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ABSTRACT 
Building performance is influenced by occupants' 
presence and actions. Knowledge of occupants' future 
presence and behavior in buildings is of central 
importance to the implementation efforts concerning 
predictive building systems control strategies. 
Specifically, prediction of occupants' presence in 
buildings represents a necessary condition for 
predicting their interactions with building systems. In 
the present contribution, we focus on evaluation of 
probabilistic occupancy models to explore the 
potential of using past monitored data in predicting 
future presence of occupants. Toward this end, we 
selected a university campus office area, which is 
equipped with a monitoring infrastructure and 
includes a number of open and closed offices. For the 
purpose of this study, we used monitored occupancy 
data and two previously developed stochastic 
occupancy models to predict the occupancy profiles 
on a daily basis. The predictions were then evaluated 
via comparison with monitored daily occupancy 
profiles. To conduct the model evaluation in a 
rigorous manner, a number of specific evaluation 
statistics were deployed. Thus, the results facilitate a 
discussion of the potential and limitations of 
predicting building occupants' future presence 
patterns based on past monitoring data. 

INTRODUCTION 
Occupants influence thermal behavior of buildings 
due to their presence (e.g., via releasing sensible and 
latent heat), and via operation of control devices such 
as windows, shades, luminaries, radiators and fans 
(Mahdavi 2011). Specifically, knowledge of 
occupants' presence represents a necessary condition 
for the development of predictive control action 
models. Performance simulation tool users typically 
deploy libraries of diversity factors and schedules to 
represent occupants' presence in buildings. These 
diversity profiles are derived from long term 
monitored data in different classes of buildings and 
are usually included in the simulation packages to 
facilitate the creation of building performance 
models. More recently, efforts are being made in the 
scientific and professional communities to develop 
probabilistic models that would capture the 
randomness of occupants' presence. As one of the 

first attempts, Newsham et al. (1995) considered the 
probabilistic nature of occupancy while developing a 
stochastic model to predict lighting profiles for a 
typical office. Their model deployed the probability 
of first arrival and last departure as well as the 
probability of intermediate departures from and 
returning back to the workstations. Reinhart (2001) 
further developed this model by using the inverse 
transform method (Zio 2013) to generate samples 
from the distribution functions of arrival and 
departure times. Moreover, days were divided into 
three phases (morning, lunch, and afternoon) for 
which the probabilities of start time and length of 
breaks were computed. Page et al. (2008) proposed a 
generalized stochastic model for the simulation of 
occupants' presence using the presence probability 
over a typical week and a parameter of mobility 
(defined as the ratio of state change probability to 
state persistence probability). They also included 
long absence periods (corresponding to business 
trips, leaves due to sickness, holidays, etc.) as 
another random component in their model. 

In all these studies, monitored data has been used to 
derive a probabilistic model that generates random 
non-repeating daily profiles of occupancy for a long-
term (e.g. annual) building performance simulation. 
Hence, models are suggested to perform well, if the 
entire set of generated random realizations of the 
daily occupancy profiles agrees in tendency with the 
monitored data over the whole simulation period. 
However, the synchronicity of the generated profiles 
with the monitored data (one-to-one agreement of the 
generated and monitored daily profiles) is not taken 
into consideration. Even in the case of long absences 
(Page et al. 2008), the unoccupied days are scattered 
randomly through the year and they do not 
necessarily match the dates of absences in the 
measured data. Thus, these practices cannot be said 
to "validate" the proposed models, if the actual day-
to-day prediction of occupancy and control action 
probabilities is relevant. Specifically, in a run-time 
use of a simulation model in building operation 
phase, where short-term predictions of occupancy 
and weather data are incorporated in the model to 
predict the future performance of the building, the 
agreement between the predicted and real future 
occupancy profiles in each day is of utmost 
importance. 
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Moreover, with few exceptions (see Liao et al. 2010), 
most of the work on validating the probabilistic 
occupancy models has focused on comparing the 
model outputs with the very set of data which has 
been used to derive the model. In our view, a 
scientifically sound model evaluation approach must 
clearly separate the data segments used for model 
development and model validation. This is especially 
important while evaluating the predictive potential of 
an occupancy model, which is intended to be used for 
model-predictive control in buildings. 

In the present study, we focus on evaluation of two 
recently developed stochastic models of occupants' 
presence to explore the potential of using past 
monitored data in predicting future presence of 
occupants. Toward this end, we selected a university 
campus office area, which is equipped with a 
monitoring infrastructure and includes a number of 
open and closed offices. For the purpose of this case 
study, we deploy long-term monitored occupancy 
data obtained from eight workspaces. Thereby, 
separate sets of monitored data are used to train and 
evaluate the models. The evaluations are 
accomplished with the aid of a number of occupancy-
relevant statistics. Thus, the results facilitate a 
discussion of the potential and limitations of 
occupants' presence models intended for 
incorporation in the control logic of existing 
buildings. 

APPROACH 

Overview 

In this contribution, we evaluate two existing 
probabilistic models of occupant's presence, which 
we use to make predictions of daily occupancy 
profiles for building systems control purposes. We 
utilize monitored occupancy data obtained from eight 
workplaces in an office area in the Vienna University 
of Technology to train the applied stochastic 
occupancy model. To evaluate the models, we use a 
number of key statistics and a separate set of 
monitored occupancy data. Conducting a Monte 
Carlo simulation, we evaluate the predicted daily 
occupancy profiles generated by the stochastic 
models and obtain distribution of the statistics to 
discuss the reliability of predictions. 

Data collection 

To obtain occupancy data, wireless ceiling-mounted 
sensors (motion detectors) were used. The internal 
microprocessors of the sensors are activated within a 
time interval of 1.6 minutes to detect movements. 
The resulting data log entails a sequence of time-
stamped occupied to vacant (values of 0) or vacant to 
occupied (values of 1) events.  

To facilitate data analysis, the event-based data 
streams were processed to generate 15-minute 
interval data, using stored procedures in the MySQL 

database (Zach et al. 2012). This procedure derives 
the duration of occupancy states (occupied / vacant) 
from the stored events and returns the dominant 
occupancy state of each interval. Occupancy periods 
before 8:00 and after 19:45 were not included in the 
study to exclude, amongst other things, the presence 
of janitorial staff at the offices. Occupancy data for a 
nine-month period (10th of November 2011 to 25th 
of July 2012) was used to derive and evaluate the 
occupancy model. 

Reinhart probabilistic occupancy model 

The probabilistic occupancy model developed by 
Reinhart (Reinhart 2001) uses the following 
probability distributions as input to capture the 
random nature of occupants' presence: 

1) The cumulative distribution function of first 
arrival times (CDFa); 

2) The cumulative distribution function of last 
departure times (CDFd); 

3) The probability distribution function of 
intermediate departure times (PDFid); 

4) The probability distribution of length of 
intermediate absences for morning, lunch, 
and afternoon periods.  

A daily occupancy profile is then generated by 
identifying the first arrival time, last departure time, 
intermediate departure times, and the associated 
length of intermediate absences as follows: 

• Using a random number from the standard 
uniform distribution in the interval [0, 1] 
(u1), the first arrival time (ta) is derived from 
CDFa such that CDFa (ta) = u1. 

• Using a random number from the standard 
uniform distribution in the interval [0, 1] 
(u2), the last departure time (td) is derived 
from CDFd such that CDFd (td) = u2. 

• To decide if an intermediate departure event 
occurs at a certain time (tm), a random 
number between 0 and 1 (um) is compared 
with the probability of intermediate 
departure at that time. Once an intermediate 
departure is identified (PDFid (tm) ≥ um), the 
length of the absence is obtained randomly 
from the corresponding probability function 
of the length of intermediate absences 
(morning, lunch time, or afternoon). 

Page et al. probabilistic occupancy model 

The stochastic occupancy model developed by Page 
et al. (2008) generates random non-repeating daily 
occupancy profiles using two inputs: the profile of 
presence probability, and the parameter of mobility. 

The model has been formulated based on the 
hypothesis that the value of occupancy at the next 
time step depends on the current occupancy state and 
the probability of transition from this state to either 
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the same state or its opposite state. This is reflected 
in Equation 1: 

 

ܲሺݐ ൅ 1ሻ ൌ ܲሺݐሻ ଵܶଵሺݐሻ ൅ ሺ1 െ ܲሺݐሻሻ ଴ܶଵሺݐሻ  (1) 

 

Where, P(t+1) and P(t) are the probabilities of 
presence at the time steps t+1 and t, T11(t) is the 
transition probability from presence state to the same 
state at the time step t, and T01(t) is the transition 
probability from absence to the presence state at the 
time step t. 

In order to derive the transition probabilities based on 
the presence probabilities, Page et al. defined the 
parameter of mobility, which should be provided as 
an input, as the ratio between the probabilities of 
change of the state of presence over that of no 
change: 

 

ሻݐሺߤ ൌ ଴ܶଵሺݐሻ ൅ ଵܶ଴ሺݐሻ

଴ܶ଴ሺݐሻ ൅ ଵܶଵሺݐሻ
  (2) 

 

Here, T10(t) is the transition probability from 
presence to the absence state at the time step t, and 
T00(t) is the transition probability from absence state 
to the same state at the time step t. 

From Equations 1 and 2, and assuming the parameter 
of mobility as a constant, the profiles of transition 
probabilities can be obtained as follows: 

 

଴ܶଵሺݐሻ ൌ
ߤ െ 1
ߤ ൅ 1

ܲሺݐሻ ൅ ܲሺݐ ൅ 1ሻ  (3) 

 

ଵܶଵሺݐሻ ൌ
ܲሺݐሻ െ 1
ܲሺݐሻ

൤	
ߤ െ 1
ߤ ൅ 1

ܲሺݐሻ ൅ ܲሺݐ ൅ 1ሻ൨ 

 

													൅
ܲሺݐ ൅ 1ሻ
ܲሺݐሻ

  (4) 

 

Clearly, the other possible transition probabilities can 
be calculated via the following equations: 

 

଴ܶ଴ሺݐሻ ൌ 1 െ ଴ܶଵሺݐሻ  (5) 

 

ଵܶ଴ሺݐሻ ൌ 1 െ ଵܶଵሺݐሻ  (6) 

 

To generate a daily occupancy profile, the procedure 
starts from the first time step of the day with a vacant 
state for commercial buildings. Subsequently, for 
each time step, a random number between 0 and 1 is 
generated and compared with the transition 
probabilities to see if a change of occupancy state 

occurs. This is a simple case of using the inverse 
transform method, as the cumulative distribution 
function of transition probabilities is a histogram of 
two bins. For example, if the current time step has a 
vacant state and the generated random number is 
smaller than T01 at that time step, the next time step 
is assumed to be occupied. 

Model training 

Implementation of stochastic occupancy models in a 
continuous running mode in building control system 
raises a number of questions with regard to 
occupancy data utilization: What length of past 
occupancy information shall be considered for model 
development? Would it be advantageous to 
differently treat days of the week? Shall the model 
training occur in static or shifting intervals? In 
previous publications (Tahmasebi et al. 2014), we 
evaluated the impact of different model training 
scenarios on the predictive potential of stochastic 
occupancy models. For the purpose of the present 
study, a moving training scheme is applied as 
follows: To generate a predicted occupancy profile 
for each working day, the occupancy models are fed 
with the monitoring occupancy data obtained from 
the previous 28 days. This 4-week data is used to 
derive the required inputs for the presented 
occupancy models, i.e. the probabilities of arrival 
time, departure time, intermediate departure times, 
and length of the intermediate absences for the 
Reinhart model, and the presence probability profile 
and parameter of mobility for Page et al. model.  

Model evaluation 

To evaluate the predictive potential of the models, we 
compared predicted and monitored occupancy 
profiles of 90 working days between the 1st of April 
and the 25th of July 2012. As for each run the models 
are fed with the occupancy data from the prior four 
weeks, separate sets of data are used for training and 
evaluating the models. To compare the performance 
of the models, we used four statistics: 

1) First arrival time error [hour]: The predicted 
minus the monitored first arrival time. 

2) Last departure time error [hour]: The 
predicted minus the monitored last departure 
time. 

3) Duration error [hour]: The predicted minus 
the monitored daily presence duration. We 
calculated the presence duration by counting 
the number of occupied intervals. 

4) Number of transitions error [-]: The 
predicted number of daily occupied-to-
vacant transitions minus the monitored 
number of daily occupied-to-vacant 
transitions. 

Given the stochastic nature of the occupancy models 
considered, one cannot evaluate the accuracy of the 
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model predictions by comparing the results of a 
single run with the measurements. Therefore we 
conducted a 100-run Monte Carlo simulation in order 
to analyze the distribution of the errors in predictions. 
The aforementioned statistics are calculated for each 
individual day during the validation period. Given 
the length of the validation period (90 working days) 
and the number of Monte Carlo simulations, we 
obtained 9000 values for each statistic. 

Note that in the present study we do not intend to 
predict periods of long absences due to business trips, 
sickness, holidays, etc. Such whole-day absences can 
be presumably communicated to the building 
management system and reflected in the predictive 
building systems control. Therefore, in this 
contribution, we only included the actual working 
days in the validation process. 

RESULTS AND DISCUSSION 
Figures 1 to 4 illustrate the cumulative distribution of 
the statistics absolute values obtained via comparing 
the Monte-Carlo predictions of the presented 
stochastic occupancy models and monitoring 
occupancy data from eight working spaces. It can be 
seen from the figures that Reinhart model offers 
slightly higher accuracy in terms of first arrival time 
and the number of intermediate transitions. However, 
the models perform almost similarly with regard to 
last departure time and daily occupancy duration.  

A numeric summary of the results are presented in 
Tables 1 and 2 to provide a general overview of 
occupancy prediction errors.  Table 1 presents the 
80th percentile of the errors. Table 2 shows the 
percentage of errors below a threshold value, which 
could be arguably seen as a minimum performance 
requirement for occupancy models appropriate for 
deployment in the context of predictive building 
systems control.  

This analysis has important implications. The 
obtained level of predictive accuracy is simply low. 
For example, it can be clearly seen from Table 1 and 
Table 2 that the stochastic models used in this study 
do not perform satisfactorily in predicting the last 
departure time and occupancy duration, even though 
the model training was based on high-quality and 
high-resolution empirical data (from the same 
workplaces for which predictions were made). It may 
be argued that the observed large model errors are 
due to the poor performance of the specific stochastic 
models considered in the present study. 
Consequently, we currently explore other modelling 
approaches and options. Nonetheless, the obtained 
results could be also interpreted to the effect that 
there may be potentially a limit (lower uncertainty 
threshold) in predicting the occupants' presence by 
using probabilistic models derived based on past 
occupancy data. 

 

 
Figure 1: Cumulative distribution of arrival time 

error absolute values  

 
Figure 2: Cumulative distribution of departure 

time error absolute values  

 
Figure 3: Cumulative distribution of occupancy 

duration error absolute values  
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Figure 4: Cumulative distribution of number of 

transitions error absolute values  

Table 1: The 80th percentile of the errors 

Evaluation statistics 
Reinhart 

Model 
Page 

Model 

First arrival time error [hour] 1.2 1.4 

Last departure time error [hour] 2.4 2.4 

Occupancy duration error [hour] 2.3 2.2 

Number of transitions error [-] 3.3 3.6 

 
Table 2: Percentage of errors below 

 specific thresholds 

Evaluation statistics 
Error 

threshold 

Percentage of errors 
below threshold 

Reinhart 
Model 

Page 
Model 

First arrival time [hour] 1.0 74.2 70.0 

Last departure time [hour] 1.0 46.9 46.7 

Occupancy duration [hour] 1.0 45.3 46.1 

Number of transitions [-] 2.0 61.5 56.8 

 

CONCLUSION 

As noted at the outset of the paper, deployment of 
stochastic occupancy models in the context of 
building systems control requires a rigorous standard 
concerning the evaluation of the models' predictive 
performance. In such a context, one cannot simply 
claim that an occupancy model performs well, if it 
generates occupancy patterns that “resemble” the real 
ones. We need clearly defined and rigorous statistics 
to evaluate the predictive performance of an 
occupancy model. In this context, we suggest that an 
evaluative approach similar to the one we suggested 

and applied in this paper is critical for future studies 
that intend to evaluate and improve stochastic 
occupancy models. 
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