
1 INTRODUCTION 

The building stock is responsible for a major frac-
tion of the global energy demand. Currently the 
thermal retrofit of existing buildings represents a 
significant opportunity toward reducing buildings' 
energy use. Toward this end, dynamic energy simu-
lation can be used as a tool to assess the energy per-
formance of an existing building and to optimize the 
choice of different Energy Efficiency Measures 
(EEMs) from an energetic and economic point of 
view. The dynamic simulation allows to create a de-
tailed model of the building and to consider aspects 
that are normally neglected in simplified calcula-
tions. However, it requires significant input infor-
mation. Especially for existing buildings, this kind 
of data is often lacking or characterized by high un-
certainty. Inaccurate behavioral models of buildings 
could compromise the selection process of EEMs. 
Calibration can help to obtain more reliable predic-
tions from the simulation. In most of the cases the 
calibration process is “highly dependent on the per-
sonal judgment of the analyst doing the calibration” 
(Reddy, 2006). But this case-to-case approach is not 
conducted in a methodical way. In this context, 
monitored field data can be deployed to calibrate the 
simulation model in a systematic manner. The po-
tential of using measured data to improve the results 
of the simulation model has been already underlined 
by different authors (Reddy et al. 2007, Raftery et al. 
2011). The optimization-based calibration approach, 
proposed in previous publications (Tahmasebi et al. 

2013, Taheri et al. 2013), is an efficient manner to 
conduct the model calibration. The optimization 
process, through the adjustment of the input parame-
ters of the model, is used to minimize the difference 
between the model output and the monitored data.  
In this paper a methodology to calibrate the building 
performance simulation models based on short term 
measurements was tested and validated. The pro-
posed calibration process was applied to a real build-
ing, a Primary School, which has been monitored 
starting December 2012. 

2 METHODOLOGY 

2.1 Case study 

The building selected for this study is a Primary 
school located in Schio (VI), a municipality in North 
of Italy, built in the ’50s and enlarged in the ’60s. 
The building has three-storeys: the basement, with 
canteen, gym and facilities rooms and two upper sto-
reys with the classrooms. A representative room in 
the first floor was selected for monitoring and used 
as a reference to minimize the difference between 
simulations and monitored data (see Figure 1).  

2.2 Monitored data 

The monitoring of the building started in December 
2012. Indoor air temperature, relative humidity, and 
surface temperature of radiators’ supply and return 
pipes are logged at 5 min intervals. 
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2.6 First Calibration 

In the first calibration the building’s physical proper-
ties were subjected to optimization. The variables of 
the first calibration and their variation ranges are re-
ported in Table 2. The 10 input parameters were se-
lected via heuristically-based consideration. A varia-
tion range of 20% was applied to these parameters. 
Not all the variables reported in Table 2 can be con-
sidered independent: the thermal conductivity and 
the density of the components’ dominant layer are 
related. To prevent the optimization process to arrive 
at physically unrealistic combinations of these two 
variables, a simplified relationship between them 
was derived from information in the relevant litera-
ture (Gösele et al. 1996): 

 
12.00005.0  brickbrick            (8) 

 
2648.00007.0  concreteconcrete          (9) 

 
where λ is the thermal conductivity of brick or con-
crete in [W.m-1.K] and ρ is the density of brick or 
concrete in [kg.m-3].  

The variation of the thermal properties of the 
building materials involved also the variation of the 
thermal bridges effect. Considering the lower, the 
mean and the higher value of thermal conductivity 
of the two materials composing a thermal bridge, 
nine combinations were calculated to define the dif-
ferent linear thermal transmittance of each thermal 
bridge. From these configurations a polynomial re-
gression was used to calculate the variation of the 
linear thermal transmittance according to the varia-
tion of the thermal conductivity of the two layers. 

The calibration of windows thermal properties 
was not performed in a continuous manner. A set of 
eleven windows, with different thermal transmit-
tance and the Solar Heat Gain Coefficient (SHGC) 
was created through Window 6.3 (LBNL, 2013). 

2.7 Second Calibration 

The calibrated values of the building’s physical 
properties were used for the second period of cali-
bration. The monitored data of the second period 
was used to calibrate the characteristics of the radia-
tive heating system. The variables and their variation 
range are reported in Table 3.  

2.8 Third and Fourth Calibration 

Considering the lack of information on users’ inter-
action in the occupied period, the shading level and 
the air change rate (representing the occupants’ in-
teraction with windows) were subjected to calibra-
tion in the third and fourth periods. The calibration 
of these variables was performed separately in peri-
ods 3 and 4, because the environmental conditions 

inside and outside the building can affect the opera-
tional control devises operated by people (Mahdavi, 
2011). Table 4 summarizes the information on vari-
ables in the 3rd and 4th calibrations.  
 
Table 2.  The calibration variables in the first cali-
bration period. 
Variables  Initial 

value 
Range  
Value 

Calibrated
value 

Ext. wall brick layer – 
λ [W.m-1.K-1] 

 
0.8 

 
[0.64- 0.96] 

 
0.833 

Ext. wall brick layer – 
Density [kg.m-3] 

 
1906 

 
[1520 - 2160] 

 
2268 

Ext. wall brick layer – 
Ext. Solar absorbtance 

 
0.3 

 
[0.24- 0.36] 

 
0.359 

Int. wall brick layer – 
λ [W.m-1.K-1] 

 
0.8 

 
[0.64- 0.96] 

 
0.833 

Int. wall brick layer – 
Density [kg.m-3] 

 
1906 

 
[1520 - 2160] 

 
2268 

Ceiling/Floor Hollow – 
λ [W.m-1.K-1] 

 
0.606 

 
[0.48 - 0.73] 

 
0.492 

Ceiling/Floor Hollow – 
Density [kg.m-3] 

 
1244 

 
[1070 - 1417] 

 
1081 

Window frame – 
Conductance [W.m-2K-1] 

 
5 

 
[4 – 6] 

 
4.2 

Windows* 
Transmittance [W.m-2K-1] 

 
2.707 

 
[1.569- 3.001] 

 
1.569 

Infiltration rate 0.25 [0.2 – 0.3] 0.2 

* the windows were evaluated as a discrete variable

 
Table 3.  The calibration variables in the second cal-
ibration period. 

Variables  
Initial 
value 

Range  
value 

Calibrated
value 

Maximum water  
flow rate – [kg.h-1] 

 
300 

 
[200- 400] 

 
200 

Nominal Power  
with ΔT=60 – [W]   

 
5184 

 
[3629- 6739] 

 
3787 

Radiator exponent 1.358 [1.28- 1.382] 1.345 
Radiator Thermal  
Capacitance – [kJ .K-1] 

 
269 

 
[188 - 350]  

 
294 

Radiative fraction 
at nominal conditions  

 
0.3 

 
[0.2 – 0.4]  

 
0.2 

 
Table 4.  The calibration variables in the second cal-
ibration period. 

Variables  
Initial 
value 

Range  
Value 

Calibrated 
value 

Shading level 0.68 [0 – 1]  
     Period 3    0.24 
     Period 4   0.01 
Air change rate 1.5 [0.7 – 3]  
     Period 3   1.7 
     Period 4   0.9 



3 RESULTS AND DISCUSSION 

The evaluation statistics for the initial and the cali-
brated models in four monitoring periods are pre-
sented in Table 5. 
 
Table 5. The evaluation statistics of the initial and 
calibrated models in the monitoring periods. 

Periods & models  RMSD CV(RMSD) R2 

Period 1    
    Initial Model 0.73 2.59 0.96 
    1st Calibrated Model 0.60 2.11 0.97 
Period 2    
    Initial Model  1.07 6.92 0.75 
    1st Calibrated Model 0.99 6.40 0.74 
    2nd Calibrated Model 0.50 3.25 0.88 
Period 3    
    1st Calibrated Model 0.48 2.34 0.77 
    3rd Calibrated Model 0.46 2.23 0.76 
Period 4    
    2nd Calibrated Model 0.90 4.76 0.78 
    4th  Calibrated Model 0.75 3.96 0.80 

 
As shown in Table 5, comparing the initial and cali-
brated models, the evaluation statistics values show 
an improvement of the model predictions. The cali-
bration process presents a different effectiveness ac-
cording to the period of the year. For some periods 
the performance of the model predictions are slightly 
improved: in Period 1 the CV(RMSD) was reduced 
from 2.59% to 2.11% and in Period 3 from 0.48 to 
0.46. Moreover, for the Period 3 the improvement of 
the CV(RMSD) leads to a moderate reduction of the 
“coefficient of determination”. 

In “winter” conditions (periods 2 and 4) the non-
calibrated models perform significantly better than 
the non-calibrated ones. In Period 2 the CV(RMSD) 
of the calibrated model has been reduced from 6.40 
to 3.25 and the R2 has been increased from 0.74 to 
0.88.  

4 CONCLUSION 

In this work a methodology to deploy short-term 
monitored data toward optimization-supported simu-
lation model calibration was tested and validated on 
a case study. Different periods of the years was se-
lected and used to calibrate different aspects of the 
simulation model. Step by step calibrations were 
performed in a logical order to adjust building phys-
ical properties, heating system properties and occu-
pants interactions with windows and shading devices 
in different environmental conditions. 

Further development of this research will be the 
exploration of retrofits options through the use of the 
fully calibrated model. A multi-objective optimiza-

tion of retrofit strategies can help to identify the 
most promising options in view of energy use, cost, 
and thermal comfort. 
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