
CALIBRATION OF SCHEDULES IN BUILDING SIMULATION
USING RUNTIME MONITORING

C. Tauber, F. Tahmasebi, R. Zach, and A. Mahdavi

Department of Building Physics and Building Ecology

Vienna University of Technology, Vienna, Austria

ABSTRACT

Using runtime measurements from a monitoring
system, building performance models can be
automatically calibrated on a recurrent basis to
decrease deviations from real world conditions. This
paper describes algorithms to perform such an
automated calibration process. The proposed layer-
based structure of the calibration framework allows
simple component exchangeability and expandability
for implementation of different simulation and
optimization tools. The currently proposed approach
allows calibration of both non-time dependent model
variables (e.g., U-value of a window) and time
dependent variables (e.g., schedule of window
status).

INTRODUCTION

Numeric performance simulation tools are typically
applied to predict the future performance of building
designs (Hensen et al. 2011). More recently, the
potential of simulation routines is being explored in
the buildings' operation phase. Specifically,
predictive systems operation approach has shown
how simulation engines can be incorporated as an
integral component of a building's control system
(Mahdavi 2001, Mahdavi et al. 2013). Thereby, to
arrive at a preferable control option, implications of
alternative control actions for the control task's
objective function are evaluated proactively via
parametric simulation. Thereby, the reliability of
predictions is of essential importance. Monitored
data could be used to evaluate and calibrate
simulation models to improve their predictive
potency (Weber et al. 2012).

Automated recurrent simulation model calibration
(see Figure 1) is a key requirement to enable further
advanced applications (e.g., virtual sensors) that
obtain data from simulation tools. Existing solutions
are mostly customized to specific application toolkits
and cannot be easily adapted to other systems.
Further limitations emerge, when using more
complex optimization cost functions, which depend,
for example, on external monitored data. An
optimization tool such as GenOpt (GenOpt 2014)
support multiple simulation applications, but the

evaluation occurs within the simulation domain.
However, complex cost function calculations are
difficult to implement within each simulation tool’s
program flow. Moving the cost function calculation
to the optimization domain allows implementing a
general framework, independent of the deployed
simulation tool and specific solutions (plugins). A
layer-model with strict interface definitions can
facilitate exchangeability in using different
simulation, optimization, and monitoring tools. This
paper illustrates an approach to create such a model
and reports on an implementation effort within the
Monitoring System Toolkit (Most 2014).

APPROACH

Overview

To process automated calibration based on runtime
building monitoring, the Monitoring System Toolkit
(MOST) is used as the source for measurements
obtained from physical sensors. The proposed layer-
based structure of the calibration framework allows
simple component exchangeability and
expandability, including implementations for
different simulation and optimization tools. In the
current implementation, GenOpt was used for

Calib‐

ration

Measurements

Predicted
Performance

Model
0

 time

...

t0

Monitoring Framework

Model

1

Calib‐

ration

Predicted
Performance

Model

a

Measurements

t1 t2 tn

Calibrated
simulation
model for
period n

Figure 1: A schema of recurrent simulation model
calibration based on measurements obtained from a

monitoring framework.

 Fifth German-Austrian IBPSA Conference
RWTH Aachen University

- 294 -

optimization. Currently, the cost function is typically
processed by the simulation application. Technology
issues make it very hard to implement cost functions,
which depend on values from external data sources
(e.g. real-time measurements from a monitoring
system). Therefore, the evaluation process was
moved to the optimization domain to become
independent of the deployed simulation software. A
developed plugin-based extension of GenOpt enables
the implementation of original cost function
algorithms, only restricted by a minimal interface
definition that provides the simulation program’s
output paths and requires the calculated cost function
value to be returned.

Figure 2 shows the layer-based structure of the
proposed implementation. The Monitoring System
Toolkit was extended by a calibration module that
serves the functionality for iterative simulation model
optimization. It is schematically separated in:

(1) Pre-processing: contains jobs such as the
creation of a weather file for the calibration
period

(2) Calibration: includes the driver for the
optimization program

(3) Post-processing: contains any tasks that
should be done after a calibration, e.g.
deployment of the calibrated model

The optimization tool GenOpt is extended with a
new plugin based cost function calculation
functionality. This plugin interface allows the use of
custom implementations for the calculation of the
cost function used during calibration. This paper
describes a plugin, which optimizes an EnergyPlus
simulation model based on measurements from the
Monitoring System Toolkit. It is further separated in
cost function calculation and the basic data reader
objects.

This layer approach shows how components could be
exchanged easily, for example when switching to
another simulation tool without having to adjust the
whole solution. In this case a new custom reader
object has to be implemented that could provide the
simulation output to the cost function algorithm in a
standardized way.

Calibration of time dependent variables

Building performance models’ input variables can be
classified into two fundamental types:

 Time independent variables, which display
no (or negligible) change in the regarded
time period (e.g. U-Value of a window).

 Time dependent variables, which are
defined with an array of values over time,
known as schedules (e.g., state of a window:
open/closed).

Figure 2: Proposed layer-model using the example
of the Monitoring System Toolkit and EnergyPlus.

The calibration of static variables was described in
detail in previous publications (Tahmasebi et al.
2012). Time-dependent variables involve more
complexities in model calibration because an
optimum of a series of values has to be found to
reach optimum model performance. A less
computationally expensive approach could be
populating the model with a pool of possible
schedules for time-dependent variables, where the
best-fitting one is selected in the calibration process.

To provide this pool of schedules in a simple
manner, a number of daily schedules can be picked
randomly from the relevant monitored data of a
certain period of time. Each set of schedules
pertaining to occupant presence and interactions with
building systems should be obtained from the same
day to avoid inconsistencies in the schedules.

Alternatively, occupants’ presence and behavioral
models, trained with the monitored data, can be used
in order to generate occupancy-related profiles,
among other things, based on environmental factors.

Monitoring system toolkit

In a nutshell, the Monitoring System Toolkit
(MOST) provides connector interfaces to collect data
from various building systems, a database for data
storage and data preprocessing, a MATLAB-
Framework for complex data processing, and JAVA-

 Fifth German-Austrian IBPSA Conference
RWTH Aachen University

- 295 -

interfaces for different applications. The Building
Data Service Interface provides a common data
format and abstracted communication to the storage
service. Given this structure, a calibration module
was implemented that serves periodical calibration
processing (Figure 3).

Figure 3: Modular structure of the Monitoring
System Toolkit

MOST Standard Data Format

The proposed layer structure of the solution (Figure
2) shows the two different Reader objects in the
MOST EnergyPlus Plugin. Both of them use the
MOST standard data format to provide the datasets
to the next layer above, the cost function calculation.
In the Monitoring System Toolkit, there are various
data objects specified for standardized data exchange
within the project modules.

Table 1:MOST standard data format: DpDataDTO –
Represents a single measurement

Property Type Description
Timestamp Date Precise time mapping

Value Double Value of the data object
Quality Float Indication of quality

Table 2:MOST standard data format: DpDataset –

A list of DpDataDTO objects

Property Type Description
DatapointName String Name of the data point

The format definitions can be seen in Tables 1 and 2.
They illustrate the essential properties to describe
single data point measurements and respective sets.
DpDataDTO represents such a single measurement
object, including the value, the inherent time stamp,
and a quality indicator. The measurements of a data
point for a period can be listed together in a
DpDatasetDTO object. It contains, in addition to
regular lists, a property ‘DatapointName’ for relating
it to a unique data point.

GenOpt Plugin Extension

GenOpt 2014 is an optimization tool for minimizing
a cost function evaluated by a simulation tool. It can
support simulation tools that have input and output

based on text file. In the current software design, the
cost function calculation must be implemented within
the simulation application. If a cost function depends
on external data sources (in this example:
measurements in the MOST Database), technology
issues make it very hard to provide this data during
the simulation program’s run. Consequently,
extensive adjustments would be necessary for every
simulation tool deployed.

To provide a universal solution to any given
calibration problem, GenOpt was extended and a
plugin-extension for cost function calculation
implemented. Thus, the evaluation of the cost
function is part of the calibration domain, not the
simulation domain. At every step in the optimization
process, GenOpt does not read-in the evaluated cost
function value(s), instead it calls the plugin, passes
the path(s) to the simulation program’s output and
demands the calculated value(s) to be returned. This
interface definition is kept minimal, reducing
restrictions in implementing customized solutions for
a specific use case.

When developing a custom solution for a particular
application, a recompilation of the application is not
necessary. The specific part could be implemented as
plugin and then provided to GenOpt through a plugin
folder. To achieve this, a number of adjustments in
functionality of GenOpt were necessary when using
a plugin:

 The GenOpt initialization file for a
particular optimization problem does not
have to provide information on the
“ObjectiveFunctionLocation”, since the
plugin serves the cost function calculation.
If this part is included it will be ignored.

 Adjustments of the optimization
implementations in code, to call the plugin
when simulation evaluation should be done,
instead of reading the evaluation result of
the simulation program's output files.

 Various utilities for loading, serving, and
calling plugins.

Plugin interface definition

To standardize the interface between plugin
framework and developed plugins, a definition was
designed. It contains the properties that are regularly
read out of the optimization initialization file of
GenOpt. All GenOpt cost function plugins’ have to
serve this (Table 3).

To enable the plugin to generate the cost function
values, it gets the paths to the simulation program’s
output files when being called at every optimization
time step.

 Fifth German-Austrian IBPSA Conference
RWTH Aachen University

- 296 -

Table 3:
Properties of the plugin interface definition

Property Description

Dimension
Represents the count of the
used cost functions that should
be optimized.

Names
Represents the designations of
the cost functions. They are
used for identification at output.

Cost function values

The calculated results of the
cost functions, used for
evaluation of an optimization
step.

Development of plugins

The following instructions should elucidate how to
develop a plugin for the GenOpt plugin extension.
The used programming language for the MOST
project and GenOpt is JAVA. Any JAVA
development environment could be used. A new
class has to implement the ICostFunction interface
that was explained in the previous section. That class
represents the plugin solution. It needs a
configuration file (META-INF/services), because
ServiceLoader is used to load and initialize plugins.
The benefit is that the GenOpt plugin extension
project does not have to be recompiled when a new
plugin is developed. The coded plugin has to be
exported as JAR and could be provided in a plugin
folder in the GenOpt directory. On startup the
proposed plugin extension loads and initializes the
plugins.

MOST EnergyPlus Plugin

Based on the interface definition of the GenOpt
plugin extension a plugin was developed within the
Monitoring System Toolkit to interact with
EnergyPlus as simulation tool. The essential
functionality is the evaluation of a cost function,
which addresses the difference between the measured
and simulated values, such as indoor air temperature.
The evaluation statistic implemented in current study
is the Root Mean Squared Deviation (RMSD). The
function parameters include two basic data sources:
the simulation program’s output and the building
monitoring measurements. In the proposed plugin the
algorithms to access these sources were abstracted
and separated. This layer model makes it possible to
replace the simulation application (EnergyPlus) and
building monitoring system (MOST).

The data access layer was implemented with two
objects:

(1) EnergyPlus Output Reader converts
EnergyPlus output files because of
interoperability reasons into a desired

standard data format used in the MOST-
project.

(2) MOST Database Reader provides a caching
algorithm to take the load off the database.

The major functionality of the data access layer is to
convert the different kinds of used source data, such
as database entries from a monitoring system or the
simulation program’s output to a standard data
format. The mapping between sensors defined in the
EnergyPlus model and sensor values that are stored
in the database is currently realized with naming
conventions (identically naming). The next layer
upward provides the cost function algorithm realized
as RMSD calculation. These two layers are
implemented as a plugin for GenOpt.

A MODEL CALIBRATION EXAMPLE

To illustrate how a building performance model is
calibrated in the proposed framework, we go through
different stages of a calibration example (Tahmasebi
et al. 2012).

Building model

The building model was modeled in EnergyPlus,
version 7.0. It was assumed that the floor and ceiling
elements of the office are adiabatic, as the office is
situated between two occupied floors. In the zoning
scheme, the open-plan south and north-oriented
spaces were separated from the central corridor.
However, using the network-based multi zone
airflow model of EnergyPlus, the airflow between
these connected spaces was simulated. Figure 4
illustrates the building floor plan and the thermal
zoning of the building model.

Figure 4: Building floor plan and the thermal zoning

of the building model

 Fifth German-Austrian IBPSA Conference
RWTH Aachen University

- 297 -

In this study the zone mean air temperature was used
to optimize the simulation model. For the purpose of
MOST EnergyPlus Plugin the temperature values per
time step were declared as output.

Figure 5: Output variables of the EnergyPlus model

Preprocessing: Create a local weather file

For the purpose of simulation model calibration,
typical-year weather data cannot be used to represent
the outdoor conditions. Therefore, real-time
measurements should be used to generate the
EnergyPlus weather file for the calibration period.
The MOST database provides a number of weather
parameter measurements which can be used to create
a real-time weather data file as a preprocessing step
in the calibration process (Table 5).

Table 5: Data used to create weather file

Data point Unit

Global horizontal radiation W/m2

Diffuse horizontal radiation W/m2

Outdoor dry bulb temperature °C

Outdoor air relative humidity %

Wind Speed m/s

Wind direction degree

Atmospheric pressure Pa

Preprocessing: Populate the model with schedules

Based on the proposed approach, the initial building
performance model shall be populated with a pool of
schedules, which represent different patterns of
occupants’ presence and behavior. Toward this end,
a number of daily schedules can be picked randomly
from the relevant monitored data.

With regards to implementation in the developed
calibration framework, a specially designed syntax
allows defining placeholders for the schedules in the
simulation model. Figure 6 shows the definition
within an EnergyPlus model for a schedule “con20”,
in this example a door open/closed contact sensor.
Instead of data a placeholder is inserted. The name
inside the start (“<#”) and end tag (“#>”) declares the
data point name in the database of the monitoring
system. Before launching a calibration process the
EnergyPlus model is searched by this tags and
replaced through data of the monitoring system of

the run period. The advantage of this approach is the
slim simulation model template.

Figure 6: Schedule data placeholder

Scheduled variables

The calibration process should find the schedules
that cause the best cost function result. GenOpt
allows specifying discrete variables that have a set of
admissible values. To provide an example, Figure 7
illustrates a part of the EnergyPlus model, where an
AirflowNetwork:MultiZone:Surface object
represents the interactions with windows in a binary
manner via referencing a venting availability
schedule. GenOpt applies the schedules provided in
the pool (based on the syntax illustrated in Figure 8)
and finds the one that minimizes the cost function.

Figure 7: Defining the schedule name as variable

Figure 8: Defining the pool of admissible patterns in

the GenOpt command file

Calibration: Cost function calculation

For the purpose of building performance analysis
error can be defined as the difference between a
predicted value and a measured value (Polly et. al.
2011). In the present case, the error was calculated
for the indoor air temperature averaged over all
office zones. To minimize this error, the “Root Mean
Squared Deviation” was used:

RMSD =
n

sm i

n

i i
2

1
) (

 (1)

where si = simulated values that are read from the
simulation programs output; mi = measured values
that are fetched from the database of the Monitoring
System Toolkit.

AirflowNetwork:MultiZone:Surface,
 SubObj:0225, !- Surface Name
 SubObj:0225, !- Leakage Component Name

 …

 %con20%; !- Venting Availability
 !- Schedule Name defined

 !- as Variable

Schedule:Compact,
con20,
On/Off,
<#con20#>;

Parameter{ // con20 pattern pool
 Name = con20;
 Ini = 1;
 Values = “con20p1, con20p2, con20p3,
 con20p4”;
 }

== ALL OBJECTS IN CLASS: OUTPUT:VARIABLE ==
Output:Variable,*,tem11,Timestep;
Output:Variable,*,tem12,Timestep;
...
Output:Variable,*,tem16,Timestep;
Output:Variable,*,tem17,Timestep;

 Fifth German-Austrian IBPSA Conference
RWTH Aachen University

- 298 -

In the proposed calibration framework, a developed
plugin-based extension of GenOpt enables the
implementation of the cost function outside the
simulation model. Thus, the optimization tool
GenOpt, which is extended with this plugin
optimizes an EnergyPlus simulation model based on
measurements from the Monitoring System Toolkit
(MOST).

DISCUSSION

Optimization-based simulation model calibration has
a great potential to improve the runtime performance
of embedded simulation engines in buildings’ control
and automation systems. A possible approach was
presented on how this could be implemented
software-aided. The layer-based structure makes it
possible to easily exchange parts of the
implementation and improve single layer
functionality. The provided example shows how the
previous work done by scripts in one simplified
application can be improved. However, the
calibration process itself requires further
improvement in terms of efficiency and consistency.
Needless to say, automated software implementations
could enhance handling big data that would not be
possible manually with script support. Moreover,
more detailed model parameters could be included.

CONCLUSION

The approach presented in this paper demonstrates
how a building performance model could be adjusted
to be used in the MOST calibration module, how
preprocessing works in the proposed approach, and
what are the major benefits of automating a periodic
re-calibration of simulation models. Basic calibration
operations are implemented already and give a good
direction for further research and implementations.
Hence, automated simulation model calibration based
on a runtime monitoring represents a promising
opportunity for performance enhancement in
applications pertaining to building automation,
diagnostics, facility management, and model-based
system control.

ACKNOWLEDGEMENT

The research presented in this paper was supported
by funds from the "Klima- und Energiefonds" within
the program "Neue Energien 2020”.

REFERENCES

EnergyPlus 2012. http://apps1.eere.energy.gov/buil-
dings/energyplus/.

GenOpt 2014. http://simulationresearch.lbl.gov/GO/

Hensen, L. M., Lamberts R. (ed.) 2011. Building
performance simulation for design and operation.
Spon Press, ISBN: 978-0-415-47414-6.

Mahdavi, A. 2001. Simulation-based control of
building systems operation. Building and
Environment 36, 789–796.

Mahdavi A, Schuss M. 2013. Intelligent Zone
Controllers: A Scalable Approach to Simulation-
Supported Building Systems Control. Building
Simulation 2013, Building Simulation 2013 -
13th International Conference of the International
Building Performance Simulation Association,
IBPSA (ed.); IBPSA, (2013), ISBN: 978-2-7466-
6294-0; 1498 - 1505.

Most, 2014. http://most.bpi.tuwien.ac.at/.

Polly B., Kruis N., Roberts D. 2011. Assessing and
improving the accuracy of energy analysis for
residential buildings, U.S. National Renewable
Energy Laboratory's (NREL), Sponsoring
organization: U.S. Department of Energy, Report
number: DOE/GO-102011-3243.

Tahmasebi F, Zach R. Schuss M. Mahdavi A.
Simulation model calibration: An optimization-
based approach. BauSim2012 - IBPSA Germany-
Austria (2012), Paper ID 170, 6 pages.

Tahmasebi F, Mahdavi A. 2013. A two-staged
simulation model calibration approach to virtual
sensors for building performance data.
25.08.2013 - 30.08.2013. Building Simulation
2013, France.

Weber J., Zach R., Tahmasebi F., Mahdavi A. 2012.
Inclusion of user-related Monitoring Data in the
run-time calibration of building performance
simulation models. BauSIM 2012, Berlin
Germany.

 Fifth German-Austrian IBPSA Conference
RWTH Aachen University

- 299 -

