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ABSTRACT: The dynamic energy simulation can be used as a tool to assess the energy performance of an
existing building and to optimize the choice of different Energy Efficiency Measures (EEMs) from an ener-
getic and economic point of view. However, it requires significant input information. Especially for the exist-
ing buildings, this kind of data is often lacking or characterized by high uncertainty. Inaccurate behavioral
models of buildings could compromise the selection process of EEMs. In this context, monitored field data
can be deployed to calibrate the simulation model, to obtain more reliable predictions, and to make better de-
cisions. The aim of this work is to validate a methodology to calibrate the simulation based on short term
measurements. Subject of the study is a real building, a Primary School in the Italian municipality of Schio

(VI), which has been monitored since December 2012.

1 INTRODUCTION

The building stock is responsible for a major frac-
tion of the global energy demand. Currently the
thermal retrofit of existing buildings represents a
significant opportunity toward reducing buildings'
energy use. Toward this end, dynamic energy simu-
lation can be used as a tool to assess the energy per-
formance of an existing building and to optimize the
choice of different Energy Efficiency Measures
(EEMs) from an energetic and economic point of
view. The dynamic simulation allows to create a de-
tailed model of the building and to consider aspects
that are normally neglected in simplified calcula-
tions. However, it requires significant input infor-
mation. Especially for existing buildings, this kind
of data is often lacking or characterized by high un-
certainty. Inaccurate behavioral models of buildings
could compromise the selection process of EEMs.
Calibration can help to obtain more reliable predic-
tions from the simulation. In most of the cases the
calibration process is “highly dependent on the per-
sonal judgment of the analyst doing the calibration”
(Reddy, 2006). But this case-to-case approach is not
conducted in a methodical way. In this context,
monitored field data can be deployed to calibrate the
simulation model in a systematic manner. The po-
tential of using measured data to improve the results
of the simulation model has been already underlined
by different authors (Reddy et al. 2007, Raftery et al.
2011). The optimization-based calibration approach,
proposed in previous publications (Tahmasebi et al.

2013, Taheri et al. 2013), is an efficient manner to
conduct the model calibration. The optimization
process, through the adjustment of the input parame-
ters of the model, is used to minimize the difference
between the model output and the monitored data.

In this paper a methodology to calibrate the building
performance simulation models based on short term
measurements was tested and validated. The pro-
posed calibration process was applied to a real build-
ing, a Primary School, which has been monitored
starting December 2012.

2 METHODOLOGY

2.1 Case study

The building selected for this study is a Primary
school located in Schio (VI), a municipality in North
of Italy, built in the ’50s and enlarged in the ’60s.
The building has three-storeys: the basement, with
canteen, gym and facilities rooms and two upper sto-
reys with the classrooms. A representative room in
the first floor was selected for monitoring and used
as a reference to minimize the difference between
simulations and monitored data (see Figure 1).

2.2 Monitored data

The monitoring of the building started in December
2012. Indoor air temperature, relative humidity, and
surface temperature of radiators’ supply and return
pipes are logged at 5 min intervals.
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Figure 1. Selected room for monitoring (in square). Location of
the sensors, 1-2-3-4 monitor the Temperature and RH, sensors
R1-R2 log the heat emitted by radiators.

Data Loggers were also installed in the adjacent
rooms (Figure 1) in order to get information on the
boundary conditions. Since detailed occupancy mon-
itoring was not possible, users' interviews and sur-
veys were conducted in order to represent occupancy
presence and behavior in the simulation model.
Hourly weather data collected by the weather station
of the municipality of Malo (VI), approximately
10km far from Schio, were used to create a real-year
weather data file.

2.3 Building model

The simulation software package TRNSYS v.16 was
used to model the building thermal performance.
The initial model was defined according to on-site
surveys and technical documentation on the thermal
properties of the building components. The thermal
bridges at the intersections of floor and walls, as
well as the windows and walls were calculated in
accordance with the UNI EN 10211:2008 using
Therm (LBNL, 2013). The resulting values were
considered in defining the effective thermal proper-
ties of building materials.

The infiltration rate was fixed equal to 0.25 h-1
according to the standard UNI EN 12831:2006. The
number of occupants and their schedule were de-
fined day-by-day based on the information obtained
from the school register book. The internal gains due
to the presence of people were defined according to
the values proposed by ASHRAE (ASHRAE Hand-
book, 2009) for seated people (very light work). The
electric lights were considered switched on during
the occupied period and the heat gains generated by
their operation were set to 15 W.m™ (ASHRAE
Handbook, 2009). According to the surveys and us-
ers’ interviews the windows were considered com-
pletely shaded during unoccupied periods. For the
occupied periods, the initial value for shading level
was defined according to the facade orientation
(Mahdavi et al. 2008). The monitored temperatures
of the adjacent spaces were incorporated into the in-
put stream and given as boundary condition of the
monitoring zone. The monitored temperature of the

corridor was used to characterize the air mass enter-
ing through the internal door.

The dynamic radiator model type 362 (Holst,
2010) was used to model the building hydronic heat-
ing system. This model calculates the return temper-
ature and the heat emitted by radiators based on the
radiators’ supply temperature and the indoor air
temperature as input. With regard to the building
heating system the monitoring data were used to
identify a) the heating system operation schedule
during weekdays and weekends in the working sea-
son; b) the supply temperature based on the outdoor
air temperature for working and break seasons.

The supply temperature for winter working sea-
son, when the system is on, was derived from the
monitored data, as follows:

If T,y<10°C  Typpy=-1.108Toy+54.377 (1)

If Tou>10°C  Tyyppiy=43.136 (2)
For the winter break season, it was derived from the
monitored data that the heating system is operating
if the indoor temperature is below 14°C. For this pe-
riod, the supply temperature was set to 22°C as the
average of monitored values.

When the heating system is off, the supply tem-
perature was calculated via Equation 3, which takes
into account the heating system inertia:
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Where 4 is the supply temperature of the radiator
before switching the system off, #, is the current
time, and ¢, is the time of switching the system off.
The coefficient a and the constant b were set to
0.3087 and 13.872 accordingly based on the moni-
tored data, using the least square method.

2.4 Optimization-based calibration

The optimization-based approach (Tahmasebi et al.
2012a) allows calibrating the simulation models in
an automated way. The objective function is set to
minimize the differences between model predictions
and monitored data, and to achieve this goal the in-
put variables of the model are systematically varied,
within a specified range. In this work the differences
between measured and simulated values for the in-
door air temperature of the monitored zone were
calculated and accumulated. The optimization pro-
cess was executed through the generic optimization
tool GenOpt (LBNL, 2012). GenOpt can be easily
coupled with simulation tools such as TRNSYS that
is deployed to model the building. The Algorithm
used to optimize the objective function is the hybrid
generalizes pattern search with particle swarm opti-



mization algorithm, which is one of the recommend-
ed optimization algorithms for problems, where the
cost function cannot be simply and explicitly stated,
but can be approximated numerically by a thermal
building simulation program (Wetter, 2010).

In order to address the cost function, two model
evaluation statistics were used. The first indicator is
the CV(RMSD), a dimensionless number, that ag-
gregates the time step errors over the runtime (Equa-
tion 4 and 5).
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Where m; is the measured indoor air temperature; s;
is the simulated indoor air temperature; n is the
number of the simulation time steps; m is the meas-
ured mean temperature.

The other indicator used is the “coefficient of de-
termination” denoted by R’ calculated according
with the Equation 3. Coefficient of determination
describes the proportion of the variance in measured
data explained by the model (Moriasi et al. 2007). R
has a range from 0 to 1, where 1 indicates that the
regression line perfectly fits the data. Therefore, R
value is to be maximized in the optimization pro-
cess.
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The defined cost function f takes into account both
the model evaluation statistics, with different
weighted factors. In this analysis the minimization
of CV(RMSD) was considered more important
(Equation 4).

£=0.7-CV(RMSD)+0.3-(1-R") (7

To efficiently manage the repetitive process of vary-
ing the input variables, run the simulation and evalu-
ate the cost function, the calculation of /" was inte-
grated in the simulation application.

2.5 Calibration process

The model calibration and testing process involved
four monitoring periods, including occupied and
non-occupied periods during summer (passive op-

eration mode) and winter (active heating with a hy-
dronic system). Each period is two weeks long; ex-
cept for the Period 2 that is eleven days long. Table
1 summarizes data on the periods used in the model
calibration process.

Figure 2 illustrates the calibration process. As the
absence of occupants and the heating system in the
first period limits the number of unknown parame-
ters, the building’s physical properties were calibrat-
ed based on the monitored data from this period (1*
calibration). The monitored data from the second pe-
riod were then used to calibrate the characteristics of
the radiative heating system (2™ calibration). The
resulting calibrated models (1*' and 2™ calibrated
models) were then used to calibrate the user behav-
ior in “summer” and “winter” conditions using the
data from the third and fourth periods. In the
following sections, details on the above mentioned
calibrations are presented.

Table 1. Monitoring periods used in the model cali-
bration process

PERIOD 3 PERIOD 4

Periods Start date ~ End date Occupancy  Operation
State mode
I 05082013 18082013 OV Passive
occupied
2 24122013 03.01.2014 O Active
occupied heating
3 03.05.2013 16.05.2013  Occupied Passive
4 18112013 01122013 Occupied  “*cUY®
heating
No-heating : Heating
Initial Model I
PERIOD 1 : PERIOD 2
3 IstCalibration ——> 2nd Calibration
a 1
3 Physical X Characteristics
§ characteristics : of the emission
<) of the building ! system
+ infiltration :
3rd Calibration ! 4 Calibration
kS :
S Shading level ! Shading level
§ Air Change Rate : Air Change Rate

Figure 2. Scheme of the Procedure of calibration.



2.6 First Calibration

In the first calibration the building’s physical proper-
ties were subjected to optimization. The variables of
the first calibration and their variation ranges are re-
ported in Table 2. The 10 input parameters were se-
lected via heuristically-based consideration. A varia-
tion range of 20% was applied to these parameters.
Not all the variables reported in Table 2 can be con-
sidered independent: the thermal conductivity and
the density of the components’ dominant layer are
related. To prevent the optimization process to arrive
at physically unrealistic combinations of these two
variables, a simplified relationship between them
was derived from information in the relevant litera-
ture (Gosele et al. 1996):

Aw =0.0005 - g +0.12 (8)

A =0.0007 - p,,e +0.2648 )

concrete

where A is the thermal conductivity of brick or con-
crete in [W.m’l.KJ and p is the density of brick or
concrete in [kg.m™].

The variation of the thermal properties of the
building materials involved also the variation of the
thermal bridges effect. Considering the lower, the
mean and the higher value of thermal conductivity
of the two materials composing a thermal bridge,
nine combinations were calculated to define the dif-
ferent linear thermal transmittance of each thermal
bridge. From these configurations a polynomial re-
gression was used to calculate the variation of the
linear thermal transmittance according to the varia-
tion of the thermal conductivity of the two layers.

The calibration of windows thermal properties
was not performed in a continuous manner. A set of
eleven windows, with different thermal transmit-
tance and the Solar Heat Gain Coefficient (SHGC)
was created through Window 6.3 (LBNL, 2013).

2.7 Second Calibration

The calibrated values of the building’s physical
properties were used for the second period of cali-
bration. The monitored data of the second period
was used to calibrate the characteristics of the radia-
tive heating system. The variables and their variation
range are reported in Table 3.

2.8 Third and Fourth Calibration

Considering the lack of information on users’ inter-
action in the occupied period, the shading level and
the air change rate (representing the occupants’ in-
teraction with windows) were subjected to calibra-
tion in the third and fourth periods. The calibration
of these variables was performed separately in peri-
ods 3 and 4, because the environmental conditions

inside and outside the building can affect the opera-
tional control devises operated by people (Mahdavi,
2011). Table 4 summarizes the information on vari-
ables in the 3™ and 4" calibrations.

Table 2. The calibration variables in the first cali-
bration period.

Variables Initial Range Calibrated
value Value value

Ext. wall brick layer —

A [W.m' K] 0.8 [0.64- 0.96] 0.833

Ext. wall brick layer —

Density [kg.m™] 1906 [1520-2160] 2268

Ext. wall brick layer —

Ext. Solar absorbtance 0.3 [0.24- 0.36] 0.359

Int. wall brick layer —

A [W.m' K] 0.8 [0.64- 0.96] 0.833

Int. wall brick layer —

Density [kg.m™] 1906 [1520-2160] 2268

Ceiling/Floor Hollow —

A [W.m' K] 0.606 [0.48-0.73]  0.492

Ceiling/Floor Hollow —

Density [kg.m™] 1244  [1070-1417] 1081

Window frame —

Conductance [W.m?K™] 5 [4-6] 4.2
Windows*

Transmittance [W.m”K™'] 2707  [1.569-3.001] 1.569
Infiltration rate 0.25 [0.2-0.3] 0.2

* the windows were evaluated as a discrete variable

Table 3. The calibration variables in the second cal-
ibration period.

Variables Initial Range Calibrated
value  value value

Maximum water

flow rate — [kg.h™'] 300 [200- 400] 200

Nominal Power

with AT=60 — [W] 5184  [3629-6739] 3787

Radiator exponent 1.358 [1.28-1.382] 1.345

Radiator Thermal

Capacitance — [kJ .K'] 269
Radiative fraction

at nominal conditions 03

[188-350] 294

[0.2 - 0.4] 0.2

Table 4. The calibration variables in the second cal-
ibration period.

Variables Initial Range Calibrated
value  Value value
Shading level 0.68 [0-1]
Period 3 0.24
Period 4 0.01
Air change rate 1.5 [0.7-3]
Period 3 1.7
Period 4 0.9




3 RESULTS AND DISCUSSION

The evaluation statistics for the initial and the cali-
brated models in four monitoring periods are pre-
sented in Table 5.

Table 5. The evaluation statistics of the initial and
calibrated models in the monitoring periods.

Periods & models RMSD CV(RMSD) R’
Period 1
Initial Model 0.73 2.59 0.96
1* Calibrated Model 0.60 2.11 0.97
Period 2
Initial Model 1.07 6.92 0.75
1* Calibrated Model 0.99 6.40 0.74
2™ Calibrated Model 0.50 3.25 0.88
Period 3
1* Calibrated Model 0.48 2.34 0.77
3" Calibrated Model 046 223 0.76
Period 4
2" Calibrated Model 090  4.76 0.78
4™ Calibrated Model 0.75 3.96 0.80

As shown in Table 5, comparing the initial and cali-
brated models, the evaluation statistics values show
an improvement of the model predictions. The cali-
bration process presents a different effectiveness ac-
cording to the period of the year. For some periods
the performance of the model predictions are slightly
improved: in Period 1 the CV(RMSD) was reduced
from 2.59% to 2.11% and in Period 3 from 0.48 to
0.46. Moreover, for the Period 3 the improvement of
the CV(RMSD) leads to a moderate reduction of the
“coefficient of determination”.

In “winter” conditions (periods 2 and 4) the non-
calibrated models perform significantly better than
the non-calibrated ones. In Period 2 the CV(RMSD)
of the calibrated model has been reduced from 6.40
to 3.25 and the R* has been increased from 0.74 to
0.88.

4 CONCLUSION

In this work a methodology to deploy short-term
monitored data toward optimization-supported simu-
lation model calibration was tested and validated on
a case study. Different periods of the years was se-
lected and used to calibrate different aspects of the
simulation model. Step by step calibrations were
performed in a logical order to adjust building phys-
ical properties, heating system properties and occu-
pants interactions with windows and shading devices
in different environmental conditions.

Further development of this research will be the
exploration of retrofits options through the use of the
fully calibrated model. A multi-objective optimiza-

tion of retrofit strategies can help to identify the
most promising options in view of energy use, cost,
and thermal comfort.
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