; X < 0 and Z > 0; X < 0 and Z < 0; X > 0 and Z < 0. We then compare the number of stars among the grids at the symmetric position about X and Z axes, and take the maximum number of the among these grids. One example is that we compare the number of stars at the grids of (X, Y) = (0.05, 0.15), (−0.05, 0.15), (−0.05, −0.15) and (0.05, −0.15). Then, we take the maximum number of stars among these grids and reassign this number to these four grids. Assuming that the NSD is an axisymmetric structure, the number density of stars should be the same at the grids at the symmetric position. The difference in number is considered to be due to the difference in extinction, and we assume that the grid with the maximum number of the stars are the ones that is least suffering from extinction. After applying this process, the stellar density distribution has no dark patch, it changes more smoothly which can be seen in Fig. 3.5. The NSD is assumed to be axisymmetric in this thesis, because the stellar number density distribution in Fig. 3.4 and Fig. 1 of Nishiyama et al. (2013) show that the NSD is highly symmetric.

Since the data is now symmetric, we focus on one quarter of the distribution as seen in Fig. 3.6. The observed density distribution is number density, while the stellar density in dynamical models is described as mass density. To be able to compare the observed density distribution to the dynamical model, we introduce the stellar number density to mass ratio to convert the mass density of the model at position of the grid to the observed number of stars in these grid. Hence, we use the
3.4. *Surface Density Distribution of the NSD*

**Figure 3.4:** The number density distribution of the stars selected in Section 3.2.1 in a two dimensional grid from $-0.1 \text{kpc} \lesssim X \lesssim 0.1 \text{kpc}$ and $-0.05 \text{kpc} \lesssim Z \lesssim 0.05 \text{kpc}$ with Sgr $A^*$ being at the centre, at (0, 0) kpc. The number density distribution of the stars is not smooth, where green square open boxes are some examples showing dark patches caused by the extinction. The colour bar indicates the number of stars in each approximately sized $0.01 \times 0.01 \text{kpc}$ grid.

**Figure 3.5:** The number density distribution of the stars selected in Section 3.2.1 in a two dimensional grid from $-0.1 \text{kpc} \lesssim X \lesssim 0.1 \text{kpc}$ and $-0.05 \text{kpc} \lesssim Z \lesssim 0.05 \text{kpc}$ that is symmetrical after the number of stars are re-assigned to take the highest number of stars among the symmetric grids (see the text of Section 3.4 for more details). The colour bar indicates the number of stars in each approximately sized $0.01 \times 0.01 \text{kpc}$ grid.
3.5. The Vertical Velocity Dispersion Distribution of the NSD

To examine the existence of the ULDM soliton core in the Galactic centre, in the next chapter we compare the observed velocity dispersion with an analytical dynamical model of the NSD with the soliton core of the ULDM with the different particle masses. In this section we present how we obtain the observed velocity distribution.

**Figure 3.6:** Same as Fig. 3.5, but shown a quarter of the data. The X and Z direction has 10 and 5 grids respectively. The colour bar indicates the number of stars in each approximately sized 0.01 × 0.01 kpc grid.

The number of stars in this fixed size of the grid as the surface number density, $N$. The uncertainty of the number of stars in each grid, is computed by $\sigma_N = \sqrt{N}$, where $N$ is the number of stars in a grid. We can see that the uncertainty increases with the number of stars in each grid. However, the relative uncertainty, $\sigma_N/N$, decreases as the number of stars in each grid increases.

Fig. 3.7 shows the number density in each grid as a function of $X$ at different position in $Z$. It can be seen that the density distribution changes smoothly in both $X$ and $Z$ directions. Also, the density is the highest at the centre, and the highest at the disk mid-plane ($Z=0$) at a fixed $X$. The density decreases as increasing of both $X$ and $Z$. However, it decreases more rapidly in the $Z$ direction which is expected due to the disky shape of the NSD.
Section 3.5. The Vertical Velocity Dispersion Distribution of the NSD

Figure 3.7: Observed number density distributions as a function of $X$ at different position in $Z$ of $Z = 0.005$ kpc (black dots), $Z = 0.015$ kpc (red dots), $Z = 0.025$ kpc (yellow dots), $Z = 0.035$ kpc (green dots), $Z = 0.045$ kpc (blue dots). The uncertainty is too small and it is smaller than the symbols. The largest uncertainty of a density grid is the density grid at $Z = 0.005$ kpc and $X = 0.005$ kpc.

at different positions of the NSD from the VIRAC2 proper motion data for the stars selected in Section 3.2.1. As mentioned in Section 3.4, to analyse the 2D velocity structure, we use the same 20×10 grids in the region of $-0.1 \lesssim X \lesssim 0.1$ kpc and $-0.05 \lesssim Z \lesssim 0.05$ kpc as the ones used to analyse the density distribution. Section 3.2.1 shows that even in this large grid the VIRAC2 data are affected by extinction at different levels at the different positions of the sky. It is therefore important to assess how extinction has affected both the $V_X$ and $V_Z$ distributions of our selected VIRAC2 stars (Section 3.2.1). First we discuss that the distribution of $V_X$ is too sensitive to the level of the extinction and it is difficult to obtain the velocity distribution reliably. In the left panel of Fig. 3.8, the distribution of $V_X$ at $X = -0.086$ kpc, $Z = -0.005$ kpc grid is shown. The left panel of Fig. 3.8 shows two peak distribution for $V_X$. This is expected for a rotating disk. Fig. 3.9 schematically describes the velocity structure of the NSD and how the projected $V_X$ distribution looks like
3.5. The Vertical Velocity Dispersion Distribution of the NSD

depending on the location of the extinction becoming significant. Fig. 3.9 shows that due to the clock-wise rotation, when we look down at the NSD from the North Galactic pole, the stars closer to us than the distance to the Galactic centre (near-side of the NSD, \( Y < 0 \) in the coordinate shown in Fig. 3.9) are moving towards the positive \( X \) direction (\( V_X > 0 \)). On the other hand, stars further away from us than the distance to the Galactic centre (far-side of the NSD, \( Y > 0 \)) are moving towards the negative \( X \) direction (\( V_X < 0 \)). Also, although the density is greater at the centre at \( Y = 0 \), the volume that enclose stars with \( V_X = 0 \) is smaller than the volume that enclose stars with non-zero \( V_X \). Hence, as shown in the example of the vertical green arrow pointing toward the Sun in Fig. 3.9, if we could see both side of the NSD stars, we can obtain the two peaks of the \( V_X \) distribution of the stars. However, if we have dust blocking the lights from the stars in the far side of the NSD as shown in the example of the vertical purple arrow pointing toward the Sun in Fig. 3.9, then stars behind the dust cannot be seen and only the stars in front of the dust can be seen. As a result, this gives a one peak distribution of \( V_X \). The right panel of Fig. 3.8 shows the distribution of \( V_X \) at \( X = 0.086 \) kpc, \( Z = -0.005 \) kpc grid which is the symmetric point to \( X = -0.086 \) kpc, \( Z = -0.005 \) kpc grid shown in the left panel. We can see that the expected two peak distribution of \( V_X \) now looks more like a one peak distribution and only the peak of the positive \( V_X \) is seen. This example demonstrates that the \( V_X \) distribution is sensitive to the significance of the extinction and at which distance the dust extinction becomes severe. As we can see in Fig. 3.2, the strength of extinction varies significantly at different positions even in this small region of the sky, which means that the observed \( V_X \) distributions at the different line-of-sight are affected by the different selection functions. To compare such observations with the model, we need to apply the correct selection function for each line-of-sight to the model. However, because the distance of the stars are unknown, it is difficult to construct such selection function as a function of the positions in the sky. Therefore, in this thesis we will not use the velocity distribution of \( V_X \), but will focus on the \( V_Z \) distribution.

The top panels of Figs. 3.10, 3.11 and 3.12 show examples of the \( V_Z \) distri-
3.5. The Vertical Velocity Dispersion Distribution of the NSD

Figure 3.8: Left panel: An example of the $V_X$ distribution at $X = -0.086$ kpc and $Z = -0.005$ kpc grid that appears to be less affected by extinction. Right panel: An example of the $V_X$ distribution at $X = 0.086$ kpc and $Z = -0.005$ kpc grid that appears to miss the significant number of stars in the negative $V_X$ likely due to the extinction blocking the light from the stars in the far side of the NSD like the example of the line-of-sight shown in the purple vertical arrow in Fig. 3.9.

Bution at different grids where some of these are grids close to the centre of the NSD, and some grids close to the outer regions of the NSD. We can see that the $V_Z$ distribution displays a single peak around $V_Z = 0$ and the broad distribution to both positive and negative sides irrespective of the position of the grid. These different grids are at the different positions, and has the different extinction levels. The similar and also symmetric velocity distribution means that the $V_Z$ distribution is less sensitive to the level of extinction. For example, Fig. 3.10 shows the $V_Z$ distribution at the two different symmetric grid positions used in Fig. 3.8 where the $V_X$ distribution shows significantly different shapes of the distribution. The top panels of Fig. 3.10 demonstrate that the $V_Z$ distribution of these two grids is rather similar. This is because $V_Z$ distribution is a vertical oscillation of stars where the vertical oscillations of stars in front side of the disk (at $Y < 0$) is the same for stars at the far side of the disk ($Y > 0$). Therefore, as long as we have a majority of the stars at $Y < 0$, the $V_Z$ distribution should be the same as the case of all the stars in the line-of-sight are observed. Strictly speaking, this is incorrect, because the projected $V_Z$ distribution at $X = X_{los}$ are contributed from the stars at the radius from $R = X_{los}$ to the edge of the NSD, where $R = \sqrt{X^2 + Y^2}$ is the two dimensional radius from
3.5. The Vertical Velocity Dispersion Distribution of the NSD

Figure 3.9: Schematic view of kinematics of the NSD stars when looked down from the Galactic North Pole. Red arrow shows the direction of rotation of stars. The examples of the two line-of-sights are shown by the green and purple arrows pointing toward the Sun’s direction. The distribution of $V_X$ along the green arrow is expected to be the two peak as shown in the bottom left, because the extinction is less severe and the stars in the near-side ($Y < 0$) and farther-side ($Y > 0$) can be observed. On the other hand, the distribution of $V_X$ along the purple arrow is expected to be a single peak as shown in the bottom right, because the extinction is more severe as indicated with the grey clouds highlighted as "Dust and gas" and the stars in the far-side ($Y > 0$) are difficult to be observed. The grey circle indicates the circle with the radius of $R$, which is the smallest NSD radius for the stars with line-of-sight along the green arrow, where $X_{\text{los}}$. 
the Galactic centre (see Fig. 3.9), and the vertical velocity dispersion at different radii of the NSD should be different. The distance limit of the stars observed in a magnitude limit survey like VIRAC2 depend on their intrinsic luminosity and the 3D distribution and strength of the dust extinction, and the resultant \( V_Z \) distribution is a complex mixture of the stars at different radius of the NSD. However, in this thesis, we simply consider that \( V_Z \) distribution are less affected by the extinction and the correct \( V_Z \) probability distribution is obtained in all the grids we consider. Since the \( V_Z \) distribution is symmetric about \( V_Z = 0 \), we analyse only the velocity dispersion, \( \sigma_Z \), to compare with the model.

To compute the velocity dispersion, \( \sigma_{Z,i,j} \), of the \( V_Z \) distribution where \( i \) and \( j \) represents the \( i \)-th grid in the \( X \) direction and \( j \)-th grid in the \( Z \) direction, respectively, we fit the observed velocity distribution with a Gaussian profile with the mean of \( \mu_{Z,i,j} \) and the standard deviation of \( \sigma_{Z,i,j} \). To obtain the posterior probability distribution for the Gaussian parameter of \( \theta = \{ \sigma_{Z,i,j}, \mu_{Z,i,j} \} \), Bayesian statistics is used which is given by

\[
P(\theta_m|D) = \mathcal{L}(D|\theta_m)P(\theta_m)/P(D),
\]

where \( P(D) \) is the model evidence. Since it does not depend on \( \theta_m \), and it is considered to be constant under a single model hypothesis, we ignore the model evidence. For each grid of the \( V_Z \) distribution, we run a Markov Chain Monte Carlo (MCMC) sampling to obtain the posterior distribution of the parameter \( \theta_m \) with the likelihood function, \( \mathcal{L}_{ij}(D|\theta_m) \), which is given as follows

\[
\mathcal{L}_{ij}(D|\theta_m) = \prod_{k}^{N_D} \frac{1}{\sqrt{2\pi(\sigma_{Zerr,i,j,k}^2 + \sigma_{Z,i,j}^2)}} \exp \left( -\frac{(\mu_{Z,i,j} - V_{Z,i,j,k})^2}{2(\sigma_{Zerr,i,j,k}^2 + \sigma_{Z,i,j}^2)} \right),
\]

where \( V_{Z,i,j,k} \) is the \( V_Z \) of the \( k \)-th stars in the \( i,j \) grid, \( N_D \) is the number of the stars in the \( i,j \) grid, and \( \sigma_{Zerr,i,j,k} \) is the observational uncertainty of \( V_Z \) for the \( k \)-th star in each grid. We chose to use flat priors for our parameters that we are fitting as
3.5. The Vertical Velocity Dispersion Distribution of the NSD

follows: $0 < \sigma_Z (\text{km s}^{-1}) < 500$, $-500 < \mu_Z (\text{km s}^{-1}) < 500$. The prior range is chosen to have a large range for the MCMC algorithm to search around and hence avoiding results biased by the prior assumption. We use emcee (Foreman-Mackey et al., 2013) for our MCMC sampler with 10 walkers with each walker having 1000 steps for the MCMC sampler. We chose to discard the first 500 steps as our ‘burn-in’.

The top panels of Figs. 3.10, 3.11 and 3.12 also show a Gaussian profile with the best-fit mean and standard deviation within the grid computed by the MCMC for the $V_Z$ data shown in the blue filled histogram. It can be seen that the fit is poor as the dispersion of the Gaussian is overestimated. This could be due to the $V_Z$ distribution not well described with a Gaussian profile, because of the large tail of the high absolute value of $V_Z$. These outliers are unlikely a part of the NSD, but likely a contamination of stars in the Galactic bar component. Indeed, the effect of increase in velocity dispersion from the Galactic bar was confirmed by Sormani et al. (2022). Sormani et al. (2022) showed that the observed velocity distribution at the direction of the NSD cannot be described purely by the NSD kinematics. Then, Sormani et al. (2022) used a Galactic bar model from Portail et al. (2017) and showed that the increased observed velocity dispersion with radius can be explained with the increasing contribution of the Galactic bar contamination. In particular, the top left panel of Fig. 3.10 shows a very broad Gaussian profile as the best fit function. This is because the non-negligible number of stars with $|V_Z| > 100$ km s$^{-1}$ exist in this grid.

To remove the outliers of the high $|V_Z|$ stars, we use sigma clipping method. Sigma clipping is an iterative process as follows: first the data are fitted with a Gaussian profile with the mean, $\mu$, and standard deviation, $\sigma$. Then, the data that is outside of the mean $\pm n\sigma$ are removed, and the remaining data are fitted with a Gaussian again. This process is then repeated until $\mu$ and the $\sigma$ values converges. We can control the size of the clipping by selecting the parameter value of $n$. Note that we are not taking into account the uncertainty of the individual $V_Z$ of each star for simplicity as uncertainties is more difficult to handle in this process. Figs. 3.10,
3.5. The Vertical Velocity Dispersion Distribution of the NSD

Figure 3.10: Examples of $V_z$ distribution (blue filled histogram) at different grids overplotting with a best fit Gaussian profile (orange line). $N_s$ is the number of stars in a grid. Top panels: the observed $V_z$ distribution for all the stars in each grid. Second panels: the $V_z$ distribution of stars in each grid after applying $2\sigma$ sigma clipping. Third panels: the $V_z$ distribution of stars in each grid after applying $2.25\sigma$ sigma clipping. Bottom panels: the $V_z$ distribution of stars in each grid after applying $2.5\sigma$ sigma clipping.
3.5. The Vertical Velocity Dispersion Distribution of the NSD

3.11 and 3.12 show some examples of the $V_Z$ distribution histogram where the $V_Z$ data is clipped outside of $2\sigma$, $2.25\sigma$ and $2.5\sigma$, i.e. applying $n=2$, $2.25$ and $2.5$, from the mean at different grids. We have then fitted the $V_Z$ distribution after sigma clipping is applied at each grid with a Gaussian profile with MCMC sampling as described above. The resultant best fit Gaussian profile is shown with the orange lines in Figs. 3.10, 3.11 and 3.12. We can see that for $2.5\sigma$ sigma clipping, the $V_Z$ distribution histogram does not have a good fit with the Gaussian profile because there are excess number of stars at higher $|V_Z|$ compared to the Gaussian profile, and the contamination of the stars in the bar component with higher $V_Z$ still remains. As a consequence, it leads to the velocity dispersion to be overestimated. We then applied the same procedure with more aggressive clipping with $2\sigma$ and $2.25\sigma$ sigma clipping which are shown respectively in the second and third panels of Figs. 3.10, 3.11 and 3.12. Both of these give a good fit. However, $2\sigma$ sigma clipping result shows an unnecessary over-cut of the data because the Gaussian peak is larger than the $V_Z$ distribution histogram. This as a consequence leads to an underestimation of the velocity dispersion. Figs. 3.10, 3.11 and 3.12 shows that $2.25\sigma$ sigma clipping provides the most reasonable single Gaussian fit to the data irrespective of the positions of the grid. Fig. 3.13 shows an example marginalized posterior probability distribution of the parameters $\sigma_Z$ and $\mu_Z$ at $X = 0.025$ kpc and $Z = 0.005$ kpc grid after $2.25\sigma$ sigma clipping which is shown in the third top left panel of 3.11. Clearly, Fig. 3.13 shows a reasonable single peak probability distribution. We then take the mean of the posterior of $\sigma_Z$ parameter as the best fit velocity dispersion, and we take standard deviation of the posterior of $\sigma_Z$ parameter for the uncertainty. The mean of the posterior of $\sigma_Z$ parameter for this grid is $\sigma_Z = 57.2$ km s$^{-1}$ with uncertainty of about 0.5 km s$^{-1}$. The mean of the posterior of $\mu_Z$ parameter for this grid is $\mu_Z = 1.9$ km s$^{-1}$ with uncertainty of about 0.7 km s$^{-1}$.

As mentioned in Section 3.4, we focus on one quarter of the distribution at $X > 0$ and $Z > 0$ because we consider that the NSD is an axisymmetric disk, and their projected properties are symmetric about both $X$ and $Z$ axes. Taking an advantage of this assumption of symmetry, to maximise the signal of the information we sum
3.5. The Vertical Velocity Dispersion Distribution of the NSD

Figure 3.11: Examples of $V_Z$ distribution (blue filled histogram) at different grids overplotting with a best fit Gaussian profile (orange line). $N_s$ is the number of stars in a grid. Top panels: the observed $V_Z$ distribution for all the stars in each grid. Second panels: the $V_Z$ distribution of stars in each grid after applying $2\sigma$ sigma clipping. Third panels: the $V_Z$ distribution of stars in each grid after applying $2.25\sigma$ sigma clipping. Bottom panels: the $V_Z$ distribution of stars in each grid after applying $2.5\sigma$ sigma clipping.
3.5. The Vertical Velocity Dispersion Distribution of the NSD

Figure 3.12: Examples of $V_Z$ distribution (blue filled histogram) at different grids overplotting with a best fit Gaussian profile (orange line). $N_s$ is the number of stars in a grid. Top panels: the observed $V_Z$ distribution for all the stars in each grid. Second panels: the $V_Z$ distribution of stars in each grid after applying 2 $\sigma$ sigma clipping. Third panels: the $V_Z$ distribution of stars in each grid after applying 2.25 $\sigma$ sigma clipping. Bottom panels: the $V_Z$ distribution of stars in each grid after applying 2.5 $\sigma$ sigma clipping.
3.5. The Vertical Velocity Dispersion Distribution of the NSD

Figure 3.13: Marginalized posterior probability distribution of the parameters of the Gaussian distribution when fitted to the $V_Z$ distribution data at $X = 0.025$ kpc and $Z = 0.005$ kpc grid after 2.25σ sigma clipping.

up the $V_Z$ data at all 4 symmetric grid positions. For example, when we compute the velocity dispersion at $X = 0.025$, $Z = 0.005$, we combine all $V_Z$ data at all 4 grids of $X = \pm 0.025$, $Z = \pm 0.005$. We then apply the process of 2.25σ sigma clipping and MCMC fit of the Gaussian profile to obtain the velocity dispersion and their uncertainties. Fig. 3.14 shows the two dimensional distribution of $V_Z$ velocity dispersion at the different positions of the $X - Z$ grid. We can see that $\sigma_Z$ is highest at the central region of the NSD and decreases smoothly as increase in the $X$. However, the $\sigma_Z$ stays high as increase in $Z$, which is an unexpected feature for a stable disk. This feature can be seen more clearly in Fig. 3.15. Fig. 3.15 shows
3.6. The Rotation Curve of the NSD

The rotation curve of the NSD reveals an increase in velocity from about 64 km s\(^{-1}\) to 66 km s\(^{-1}\) at different distances from the center. This increase occurs between about \(X = 0.03\) kpc and \(X = 0.07\) kpc for \(Z = 0.045\) kpc and the velocity dispersion \(\sigma_Z\) stays high at larger \(X\), unlike the velocity dispersion profile at lower \(Z\), which decreases with increasing \(X\). The increase is about 3\%, which could be due to the contamination of Galactic bar stars and/or the NSD consists of multiple populations with different kinematics. Since the change of the value is relatively small, we use the obtained velocity dispersion as it is. However, we will still keep this problem in mind and discuss it more when we interpret the results of the comparison between the data and the model. It is important to note that the uncertainty for \(\sigma_Z\) is small. For example, the minimum value of \(\sigma_Z\) in a grid is about 43.4 km s\(^{-1}\), whereas the highest uncertainty for \(\sigma_Z\) is about 1.0 km s\(^{-1}\).

Note that the stars selected for the line-of-sight velocity analysis are of different populations. Their age distributions are different from AGBb stars used for the surface density distribution and the vertical velocity dispersion distribution. The NSD is likely to consist of the multiple populations of the stars with different age populations having different kinematics and/or spatial distribution (e.g. Nogueras-Lara et al., 2023). Hence, strictly speaking we need to take into account the effects of the multiple population. However, for simplicity we consider that the NSD is overall able to be described with a single component.

3.6 The Rotation Curve of the NSD

In addition to the use of the observed velocity dispersion from the VIRAC2 proper motion data, we will also compare the observed mean line-of-sight velocity with an analytical dynamical model of the NSD with ULDM of different particle masses to test the existence of the ULDM soliton core in the Galactic centre. As discussed in Section 3.2.2, Schönhrich et al. (2015) found the rotation of the NSD from the line-of-sight velocity of the APOGEE data. Like the rotation curve of the external galaxies, the mean line-of-sight velocity profile provides the information of the rotation curve. The rotation is an important indicator for the total dynamical mass, and it is crucial to include the mean rotation curve in the observational constraints.
3.6. The Rotation Curve of the NSD

Figure 3.14: $\sigma_z$ in a two dimensional grid with number of grids in $X$ and $Z$ direction being 10 and 5, respectively.

to the dynamical model. In this section, we explain how we obtain the mean line-of-sight velocity at different positions of the NSD from the APOGEE DR17 data for the stars selected in Section 3.2.2. As mentioned in Section 3.4, we focus on one quarter of the distribution at $X > 0$ and $Z > 0$. To apply this concept to the selected stars of the APOGEE DR17 data whilst maximising the signal of the information, we map the stars at $X < 0$ or $Z < 0$ to its symmetric points at $X > 0$ and $Z > 0$, by taking $(X_{\text{new}}, Z_{\text{new}}) = (|X|, |Z|)$ and $V_{\text{LOS}}^*, V_{\text{LOSnew}} = \text{sign}(X)V_{\text{LOS}}^*$. Fig. 3.16 shows the results after this remapping of the $V_{\text{LOS}}$ data. Since the selected stars from the APOGEE DR17 is small (see Section 3.2.2), we used a smaller grid size of 5 grid in the $X$-direction and no division in the $Z$-direction within our focused region of $0 < X \lesssim 0.1, 0 < Z \lesssim 0.05$.

To assess if there are outliers such as contamination of Galactic bar stars within our selected stars of the APOGEE DR17 data, we apply the same assessment process as Section 3.5. The top panels of Fig. 3.17 show examples of the $V_{\text{LOSnew}}$ distribution at different grids. We can see from the top panels of Fig. 3.17 that the $V_{\text{LOSnew}}$ distribution displays a peak with mean about 24.3 km s$^{-1}$ and 56.5 km s$^{-1}$,
3.6. The Rotation Curve of the NSD

Figure 3.15: Vertical velocity dispersion as a function of $X$ at different positions in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars).

respectively. However, $V_{\text{LOSnew}}$ does not have a tail distribution like a Gaussian distribution because the number of stars in each grid is small.

To compute the mean line-of-sight velocity, $\mu_{\text{LOS}}$, we use the same Bayesian statistics method as described in Section 3.5. The top panels of Fig. 3.17 also show a Gaussian profile with the best-fit mean and standard deviation within the grid computed by the MCMC for the $V_{\text{LOSnew}}$ data shown in the blue filled histogram. The top panels of Fig. 3.17 show that the fit is poor as the peak Gaussian does not overlap with the peak of the blue filled histogram. This is due to the stars with line-of-sight velocity of $V_{\text{LOSnew}} < -50$ km s$^{-1}$, which is very far off from the mean. These stars are most likely not part of the NSD but rather a contamination of Galactic bar or halo stars.

To remove the outliers of the high $V_{\text{LOSnew}}$ stars, we again use the sigma clipping method. Fig. 3.17 shows some examples of the $V_{\text{LOSnew}}$ distribution histogram.
3.6. The Rotation Curve of the NSD

Figure 3.16: The distribution of the APOGEE DR17 selected in Section 3.2.2 in two dimension. The filled circles are colour coded by $V_{\text{LOSnew}}$.

where the $V_{\text{LOSnew}}$ data is clipped outside of $2.25\sigma$, $2.5\sigma$ and $2.75\sigma$ from the mean at different grids. We have then used the MCMC sampling as described in Section 3.5 to fit the $V_{\text{LOSnew}}$ distribution at each grid with a Gaussian profile. The resultant best fit Gaussian profile is shown with the orange lines in Fig. 3.17. We can see that for $2.75\sigma$ sigma clipping, the $V_{\text{LOSnew}}$ distribution histogram has slightly poorer fit with the Gaussian profile at both $X = 0.05$ kpc and $X = 0.091$ kpc due to excess number of stars at negative $V_{\text{LOSnew}}$, and as a consequence it leads to the mean of the Gaussian profile not overlapping with the peak of the blue filled histogram. Furthermore, Fig. 3.18 shows $\mu_{\text{LOS}}$ evaluated at all 5 grids after $2.75\sigma$ clipping, where it can be seen that the rate of change of the mean line-of-sight is not smooth as increase in distance because there is a sharp decrease of the mean line-of-sight velocity at about $X = 0.05$ kpc. The $V_{\text{LOSnew}}$ distribution for $2.75\sigma$ sigma clipping at $X = 0.05$ kpc can be seen more closely in Fig. 3.17. The sharp decrease of the mean line-of-sight velocity at about $X = 0.05$ kpc is due to many stars with velocities of $V_{\text{LOSnew}} < -50$ km s$^{-1}$. Due to this, we reject to use $2.75\sigma$ sigma clipping. From Fig. 3.17, we can see that the mean of $V_{\text{LOSnew}}$ for $2.25\sigma$
3.6. The Rotation Curve of the NSD

Figure 3.17: Examples of $V_{\text{LOSnew}}$ distribution (blue filled histogram) at different grids overplotting with a best fit Gaussian profile (orange line). $N_s$ is the number of stars in a grid. Top panels: the observed $V_{\text{LOSnew}}$ distribution for all the stars in each grid. Second panels: the $V_{\text{LOSnew}}$ distribution of stars in each grid after applying 2.25$\sigma$ sigma clipping. Third panels: the $V_{\text{LOSnew}}$ distribution of stars in each grid after applying 2.5$\sigma$ sigma clipping. Bottom panels: the $V_{\text{LOSnew}}$ distribution of stars in each grid after applying 2.75$\sigma$ sigma clipping.
Figure 3.18: Black dots: the line-of-sight velocity distribution of the APOGEE DR17 selected in Section 3.2.2. Orange dots with error bars: the mean line-of-sight velocity evaluated after $2.75\sigma$ sigma clipping at 5 different grids along the $X$-direction.

Sigma clipping is similar to $2.5\sigma$ sigma clipping as it is within the uncertainties of the mean for $2.5\sigma$ sigma clipping. For example, the mean for $2.25\sigma$ sigma clipping at $X = 0.091$ kpc grid is $80.4 \pm 7.1$ km s$^{-1}$, and the mean of $2.5\sigma$ sigma clipping at the same grid is $82.3 \pm 7.2$ km s$^{-1}$. Fig. 3.19 shows the mean line-of-sight velocity for $2.25\sigma$ and $2.5\sigma$ sigma clipping at most of the grids is about the same. Note that because they overlap each other, to make the red and green dots visible, the mean line-of-sight velocity for $2.5\sigma$ in Fig. 3.19 is shifted towards the right by $X = 0.005$ kpc so that the similarities and the difference between the mean line-of-sight velocity for $2.25\sigma$ sigma clipping and $2.5\sigma$ sigma clipping can be seen more clearly. Since the results are similar we pick $2.5\sigma$, because it samples slightly more stars. Fig. 3.20 shows an example marginalized posterior probability distribution of the parameters $\sigma_{LOS}$ and $\mu_{LOS}$ when applying MCMC sampling to the data at $X = 0.05$ kpc grid after $2.5\sigma$ sigma clipping which is shown in the third top left
Figure 3.19: Black dots: the distribution of the APOGEE DR17 selected in Section 3.2.2. Green dots with error bars: the mean line-of-sight velocity evaluated after $2.25\sigma$ sigma clipping at 5 different grids along the $X$-direction. Red dots with error bars: the mean line-of-sight velocity evaluated after $2.5\sigma$ sigma clipping at 5 different grids along the $X$-direction. Because they overlap each other, to make the red and green dots visible, the mean line-of-sight velocity for $2.5\sigma$ is shifted towards the right by $X = 0.005$ kpc so that the similarities and the difference between the line-of-sight velocity for $2.25\sigma$ and $2.5\sigma$ can be seen more clearly.

Panel of Fig. 3.17, where $\sigma_{\text{LOS}}$ and $\mu_{\text{LOS}}$ is the line-of-sight velocity dispersion and mean line-of-sight velocity in the grid, respectively. Clearly, Fig. 3.20 shows a reasonable single peak probability distribution for both parameters of $\sigma_{\text{LOS}}$ and $\mu_{\text{LOS}}$. We then take the mean of the posterior of $\mu_{\text{LOS}}$ parameter as the best fit mean, and we take standard deviation of the posterior of $\mu_{\text{LOS}}$ parameter for the uncertainty. The mean of the posterior of $\mu_{\text{LOS}}$ parameter for this grid is $\mu_{\text{LOS}} = 62.6$ km s$^{-1}$ with uncertainty of about 6.5 km s$^{-1}$. In Fig. 3.19 we can see that although $\mu_{\text{LOS}}$ at each grid increases with distance from the Galactic centre, the rate of increase slowly decreases with distance and $\mu_{\text{LOS}}$ reaches to about 80 km s$^{-1}$ at around $X =$
3.6. The Rotation Curve of the NSD

Figure 3.20: Marginalized posterior probability distribution of the parameters of the Gaussian distribution when fitted to the $V_{LOS\text{new}}$ distribution data at $X = 0.05$ kpc.

Note that we will compare the dynamical model with the density and $V_Z$ velocity dispersion at $10 \times 5$ grids in $0 < X \lesssim 0.1$ kpc and $0 < Z \lesssim 0.05$ kpc. However, we have the mean $V_{LOS\text{new}}$ data at $5 \times 1$ grids. If we compare the mean line-of-sight velocity with the dynamical model with this amount of grids, the constraint from the rotation curve data will be less significant than the density and $V_Z$ velocity dispersion constraints. To have equal level of constraints for the likelihood as the constraints from the surface density and $\sigma_Z$, we make $10 \times 5$ grids within $0 < X \lesssim 0.1$ kpc and $0 < Z \lesssim 0.05$ kpc for the $V_{LOS\text{new}}$ as can be seen in Fig. 3.21. Fig. 3.21 shows the allocated mean $V_{LOS\text{new}}$ at the different positions in 0.10 kpc as can also be seen in Schönrich et al. (2015).
3.6. The Rotation Curve of the NSD

Figure 3.21: $\mu_{\text{LOS}}$ in a two dimensional grid with number of grids in $X$ and $Z$ direction being 10 and 5, respectively.

Figure 3.22: Blue dots with error bars showing the mean line-of-sight velocity with 10 grids along the $X$-direction.
the $X - Z$ grid. We assign the same mean $V_{\text{LOSnew}}$ to $2 \times 5$ grids within $\Delta X \sim 0.02$ and $\Delta Z \sim 0.05$ positions. This means that we compare the single mean observed $V_{\text{LOSnew}}$ value with the different mean $V_{\text{LOSnew}}$ from the model at the $2 \times 5$ grid positions. We assume that the mean $V_{\text{LOSnew}}$ does not change too significantly within $\Delta X \sim 0.02$ kpc and $\Delta Z \sim 0.05$ kpc grid. We discuss about this comparison between the model and observation in the next chapter. Fig. 3.22 shows the resultant line-of-sight velocity for $2.5\sigma$ sigma clipping as a function of $X$ where the mean line-of-sight velocity is increasing as increase in $X$. Because of the above mentioned allocation of the mean $V_{\text{LOSnew}}$ to the $2 \times 5$ grids, every two grids from $X = 0$ in the $X -$ direction have the same mean $V_{\text{LOSnew}}, \mu_{\text{LOS}}$. 

Chapter 4

Constraining Ultra Light Dark Matter with the Stellar Kinematics in the Nuclear Stellar Disk

4.1 Introduction

In Chapter 3, we explain how we analyse the surface stellar density distribution and the velocity dispersion distribution from the updated version of the VISTA Variables in the Vía Láctea Infrared Astrometric Catalogue data (VIRAC2), as well as the line-of-sight velocity data of Apache Point Observatory Galactic Evolution Experiment Data Release 17 (APOGEE DR17) in the Galactic centre region within about 100 pc. In this chapter, we fit the observational data with the theoretical model by using the same distribution function model as what is used in Sormani et al. (2022), and examine if or not there is any sign of the existence of ultra light dark matter (ULDM) in the observational data of stellar density and kinematics in the Galactic centre. Although Sormani et al. (2022) compare the kinematics of individual stars in the Galactic centre with the model, we compare the model with the mean observed properties such as the surface density, velocity dispersion and the line-of-sight velocity at different grid positions introduced in Chapter 3. As described in Section 5 of Sormani et al. (2022), they took into account both the nuclear stellar disk (NSD) and the bar components to fit the data within the Galactocentric radii of
30 \lesssim R \lesssim 300 \text{ pc}. In our work, we assume that the central region that we focus is dominated by the NSD stars, and our sigma clipping process in Chapter 3 discards the outlier velocity stars effectively exclude the bar/halo stars. In addition, to test the existence of the ULDM, we add the ULDM soliton core model as described in Section 4.2 to their distribution function model. In Section 4.2, we describe how we add the ULDM soliton core to the distribution function model of the NSD, and how we compare the model with the observational data that we obtain in Chapter 3. Then in Section 4.3 we show the results for simultaneously fitting the surface stellar density distribution and the velocity dispersion distribution from the VIRAC2 data, and line-of-sight velocity data of APOGEE DR17 to constrain the ULDM particle mass. Finally, we discuss our conclusions in Section 4.4.

### 4.2 Method

In terms of the gravitational potential, our model includes four components: supermassive black hole (SMBH), nuclear star cluster (NSC), NSD and dark matter. However, we model the distribution function of the NSD only to fit the observational data, since the NSD significantly starts to dominate at \( r > 10 \text{ pc} \) with respect to the NSC and SMBH (see e.g. Fig. 14. of Gallego-Cano et al., 2018) where we focus on in this chapter. This means that we treat the NSC and SMBH as a fixed external potential. Since the NSC is dominant within \( r < 10 \text{ pc} \), there is a possibility that our data within \( r < 10 \text{ pc} \) are contaminated by NSC stars. To remove the possible contamination of stars in the NSC, we do not use the observational data within the central 10 pc when we compare with the model. As highlighted in Fig. 4.1, we ignore the observational data at the one grid in the bottom left corner.

The total mass, \( M_{\text{tot}}(<r) \), in the Galactic centre is given by \( M_{\text{tot}}(<r) = M_{\text{BH}} + M_{\text{NSC}}(<r) + M_{\text{DM}}(<r) + M_{\text{NSD}}(<r) \), where \( M_{\text{BH}} \), \( M_{\text{NSC}}(<r) \), \( M_{\text{DM}}(<r) \) and \( M_{\text{NSD}}(<r) \) are the mass of the SMBH, NSC, dark matter and the NSD within the radius of \( r \), respectively. The mass of the SMBH and the NSC is set to be fixed values of \( M_{\text{BH}} = 4.261 \times 10^6 \, M_\odot \) (Gravity Collaboration et al., 2020) and \( M_{\text{NSC}} = 6.1 \times 10^7 \, M_\odot \) (Chatzopoulos et al., 2015), respectively. It is important to
note that the black hole mass could be uncertain due to systematic uncertainties, as we discussed in Section 2.4.2. However, the change in the black hole mass has negligible impact on our results, because we ignore the data within 10 pc whilst the influence of the SMBH on the total gravitational potential is important only within the central 1 pc. We also fix the total mass and mass profile of the NSC. As discussed in Chapter 2, the NSC is well studied and kinematically a relatively simple system. Hence, we assume that the NSC mass distribution is well determined by the previous studies for simplicity. Note that Sormani et al. (2022) make these assumptions as well.

Following Sormani et al. (2022), we use the Action-based Galaxy Modelling Architecture (AGAMA) to model the NSD, as AGAMA is capable of generating a self-consistent distribution function model under the external gravitational potentials, and their built-in external potential profiles are suitable to describe the SMBH, NSC and dark matter mass distribution including the ULDM soliton core. The NSD will be assumed to be axisymmetric and in dynamical equilibrium. We define the NSD using quasi-isothermal distribution function, which is a function of action integrals, and more detailed description is provided in Section 4.2.3. If dark matter in the Universe is ULDM in the mass range between $10^{-21.0} \text{ eV}$ and $10^{-22.0} \text{ eV}$, a soliton core created by such ULDM should be able to have significant influence on kinematics of the NSD. Therefore our observational data should be able to constrain the allowed particle mass range of ULDM. In the following subsections, we describe the gravitational potential profiles we assume for SMBH in Section 4.2.1 and NSC in Section 4.2.2, the distribution function model for the NSD in Section 4.2.3 and density profiles of dark matter in Section 4.2.4. Section 4.2.5 describes our fitting methodology. Our model is basically following what is used in Sormani et al. (2022), and the example code in AGAMA package, called example_mw_nsd.py.

### 4.2.1 Supermassive Black Hole

SMBH is a point source of the gravitational potential as described in Section 2.2. However, in AGAMA, there is no built-in package to describe a point mass. Hence, in our model, the gravitational potential of the SMBH is described by the Plummer
4.2. Method

Figure 4.1: The number density distribution of the stars obtained in Chapter 3. The colour bar indicates the number of stars in each approximately sized $0.01 \times 0.01$ kpc grid. The black square grid represents the central 10 pc that is removed from our model fitting.

Profile in AGAMA which is given by

$$\phi(r) = -\frac{M_{\text{BH}}}{\sqrt{r^2 + a_{\text{BH}}^2}},$$  \hspace{1cm} (4.1)

where $M_{\text{BH}}$ is the mass of the SMBH, $r$ is the radius from the black hole and $a_{\text{BH}}$ is the scale radius of $a_{\text{BH}} = 0.0001$ kpc, which is small enough not to affect the model, but large enough to avoid the numerical instability.

4.2.2 NSC Density Profile

As mentioned above, the NSC will be a fixed component meaning that it will affect the stars in the NSD externally. We assume an axisymmetric model of the NSC defined by Chatzopoulos et al. (2015) and Sormani et al. (2022):

$$\rho_{\text{NSC}}(R,z) = \frac{(3 - \gamma)M_{\text{NSC}}}{4\pi q} \frac{a_0}{a^\gamma(a + a_0)^{4-\gamma}},$$  \hspace{1cm} (4.2)

with

$$a(R,z) = \sqrt{R^2 + \frac{z^2}{q^2}},$$  \hspace{1cm} (4.3)
where \(a\) is the mean 3D radius, \(a_0\) is the scale radius, \(\gamma\) controls the exponent of the NSC density profile, \(q\) is the axial ratio, \(R\) is the projected radius and \(z\) is the height. Following Sormani et al. (2022) we choose and fix \(a_0 = 5.9\) pc, \(\gamma = 0.71\) and \(q = 0.73\) (Chatzopoulos et al., 2015; Sormani et al., 2022). The NSC has no free parameters to be fitted since it is treated as a fixed external component.

### 4.2.3 Distribution Function for the Nuclear Stellar Disk

We describe the NSD using the quasi-isothermal distribution functions in AGAMA which is given by (Vasiliev, 2019):

\[
f(J) = \sum \frac{\Omega}{2\pi^2\kappa^2} \times \frac{\kappa}{\sigma_t^2} \exp\left(-\frac{\kappa J_r}{\sigma_t^2}\right) \times \frac{\nu}{\sigma_Z^2} \exp\left(-\frac{\nu J_Z}{\sigma_Z^2}\right)
\times \begin{cases} 
1 & \text{if } J_\phi \geq 0, \\
\exp\left(\frac{2\Omega J_\phi}{\sigma_t^2}\right) & \text{if } J_\phi < 0,
\end{cases}
\tag{4.4}
\]

where \(\kappa, \Omega\) and \(\nu\) are radial, angular and vertical frequencies, respectively, \(J_r\) is the radial action describing the radial oscillations, \(J_Z\) is the vertical action which describes the oscillations along the \(Z\) direction and \(J_\phi\) is the azimuthal action.

\(\sigma_t(R_c)\) and \(\sigma_Z(R_c)\) are the radial velocity dispersion and velocity dispersion in the \(Z\) direction, respectively as a function of the guiding radius, \(R_c\), i.e. the radius of the circular orbit with the same angular momentum. These velocity dispersions are described with:

\[
\sigma_t^2(R_c) \equiv \sigma_{t,0}^2 \exp\left(-\frac{2R_c}{R_{\sigma_t}}\right) + \sigma_{\min}^2, \tag{4.5}
\]

\[
\sigma_Z^2(R_c) \equiv 2H_{\text{disk}}^2 \nu^2(R_c) + \sigma_{\min}^2, \tag{4.6}
\]

with

\[
\sum(R_c) \equiv \rho_N \exp\left(-\frac{R_c}{R_{\text{disk}}}\right), \tag{4.7}
\]

where \(\sum(R_c)\) is the surface density of the NSD as a function of \(R_c\), \(\rho_N\) is the normalization parameter for the mass density, \(R_{\text{disk}}\) is the radial scale length of the NSD,
4.2. Method

$H_{\text{disk}}$ is the vertical scale height of the NSD, $\sigma_{r,0}$ is the normalization parameter for the radial velocity dispersion, $R_{\sigma,r}$ is the radial scale of the radial velocity dispersion profile, and $\sigma_{\text{min}}$ is the minimum value of the velocity dispersion.

This model provides the distribution function. The distribution function provides all the moments of the system, such as the velocity dispersion and line-of-sight velocities of stars at different positions, which are used to compare with the observed velocity data described in Section 3.5 and Section 3.6. To compare with the observational data of the stellar surface density distribution in Section 3.4, we introduce another fitting parameter of a scale factor, “$N_m$”, to scale the surface density, to the number density, used in Section 3.4, as $\Sigma_{\text{mod}}(X_i, Z_i) = N_m \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(X_i, Y, Z_i, v) dY dv$. Also, we fit the mass of the NSD, $M_{\text{NSD}}$, to control $\rho_N$. Furthermore, $R_{\text{disk}}, H_{\text{disk}}, \sigma_{r,0}$ and $R_{\sigma,r}$ control surface density, $\Sigma(X_i, Z_i)$, $\sigma_Z(X_i, Z_i)$ and $\mu_{\text{LOS}}(X_i)$ and therefore, we also treat these as fitting parameters.

4.2.4 Density Profiles of Dark Matter

In a conventional cold dark matter scenario, the dark matter profile is well described by a Navarro-Frenk-White (NFW, Navarro et al., 1997) density profile, which is shown in equation (2.9). If the dark matter consists of ULDM, it is known to follow a NFW profile at larger radii. However, in addition, there is an excess of the mass due to soliton core at the central region of a galaxy, which depends on the particle mass of ULDM as described in Section 2.2.4. The density profile of the soliton core as shown by equation (2.11) can be described by the parameterised spheroidal density model in AGAMA which is given by (Vasiliev, 2019):

$$\rho = \rho_{\text{norm}} \left( \frac{r}{r_s} \right)^{-\gamma} \left[ 1 + \left( \frac{r}{r_s} \right)^{\frac{\alpha}{\beta}} \right]^{\frac{\alpha}{\beta}} \exp \left[ - \left( \frac{r}{r_{\text{cut}}} \right)^{\xi} \right],$$

where $\gamma$ and $\beta$ are the inner and outer power law respectively, $\xi$ controls the strength of the radial cut, $r_{\text{cut}}$ is the outer cut off radius, $\rho_{\text{norm}}$ and $r_s$ are the normalization parameter and scale radius, respectively. This equation can be matched with equation (2.11) by
\[ \rho_{\text{norm}} = 0.091^{-2} \times 0.019 m_{\text{DM}}^{-2} \times r_s^{-4}, \]  
(4.9)

\[ r_s = 0.091^{-1/2} \times 1.6 M_h^{-1/3} [m_{\text{DM}}^{-1} / (10^{-22} \text{ eV})], \]  
(4.10)

where \( M_h \) is the virial mass of the halo with value of \( M_h = 1.4 \times 10^{12} \text{ M}_\odot \) (McMillan, 2017). \( M_h \) has an impact to the soliton core radius which will then affect the density profile of the soliton core. The relationship between the density of the soliton core and \( M_h \) is \( \rho_{\text{DM},s} \propto M_h^{4/3} \) within the core radius. This means that a larger Milky Way mass leads to a denser soliton core. In this thesis, for simplicity and to focus on the impact of the dark matter particle mass, we do not test our results with other possible values of \( M_h \), such as a lower \( M_h = 9 \times 10^{11} \text{ M}_\odot \) as suggested by Vasiliev et al. (2021), which is an objective to be tested in our future work. We set \( \xi \) and \( r_{\text{cut}} \) to 2 and 150 kpc, respectively, so that there will be no influence to the density profile within 200 pc, where we focus in this chapter. By setting \( r_{\text{cut}} = 150 \text{ kpc} \), the exponential term in equation (4.8) becomes approximately 1 and therefore not affecting the density profile of the soliton core. We then set \( \gamma, \beta \) and \( \alpha \) to 0, 16 and 2, respectively, and substitute equation (4.9) and equation (4.10) in to equation (4.8) to obtain the density profile of the soliton core described in equation (2.11).

The dark matter density profile is described as a combination of the NFW profile and the soliton core model described in equation (4.8). We assume \( \rho_0 = 0.00854 \text{ M}_\odot \text{ pc}^{-3} \) and therefore the NFW profile has a negligible contribution to the total mass within 200 pc. The only parameter here that is not fixed and included as a fitting parameter is the dark matter particle mass, \( m_{\text{DM}} \), which is responsible for the structure of the soliton core. If the dark matter is in a ULDM regime, the soliton core becomes significant at small radii, as shown in Fig. 1.7. On the other hand, if the dark matter is not ULDM, but more conventional CDM, or ULDM with too low or high particle mass, the soliton core becomes negligible within 200 pc.
4.2. Methodology

As mentioned above, we generate a model galaxy composed of the SMBH, NSC, NSD and dark matter. The distribution function of the NSD (equation 4.4) is constructed self-consistently under the gravitational potential of a combined sum of contribution of these components by AGAMA. Binney (2014) has introduced an iterative procedure to obtain a self-consistent model. Sormani et al. (2022) follows this procedure to obtain a self-consistent NSD and for this reason we also follow the same method. For a NSD distribution function to be self-consistent, the gravitational potential of the NSD that we measure through Poisson equation has to match with the gravitational potential of the NSD model computed by AGAMA. To be more clear, we here explain the iterative process step-by-step. First, we introduce an initial guess of the NSD gravitational potential, \( \phi_{\text{NSD},0} \). Here we assume the total potential to be \( \phi_0 = \phi_{\text{NSD},0} + \phi_{\text{NSC}} + \phi_{\text{DM}} + \phi_{\text{SMBH}} \). Then, we use \( \phi_0 \) to compute the distribution function \( f(J)_1 \). From \( f(J)_1 \), we obtain the 3D density \( \rho_{\text{NSD},1} \), where \( \rho_{\text{NSD},1} \) is substituted in to Poisson equation to obtain the new NSD potential, \( \phi_{\text{NSD},1} \). This should be different from \( \phi_{\text{NSD},0} \) meaning that the model is not self-consistent. Then, the new \( f(J)_2 \) is computed with \( \phi_{\text{NSD},1} \). Again, we can compute the new NSD potential \( \phi_{\text{NSD},2} \) from the distribution function of \( f(J)_2 \). Then, we can compute the new distribution function under \( \phi_{\text{NSD},2} \) and subsequently \( f(J)_3 \). This iterative process continues for 5 times to create a self-consistent model.

Once we construct the distribution function of the NSD, we compute the projected surface density, velocity dispersion and mean velocity at \((X, Z)\) as defined in Section 3.3. We assume that the NSD is perfectly edge on, and place the mid-plane of the NSD at \( Z = 0 \) in our coordinate system. Then, from the distribution function of the NSD model, we compute the surface density, \( \Sigma_{\text{mod}} \), the vertical velocity dispersion, \( \sigma_{Z,\text{mod}} \), and the mean line-of-sight velocity, \( \mu_{\text{LOS,mod}} \), at the grid positions used in Chapter 3. Then, we compare these model results with the observational data obtained in Chapter 3 at the centre of the grid positions, except the grid within 10 pc from the centre (see above and Fig. 4.1). Strictly speaking, from the model distribution function, we should compute the mean properties within each grid by
integrating the distribution function, to compare the model with our observational data which is the averaged value within a grid. For example, to obtain the density within the grid, we need to integrate the distribution function within the grid and divide by the area of the grid, rather than computing the density at the centre of the grid. However, for simplicity in this study we assume the density, velocity dispersion and mean velocity at the centre of the grid is similar to the mean properties within the grid.

We compare the surface stellar density distribution and the velocity dispersion distribution from the VIRAC2 data, and line-of-sight velocity data of APOGEE DR17 to the model and obtain the marginalised posterior probability distribution function for the fitting parameters, \( \theta_m \). The marginalised probability distribution function is obtained using Bayesian statistics which is given by

\[
P(\theta_m|D) = \mathcal{L}(D|\theta_m)P(\theta_m)/P(D),
\]

where \( D \) represents the data, which are the surface density, \( \Sigma \), vertical velocity dispersion, \( \sigma_Z \), and the mean line-of-sight velocity, \( \mu_{\text{LOS}} \). \( \theta_m \) is the parameters \( \theta_m = \{ m_{\text{DM}}, R_{\text{disk}}, M_{\text{NSD}}, H_{\text{disk}}, \sigma_{r,0}, R_{\sigma,r}, N_m \} \), \( P(\theta_m|D) \) is the posterior probability of the parameters \( \theta_m \) given data \( D \), \( \mathcal{L}(D|\theta_m) \) is the likelihood, \( P(\theta_m) \) is prior and \( P(D) \) is the model evidence. Since it does not depend on \( \theta_m \), and it is considered to be constant under a single model hypothesis, we ignore the model evidence. We run a Markov Chain Monte Carlo (MCMC) fit with the total likelihood function given by

\[
\mathcal{L}_{\text{total}} = \mathcal{L}_\Sigma \times \mathcal{L}_{\sigma_Z} \times \mathcal{L}_{\mu_{\text{LOS}}},
\]

where \( \mathcal{L}_\Sigma \), \( \mathcal{L}_{\sigma_Z} \) and \( \mathcal{L}_{\mu_{\text{LOS}}} \) are the likelihood function for the surface density, velocity dispersion along the \( Z \) direction, and mean line-of-sight velocity, respectively. \( \mathcal{L}_\Sigma \), \( \mathcal{L}_{\sigma_Z} \) and \( \mathcal{L}_{\mu_{\text{LOS}}} \) are defined by

\[
\mathcal{L}_\Sigma = \prod_{i,j}^{N_D} \frac{1}{\sqrt{2\pi \Sigma_{\text{err,ij}}}} \exp \left(- \frac{(\Sigma_{\text{mod}}(X_i, Z_j, \theta_m) - \Sigma_{\text{obs,ij}})^2}{2\Sigma_{\text{err,ij}}^2}\right),
\]
where \( \Sigma_{\text{obs},ij} \), \( \sigma_{\text{Zobs},ij} \) and \( \mu_{\text{LOSobs},i} \) describe the observational data of \( \Sigma \), \( \sigma_Z \) and \( \mu_{\text{LOS}} \) in the grid at the position of \((X_i, Z_j)\), respectively. \( \Sigma_{\text{err},ij} \), \( \sigma_{\text{Zerr},ij} \) and \( \mu_{\text{LOSerr},i} \) are the measurement error at each grid for the observational data of \( \Sigma \), \( \sigma_Z \) and \( \mu_{\text{LOS}} \), respectively. \( N_D \) is the number of the grid points where we compare the model and the observational data. \( \Sigma_{\text{mod}}(X_i, Z_j, \theta_m) \), \( \sigma_{\text{Zmod}}(X_i, Z_j, \theta_m) \) and \( \mu_{\text{LOSmod}}(X_i, Z_j, \theta_m) \) are the model projected density, model velocity dispersion in the \( Z \)-direction, and mean line-of-sight velocity, respectively, which are computed from the distribution function obtained with \( \theta_m \). We use the following flat priors for some of the fitting parameters: \(-24 < \log[m_{\text{DM}}(\text{eV})] < -18\), \(0.032 < M_{\text{NSD}}(10^{10}\text{M}_\odot) < 0.291\), \(0.025 < R_{\text{disk}}(\text{kpc}) < 0.225\), \(0.0083 < H_{\text{disk}}(\text{kpc}) < 0.075\), \(25 < \sigma_{r,0}(\text{km/s}) < 225\) and \(0.0001 < N_m < 3000\). We chose a large prior range for the parameters to give MCMC algorithm a large space to explore and avoid the priors to cause any biased solution. The upper and lower ends of the range of the parameters \( R_{\text{disk}} \), \( M_{\text{NSD}} \), \( H_{\text{disk}} \), \( \sigma_{r,0} \) are respectively about a factor of three more and less than the best fit values in Fig. 11 of Sormani et al. (2022). Hence, our flat prior range of these parameters is guided by the values of Fig. 11 in Sormani et al. (2022), but they are a large enough range not to affect the results. It is important to note that the mathematical equations describing the soliton core becomes invalid for \( \log[m_{\text{DM}}(\text{eV})] < -23.50 \). Under our assumed parameters of the dark matter profile in Section 4.2.4, the soliton core density profile does not reach higher density than the NFW profile at any radius, when \( \log[m_{\text{DM}}(\text{eV})] < -23.50 \). Hence, we cannot connect the soliton core density profile to the NFW profile at \( \log[m_{\text{DM}}(\text{eV})] < -23.50 \). Instead, when \( \log[m_{\text{DM}}(\text{eV})] < -23.50 \), we assume the NFW profile. Although this is rather confusing assumption, in our MCMC results when the posterior probability distribution indicates \( \log[m_{\text{DM}}(\text{eV})] < -23.50 \), it means that the model uses the NFW dark matter profile. This means that we do not explore the dark matter mass range.
of \(\log[m_{\text{DM}}(\text{eV})] < -23.50\) in this study. For \(R_{\sigma,r}\), we assume a Gaussian profile prior of a function of \(\ln(R_{\sigma,r})\)

\[
P_{\text{prior}}(\ln(R_{\sigma,r})) = \frac{1}{2\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\ln\left(\frac{R_{\sigma,r}}{1 \text{ kpc}}\right)\right)^2\right].
\]

(4.16)

We use this prior for \(R_{\sigma,r}\), because \(R_{\sigma,r}\) is harder to control as found by Sormani et al. (2022). Therefore, we use the log-normal profile. Note that Sormani et al. (2022) used \(\log_{10}(R_{\sigma,r})\) for the Gaussian prior. It means that we have a tighter prior than what they used. The change in the value of \(R_{\sigma,r}\) does not affect the likelihood of our results significantly (as also demonstrated in Section 4.3.1) and therefore will not affect our conclusion of this chapter. As did in Section 2.2.5, we fit \(m_{\text{DM}}\) and \(R_{\sigma,r}\) in a \(\log_{10}(m_{\text{DM}})\) and \(\ln(R_{\sigma,r})\) space, respectively, because the change of likelihood becomes more smooth.

We use \texttt{emcee} (Foreman-Mackey et al., 2013) for our MCMC sampler with 64 walkers with each walker having 500 steps. We confirm that the MCMC results becomes stable by about 300 steps. We discard the first 300 steps as our ‘burn-in’. It is computationally demanding to obtain a self-consistent distribution function from the above mentioned iterative process. This is the reason why we need to chose the relatively small number of steps. For example, we use a computer system with 128 threads and 2TB RAM and it takes about a month to obtain the results for 500 steps.

## 4.3 Results and Discussion

The marginalised posterior probability distributions of our fitting parameters of \(m_{\text{DM}}\), \(M_{\text{NSD}}\), \(R_{\text{disk}}\), \(H_{\text{disk}}\), \(\sigma_{r,0}\), \(R_{\sigma,r}\) and \(N_m\) are shown in Fig. 4.2. Fig. 4.3 shows the marginalised posterior probability distribution of \(\log[m_{\text{DM}}(\text{eV})]\) only. Fig. 4.3 clearly shows that there are two favoured parameter range for \(m_{\text{DM}}\). In Section 4.3.1 we first look at these two inferences and discuss what these two solutions indicate. Then, we discuss the clear gap of the probability distribution function of \(\log[m_{\text{DM}}(\text{eV})]\) in Section 4.3.2.
4.3. Results and Discussion

Figure 4.2: Marginalised posterior probability distribution of the model parameters of $m_{\text{DM}}, M_{\text{NSD}}, R_{\text{disk}}, H_{\text{disk}}, \sigma_{r,0}, R_{\sigma, f}$ and $N_m$ obtained by MCMC fitting to the projected number density, $\sigma_Z$ and $\mu_{\text{LOS}}$.

4.3.1 Two inferred cases for ULDM

Figs. 4.2 and 4.3 infer that there are two preferential values of $\log[m_{\text{DM}}(\text{eV})] \sim -23.40$ and $\sim -19.80$. In this section, we discuss the implication of these two potential particle mass of the ULDM.

We first look into the lower value of the preferred ULDM particle mass of $\log[m_{\text{DM}}(\text{eV})] \sim -23.40$ whose soliton core density profile is plotted in Fig. 4.4. We evaluate the posterior probability distributions for the other parameters and summarised their best fitting values and the uncertainties in Table 4.1. The best fit values for $\log[m_{\text{DM}}(\text{eV})] \sim -23.40$ are evaluated from MCMC samples whose $\log[m_{\text{DM}}(\text{eV})]$ values are between $-23.50$ and $-23.30$. Fig. 4.2 shows that this lower $m_{\text{DM}}$ solution prefers a lower $M_{\text{NSD}}$ compared to the higher $m_{\text{DM}}$ solution.
The both solutions show the correlation between $M_{\text{NSD}}$ and $R_{\text{disk}}$ where a lower $M_{\text{NSD}}$ leads to lower $R_{\text{disk}}$. This is the same trend to what is seen in Sormani et al. (2022). As discussed in Sormani et al. (2022), this is because the observational data constrain the surface density of $M_{\text{NSD}}/R_{\text{disk}}^2$. Although it is subtle, there is a correlation among $M_{\text{NSD}}$, $R_{\text{disk}}$ and $H_{\text{disk}}$. This is also seen in Sormani et al. (2022), where all these three values are correlated. Table 4.1 shows that except for $H_{\text{disk}}$ and $R_{\sigma,r}$, within one sigma, there are in agreement between our findings and those of Sormani et al. (2022) even though Sormani et al. (2022) used different data. The difference in $R_{\sigma,r}$ occurs due to setting a different prior to Sormani et al. (2022) as discussed in Section 4.2.5. Also, compared to Sormani et al. (2022), our fitting values show a smaller uncertainties especially for $R_{\text{disk}}$ and $H_{\text{disk}}$. This could be because we also fit the surface density distribution explicitly and $R_{\text{disk}}$ and $H_{\text{disk}}$ are
Table 4.1: Best fit values for model parameters and log-likelihood values.

<table>
<thead>
<tr>
<th>log([m_{DM}(eV)]) or DM profile</th>
<th>(M_{NSD}) (10^9M⊙)</th>
<th>(R_{disk}) (pc)</th>
<th>(H_{disk}) (pc)</th>
<th>(\sigma_{0}) (kms^{-1})</th>
<th>(R_{\sigma}) (kpc)</th>
<th>(N_m)</th>
<th>Log-likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sormani et al. (2022)</td>
<td>0.105^{+0.008}_{-0.007}</td>
<td>88.6^{+9.2}_{-6.9}</td>
<td>28.4^{+2.2}_{-2.1}</td>
<td>67.7^{+4.5}_{-3.5}</td>
<td>5.0129^{+14.9}_{-3}</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>−23.40</td>
<td>0.109 ± 0.003</td>
<td>86.1 ± 2.1</td>
<td>27.4 ± 0.3</td>
<td>68 ± 3.63</td>
<td>0.741 ± 1.15</td>
<td>505.3 ± 8.0</td>
<td>−1408.8</td>
</tr>
<tr>
<td>−19.80</td>
<td>0.117 ± 0.002</td>
<td>95.2 ± 2.0</td>
<td>27.4 ± 0.2</td>
<td>71.7 ± 3.36</td>
<td>0.760 ± 1.14</td>
<td>502.1 ± 6.7</td>
<td>−1397.4</td>
</tr>
<tr>
<td>NFW</td>
<td>0.109</td>
<td>86.1</td>
<td>27.4</td>
<td>68</td>
<td>0.741</td>
<td>505.3</td>
<td>−1434.7</td>
</tr>
<tr>
<td>−23.40</td>
<td>0.109</td>
<td>86.1</td>
<td>27.4</td>
<td>68</td>
<td>5</td>
<td>505.3</td>
<td>−1455.3</td>
</tr>
<tr>
<td>NFW</td>
<td>0.117</td>
<td>95.2</td>
<td>27.4</td>
<td>71.7</td>
<td>0.760</td>
<td>502.1</td>
<td>−1443.8</td>
</tr>
<tr>
<td>−20.5</td>
<td>0.109</td>
<td>86.1</td>
<td>27.4</td>
<td>68</td>
<td>0.741</td>
<td>505.3</td>
<td>−4286.2</td>
</tr>
<tr>
<td>−22.0</td>
<td>0.109</td>
<td>86.1</td>
<td>27.4</td>
<td>68</td>
<td>0.741</td>
<td>505.3</td>
<td>−5314.9</td>
</tr>
<tr>
<td>−21.0</td>
<td>0.109</td>
<td>86.1</td>
<td>27.4</td>
<td>68</td>
<td>0.741</td>
<td>505.3</td>
<td>−17304</td>
</tr>
<tr>
<td>NFW</td>
<td>0.106 ± 0.002</td>
<td>86.3 ± 1.6</td>
<td>26.8 ± 0.3</td>
<td>66.2 ± 2.27</td>
<td>0.669 ± 1.09</td>
<td>512.6 ± 10.5</td>
<td>−1428.0</td>
</tr>
</tbody>
</table>

Notes. First row: best fit values of the parameters derived from Sormani et al. (2022). Second row: best fit values of the parameters and its corresponding log-likelihood value derived from \(\log[m_{DM}(eV)] = −23.40\) peak. Third row: best fit values of the parameters and its corresponding log-likelihood value derived from \(\log[m_{DM}(eV)] = −19.80\) peak. Fourth row: best fit values of the parameters from \(\log[m_{DM}(eV)] = −23.40\) peak but \(\log[m_{DM}(eV)] = −23.40\) is omitted. Instead, the NFW dark matter density profile is applied for this model, and the log-likelihood values of the model is shown. Fifth row: best fit values of the parameters from \(\log[m_{DM}(eV)] = −23.40\) peak but \(R_{\sigma}\) is set to \(R_{\sigma} = 5\) kpc for this model, and the log-likelihood values of the model is shown. Sixth row: best fit values of the parameters from \(\log[m_{DM}(eV)] = −19.80\) peak but \(\log[m_{DM}(eV)] = −19.80\) is omitted. Instead, the NFW dark matter density profile is applied for this model, and the log-likelihood values of the model is shown. Seventh row: best fit values of the parameters from \(\log[m_{DM}(eV)] = −23.40\) peak but \(\log[m_{DM}(eV)] = −23.40\) is replaced by \(\log[m_{DM}(eV)] = −20.50\) for this model, and the log-likelihood values of the model is shown. Eighth row: best fit values of the parameters from \(\log[m_{DM}(eV)] = −23.40\) peak but \(\log[m_{DM}(eV)] = −23.40\) is replaced by \(\log[m_{DM}(eV)] = −22.0\) for this model, and the log-likelihood values of the model is shown. Ninth row: best fit values of the parameters from \(\log[m_{DM}(eV)] = −23.40\) peak but \(\log[m_{DM}(eV)] = −23.40\) is replaced by \(\log[m_{DM}(eV)] = −21.0\) for this model, and the log-likelihood values of the model is shown. Tenth row: best fit values of the parameters and its corresponding log-likelihood value derived from \(\log[m_{DM}(eV)] < −23.50\).

Note that for \(N_m\), we have written N/A for Sormani et al. (2022) since Sormani et al. (2022) did not fit the surface density explicitly.
4.3. Results and Discussion

Figure 4.4: The density profile for the Milky Way’s NSC (blue dashed), and for the central dark matter density profile assuming ΛCDM (brown, Navarro et al., 1996) and dark matter with a ULDM particle mass of $10^{-23.4}\text{eV}$ (black), $10^{-23.0}\text{eV}$ (light blue), $10^{-22.0}\text{eV}$ (magenta), $10^{-20.0}\text{eV}$ (orange), $10^{-19.0}\text{eV}$ (green), $10^{-18.0}\text{eV}$ (red) and $10^{-16.0}\text{eV}$ (purple).

well constrained.

Fig. 4.5 shows the observed projected number density compared with the model that is constructed with the best fit values corresponding to the inferred peak value of ULDM particle mass of $\log[\rho_{\text{DM}}(\text{eV})] = -23.40$ as shown in Table 4.1. Overall Fig. 4.5 shows a fairly reasonable agreement between the observed projected number density and the model projected number density. However, the model faces difficulties in accurately depicting the observed density profile in close proximity to the midplane at $Z = 0.005\text{kpc}$. Particularly for $X < 0.03\text{kpc}$, the observed density profile at $Z = 0.005\text{kpc}$ exhibits a notably steeper gradient compared to other positions at varying $Z$ values. This pronounced increase in observed density is likely attributed to the presence of the NSC component in the observational data and thus implying a considerable contamination of the NSC in the observational...
4.3. Results and Discussion

Figure 4.5: Observed number density distributions as a function of $X$ at different positions in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The uncertainty is too small and it is smaller than the symbols for the most of the cases. The model density distributions with $m_{DM} = 10^{-23.40}$ eV and the best fitting values summarised in Table 4.1 are represented by the solid lines whose colours indicate the same $Z$ positions as the observational data. The dashed lines are the model density distribution with the best fitting values corresponding to $m_{DM} = 10^{-23.40}$ eV, though $m_{DM} = 10^{-23.40}$ eV soliton core is not included, but the NFW dark matter profile is applied.

data. As our model does not encompass the NSC, it fails to account for this steep density profile. As a result, at lower $Z$ ($Z = 0.0005$ and $Z = 0.0015$) the model finds a compromised fit to underestimate at $X < 0.04$ kpc and overestimate at $X > 0.06$ kpc, but reach better fit at the middle of the $X$ range. Furthermore, we find that at higher $Z$ ($Z = 0.035$ kpc and $Z = 0.045$ kpc) the model projected number density is deficit when compared to the observational projected number density at $X > 0.06$ kpc. This discrepancy may be attributed to the potential contamination stemming from the Galactic bar. Given that our current model does not incorporate the Galactic bar, it fails to accurately reproduce the density distribution in the outer regions.
4.3. Results and Discussion

Figure 4.6: Blue dots with error bars showing the mean line-of-sight velocity with 10 grids along the $X$-direction. Model mean line-of-sight velocity with $m_{\text{DM}} = 10^{-23.40} \text{ eV}$ and the best fitting values summarised in Table 4.1 at 10 grids along the $X$-direction and 5 grid along the $Z$-direction are presented by solid lines whose colours indicate the different $Z$ positions as shown in the top-left corner of the panel. The dashed lines are the model mean line-of-sight velocity with the best fitting values corresponding to $m_{\text{DM}} = 10^{-23.40} \text{ eV}$, though $m_{\text{DM}} = 10^{-23.40} \text{ eV}$ soliton core is not included, but the NFW dark matter profile is applied.

As a result, the model’s density distribution at $X > 0.07 \text{ kpc}$ at $Z = 0.035 \text{ kpc}$ and at $X > 0.05 \text{ kpc}$ at $Z = 0.045 \text{ kpc}$ noticeably underestimates the observed density distribution.

Fig. 4.6 shows the observed $\mu_{\text{LOS}}$ compared with the model at different $Z$ constructed with the best fit values corresponding to the log $[m_{\text{DM}}(\text{eV})] = -23.40$ soliton core as shown in Table 4.1. The observational data of $\mu_{\text{LOS}}$ is notably larger compared to $\mu_{\text{LOSmod}}$ with log $[m_{\text{DM}}(\text{eV})] = -23.40$ soliton core between about $0.02 \text{ kpc} < X < 0.05 \text{ kpc}$. The agreement between the observational data and the model on the other hand demonstrates some improvement for $X > 0.05$. However, it remains below the observed mean line-of-sight velocity.
Figure 4.7: Observed velocity dispersion as a function of $X$ at different positions in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The model velocity dispersion with $m_{\text{DM}} = 10^{-23.40}$ eV and the best fitting values summarised in Table 4.1 as a function of $X$ at different positions in $Z$ are represented by the solid lines whose colours indicate the same $Z$ positions as the observational data. The dashed lines are the model velocity dispersion with the best fitting values corresponding to $m_{\text{DM}} = 10^{-23.40}$ eV, though $m_{\text{DM}} = 10^{-23.40}$ eV soliton core is not included, but the NFW dark matter profile is applied.

Fig. 4.7 shows the observed $\sigma_Z$ compared with the model at different $Z$ created with the best fit values corresponding to the log $[m_{\text{DM}}(\text{eV})] = -23.40$ soliton core as shown in Table 4.1. The model is trying to fit the mean trend of overall structure of the observed trend of $\sigma_Z$. Some of the trend of the observational data such as for $Z = 0.035$ kpc and $Z = 0.045$ kpc at $X > 0.030$ kpc are not possible to explain with the current model. This is because the velocity dispersion does not show a smooth trend, and rather show an unphysical up and down trend as a function of $X$. This is likely attribute to the different levels of the contamination of the stars in the bar component to our $\sigma_Z$ measurement as discussed in Section 3.5, which leads to an overestimation of the observed $\sigma_Z$, where the contamination of the stars in the bar is
more significant. This as a result could mean that the sigma clipping method used in Section 3.5 to remove outliers is unable to completely remove the bar component.

To investigate the $\log [m_{DM}(\text{eV})] = -23.40$ peak of the posterior probability further, Figs. 4.5, 4.6 and 4.7 are overplotted with the dashed lines where the dashed lines show the model results from the best fit values around the $\log [m_{DM}(\text{eV})] = -23.40$ peak, but without the $\log [m_{DM}(\text{eV})] = -23.40$ soliton core where we assume the NFW dark matter density profile. Fig. 4.5 shows a negligible difference in the projected number density between the model with and without $10^{-23.40} \text{eV}$ soliton core at $Z > 0.025 \text{kpc}$. However, at $Z = 0.005 \text{kpc}$ and $Z = 0.015 \text{kpc}$, the model without the soliton core leads to the higher number densities. This is likely because the assumed NFW dark matter profile for the model without the soliton core causes the higher mass density of the dark matter in the inner region (see Fig. 4.4), and drives the denser system even though both model follows the same distribution function. On the other hand, from Fig. 4.6, the $\mu_{\text{LOSmod}}$ values corresponding to model without a $10^{-23.40} \text{eV}$ soliton core consistently demonstrate smaller values across all $X$, giving a worse fit. Similarly, Fig. 4.7 shows that $\sigma_{Z\text{mod}}$ is smaller for model with no $10^{-23.40} \text{eV}$ soliton core. This outcome is unsurprising, because the additional gravitational potential of the $10^{-23.40} \text{eV}$ soliton core at larger radii (Fig. 4.4) causes higher $\mu_{\text{LOSmod}}$ and $\sigma_{Z\text{mod}}$, at larger $X$ and $Z$ as seen in Fig. 4.6 and Fig. 4.7. We obtain a log-likelihood value of the model with and without $10^{-23.40} \text{eV}$ soliton core to be $-1408.8$ and $-1434.7$ (Table 4.1), respectively, confirming that a $10^{-23.40} \text{eV}$ soliton core is needed to give a better fit to the observational data. However, it is unlikely that the data suggest the existence of a $10^{-23.40} \text{eV}$ soliton core. Rather, considering the lack of gravitational potential of the bar component of our model, this result indicates that having an extra gravitational potential at a larger radius is preferred. This is because the observational data show unavoidable contribution of the bar component especially at larger radii, while our model does not include the bar gravitational potential. Then, the lack of the posterior probability distribution of $\log [m_{DM}(\text{eV})] > -23.40$ in Fig. 4.3 means that the largest possible soliton core is preferred. This indicates that the data prefer
4.3. Results and Discussion

Figure 4.8: Same as Fig. 4.6, but the solid lines are for the model with $10^{-20.50}$ eV soliton core and the best fit parameters corresponding to the log [$m_{DM}$ (eV)] = $-23.40$ model (Table 4.1).

to have extra-gravitational potential at larger radius, and it is likely not due to the ULDM soliton core, but the bar component which our model does not have.

We also computed the log-likelihood for $10^{-23.40}$ eV soliton core model and its corresponding best fit values but with $R_{\sigma,r} = 5$ kpc, which is the value derived from Sormani et al. (2022), and find that it is $-1455.3$ (Table 4.1). This likelihood is significantly lower than our best fit model with a smaller $R_{\sigma,r}$. This may indicate that a smaller $R_{\sigma,r}$ is preferred for the NSD. However, our smaller $R_{\sigma,r}$ comes from the strong prior in equation (4.16). Further studies with higher quality data with more sophisticated model are required to constrain $R_{\sigma,r}$ better.

By a visual examination, if we solely look at Fig. 4.6 alone, one may think that having an additional mass in $0.02 < R < 0.06$ kpc may help to mitigate the inconsistency between the model and observational data in $\mu_{\text{LOSmod}}$. Fig. 4.8 shows the observational mean line-of-sight velocity with model with best fitting values corresponding to $10^{-23.40}$ eV soliton core but the $10^{-23.40}$ eV soliton core is replaced by
4.3. Results and Discussion

Figure 4.9: Same as Fig. 4.7, but the solid lines are for the model with $10^{-20.50}$ eV soliton core and the best fit parameters corresponding to the log\[m_{\text{DM}}(\text{eV})\] = $-23.40$ model (Table 4.1).

$10^{-20.50}$ eV soliton core. Fig. 4.8 demonstrates that $10^{-20.50}$ eV soliton core which was found to be a potential ULDM solution in Chapter 2 gives a better fit to the observed $\mu_{\text{LOS}}$. However, such model introduce a greater impact to $\sigma_z$. This can be seen in Fig. 4.9, where clearly the model dramatically overestimates $\sigma_z$ and as a result leading to a significantly worse result with overall log-likelihood of $-4286.2$ (Table 4.1). Hence, log\[m_{\text{DM}}(\text{eV})\] = $-23.40$ is a preferred solution for $m_{\text{DM}}$, as indicated in the resultant posterior probability distribution of Fig. 4.3. As discussed above, this result means the necessity of the extra gravitational potential at a larger radius, and it is likely the bar component, which our model does not include.

We now look into the higher value of the preferred ULDM particle mass of log\[m_{\text{DM}}(\text{eV})\] $\sim -19.80$. We evaluate the posterior probability distributions for the other parameters and summarised their best fitting value and the uncertainties in Table 4.1. The best fit values for log\[m_{\text{DM}}(\text{eV})\] $\sim -19.80$ are evaluated from MCMC.
4.3. Results and Discussion

Figure 4.10: Same as Fig. 4.5, but the solid lines are for model with $m_{\text{DM}} = 10^{-19.80} \text{ eV}$ and the corresponding best fitting values summarised in Table 4.1. The dashed lines are the model density distributions with the best fitting values corresponding to $m_{\text{DM}} = 10^{-19.80} \text{ eV}$, though $m_{\text{DM}} = 10^{-19.80} \text{ eV}$ soliton core is not included, but the NFW dark matter profile is applied.

samples whose log[$m_{\text{DM}}(\text{eV})$] values are between $-19.90$ and $-19.70$. Although the apparent presence of a $10^{-19.80} \text{ eV}$ soliton core may initially seem plausible, it is improbable based on the conclusive findings presented in Chapter 2. When compared to the $10^{-23.40} \text{ eV}$ soliton core solution, this particular solution requires higher values for $M_{\text{NSD}}$, $R_{\text{disk}}$, $\sigma_{r,0}$ and $R_{\sigma,r}$ as can be seen in Table 4.1. This is primarily due to describe larger mass at larger radius which is required to compensate the lack of the bar potential.

Fig. 4.10 shows the observed projected number density compared with the model that is constructed with the best fit values corresponding to the inferred peak value of ULDM particle mass of log[$m_{\text{DM}}(\text{eV})]$ = $-19.80$ as shown in Table 4.1. Overall Fig. 4.10 shows a fairly reasonable agreement between the observed projected number density and the model projected number density. However, similarly to model with log[$m_{\text{DM}}(\text{eV})]$ = $-23.40$, the model is in trouble in accurately rep-
4.3. Results and Discussion

Figure 4.11: Same as Fig. 4.6, but the solid lines are for model with $m_{DM} = 10^{-19.80}$ eV and the corresponding best fitting values summarised in Table 4.1. The dashed lines are the model mean line-of-sight velocity with the best fitting values corresponding to $m_{DM} = 10^{-19.80}$ eV, though $m_{DM} = 10^{-19.80}$ eV soliton core is not included, but the NFW dark matter profile is applied.

Representing the observed density profile close to the midplane at $Z = 0.005$ kpc. Especially for $X < 0.03$ kpc, the observed density profile at $Z = 0.005$ kpc displays a strikingly steeper gradient compared to other positions of $Z$ values. As mentioned above, this is most likely a contribution from the NSC. Furthermore, we find once again that at higher $Z$ ($Z = 0.035$ kpc and $Z = 0.045$ kpc) the model projected number density is deficit when compared to the observational projected number density at $X > 0.06$ kpc. As confirmed earlier from the first solution, this difference may be attributed to the potential contamination due to the Galactic bar.

Fig. 4.11 shows the $\mu_{LOS}$ compared with the model at different $Z$ constructed. The observational data of $\mu_{LOS}$ is clearly larger compared to $\mu_{LOSmod}$ with $\log[{m_{DM}(eV)}] = -19.80$ soliton core between about 0.02 kpc $< X < 0.05$ kpc. The agreement between the observational data and the model demonstrates some im-
4.3. Results and Discussion

Figure 4.12: Same as Fig. 4.7, but the solid lines are for model with $m_{DM} = 10^{-19.80}$ eV and the corresponding best fitting values summarised in Table 4.1. The dashed lines are the model velocity dispersion with the best fitting values corresponding to $m_{DM} = 10^{-19.80}$ eV, though $m_{DM} = 10^{-19.80}$ eV soliton core is not included, but the NFW dark matter profile is applied.

Fig. 4.12 shows the $\sigma_Z$ compared with the model at different $Z$ created with the best fit values corresponding to the log $[m_{DM}(eV)] = -19.80$ soliton core as shown in Table 4.1. Similarly to the solution for log $[m_{DM}(eV)] = -23.40$, our current model cannot describe the observational data for $Z = 0.035$ kpc and $Z = 0.045$ kpc at $X > 0.030$ kpc which is attributed to contamination of stars from the Galactic bar.

To investigate the log $[m_{DM}(eV)] = -19.80$ peak of the posterior probability further, the dashed lines of Figs. 4.10, 4.11 and 4.12 show the model results from the best fit values around the log $[m_{DM}(eV)] = -19.80$ peak, but without the log $[m_{DM}(eV)] = -19.80$ soliton core, while the NFW profile is used for the dark matter density profile. It can be seen from Fig. 4.10 that at $X > 0.02$ kpc at $Z = 0.005$ kpc and at $X > 0.04$ kpc at $Z = 0.015$ kpc the projected number density improvement for $X > 0.05$. However, the model results are still lower compared to the observational data.
is higher for model without \( \log[m_{\text{DM}}(\text{eV})] = -19.80 \). This is because without the
soliton core gravitational potential, the self-consistent model leads to a larger disk.
On the other hand, from Fig. 4.11, the \( \mu_{\text{LOSmod}} \) values corresponding to model without a \( 10^{-19.80} \) eV soliton core consistently demonstrate smaller values across all \( X \),
giving a notably poorer fit. Similarly, Fig. 4.12 shows that \( \sigma_{Zmod} \) is smaller for
model with no \( 10^{-19.80} \) eV soliton core across all \( X \). Particularly, Fig. 4.12 shows
the largest difference between the model with and without the \( 10^{-19.80} \) eV soliton
core is within \( X < 0.030 \text{ kpc} \) for \( Z = 0.005 \text{ kpc} \) and \( Z = 0.015 \text{ kpc} \). This provides
clear evidence that the \( 10^{-19.80} \) eV soliton core has more impact within the central region but exerts smaller influence in the outer region. To confirm further, this
underestimation for model without \( 10^{-19.80} \) eV soliton core results in worse overall
log-likelihood of \(-1443.8\), compared to log-likelihood of \(-1397.4\) for model
with \( 10^{-19.80} \) eV soliton core. Hence, our results clearly indicates that having
\( 10^{-19.80} \) eV soliton core is preferred. This means that there should be an excess
of the mass to explain the high velocity dispersion seen in the observed \( \sigma_Z \) in the
inner region. However, we do not think that this is the evidence of \( 10^{-19.80} \) eV
soliton core ULDM. It is partly because this particle mass is already rejected from
the kinematics of the NSC in Chapter 2. Additionally, it is not possible for us to
dismiss the potential that the elevated \( \sigma_Z \) observed in the inner region might result
from substantial contamination originating from the NSC. Given our inability to
eliminate this potential scenario, asserting that this serves as evidence for ULDM is
unfeasible. Instead, it is more plausible that this elevation in velocity dispersion is
primarily a consequence of the NSC contribution.

### 4.3.2 The Gap Solution

The third interesting result that we see in Fig. 4.3 is the gap between \( -23.20 \lesssim \log[m_{\text{DM}}(\text{eV})] \lesssim -20.0 \) and \( \log[m_{\text{DM}}(\text{eV})] > -19.60 \). The gap between \( -23.20 \lesssim \log[m_{\text{DM}}(\text{eV})] \lesssim -20.0 \) is highlighted by the black vertical lines in Fig. 4.3. This
result indicates that the observational data reject the ULDM particle mass between
about \( 10^{-23.20} \) eV and \( 10^{-20.0} \) eV. To test the validation of this result, we have made
models with \( 10^{-22.0} \) eV soliton core and \( 10^{-21.0} \) eV soliton core with other parame-
4.3. Results and Discussion

Figure 4.13: Left panel: Observed density distribution as a function of $X$ at different position in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The uncertainty is too small and it is smaller than the symbols for the most of the cases. The model density distributions with $m_{\text{DM}} = 10^{-22.0}$ eV and the other parameter values summarised in Table 4.1 are represented by the solid lines whose colours indicate the same $Z$ positions as the observational data. Right panel: same as the left panel, but for the model with $m_{\text{DM}} = 10^{-21.0}$ eV.

Fig. 4.13 shows the results of the comparison with the model and the observational data in the projected surface density, mean line-of-sight velocity and vertical velocity dispersion, respectively. Fig. 4.13 shows that the model shows much lower number density compared to the observational data in $X < 0.05$ kpc at $Z = 0.005$ kpc and $Z = 0.015$ for $10^{-22.0}$ eV soliton core (left panel). On the other hand, the right panel of Fig. 4.13 shows that $10^{-21.0}$ eV soliton core leads to a significantly higher number density at $X < 0.05$ kpc at $Z = 0.015$ kpc, $Z = 0.025$ kpc and $Z = 0.035$ kpc. In Fig. 4.14, both the models with $10^{-22.0}$ eV soliton core and $10^{-21.0}$ eV soliton core gives a better overlap to the observed $\mu_{\text{LOS}}$ compared to the model with $10^{-23.40}$ eV soliton core and $10^{-19.80}$ eV soliton core. However, as discussed earlier, such model introduce a greater impact to $\sigma_Z$, which can be seen in Fig. 4.15. Fig. 4.15 shows that the two models with $10^{-22.0}$ eV soliton core and $10^{-21.0}$ eV soliton core dra-
4.3. Results and Discussion

Figure 4.14: Left panel: Blue dots with error bars showing mean line-of-sight velocity with 10 grids along the $X$-direction. The model mean line-of-sight velocity with $m_{DM} = 10^{-22.0}$ eV and the other parameter values summarised in Table 4.1 at 10 grids along the $X$-direction and 5 grid along the $Z$-direction are presented by solid lines whose colours indicate the different $Z$ positions as shown in the bottom right corner of the panel. Right panel: same as the left panel, but for the model with $m_{DM} = 10^{-21.0}$ eV.

Mathematically overestimates $\sigma_Z$. As a result, these results lead to a significantly worse result with overall log-likelihood of $-5314.9$ and $-17304$ (Table 4.1) for model with $10^{-22.0}$ eV soliton and $10^{-21.0}$ eV soliton, respectively. Hence, we can reject the ULDM particle mass range from $-23.2 < \log[m_{DM}(eV)] < -20.0$. It is important to note that it does not matter whether we make these models with best fit parameters corresponding to $\log[m_{DM}(eV)] = -23.40$ or $\log[m_{DM}(eV)] = -19.80$ because the mass of the $10^{-22.0}$ eV soliton core and $10^{-21.0}$ eV soliton core are very large such that using the best fit parameters of $\log[m_{DM}(eV)] = -19.80$ still gives a significant overestimation of the results of $\sigma_Z$ as seen in Fig. 4.15.

Furthermore, with regards to the gap of $\log[m_{DM}(eV)] > -19.60$, where the $\log[m_{DM}(eV)] = -19.60$ is indicated by purple vertical line in Fig. 4.3, this is also rejected. This is because as discussed in Section 4.3.1, an extra gravitational potential excess is preferred to explain the observational data and therefore a $\log[m_{DM}(eV)] > -19.60$ will lead a worse model than the preferred model of $\log[m_{DM}(eV)] > -19.80$. 
4.3. Results and Discussion

Figure 4.15: Left panel: Observed velocity dispersion as a function of $X$ at different positions in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The model velocity dispersion with $m_{DM} = 10^{-22.0}$ eV and the other parameter values summarised in Table 4.1 as a function of $X$ at different positions in $Z$ are represented by the solid lines whose colours indicate the same $Z$ positions as the observational data. Right panel: same as the left panel, but for the model with $m_{DM} = 10^{-21.0}$ eV.

In addition, to investigate $\log[m_{DM}(eV)] < -23.50$, as mentioned above the lower probability distribution at $\log[m_{DM}(eV)] < -23.50$ means that the NFW dark matter profile is used, because as mentioned above we apply the NFW profile when $\log[m_{DM}(eV)] < -23.50$ is used. We evaluate the posterior probability distributions for this case and summarised their best fitting value and the uncertainties in Table 4.1. The best fit values for the NFW profile are evaluated from MCMC samples whose $\log[m_{DM}(eV)]$ values are between $-24.0 < \log[m_{DM}(eV)] - 23.50$. Fig. 4.16 shows a fairly reasonable agreement between the observed projected number density compared and the model projected number density around the midplane but the model faces difficulties in accurately depicting for $X < 0.03$ kpc, where the observed density profile at $Z = 0.005$ kpc exhibits a notably steeper gradient compared to other positions at varying $Z$ values. Fig. 4.16 shows the observed projected number density compared with the model that is constructed with the best fit val-
4.3. Results and Discussion

Figure 4.16: Observed density distribution as a function of $X$ at different position in $Z$ of $Z = 0.005$ kpc (black dots with error bars), $Z = 0.015$ kpc (red dots with error bars), $Z = 0.025$ kpc (yellow dots with error bars), $Z = 0.035$ kpc (green dots with error bars), $Z = 0.045$ kpc (blue dots with error bars). The uncertainty is too small and it is smaller than the symbols for the most of the cases. The model density distributions with NFW only and the other parameter values summarised in Table 4.1 are represented by the solid lines whose colours indicate the same $Z$ positions as the observational data.

In the same way for the result found for $\log [m_{DM}(eV)] = -23.40$, the model faces difficulties in accurately depicting the observed density profile within the inner at $Z = 0.005$ kpc and $Z = 0.015$ kpc at $X < 0.04$ kpc and underestimating at higher at $Z = 0.035$ kpc and $Z = 0.045$ kpc at $X > 0.06$ kpc. Fig. 4.17 shows the $\mu_{LOS}$ compared with the model at different $Z$ constructed with the best fit values corresponding to the NFW dark matter density profile as shown in Table 4.1. In a similar fashion to $\log [m_{DM}(eV)] = -23.40$, the observational data of $\mu_{LOS}$ is notably larger compared to $\mu_{LOS_{mod}}$ with NFW dark matter density profile between about 0.02 kpc $< X < 0.05$ kpc. Although the agreement between the observational data and the model improves for $X > 0.05$, it remains below the observed mean line-of-sight ve-
4.3. Results and Discussion

Figure 4.17: Blue dots with error bars showing mean line-of-sight velocity with 10 grids along the X-direction. The model mean line-of-sight velocity with NFW only and the other parameter values summarised in Table 4.1 at 10 grids along the X-direction and 5 grid along the Z-direction are presented by solid lines whose colours indicate the different Z positions as shown in the top-left corner of the panel.

...velocity. Fig. 4.18 shows the $\sigma_Z$ compared with the model at different $Z$ created with the best fit values corresponding to the NFW dark matter density profile as shown in Table 4.1. Our current model cannot describe the observational data for $Z = 0.035$ kpc and $Z = 0.045$ kpc at $X > 0.030$ kpc which is attributed to contamination of stars from the Galactic bar. The overall log-likelihood is $-1428.0$, slightly smaller than for $\log[m_{DM}(eV)] = -23.40$ solution of $-1408.8$. Therefore, we conclude that having extra gravitational potential like the soliton cores with $\log[m_{DM}(eV)] = -23.40$, to describe the extra potential of the bar, or $\log[m_{DM}(eV)] = -19.80$, to describe the contamination of stars from the NSC, is slightly better than having only NFW dark matter density profile.
4.4 Conclusions

We test the existence of a soliton core in the centre of the Milky Way by fitting the surface density, mean line-of-sight velocity and vertical velocity dispersion of the NSD stars. We use the surface density and proper motion data from the VIRAC2 and the line-of-sight velocities provided by APOGEE. For a fitting model, we use a quasi-isothermal disk model from AGAMA to model the NSD and fit ULDM particle mass $m_{\text{DM}}$, the radial scale length, $R_{\text{disk}}$, the mass of the NSD, $M_{\text{NSD}}$, the radial scale height, $H_{\text{disk}}$, the normalization parameter for the radial velocity dispersion, $\sigma_{r,0}$, the radial scale of the radial velocity dispersion, $R_{\sigma,r}$ and the normalization parameter for the surface density, $N_{m}$. We find that the resultant marginalised prob-
ability distribution function of $m_{DM}$ shows a peak around about $10^{-23.40}$ eV and $10^{-19.80}$ eV. We come to a conclusion that the $10^{-23.40}$ eV peak is most likely due to the required extra mass at the large radius, because our model is lacking the contribution of the bar, but the observational data indicates the bar potential is significant in the outer region of the our observational data. We show that we could not conclude that $10^{-19.80}$ eV peak means the existence of ULDM, because we cannot reject the possibility that our data is significantly contaminated by the NSC stars, which lead to the higher vertical velocity dispersion in the inner radius. We also find a gap between $10^{-23.20}$ eV and $10^{-20.0}$ eV and demonstrate that our result rejects the ULDM mass range of $10^{-23.20}$ eV and $10^{-20.0}$ eV.
Christopher John G. Underhill

Chapter 5

Conclusion and Further Work

The objective of this thesis is to examine the existence of the ultra-light dark matter (ULDM) through the analysis of stellar kinematics within the Galactic center. To achieve this, we use advanced statistical techniques, such as Bayesian Statistics and advanced software libraries such as Action-based Galaxy Modelling Architecture (AGAMA).

5.1 Thesis Conclusion

In Chapter 2, we investigate the possible existence of a ULDM soliton core at below radial range of $r < 3$ pc by fitting the line-of-sight velocity dispersion of stars in the nuclear star cluster (NSC) provided by Fritz et al. (2016) with a spherical isotropic Jeans model. Through the use of Bayesian Statistics and Markov Chain Monte Carlo (MCMC) algorithm, we find that there are two findings. One finding is a clear rejection of the ULDM mass range between $10^{-20.40}$ eV and $10^{-18.50}$ eV. The second result is a possible existence of a $10^{-20.50}$ eV soliton core, but it is unlikely to be viable as it corresponds to an NSC mass that is significantly smaller compared to many studies. We also examine our findings using various supermassive black hole (SMBH) masses to account for systematic uncertainties related to the distance from the Galactic center, and we demonstrate that our results remain unchanged. Similarly, we verify our results for various measured virial masses of the Milky Way, yielding consistent outcomes.

In Chapter 3, we explain how we analyse the surface stellar density distribution...
and the velocity dispersion distribution from the updated version of the VISTA Variables in the Vía Láctea Infrared Astrometric Catalogue data (VIRAC2), as well as the line-of-sight velocity data of Apache Point Galactic Evolution Experiment Data Release 17 (APOGEE DR17) in the Galactic centre region within about 100 pc. We first start of by studying the observational data from the VIRAC2. We notice significant extinction within the data and to tackle this problem, we use the assumption of the nuclear stellar disk (NSD) being axisymmetry, so that the projected edge-on density distribution is symmetric about both $X$ (Galactic longitudinal) and $Z$ (Galactic latitudinal) axes. We then convert the proper motion data to the velocities along the $X$ and $Z$ direction of stars to study the potential effect of the extinction on the velocity distribution. We find that the velocity distribution along the $X$ is sensitive to the significance of the extinction, but the velocity distribution along the $Z$ is less affected by the extinction and therefore in this thesis, we decide to use velocity distribution along the $Z$ and not velocity distribution along the $X$. After assessing the vertical ($Z$-direction) velocity distribution, we find that there are stars with extreme high velocities which implies our data is being contaminated by stars from the Galactic bar or halo. We use the sigma clipping method to remove such outliers. We then analyse the line-of-sight velocity of the APOGEE DR17 to take in to account the rotation of the NSD. Similarly to the velocity dispersion, we follow the same statistical analyses to study and remove the outliers.

In Chapter 4, assuming our sigma clipping method in Chapter 3 efficiently removes stars that are associated with the Galactic bar and halo components, and central region being dominated by the NSD stars, we use the NSD to test the existence of the $10^{-20.50}$ eV soliton core as well as to try to test the existence of a soliton core at a larger range of the ULDM mass. Furthermore, to increase the dominance of the NSD, we do not use the observational data within the central 10 pc when we compare with the model since the NSC is dominant within $r < 10$ pc and therefore removing the possibility of contamination of stars from the NSC. Through using the same distribution function model in Sormani et al. (2022), we fit the observational data with the theoretical model and test if there is any sign of the existence
of ULDM in the observational data of stellar density and kinematics in the Galactic centre. Sormani et al. (2022) included the Galactic bar and did not have ULDM soliton core in their distribution function model whereas we incorporated ULDM soliton core in to their distribution function model but did not include the Galactic bar component. We compare the model with the mean observed properties such as the surface density, velocity dispersion and the line-of-sight velocity at different grid positions introduced in Chapter 3. As a result, we find that the resultant marginalised probability distribution function of $m_{\text{DM}}$ shows several interesting results. First interesting results are peaks of $10^{-23.40} \text{ eV}$ and $10^{-19.80} \text{ eV}$ soliton core where we show that these two peaks are caused by our data being affected by the contamination of the Galactic bar and the NSC as well as the extra gravitational potential due to the Galactic bar. Another interesting result is the rejected ULDM mass range between about $-23.20 < \log[m_{\text{DM}}(\text{eV})] < -20.0$, showing that the $10^{-20.50} \text{ eV}$ found in Chapter 2 is unlikely to be a soliton core but rather it is a mass contribution of the NSD. Hence, combining the constraints from the NSC in Chapter 2, we conclude that the current observational data reject the ULDM particle mass range from $10^{-23.20} \text{ eV}$ and $10^{-18.50} \text{ eV}$.

Fig. 5.1 show a summary of the rejected ULDM mass ranges from a range of astronomical probes in the literature (a comprehensive review can be found in Hui, 2021), and including our results in this thesis. Taken at face value, Fig. 5.1 suggests that ULDM is not a viable solution for resolving the small scale problems in $\Lambda$-cold dark matter ($\Lambda$CDM) as summarised in Chapter 1. Fig. 5.1 also highlights that our study provides a unique constraint on ULDM over a mass range only otherwise probed by the stellar kinematics of Milky Way satellite galaxies (e.g. González-Morales et al., 2017; Hayashi et al., 2021).

5.2 Further work

In Chapter 2, there are three important caveats to our constraint. Firstly, we applied a spherical isotropic model for NSC. Applying an axisymmetric kinematic model, Chatzopoulos et al. (2015) found a flatter NSC with $q = 0.73 \pm 0.04$ and also sug-
Figure 5.1: Summary of rejected ULDM particle masses from various astronomical probes with including both our results in Chapter 2 and Chapter 4. The Lyman-α forest observation rejects $m_{\text{DM}} < 10^{-20.50}$ eV (Iršič et al., 2017; Kobayashi et al., 2017; Armengaud et al., 2017). The observed spin of black holes constrain the superradiance of black holes, and rejects $m_{\text{DM}} > 10^{-19.20}$ eV (Stott & Marsh, 2018), including the Event Horizon Telescope observation of M87, which rejects $10^{-21.07} < m_{\text{DM}} < 10^{-20.34}$ eV (Davoudiasl & Denton, 2019). Rotation curves of nearby galaxies also reject $m_{\text{DM}} < 10^{-21.0}$ eV (Bar et al., 2019a). Schutz (2020) suggests that $m_{\text{DM}} < 10^{-20.70}$ eV is rejected by the satellite luminosity function inferred from the perturbed stellar streams (Banik et al., 2019) and lensed images (Gilman et al., 2020), similarly to constraints on the WDM mass (Section 1.5.2). González-Morales et al. (2017) reject $m_{\text{DM}} > 10^{-22.4}$ eV from the stellar kinematics of the Fornax and Sculptor dwarf spheroidal galaxies. Hayashi et al. (2021) find that the stellar kinematics of Segue I is consistent with $10^{-19.40} < m_{\text{DM}} < 10^{-18.0}$ eV. We naively take this as the required ULDM mass range, and consider that the other mass ranges are rejected, if the Segue I stellar kinematics is purely due to the soliton core. Zoutendijk et al. (2021) reject $m_{\text{DM}} < 10^{-20.40}$ eV from the stellar kinematics of the ultra-faint dwarf galaxy, Eridanus.
gested that a spherical model underestimates the total mass derived from the observed velocity dispersion profile. However, it requires a further study to address if a more realistic and complex model increases the NSC mass or provides more room for the ULDM soliton core. Secondly, we assume that there is no radial dependence of the mass-to-light ratio. To some degree, the inner density slope parameter of $\gamma$ captures such radial dependence. However, this also requires further investigation in a future study. Finally, as highlighted in Davies & Mocz (2020), a soliton core with $m_{DM} > 10^{-19.40}$ eV cannot survive in the Milky Way due to accretion into the SMBH. Hence, the stellar kinematics of the centre of the Milky Way may not be able to constrain the existence of a ULDM soliton core with $m_{DM} > 10^{-19.40}$ eV.

In Chapter 4, our main limitations come from the data being contaminated by stars belonging to the Galactic bar and NSC. In order to resolve this and obtain stronger results, we aim to extend the modelling framework to incorporate the Galactic bar and NSC alongside the NSD. Another idea is to change our fitting methodology to fitting individual stellar data like Sormani et al. (2022) rather than comparing the model results with the observational data obtained in Chapter 3 at the centre of the grid. The more and better observational data are also required to utilise such advanced models. For example, further spectroscopic surveys of the stars in the Galactic centre with VLT/KMOS (e.g. Fritz et al., 2020) and future VLT/MOONS and Subaru/ULTIMATE would be invaluable. In addition, the Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE; Gouda, 2012; Gouda & Jasmine Team, 2020; Kawata et al., 2023)\(^1\) will provide near-infrared astrometry for bright stars in the Galactic centre, which would provide further constraints on ULDM. The James Webb Space Telescope (JWST) also possess an expanded infrared wavelength range, coupled with exceptional resolution, facilitating deeper penetration into regions containing gas and dust, consequently yielding data of superior quality.

Finally, throughout this thesis, we assume a single dark matter consisting of a single mass ULDM particle. We hope to model our Galaxy consisting of multiple ULDM particle masses as our Universe may be made up of multiple different

\[^1\text{http://jasmine.nao.ac.jp/index-en.html}\]
ULDM particle mass. Indeed, Huang et al. (2023) has showed that a two component ULDM particle masses can provide extra flexibility to mitigate the issues of the single mass ULDM particle.
Bibliography

Abdurro’uf et al., 2022, ApJS, 259, 35


Genzel R., Eisenhauer F., Gillessen S., 2010, Reviews of Modern Physics, 82, 3121


Minniti D., et al., 2010, New Astron., 15, 433


Schive H.-Y., Chiuheh T., Broadhurst T., 2014a, Nature Physics, 10, 496


Stott M. J., Marsh D. J. E., 2018, Phys. Rev. D, 98, 083006

Weinberg D. H., Bullock J. S., Governato F., Kuzio de Naray R., Peter A. H. G.,
2015, Proceedings of the National Academy of Science, 112, 12249


Zoutendijk S. L., Brinchmann J., Bouché N. F., den Brok M., Krajnović D., Kuijken

Zwicky F., 1933, Helvetica Physica Acta, 6, 110

