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Zusammenfassung 

Angesichts der Implikationen des Nutzerverhaltens auf das 

Innenraumklima und die Energieperformance von Bauwerken gibt es 

gegenwärtig große Bemühungen, diesen wesentlichen Teil der 

Charakteristik von Bauwerken zu erschließen, um zuverlässigere 

Vorhersagen der Gebäudeperformance mittels Simulationswerkzeugen zu 

erzielen. Die  Eingabedaten der „Occupancy“ – so der gebräuchliche 

Terminus für Anwesenheit der Gebäudenutzer und Ihre Interaktion mit 

den Gebäuden – unterliegen jedoch immer noch großen Unsicherheiten. 

Um dieses Problem zu adressieren, verwendet die vorliegende Arbeit 

Langzeitmessdaten und ein kalibriertes Gebäudesimulationsmodell, um 

eine Reihe von existierenden und neuartigen Occupancy-Modellen 

(hinsichtlich Anwesenheitsprofilen der Nutzer, der Nutzung von 

stromverbrauchenden Geräten und der Interaktion mit Fenstern) auf Ihre 

Zuverlässigkeit zu untersuchen.  

Die Ergebnisse der Studie zeigen, dass stochastische Modelle hinsichtlich 

der Bewertung von Anwesenheit und Stromverbrauchsprofilen und –

spitzen, wie auch für die Bewertung der Interaktion mit Fenstern in 

Perioden, wo nicht aktiv geheizt oder gekühlt wird, den regel-basierten 

Modellen überlegen sind. Allerdings führt diese gute Performance der 

stochastischen Modelle nicht automatisch zu einer genaueren Vorhersage 

bestimmter Gebäude-Performance Indikatoren, wie beispielsweise den 

jährlichen Heizwärmebedarf oder die Spitzenheizlast. Darüber hinaus zeigt 

sich, dass für bestimmte Applikationen, die Vorhersagen in geringen 

zeitlichen Intervallen benötigen, z.B. prädiktive Gebäudesteuerung, die 

nicht-stochastischen Modelle bessere Resultate liefern, da sie typische 

Verhaltens-Muster der Nutzer beinhalten. 

Aus dieser Arbeit kann geschlossen werden, dass stochastische 

Occupancy-Modelle gut geeignet sind, den scheinbar zufälligen Charakter 

von Nutzerverhalten zu emulieren und entsprechende probabilistische 

Verteilungen von Performance-Indikatoren über die Zeit zu generieren. 

Die Integration der Diversität von Nutzerverhalten und 

sozialwissenschaftlicher Erkenntnisse in stochastische Occupancy-Modelle 

sowie ein klar definierter Verwendungsbereich der Modelle, kann diese zu 

wertvollen Bestandteilen von Gebäudesimulation machen. 
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Summary 

Given the impact of occupants' presence and control actions on indoor 

environment and the complex nature of such interactions, sophisticated 

models of occupants' presence and behavior are increasingly deployed to 

enhance the reliability of building performance simulations. However, use 

of occupancy-related models in building simulation efforts and their 

predictive performance in different contexts involves potentially 

detrimental uncertainties. To address this issue, the present study deploys 

long-term monitored data and a calibrated building simulation model to 

examine a number of existing and novel models of occupants’ presence, 

use of electrical equipment and operation of windows. The models are 

evaluated in view of their potential in predicting occupants’ behavior, as 

well as their effectiveness to enhance the reliability of building 

performance simulation efforts.  

Specifically, the results of the study suggest that to assess the occupancy 

and plug load distributions and peaks, and for the purpose of window 

operation prediction in the free-running season, the stochastic models 

could outperform the typical diversity profile and rule-based models. 

However, the superior performance of stochastic models does not 

necessarily translate into more accurate estimations of common building 

performance indicators such as annual and peak heating demands. 

Moreover, for simulation deployment scenarios such as predictive 

building systems control, which rely on short time-interval predictions, the 

non-stochastic models tend to provide more accurate results, as they use 

typical patterns of occupants’ presence and behavior. 

In general terms, this dissertation concludes that stochastic occupant 

behavior models can emulate the seemingly random character of 

occupant behavior and provide probabilistic distributions of performance 

indicators. However, these models can contribute to enhance building 

performance simulations, if they delineate their scope of application and 

address the diversity and social context associated with occupants’ 

control-oriented actions.  
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Chapter 1.  

Introduction 

 

1.1. Motivation 

Building performance simulation aims to support the design and 

operation of more habitable and sustainable built environments [1]. 

Toward this end, building simulation tools can provide rapid feedback on 

the performance implications of design alternatives and allow for what-if 

analyses to evaluate the robustness of new technologies under different 

operating conditions [2]. Moreover, in the past few years, research and 

development regarding the deployment of building performance 

simulation in the building operation phase has gained on momentum.  

However, arguably, building performance simulation is yet to find its place 

in the building industry. While Clarke and Hensen [2] suggest that building 

performance simulation development suffers from an inappropriate 

emphasis on the software engineering aspects at the expense of evolution 

of the underlying physical models, there is also a consensus in the building 

performance simulation community that the present discrepancy 

between predicted and actual building performance is one of the main 

barriers toward the extended use of building simulation tools.  

In this context, occupants and the approaches to model occupants in 

building performance models plays an important role. For occupants can 

largely influence the building behavior not only by their presence but also 

by their control oriented actions [3]. As a result, building performance 

simulation tools increasingly incorporate models of occupants' presence 

and behavior to assess, among other things, building energy performance 

and indoor air quality.  However, given the complex nature of occupants’ 

control-oriented behavior in buildings, arguably, the representation of 

occupants in building performance simulation falls short of other relevant 

factors such as building envelope, building systems, and climatic context.  
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Consequently, since more than a decade ago, stochastic models of 

occupants’ presence and behavior are increasingly deployed to address 

the complex nature of occupants’ control actions in buildings and to 

increase the reliability of building performance simulation results. 

Numerous campaigns of occupant behavior monitoring and data mining 

efforts [4,5,6], development of a variety of occupant behavior models, 

and examination of different workflows for integration of these models 

into building simulation tools [7,8] have been collectively contributing to 

enhance the representation of occupants in building performance 

simulation.  

However, it can be argued that sophistication of the stochastic occupant 

behavior models, and more specifically, the inherent advantage of these 

models over non-stochastic ones in representing the probabilistic nature 

of occupants’ behavior has led to a misunderstanding that these models - 

as a whole – necessarily provide more “realistic” and “accurate” 

assessments of building performance. In addition, the non-stochastic 

representations of occupants’ presence and control actions are 

considered to be “dated”, as if they have no longer any use in simulation 

based studies. In this context, however, it should not be forgotten that 

existing stochastic behavioral models are predominantly derived based on 

rather limited sets of observational data and are not subjected to external 

validation in different settings [9,10]. Previous studies in the area have 

highlighted, on the one side, the lack of inter-comparison, and the 

uncertainty in the validity range of the developed models [11], and on the 

other side, the lack of robust algorithms for use of these models in 

building performance simulation [8]. In addition, as outlined in previous 

publications [12,13,14], the relationship between the purpose of building 

performance simulation-based studies and the choice of occupancy-

related models is not sufficiently recognized. Thus, the use of occupant 

behavior models in building performance simulation and their predictive 

potential in different contexts involves potentially detrimental 

uncertainties.  
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1.2. Objective 

Given the aforementioned background, in the current contribution, as a 

first step toward enhancing the accuracy of building performance models, 

the potential of a sensitivity-analysis-assisted calibration of fixed physical 

properties of a building model is examined. Deploying this calibrated 

simulation model and long-term monitored data pertaining to indoor and 

outdoor environment as well as occupant behavior, a systematic 

evaluation of a number of existing and novel models of occupants’ 

presence, use of electrical equipment and operation of windows is 

conducted. The models are evaluated in view of their potential in 

predicting occupants’ behavior, as well as their effectiveness to enhance 

the reliability of building performance simulation efforts.  

1.3. Structure 

This dissertation is structured in terms of seven chapters. Chapter 2 deals 

with simulation model calibration as an initial effort toward enhancing the 

reliability of building performance simulations. The resulting calibrated 

simulation model also serves as a platform for evaluation of occupant 

behavior models in Chapter 5, whose output (e.g., window states) 

influences models’ input (e.g., indoor temperature). Chapter 3 focuses on 

occupants’ presence as a basis for modeling efforts pertaining to occupant 

behavior. In Chapter 4 two plug loads models are suggested and their 

potential in predicting the energy use associated with office equipment is 

explored. Chapter 5 studies a number of existing stochastic and non-

stochastic window operation models in view of their potential in 

predicting occupants’ interactions with windows and enhancing the 

simulation results. Finally, Chapter 6 discusses the research conclusions 

and future outlook. In addition, Chapter 7 lists the references, figures and 

tables. 
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Chapter 2.  

Building simulation model calibration 

 

2.1. Background 

Research on performance simulation deployment opportunities in the 

building operation phase has recently gained on momentum. Specifically, 

simulation routines have been successfully applied in the conception and 

implementation of predictive methods for building systems control [15]. 

In the current study, the author also suggests the use of calibrated 

building simulation models for evaluation of occupant behavior models 

whose output (e.g., window states) influences models’ input (e.g., indoor 

temperature). It is of course logically impossible to obtain empirical data 

matching every possible sequence of actions predicted by behavioral 

models. Hence, one needs to emulate building's response to behavioral 

impulses virtually, i.e., via building performance models. However, this 

necessitates a model that can reliably represent the building's behavior. 

Many efforts have been made in recent years to address the challenges in 

calibration of over-parameterized building simulation models (see, for 

example, case studies in [16,17,18,19,20,21]). Reddy et al. [22,23] 

suggested a calibration methodology involving heuristic-based definition 

of a set of influential parameters and schedules, performing a coarse grid 

to identify a small set of promising parameters with narrower bounds of 

variability, conducting a guided grid search to further refine the promising 

parameter vector solutions, and using this set of solutions (as opposed to 

a single calibrated solution). Raftery et al. [24,25] suggested and 

demonstrated an evidence-based methodology for the calibration of 

building performance models, under which parameter values in the final 

calibrated model reference the source of information. Yanga and Becerik-

Gerberb [26] examined a building energy simulation calibration 

framework, in which simultaneous accuracy for multiple levels of 
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simulation (for instance, building and zone levels) is considered. 

Calibration procedure has also benefitted from the increasingly available 

building monitored data. For example, using hourly electricity sub-

metering data, in [27] a bottom-up approach toward simulation model 

was examined.  

Given this background, this chapter explores the potential of an 

optimization-based approach to simulation model calibration toward 

enhancing the reliability of building performance simulation results. The 

study also addresses a specific problem faced by an optimization-based 

simulation calibration approach: In many realistic circumstances, a large 

number of model input variables could be subjected to the optimization 

process. This large number of candidate input variables can be reduced to 

a certain extent via heuristically-based considerations pertaining, for 

example, to the knowledge domain captured in building physics. The 

author argues, however, that this process could be further rationalized, if 

one makes use of sensitivity analysis to identify a subset of the input 

variables most likely to influence the simulation results. Distinguishing this 

subset from the entire set of input variables will reduce the computational 

cost of the subsequent calibration process. 

2.2. Methods 

2.2.1. The monitored building 

To explore the potential of optimization-based calibration in a realistic 

setting, an actual office in a building of the Vienna University of 

Technology was selected, which is equipped with a monitoring 

infrastructure (Figure 1). The monitoring infrastructure provides various 

streams of data, including indoor climate, weather conditions, energy 

delivery via the heating system, energy use for lighting and equipment, 

occupancy presence, and the opening state of windows and doors. Data 

are regularly collected with a variable frequency depending on the 

magnitude of changes in successive recordings.  
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Figure 1. Building floor plan and thermal zoning of the model 

 

The monitored data was used to: i) create a weather file based on local 

data instead of using a predefined "typical" year; ii) populate the initial 

building model with dynamic data regarding internal loads, device states, 

and occupancy processes; iii) calibrate the initial model (see Table 1). 

Thereby, incorporation of the high-resolution monitored data on 

occupants’ presence, operation of windows, use of lights and equipment 

as well as heat delivery rate of the building hydronic heating system into 

the model noticeably limits the calibration search space. This provides an 

ideal situation for identification and calibration of model’s constant input 

parameters most likely to influence the simulation results. 
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Table 1. Use of monitored data in the calibration process 

Use of data Data point Unit 

Creating 
local 

weather 
data file 

Global horizontal radiation W/m
2
 

Diffuse horizontal radiation W/m
2
 

Outdoor dry bulb temperature 
o
C 

Outdoor air relative humidity % 

Wind Speed m/s 

Wind direction degree 

Atmospheric pressure Pa 

Creating 
the initial model 

Electrical plug loads W 

State of openings (open/closed) - 

State of the lights (on/off) - 

Occupancy (presence/absence) - 

Radiators’ surface temperature 
o
C 

Calibration Indoor air dry bulb temperature 
o
C 

 

2.2.2. The building model 

The building was modeled in the whole-building energy simulation tool 

EnergyPlus [28]. It was assumed that the floor and ceiling surfaces of the 

office are adiabatic, as the office is situated between two occupied floors. 

In the zoning scheme, the open-plan south and north-oriented spaces 

were separated from the central corridor. However, using the network-

based multi zone airflow model of EnergyPlus [29], the airflow between 

these connected spaces was simulated. Figure 1 illustrates the building 

floor plan and the thermal zoning of the building model. 

The monitored data was incorporated as simulation input information in 

terms of scheduled variables. Since writing schedules manually in 

EnergyPlus (and probably in any other simulation program with text-based 

input) is a time-consuming and error-prone process, a simple program 

was written in Matlab [30] to generate an event-based "compact 

schedule" for each data point (Note that, at the time this part of study 

was conducted EnergyPlus did not contain the Schedule:File class). 
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2.2.3. The heating system model 

To simulate the building's performance during the heating season, the 

heat delivery rate of the hydronic heating system had to be calculated and 

provided to the simulation model as input information. Toward this end, 

measured radiator surface temperatures were used. The heat emission 

rate of the radiators was obtained using the following equations: 

 

𝑞 = 𝑞𝑅 + 𝑞𝐶  ( 1) 
 

𝑞𝑅 = 𝜀 ∙ 𝜎 ∙ 𝐴𝑅 ∙ (𝑇𝑆
4 − 𝑇𝑅

4) ( 2) 
 

𝑞𝐶 = ℎ𝐶 ∙ 𝐴𝐶 ∙ (𝜃𝑆 − 𝜃𝑅) ( 3) 
 

ℎ𝑐 = 2 ∙ |𝜃𝑆 − 𝜃𝑅|0.25 + 4𝜀 ∙ 𝜎 ∙ (
𝑇𝑆 + 𝑇𝑅

2
)
3

 ( 4) 

 

Where: 

q heat delivery rate of radiators [W]; 
qR radiative component of heat delivery [W]; 
qC convective component of heat delivery [W]; 
ε emissivity of the radiator [-]; 
σ constant (5.67×10−8 W.m−2.K−4); 
AR effective radiator area for radiation [m2]; 
TS surface temperature of radiators [K]; 
TR room temperature [K]; 
hC convective heat transfer coefficient [W.m-2.k-1]; 
AC effective radiator area for convection [m2]; 
θS surface temperature of radiator [oC]; 
θR room temperature [oC]. 
 

2.2.4. Run periods 

The model calibration and validation process involved a monitoring period 

of nearly three months consisting of two 44-day periods (Table 2). The 

sensitivity analysis was also performed in the calibration period. 
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Table 2. Specification of run periods 

Run periods Start date End date 

Calibration  15.02.2011 30.03.2011 

Validation  27.04.2011 09.06.2011 

 

2.2.5. Optimization-based calibration approach 

In an optimization-based approach, calibration is cast as an error-

minimizing process. In this kind of optimization problem, the cost function 

addresses the difference between measured and simulated data (in the 

present case, indoor air temperature). The variables in the optimization 

algorithm include a number of model input parameters. The attributes of 

these variables will be varied toward minimizing the cost function. 

To accomplish the optimization in a way that works smoothly with the 

simulation model, the generic optimization program GenOpt was used. 

GenOpt has been developed to conveniently find the attribute range of 

relevant independent variables that would yield optimal system 

performance. GenOpt optimizes a user-supplied cost function, using a 

user-selected optimization algorithm [31]. 

The algorithm used for the optimization was the hybrid generalized 

pattern search and particle swarm optimization algorithm. This is one of 

the recommended generic algorithms for problems, where the cost 

function cannot be simply and explicitly stated, but can be approximated 

numerically by a thermal building simulation program [31]. 

2.2.6. Selecting calibration variables via sensitivity analysis 

The problem of large search space and multiple possible solutions has 

been addressed in previous research (see, for example [22,32]). In the 

present study, the building model was populated with high-resolution 

monitored data on occupants’ presence, operation of windows, use of 

lights and equipment as well as heat delivery rate of the building hydronic 
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heating system to limit the calibration search space. In such an ideal 

situation for calibration of model’s constant input parameters, the large 

number of candidate model parameters was reduced to a certain extent 

via heuristically-based considerations. This subset included 23 model 

input variables (Table 3). Secondly, to identify the input variables most 

likely to influence the simulation results, these variables were subjected 

to a Monte Carlo-based sensitivity analysis.  

The performed sensitivity analysis included four steps. In the first step, 

assuming uniform distribution of input variables, a range was selected for 

each variable (Table 3). In the second step, a sample of points was 

generated from the distribution of the inputs using the Latin hypercube 

sampling method, which is a particular case of stratified sampling [33]. 

The result was a sequence of 690 sample elements. In the third step, the 

model was fed with the sample elements and a set of model outputs was 

produced. Since the sensitivity analysis was planned to be performed in 

the heating period, the building’s total heat load during the run period 

was designated as the output. 

Running 690 different models with randomly selected input parameters’ 

values, a mapping was created from the space of the inputs to the space 

of the results that were used in the fourth step as the basis for sensitivity 

analysis. By solving a multiple linear regression model, using least squares 

[33], the absolute value of Standard Regression Coefficient (SRC) was 

calculated for the variables as a quantitative sensitivity measure. Table 4 

shows the analysed variables in order of the absolute value of SRC.  

Based on these results, the first four variables with SRC values higher than 

0.1, were chosen to be subjected to optimization-based calibration in the 

next stage. These variables, their initial values and their allowed 

calibration ranges can be seen in Table 5. 
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Table 3. Variables subjected to SA and their ranges 

Variables 
Min. 
Value 

Max. 
Value 

White painted gypsum - Thermal conductivity 0.336 0.504 

White painted gypsum - Density 960 1440 

White painted gypsum - Thermal absorptance 0.82 0.93 

White painted gypsum - Solar absorptance 0.24 0.36 

White painted stucco - Thermal conductivity 0.576 0.864 

White painted stucco - Density 1485 2227 

White painted Stucco - Thermal absorptance 0.82 0.93 

White painted Stucco - Solar absorptance 0.24 0.36 

External walls brick layer - Thermal conductivity 0.56 0.84 

External walls brick layer - Density 1360 2040 

Wood parquet - Thermal absorptance 0.664 0.996 

Wood parquet - Solar absorptance 0.48 0.72 

Glazing - Solar transmittance  0.56 0.84 

Glazing - Front side infrared emissivity 0.837 0.898 

Glazing - Back side infrared emissivity 0.837 0.898 

Glazing – Thermal conductivity 0.72 1.08 

Windows frame - Thermal conductance 1.816 2.724 

Outside windows discharge coefficient when open  0.64 0.96 

Inside windows discharge coefficient when open 0.64 0.96 

Outside closed openings air mass flow coefficient 0.00011 0.00017 

Outside closed openings air mass flow exponent  0.52 0.78 

Inside closed openings air mass flow coefficient 0.016 0.024 

Inside closed openings air mass flow exponent  0.56 0.84 
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Table 4. Variables in order of absolute value of SRC 

Variables | SRC | 

External walls brick layer - Thermal conductivity 0.7735 

Outside windows discharge coefficient when open 0.4128 

Glazing - Solar Transmittance at Normal Incidence 0.3660 

Outside openings air mass flow coefficient when closed 0.1132 

Glazing - Front Side Infrared Emissivity 0.0831 

Inside openings air mass flow coefficient when closed 0.0760 

Inside openings air mass flow exponent when closed 0.0663 

Glazing - Back Side Infrared Emissivity 0.0626 

White-painted Stucco - Solar absorptance 0.0592 

Glazing - Thermal conductivity 0.0374 

White painted gypsum - Thermal conductivity 0.0369 

White painted Stucco - Thermal absorptance 0.0314 

Brick - Density 0.0314 

Windows frame - Thermal conductance 0.0285 

White painted stucco - Thermal conductivity 0.0218 

Outside openings air mass flow exponent when closed 0.0152 

White painted gypsum - Thermal absorptance 0.0145 

Inside  windows discharge coefficient when open 0.0104 

Wood parquet - Solar absorptance 0.0090 

White painted gypsum - Solar absorptance 0.0058 

Wood parquet - Thermal absorptance 0.0038 

White painted gypsum - Density 0.0015 

White painted stucco - Density 0.0010 
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Table 5. The variables in the first calibration 

Variables Unit 
Initial 
value 

Lower 
band 

Upper 
band 

External walls brick layer thermal conductivity W.m
-1

.K
-1

 0.70 0.56 0.84 

Outside windows discharge coefficient when open - 0.80 0.00 1.0 

Glazing solar transmittance at normal incidence - 0. 837 0.56 0.85 

Outside openings air mass flow coeff. when closed kg.s
-1

.m
-1

 1.4×10
-4

 1.4×10
-5

 0.003 

 

2.2.7. Calibration cost function 

For the purpose of building performance analysis, error can be defined as 

the difference between a predicted value and a measured value [34]. In 

the present case, the error was calculated for the indoor air temperature 

averaged over all office zones. To minimize this error, and to maintain the 

"goodness of fit" of the model at the same time, a weighted function of 

two different indicators was defined as the cost function. The first 

indicator is the Coefficient of Variation of the Root-Mean-Square Deviation 

(Equations 5 & 6) which serves to aggregate the individual time step 

errors into a single dimensionless number. 

 

𝑅𝑀𝑆𝐷 = √
∑ (𝑚𝑖 − 𝑠𝑖)

2𝑛
𝑖=1

𝑛
 ( 5) 

 

𝐶𝑉(𝑅𝑀𝑆𝐷) =
𝑅𝑀𝑆𝐷

�̅�
× 100 ( 6) 

 

The other indicator used in the cost function is the coefficient of 

determination denoted by R2. This statistic has been deployed – among 

other things – due to its sensitivity to extreme values (outliers). As such, it 

serves to moderate the building model’s overreactions to the window 
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openings. Thus, the resulting calibrated model can be used in Chapter 5 to 

emulate the building response to different window operation predictions.  

The coefficient of determination ranges from 0 to 1. An R2 of 1.0 indicates 

that the regression line perfectly fits the data. Therefore, it is preferable 

to maximize the R2 value in the optimization process. While there are 

different definitions of R2, here it has been calculated via Equation 7: 

 

𝑅2 =

[
 
 
 

𝑛 ∑𝑚𝑖𝑠𝑖 − ∑𝑚𝑖 ∑𝑠𝑖

√(𝑛 ∑𝑚𝑖
2 − (∑𝑚𝑖)

2)(𝑛 ∑ 𝑠𝑖
2 − (∑𝑠𝑖)

2)
]
 
 
 
2

 ( 7) 

 

In Equations 5 to 7, mi is the measured air temperature (averaged over all 

office zones) at each time step, si is simulated air temperature at each 

time step, n is the total number of time steps, and m  is the mean of the 

measured values. The defined cost function  f  takes into account the 

CV(RMSD) and R2 in an equally weighted manner (Equation 8). 

 

𝑓𝑖 = 0.5 𝐶𝑉(𝑅𝑀𝑆𝐷)𝑖 + 0.5 (1 − 𝑅𝑖
2)

𝐶𝑉(𝑅𝑀𝑆𝐷)𝑖𝑛𝑖

1 − 𝑅𝑖𝑛𝑖
2  ( 8) 

 

In Equation 8, CV(RMSD)i is the coefficient of variation of the RMSD at 

each optimization iteration, Ri
2 is the coefficient of determination at each 

optimization iteration, CV(RMSD)ini is the coefficient of variation of the 

RMSD of the initial model, and Rini
2  is the coefficient of determination of 

the initial model. 

To efficiently manage the repetitive process of varying the input variables' 

attributes, the calculation of the cost function was tightly integrated with 

the simulation application. To accomplish this, the monitored indoor air 

temperatures were incorporated into the input stream and the EnergyPlus 

runtime language [35] was used to calculate the cost function by the 

EnergyPlus engine after each run of the model. 
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2.3. Results 

The optimized values of the model input variables are given in Table 6. 

Table 7 presents the values of the indicators used in the weighted cost 

function, for the initial and calibrated models. Note that these results are 

based on the comparison of measured and simulated indoor 

temperatures as aggregated over all office zones. 

 

Table 6. The optimized values of the model variables. 

Variables Unit Optimized value 

External walls brick layer thermal conductivity W.m
-1

.K
-1

 0.561 

Outside windows discharge coefficient when open - 0.284 

Glazing solar transmittance at Normal Incidence - 0.850 

Outside openings air mass flow coeff. when closed kg.s
-1

.m
-1

 4.15×10
-4

 

 

Table 7. R
2
 and RMSD of the initial & calibrated model. 

Period 
Initial Model  Calibrated Model 

R
2
 CV(RMSD)  R

2
 CV(RMSD) 

Calibration 0.35 4.21 
 

0.85 3.34 

Validation 0.69 8.07 
 

0.87 2.68 

 

2.4. Discussion 

As it can be seen in Table 7, the initial model generated outputs with 

relatively low R2 values in both the calibration and validation periods. The 

automated calibration, however, could effectively increase the R2 value 

and reduce the error in terms of CV(RMSD). Thus, the present study 

points to the promising potential of monitoring-based optimization-

assisted simulation model calibration using sensitivity analysis.  
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The performance of the approach could be further improved via a more 

detailed process for the determination of the cost function and associated 

weights. Note that the convergence-based approach to the definition of 

the values of model input parameter in the course of the optimization 

process does not mean that ''true values'' for such parameter are found. 

Rather, optimization exploits the uncertainty potential in the knowledge 

of exact values of such parameter to provide a better fit to the monitoring 

results. It is thus important, that care is taken while defining the 

permissible variations from the initial values of model input parameter. 

In addition, considering the uncertainties in the occupancy-related time-

varying parameters (and the associated large calibration search space), 

without the use of reliable occupants’ presence and behavior models, 

simulation model calibration cannot contribute much toward enhancing 

building performance simulations. Consequently, in the following chapters 

the effectiveness of occupancy-related models in this regard is addressed. 
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Chapter 3.  

Occupant presence models 

 

3.1. Background 

Occupants influence buildings' energy and indoor environmental 

performance due to their presence (via releasing sensible and latent heat) 

and operation of devices such as windows, shades, and luminaries. To 

quantify such influences, both empirical and simulation-aided studies 

have been deployed. For instance, Azar and Menassa [36] observed that 

energy models of office buildings' in different climatic zones in USA are 

highly sensitive to occupancy-related behavioral parameters. More 

specifically, Yang et al. [37] showed that application of HVAC schedules 

that use observation-based personalized occupancy profiles in a three-

story office building test bed could save up to 9% energy compared to the 

conventional (default) schedules. As a result, building performance 

simulation tools deploy models of occupants’ presence and behavior to 

represent building users’ presence patterns and their control-oriented 

actions in the buildings.  

In this context, occupants’ presence models are a prerequisite for all the 

efforts pertaining to occupant behavior modeling. Frequently, occupancy 

patterns in building models are represented by typical profiles of presence 

probability [10]. A widely used example of such occupancy schedules for 

different types of buildings has been provided in ASHRAE Standard 90.1 

[38]. In addition, multiple efforts are being undertaken to derive more 

reliable building occupancy profiles. For example, Davis and Nutter [39] 

used data from different sources (building security cameras, doorway 

electronic counting sensors, semester classroom scheduling data, and 

personal observations) to derive occupancy diversity profiles for six types 

of university buildings. Another study [40] used data obtained from 629 

occupancy sensors mounted in an 11-story commercial office building to 
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detail occupancy diversity factors for private offices, open offices, 

hallways, conference rooms, break rooms, and restrooms. The authors 

point out that the resulting diversity profiles differ as much as 46% from 

those published in ASHRAE 90.1, which is referenced by many energy 

modelers regarding occupancy diversity factors for simulations. 

More recently, stochastic occupancy models have been developed and 

implemented to generate random non-repeating daily occupancy profiles 

to better capture the random nature of occupants’ presence. As one of 

the first attempts, Newsham et al. [41] deployed the probability of first 

arrival and last departure as well as the probability of intermediate 

departures and arrivals to generate lighting profiles for a typical office. 

Reinhart [42] further developed this model by using the inverse transform 

sampling method to generate samples of arrival and departure times, and 

by deploying distributions of break lengths. The statistical properties of 

occupancy in single person offices were further examined by Wang et al. 

[43]. They proposed a probabilistic model to simulate occupancy in single-

occupancy offices. In another effort, Page et al. [44] proposed a 

generalized stochastic model for the occupancy simulation using the 

presence probability over a typical week and a parameter of mobility 

(defined as the ratio of state change probability to state persistence 

probability). They also included long absence periods (corresponding to 

business trips, leaves due to sickness, holidays, etc.) as another random 

component in their model. Richardson et al. [45] presented a similar 

method for generating stochastic weekday and weekend occupancy time-

series data with the aid of a matrix of transition probabilities derived from 

a ten-minute resolution monitoring occupancy dataset for UK households. 

Extending the model developed by Page et al. [44], Liao et al. [46] 

proposed a stochastic agent-based model of occupancy that yields time-

series of the location of each agent, which is intended to provide high 

resolution occupancy data for building performance simulation tools. 
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Note that in the aforementioned studies monitored data has been used to 

derive a probabilistic model that generates random non-repeating daily 

profiles of occupancy for a long-term (e.g. annual) building performance 

simulation. Hence, models are suggested to perform well, if the entire set 

of generated random realizations of the daily occupancy profiles agrees in 

tendency with the monitored data over the whole simulation period. 

However, the agreement of the generated profiles with the monitored 

data (one-to-one correspondence between generated and monitored 

daily profiles) is not taken into consideration. Even while modelling long 

absences [44], the unoccupied days are scattered randomly across the 

year and do not necessarily match the dates of absences in the measured 

data. Hence, the models' performance cannot be said to have been 

documented (let alone validated), if the actual day-to-day prediction of 

occupancy and control action probabilities is relevant. Such a short-term 

predictive function is not a theoretical construct. Rather, it represents an 

essential scenario in the increasing run-time use of simulation models in 

the building operation phase, as practiced, for example, in model-

predictive and simulation-based predictive building systems control 

approaches [15,47]. In these scenarios, short-term predictions of 

occupancy and weather are incorporated in the simulation model to 

predict the near-future performance of the building toward optimizing its 

operational regime. Thus, the level of achievable agreement between the 

predicted and real short-term (e.g., daily) occupancy profiles is of utmost 

importance. 

A further issue regarding the existing probabilistic occupancy models 

pertains to the provided associated "validation" information. With few 

exceptions (see for example [46]), most of the work on evaluating the 

probabilistic occupancy models has focused on comparing the model 

outputs with the very set of data, which has been used to derive the 

model [3]. In the author’s view, a scientifically sound model evaluation 

approach must clearly separate the data segments used for model 

development and model assessment. This is especially important while 
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evaluating the predictive potential of an occupancy model, which is 

intended to be used for operational purposes (i.e., predictive control) in 

buildings. 

Given this background, in section 3.2 the author pursues a systematic 

empirically-based assessment of two previously developed probabilistic 

occupancy models with regard to their short-term predictive 

performance. To put the predictive performance of these models in 

context, it was compared with the performance of a simple original non-

probabilistic model that also relies on past observation-based aggregated 

occupancy data to generate daily Boolean patterns of people's presence 

in buildings. The latter model was developed within the context of two 

ongoing EU projects [48,49] to be deployed in run-time simulations 

incorporated in the control logic of existing buildings.  

In this context, however, an additional question concerns the implications 

of selecting a specific occupancy modeling approach for the accuracy of 

building performance simulation results. To address this question in a 

systematic manner, multiple studies of a variety of simulation applications 

are needed, whereby different performance indicators could be obtained 

from simulation runs while using different occupancy models. In section 

3.3 the author focuses on occupants’ presence models and address the 

conventional use of simulation models for calculation of buildings' heating 

and cooling demands and peak loads. Thereby, the structure of the study 

(sequence of simulation runs) facilitates the exploration of a number of 

essential questions: To which extent do the results of simulations that use 

conventional diversity profiles and stochastic models of occupants’ 

presence differ from a reference simulation model, which utilizes 

extensive high-resolution observational occupancy data? Does the level of 

difference depend on the temporal aggregation interval of the pertinent 

performance indicator (e.g. annual versus hourly)? Does the use of 

randomly generated occupancy profiles compensate for the lack of high-

resolution observational occupancy data? To address these questions, the 



 

Occupant presence models 

 

l  

 

21 

author presents and discusses the results in view of their implications for 

the choice of occupants’ presence models in building performance 

simulation. 

3.2. Models’ predictive potential 

3.2.1. Overview 

In this section, the predictive potential of two existing probabilistic 

occupancy models is evaluated. Moreover, their performance is compared 

with a simple original non-probabilistic model of occupants' presence, 

which was developed to be deployed in simulation-powered predictive 

building systems control. These models were used to generate predictions 

of daily occupancy profiles using the past monitoring occupancy data 

obtained from eight (individually monitored) workplaces in an office area 

at TU Wien, Vienna, Austria. One workplace is within a closed single-

occupancy office, two are within semi-closed individual offices, and the 

rest are within an open-plan office area.  

The main objective was to discern how well the models performed toward 

predicting daily occupancy profiles for the aforementioned eight 

workplaces. Model training and model evaluation were based on two 

separate data sets. Once trained, the models were used to predict the 

daily occupancy profiles of the eight workplaces for 90 working days. To 

evaluate the two probabilistic methods, multiple predictions were 

generated via a 100-run Monte Carlo execution. The comparative 

assessment of the models' predictive performance was accomplished with 

the aid of a number of pertinent statistics. Thus, the results of the study 

facilitate a fact-based discussion of the potential and limitations of models 

for the prediction of people's presence in buildings. Specifically, the 

results provide a proper basis toward assessing the fitness of probabilistic 

occupancy models in view of their incorporation potential in the building 

operation phase. 
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3.2.2. Data collection 

To obtain occupancy data, wireless ceiling-mounted sensors (motion 

detectors) were used. The internal microprocessors of the sensors are 

activated within a time interval of 1.6 minutes to detect movements. The 

resulting data log entails a sequence of time-stamped occupied to vacant 

(values of 0) or vacant to occupied (values of 1) events.  

To facilitate data analysis, the event-based data streams were processed 

to generate 15-minute interval data, using stored procedures of the 

MySQL database [50]. This procedure derives the duration of occupancy 

states (occupied/vacant) from the stored events and returns the 

dominant occupancy state of each interval. Occupancy periods before 

8:00 and after 19:45 were not included in the study to exclude, amongst 

other things, the presence of janitorial staff at the offices. Occupancy data 

for a nine-month period (10th of November 2011 to 25th of July 2012) 

was used to train and compare the occupancy models. 

3.2.3. First probabilistic occupancy model 

The occupancy model developed by Reinhart [42] has been primarily used 

in Lightswitch-2002 [51] for the purpose of predicting lighting energy 

performance of manually and automatically controlled electric lighting 

and blind systems. The model uses the following probability distributions 

as input to capture the random nature of occupants' presence: 

 The cumulative distribution function of first arrival times (CDFa); 

 The cumulative distribution function of last departure times 

(CDFd); 

 The probability distribution function of intermediate departure 

times (PDFid); 

 The probability distribution of length of intermediate absences for 

morning, lunch, and afternoon periods.  
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A daily occupancy profile is then generated by identifying the first arrival 

time, last departure time, intermediate departure times, and the 

associated length of intermediate absences as follows: 

 Using a random number between 0 and 1 (u1), drawn from the 

standard uniform distribution, the first arrival time (ta) is derived 

from CDFa such that CDFa (ta) = u1. 

 Using a random number between 0 and 1 (u2), drawn from the 

standard uniform distribution, the last departure time (td) is 

derived from CDFd such that CDFd (td) = u2. 

 To decide if an intermediate departure event occurs at a certain 

time (tm), a random number between 0 and 1 (um) is compared 

with the probability of intermediate departure at that time. Once 

an intermediate departure is identified (PDFid (tm) ≥ um), the 

length of the absence is obtained randomly from the 

corresponding probability function of the length of intermediate 

absences (morning, lunch time, or afternoon). 

3.2.4. Second probabilistic occupancy model 

The stochastic occupancy model developed by Page et al. [44] generates 

random non-repeating daily occupancy profiles using the profile of 

presence probability and the parameter of mobility. The model has been 

formulated based on the hypothesis that the value of occupancy at the 

next time step depends on the current occupancy state and the 

probability of transition from this state to either the same state or its 

opposite state. This is reflected in Equation 9: 

𝑃(𝑡 + 1) = 𝑃(𝑡)𝑇11(𝑡) + (1 − 𝑃(𝑡))𝑇01(𝑡) ( 9) 

 

Here, P(t+1) and P(t) are the probabilities of presence at the time steps 

t+1 and t, T11(t) is the transition probability from presence state to the 

same state at the time step t, and T01(t) is the transition probability from 

absence to the presence state at the time step t. In order to derive the 
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transition probabilities based on the presence probabilities, Page et al. 

defined the parameter of mobility (to be provided as an input), as the 

ratio between the probabilities of change of the state of presence over 

that of no change: 

𝜇(𝑡) =
𝑇01(𝑡) + 𝑇10(𝑡)

𝑇00(𝑡) + 𝑇11(𝑡)
 ( 10) 

 

Here, T10(t) is the transition probability from presence to the absence 

state at the time step t, and T00(t) is the transition probability from 

absence state to the same state at the time step t. From Equations 9 and 

10, and assuming the parameter of mobility as a constant, the profiles of 

transition probabilities can be obtained as follows: 

𝑇01(𝑡) =
𝜇 − 1

𝜇 + 1
𝑃(𝑡) + 𝑃(𝑡 + 1) ( 11) 

 

𝑇11(𝑡) =
𝑃(𝑡) − 1

𝑃(𝑡)
[ 
𝜇 − 1

𝜇 + 1
𝑃(𝑡) + 𝑃(𝑡 + 1)] +

𝑃(𝑡 + 1)

𝑃(𝑡)
 ( 12) 

 

Clearly, the other possible transition probabilities can be calculated via 

the following equations: 

𝑇00(𝑡) = 1 − 𝑇01(𝑡) ( 13) 

 

𝑇10(𝑡) = 1 − 𝑇11(𝑡) ( 14) 

 

To generate a daily occupancy profile, the procedure starts from the first 

time step of the day with a vacant state for commercial buildings. 

Subsequently, for each time step, a random number between 0 and 1 is 

generated and compared with the transition probabilities to see if a 

change of occupancy state occurs. This is a simple case of using the 

inverse transform sampling method, as the cumulative distribution 
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function of transition probabilities is a histogram of two bins. For 

example, if the current time step has a vacant state and the generated 

random number is smaller than T01 at that time step, the next time step is 

assumed to be occupied. 

3.2.5. A non-probabilistic occupancy model 

To support the realization of simulation-assisted building systems control 

approaches, a simple non-probabilistic model (referred to here as the MT 

model) was developed that generates daily binary occupancy profiles 

based on aggregated past presence data. The MT model works based on a 

simple procedure. The statistically aggregated daily probability profile of 

past presence data represents the starting point. For each time interval of 

the daily profile to be generated, the interval is assumed to be occupied if 

the associated presence probability of the aggregated past profile is 

higher than or equal to a specific threshold probability. Otherwise, the 

time interval of the daily profile is predicted to be vacant. The threshold 

probability is simply identified by iteratively comparing the area under the 

resulting predicted binary occupancy profile with the respective area 

under the aggregated past probability profile used for model training. 

Practically speaking, the best-fitting probability threshold is identified 

such that the area under the resulting binary occupancy profile is as close 

as possible to the area under the aggregated profile of probability of past 

presence. Figure 2 illustrates a sample aggregated profile of past presence 

probability, the best-fitting threshold, and the resulting Boolean 

occupancy profile generated by the MT model. 

As the MT model does not include a stochastic term, it returns the same 

daily occupancy profile for any given aggregate profile of presence 

probability used for model training. However, if the training profile is 

changed (for instance, in case of training scenarios with moving temporal 

horizons), the generated daily profiles are updated accordingly.   
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Figure 2. A presence probability profile and the best-fitting threshold (top), along 
with the resulting binary occupancy profile generated by the MT model (bottom). 

 

3.2.6. Model training 

Implementation of occupancy models in a continuous running mode in 

building control system raises a number of questions with regard to 

occupancy data utilization: What length of past occupancy information 

shall be considered for model development? Would it be advantageous to 

differently treat days of the week? Shall the model training occur in static 

or shifting intervals? In previous publications [52,53], the author 

examined the impact of different model training scenarios on the 

predictive potential of stochastic occupancy models. Concerning the 

number of days of monitored occupancy data as input to the model, 

alternatives from 5 to 20 days were examined. Days of the week were 

treated similarly in "All week's working days" mode and separately in 

"Specific week days" mode. Besides, fixed and moving training intervals 

were considered. In the fixed interval mode, the model was fed once with 

past data from a specific period and it predicted occupancy for future 

days. However, in the moving mode, the training interval advanced as the 

model predicted the occupancy day by day. Amongst other things, the 
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results of these studies suggested that the training mode with shifting 

horizon offers slightly better predictions. 

Thus, in the present study, a single moving training scheme was applied as 

follows. To generate a predicted occupancy profile for each working day, 

the occupancy models are fed with the monitoring occupancy data 

obtained from the previous 28 days. This 4-week data set is used to derive 

the required inputs for the aforementioned occupancy models. These are 

the probabilities of arrival time, departure time, intermediate departure 

times, and length of the intermediate absences for the Reinhart model, 

the presence probability profile and parameter of mobility for the Page 

model, and the presence probability profile for the proposed non-

probabilistic model. 

3.2.7. Model evaluation 

To evaluate the predictive potential of models, the predicted and 

monitored occupancy profiles of 90 working days between the 1st of April 

and the 25th of July 2012 were compared. As for each run the models are 

fed with the occupancy data from the prior four weeks, separate sets of 

data are used for training and evaluating the models. To compare the 

performance of the models, five statistics were used: 

1) First Arrival time (FA) error [hour]: The predicted minus the 

monitored first arrival time. 

2) Last Departure time (LD) error [hour]: The predicted minus the 

monitored last departure time. 

3) Occupancy Duration (OD) error [hour]: This metric represents the 

difference between the predicted and monitored daily presence 

duration. The presence duration was calculated by counting the 

number of occupied intervals. 

4) Occupancy State Matching (SM) error [-]: This novel indicator 

represents the fraction of intervals involving false state 

predictions and therefore captures the mismatch between the 
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predicted and monitored occupancy states on a daily basis 

(consisting, in this case, of forty-eight 15-minute intervals 

between 8:00 and 19:45).  For instance, if the predicted states 

match the monitored ones for all the 48 intervals, the value of 

occupancy state monitoring error would be zero. If, however, 

predictions would be correct for none of the intervals, the error 

value would be one. Another words, a value of 1 for this indicator 

suggests zero temporal overlap between predicted and actual 

occupancy states within a day. A value of zero would suggest full 

overlap between predicted and actual occupancy states.   

5) Number of Transitions (NT) error [-]: The predicted number of 

daily occupied-to-vacant transitions minus the monitored number 

of daily occupied-to-vacant transitions. 

For all models, the aforementioned statistics are calculated for each 

individual day during the evaluation period. However, as it would be 

inappropriate in case of probabilistic occupancy models to evaluate the 

accuracy of the predictions by comparing the results of a single run with 

the measurements, a 100-run Monte Carlo simulation was conducted in 

order to analyze the distribution of prediction errors. Given the length of 

validation period (90 working days) and the number of Monte Carlo runs, 

9000 values for each statistic were obtained for the probabilistic models, 

whereas in case of the non-probabilistic model, this was limited to 90 

values for each statistic.  

Note that, in the present study the goal was not to predict periods of long 

absences due to business trips, sickness, holidays, etc. In the context of 

implementations pertaining to predictive building systems control, such 

whole-day absence instances can be presumably communicated to the 

building management system and reflected in the operation process. 

Therefore, in this contribution, only actual working days were included in 

the evaluation process.  
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3.3. Long-term performance simulation 

3.3.1. Overview 

To investigate the implications of using different occupants’ presence 

models for building performance simulation results, an office area in a 

building of the TU Vienna was modeled, in which occupancy, plug loads, 

and use of electric lights have been monitored for the last three years. 

Using this data set, the author represented the occupants in the building 

model through the following modeling alternatives: 

 

1a) Fixed diversity profiles for weekdays, Saturdays and Sundays, 

using ASHRAE 90.1 [38] schedules for office occupancy, lighting, 

and plug loads;  

1b) Random daily occupancy profiles, generated by a stochastic 

occupancy model using model 1a occupancy schedules as input, 

together with proportional lighting and plug loads; 

2a) Fixed observation-based average diversity profiles of occupancy, 

lights, and equipment for weekdays, Saturdays, and Sundays; 

2b) Random daily occupancy profiles, generated by a stochastic 

occupancy model using model 2a occupancy schedules as input, 

together with proportional lighting and plug loads; 

3a) Fixed observation-based individual diversity profiles of each 

occupant and the associated lights and equipment for weekdays, 

Saturdays, and Sundays; 

3b) Random daily occupancy profiles, generated by a stochastic 

occupancy model using model 3a occupancy schedules as input, 

together with proportional lighting and plug loads; 

4)  Original year-long observational data for each occupant, light, and 

electrical equipment. This model has the highest resolution in 
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terms of occupancy and acts as a reality benchmark as far as the 

actual occupancy circumstances are concerned.  

 

Note that, by a fixed diversity profile, a diversity profile (for occupancy, 

lighting or equipment use) is meant, which is not subjected to any 

stochastic process. That is, the diversity profile for weekdays, Saturdays 

and Sundays do not change during the annual simulation.  

In addition to the above mentioned models, two “extreme” scenarios, 

namely empty (E) and fully occupied (F), were also defined to obtain the 

possible range of variations in the building performance indicators due to 

the variations in occupants’ presence patterns. The building annual 

heating and cooling demands and the peak heating and cooling loads 

were obtained via the sequence of simulation runs. Thereby, sensitivity of 

simulation results to the occupancy-related input assumptions could be 

systematically assessed. The information regarding the above modeling 

options is summarized in Table 8. Further details on the assumptions 

associated with the building model and occupancy modeling approaches 

can be found in the following sections. 

3.3.2. Office area simulation model 

The case study represents an office area in a university building in Vienna, 

Austria. This office is equipped with a monitoring infrastructure, which 

continuously collects data, among other things, on occupants’ presence 

(via wireless ceiling-mounted PIR motion detectors), plug loads, and state 

of the lights. For the purpose of the present study, the office area used by 

eight occupants, for which distinct occupancy, lighting and equipment use 

profiles could be obtained from the monitored data (see Figure 3), was 

modeled. The occupants include both academic and administrative staff, 

and both faculty members and graduate students. Occupants can only 

switch on/off luminaires affecting their workstations, as the office area 

does not possess any dimmable luminaires. 
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Table 8. Key characteristics of generated models with regard to occupancy 

Model Occupancy representation Lighting & plug loads 

E No occupancy No lighting and equipment use 

1a ASHRAE 90.1 schedules – Fixed ASHRAE 90.1 schedules – Fixed 

1b 
ASHRAE 90.1 schedules – 
Randomized 

Proportional to occupancy profiles 

2a Observed average schedules – Fixed Observed average schedules – Fixed 

2b 
Observed average schedules – 
Randomized 

Proportional to occupancy profiles 

3a 
Observed individual schedules – 
Fixed 

Observed individual schedules – 
Fixed 

3b 
Observed individual schedules – 
Randomized 

Proportional to occupancy profiles 

4 
Full-year observational 
occupancy data 

Full-year observational lighting and 
equipment use data 

F 
Maximum occupancy 
during working time 

Maximum loads during working time 

 

The building was modeled in the energy simulation tool EnergyPlus v8.1. 

The office floor and ceiling components are set to adiabatic in the thermal 

model, as the office area is a middle floor in a multi-story building. Office 

occupants with an activity level of 120 W/person and the electric lighting 

and equipment with nominal installed power were defined in the model. 

The diversity profiles for occupants’ presence and the applicable fractions 

of installed lighting and equipment were defined according to modeling 

scenarios. The building was exposed to a typical metrological year 

weather data for Vienna, Austria obtained from U.S. DOE weather 

database [54]. Table 9 summarizes basic information about the office 

building energy model. It should be noted that the lighting and equipment 

power density values presented in Table 9 refer to the maximum values 

(i.e. the nominal power of installed equipment), which are multiplied by 

the resulting diversity factors in each modeling scenario. 
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Figure 3. Building floor plan, modeled area, and position of motion detectors 

 

 

Table 9. Office area data and modeling assumptions 

Building data / Modeling assumptions Value 

Net conditioned floor area [m
2
] 187.6 

Gross wall Area [m
2
] 120.1

 

Average window-wall ratio [%] 26.7% 

Exterior walls U-value [W.m
-2

.K
-1

] 0.65 

Exterior windows U-value [W.m
-2

.K
-1

] 2.79 

Number of occupants [-] 8 

Maximum lighting power density [W.m
-2

] 4.1 

Maximum equipment power density [W.m
-2

] 9.9 

Infiltration rate [h
-1

] 0.20 

Mechanical ventilation [m
3
.s

-1
.Person

-1
] 0.007 

Heating set-point [°C] 20 

Cooling set-point [°C] 25 

HVAC availability on weekdays 6:00 – 22:00 

HVAC availability on weekends 6:00 – 18:00 
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3.3.3. Occupancy data collection and processing  

To obtain occupancy data, wireless ceiling-mounted PIR sensors with 

EnOcean technology were used. The PIR sensor sends a value of 1, 

whenever a movement is detected. If there is no movement in its 

detection field, the sensor sends a value of 0 every 100 seconds. In order 

to facilitate data analysis, the resulting data log was processed in terms of 

15-minute intervals. Toward this end, the intervals between two 

successive values of 1 or between a value of 1 followed by a value of 0 

represent the occupied periods. Subsequently, if the duration of occupied 

periods within a 15-minute interval exceeds a threshold, the interval state 

is set to occupied. For the purpose of the current study and for all 

modeling scenarios, the threshold is assumed to be exceeded if the 

occupied phase at each interval reaches at least 50% of the interval 

duration. Occupancy data of a full calendar year was used to derive the 

observation-based presence profiles. Details on the use of occupancy data 

in different modeling scenarios are provided in the following sections. 

3.3.4. Standard-based diversity profiles  

For the modeling scenario 1a, ASHRAE 90.1 diversity profiles for office 

buildings were used, i.e. weekday, Saturday, and Sunday schedules for 

occupancy, lighting, and plug loads (Figure 4). These schedules are offered 

in ASHRAE 90.1 user’s manual [55] as an example of typical input data to 

be used in the Performance Rating Method [38] when actual schedules 

are not known. However, they are widely used in the building simulation 

community beyond their initial purpose. In model 1a, these standard-

based schedules are assigned to all office occupants and the lights and 

electric equipment associated with their workspaces. Note that Sunday 

profiles were used for public holidays as well. 

3.3.5. Observation-based diversity profiles  

To generate observation-based diversity profiles, a one-year 15-min 

interval dataset on occupancy, plug loads, and state of the lights was 
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used, which was obtained from the building monitoring infra-structure. In 

modeling alternative 2a, the observational data on occupants’ presence, 

plug loads, and use of lights were averaged across all occupants. The 

resulting year-long data set for an average occupant was then processed 

to obtain a set of average profiles of presence probability, fraction of 

maximum lighting load, and fraction of maximum equipment load for 

weekdays, Saturday, as well as Sundays and public holidays (Figure 5). 

Neglecting diversity among occupants, the resulting average schedules 

were assigned to all occupants and associated lighting and equipment in 

the simulation model. 

Model 3a was intended to consider diversity among occupants. Therefore, 

the weekday, Saturday, and Sunday average schedules were generated for 

each individual occupant, electric outlet and light switch and assigned to 

the corresponding objects in the simulation model. Figure 6 illustrates the 

observed individual diversity profiles for weekday occupancy, lights, and 

plug loads. Note that, to derive the diversity profiles for models 2a and 3a, 

vacation days were not excluded. Therefore, the resulting profiles 

implicitly represent the vacations.  

In modeling scenario 4, however, the year-long observational data was 

incorporated into the simulation model. That is, instead of using typical 

schedules for weekdays and weekends, occupancy states, state of the 

lights, and the plug loads are retrieved from the monitored interval data 

streams at each time-step of the annual simulation. Therefore, simulation 

model 4 acts as a reference, as it has the highest resolution in terms of 

occupancy and is entirely observation-based. In other words, this option 

represents the reality benchmark, as far as the actual occupancy 

circumstances are concerned. 
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Figure 4. ASHRAE 90.1 schedules for occupancy (top), lights (middle), and plug 
loads (bottom) used in modeling scenario 1a. 

 

 

Figure 5. Observed average diversity profiles for occupancy (top), lights (middle), 
and plug loads (bottom) used in modeling scenario 2a. 
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Figure 6. Observed individual diversity profiles for weekday occupancy (top), 
lights (middle), and plug loads (bottom) used in modeling scenario 3a. 
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Subsequently, for each time step, a random number between 0 and 1 is 

generated and compared with the transition probabilities (which have 

been calculated using the input occupancy profile and parameter of 

mobility) to see if a change of occupancy state occurs. This is a simple case 

of using the inverse transform sampling method.  

In order to generate random non-repeating profiles of occupancy states 

for models 1b, 2b, and 3b, the fixed occupancy profiles used in models 1a, 

2a, and 3a were provided respectively as input for the stochastic model. 

The stochastic occupancy model 365 times to obtain year-long random 

daily presence profiles for each occupant. The occupancy profiles for 

weekdays, Saturdays, Sundays, and public holidays were input to the 

model in the right order, such that the days of the week are consistent in 

models with fixed and random occupancy profiles. The resulting schedules 

(each a column vector of 0 and 1 with length of 35040) were incorporated 

into the simulation models and were referenced by People objects. Note 

that in models 1b and 2b same set of occupancy profiles is randomized for 

all occupants, whereas in model 3b the stochastic model randomizes a 

unique set of occupancy profiles for each occupant. The parameter of 

mobility was set to 0.5 for all model executions in scenarios 1b and 2b. In 

scenario 3b this parameter was calculated for each occupant using year-

long observational data, providing inputs for the stochastic model with 

the highest precision.  

It should be noted that, for the purpose of the current study, the author 

did not explicitly include vacations in any of the modeling scenarios, but 

the average occupancy profiles implicitly represented long absences. 

Therefore, the "long absence" component of the above-mentioned 

stochastic occupancy model was also not implemented.  

As for lighting and equipment use, note that even though the focus of this 

study is on the implications of occupants’ presence models for simulation 

results, the presence of occupants is not assumed to be totally irrelevant 

to equipment and lighting usage. However, the representation of the 
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corresponding relationship is intentionally kept as simple as possible. To 

generate lighting and plug load schedules according to the randomly 

generated occupancy states, the applicable fraction of installed lighting 

and electric equipment - when each occupant is present - was calculated. 

In addition, the electric loads, which were not dependent on the 

occupants’ presence, had to be considered. Therefore, in simulation 

models 1b, 2b, and 3b, lighting and plug loads were defined in two parts: 

base load and occupancy-dependent load. The base loads’ fractions were 

identified from the fixed light and plug loads schedules used in each 

modeling scenario as the constant fraction of loads during the night. The 

remaining lighting and plug loads’ fractions were assumed to be 

proportional to occupancy level. In detail, the applicable fractions of 

lighting and plug loads for each occupant were defined as the ratio of 

occupancy-dependent lighting or equipment loads’ diversity factors to the 

presence probability at each time step, both obtained from the fixed 

schedules used for that occupant. 

3.3.7. Metrics for evaluation of simulated occupancy patterns  

Before exploring the implications of different occupancy modeling options 

for building performance simulation results, the occupancy model outputs 

are briefly compared with the actual occupancy levels (represented in 

Model 4), so that the implications of these scenarios for simulation results 

could be better understood. 

Toward this end, the predicted fractions of maximum occupancy at the 

building level derived from the incorporated fixed or random occupancy 

profiles were examined. To conduct a quantitative evaluation, 3 metrics 

were considered, namely Mean Error, Root Mean Squared Error (RMSE), 

and Jensen-Shannon Distance.  

Mean Error and RMSE were used to track time-step differences between 

the predicted and measured occupancy levels. These metrics were 

obtained using the following equations: 



 

Occupant presence models 

 

l  

 

39 

𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 =  
∑ (𝐵𝑂𝐹𝑝(𝑡) − 𝐵𝑂𝐹𝑟(𝑡))

𝑛
𝑡=1

𝑛
 ( 15) 

 

𝑅𝑀𝑆𝐸 = 
√∑ (𝐵𝑂𝐹𝑝(𝑡) − 𝐵𝑂𝐹𝑟(𝑡))

2
𝑛
𝑡=1

𝑛
 

( 16) 

 

Here, 𝐵𝑂𝐹𝑝(𝑡) is the predicted building-level occupancy fraction at time-

step 𝑡, 𝐵𝑂𝐹𝑟(𝑡) is the reference building-level occupancy fraction at time 

step 𝑡 (obtained from model 4), and 𝑛 is the number of simulation time-

steps in a year, which equals 35040. 

In addition, to compare the distribution of predicted occupancy levels 

with the distribution of occupancy levels obtained from the reference 

case, the square root of Jensen–Shannon divergence was utilized. This 

metric is used to compute distances between two probability 

distributions. For two probability distributions P and Q, Jensen-Shannon 

divergence (JSD) is calculated based on Kullback–Leibler divergence (KLD), 

as follows: 

𝐽𝑆𝐷(𝑃, 𝑄) =
1

2
𝐾𝐿𝐷(𝑃,𝑀) +

1

2
𝐾𝐿𝐷(𝑄,𝑀) ( 17) 

 
Where 

𝑀 =
1

2
(𝑃 + 𝑄) ( 18) 

 

𝐾𝐿𝐷(𝑃, 𝑄) = ∑𝑃(𝑖) ln
𝑃(𝑖)

𝑄(𝑖)
𝑖

 ( 19) 

 

Jensen-Shannon divergence is bounded between 0 and  ln(2). The square 

root of Jensen–Shannon divergence is referred to as Jensen-Shannon 

distance metric, which is used to quantify the distance between two 

probability distributions. In the present study, Jensen-Shannon distance 
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metric was used to measure the distance between probability 

distributions of occupancy levels resulted from the different modeling 

scenarios. 

3.3.8. Building performance indicators 

To study the implications of the occupants’ presence models for building 

performance simulation results, the author focused on four basic building-

level (i.e. entire modeled area) performance indicators, namely annual 

heating and cooling demands per unit floor area [kWh.m-2], and peak 

heating and cooling loads per unit floor area [W.m-2]. These performance 

indicators are widely used in the simulation community, especially in 

situations where the user wishes to study the thermal performance of a 

building without modeling a full HVAC system. 

The simulations were conducted with 4 time steps per hour. Therefore, 

the heating and cooling energy required to maintain the temperature set-

points in the office area could be obtained at 15-min intervals. Thus, the 

desired performance indicators were simply calculated by finding the 

annual sum and maximum value of the reported time-step heating and 

cooling energy demands and loads. The performance indicators were 

obtained for different modeling scenarios, whereby model 4 acts quasi as 

the “reality benchmark”. Thereby, the implications of various occupants’ 

presence models could be explored in view of the simulated values of 

building-level annual heating and cooling demands and peak loads. 

3.4. Results 

3.4.1. Short term predictions 

Figure 7 to Figure 11 illustrate the cumulative distribution of the obtained 

values of the aforementioned statistics for the eight workplaces, namely 

prediction errors for AT, DT, and OD (absolute values in hours), SM, and 

NT (absolute values). A numeric summary of the results are provided in 

Table 10 and Table 11 to provide a general overview of occupancy 
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prediction errors. Table 10 presents the 80th percentile of the errors. Table 

11 shows the percentage of errors (expressed in terms of the five 

statistics) below five corresponding specific threshold values. These 

threshold values emerged from discussions within the aforementioned EU 

projects [48,49] pertaining to the implementation of predictive building 

systems control strategy and are intended to represent practically 

relevant minimum performance requirements that occupancy models 

(intended for deployment in the context of predictive building systems 

control) would need to meet. More specifically, eighty percent of 

predictions made by the models would be expected to lie below these 

threshold error values. 

Note that these figures and tables entail the comparison of monitored and 

predicted values for all eight workplaces. The comparisons were 

performed for each workplace individually. However, the corresponding 

results closely agree in tendency with the combined results of all 

workplaces. Specifically, the relative performance of the three occupancy 

models studied did not display any noteworthy dependency on the type 

of the eight monitored workplaces (closed, semi-closed, open-plan). 

Hence, the results for individual workplaces are not included here.  

 

Table 10. The 80
th

 percentile of the errors for the three models 

Evaluation statistics 
 Models 

Unit Reinhart Page MT 

First Arrival time error (FA) [hour] 1.2 1.4 1.0 

 Last Departure time error (LD) [hour] 2.4 2.4 2.4 

Occupancy Duration error (OD) [hour] 2.3 2.2 1.6 

Occupancy State Matching error (SM)  [-] 0.48 0.48 0.45 

Number of Transitions error (NT) [-] 3.3 3.6 2.9 
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Table 11. Percentage of predictions with errors below thresholds for five statistics 

Evaluation statistics 
Error 

threshold 

Models 

Reinhart Page MT 

First Arrival time error (FA) 1.0 [hour] 74.2 70.0 78.5 

 Last Departure time error (LD) 1.0 [hour] 46.9 46.7 46.0 

Occupancy Duration error (OD) 1.0 [hour] 45.3 46.1 58.1 

Occupancy State Matching error (SM)  0.4 [-] 46.8 48.9 61.0 

Number of Transitions error (NT) 2.0 [-] 61.5 56.8 63.5 

 

 

 

Figure 7. Cumulative distribution of first arrival time errors 
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Figure 8. Cumulative distribution of last departure time errors  

 

 

Figure 9. Cumulative distribution of occupancy duration errors  
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Figure 10. Cumulative distribution of occupancy state matching errors  

 

 

Figure 11. Cumulative distribution of number of transitions errors 
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3.4.2. Long term simulation 

3.4.2.1. Comparison of modeling options in view of occupancy predictions 

Figure 12 shows the cumulative probability distribution of occupancy 

levels in the modeled building throughout a year (expressed as the 

fraction of maximum occupancy) obtained from modeling scenarios 1a, 

1b, 3a, 3b, and 4. Note that model 4, which is based on the original full-

year occupancy data, acts as the reference.  

Table 12 gives the Mean Error, RMSD, and Jensen-Shannon distance 

values, obtained via contrasting occupancy results of models 1a, 1b, 2a, 

2b, 3a, and 3b with that of model 4, as the reference case. Table 13 

provides the annual and peak values for internal heat gains (due to the 

occupant’s presence and use of lights and electric equipment) obtained 

from different modeling scenarios. In addition, Table 14 gives the relative 

error of the obtained values for internal heat gains with reference to 

model 4 as benchmark. 

3.4.2.2. Building performance Simulation results 

The obtained values for annual heating and cooling demands and peak 

heating and cooling loads per conditioned floor area from the simulation 

models are provided in Table 13. As mentioned before, in case of models 

1b, 2b, and 3b the stochastic occupancy model must be executed 365 

times to obtain each occupant's random daily presence profiles for annual 

simulations. However, the random nature of daily occupancy patterns 

implies that slight differences could emerge, if the process would be 

repeated. Consequently, the obtained values of performance indicators 

could be also at least slightly different, if such annual simulations would 

be repeated multiple times. To address this concern, a full-fledged Monte 

Carlo model execution was conducted involving 100 runs for each model. 

Therefore, Table 13 includes, for models 1b, 2b, and 3b, both the mean 

values and the standard deviations resulting from the 100-run Monte 

Carlo analysis. In addition, Table 14 gives the relative errors of simulation 
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results of models 1a to 3b, as well as models E and F, with reference to 

model 4 (considering the mean values from models 1b, 2b and 3b). Figure 

13 and Figure 14 illustrate the cumulative distribution of heating and 

cooling load values for models E, 1a, 1b, 3a, 3b, 4, and F. Note that, as the 

results obtained from models 2a and 2b are very close to models 3a and 

3b respectively, they have not been plotted in the figures, so that the data 

series can be better recognized. 

 

 

Figure 12. Cumulative distribution of occupancy levels obtained from different 
modeling scenarios 

 

Table 12. Mean Error, RMSE, and Jensen-Shannon distance values for models 1a 
to 3b (compared with model 4)  

Models 
Mean error 

[%] 
RMSE 

[%] 

Square root 
of Jensen-Shannon 

divergence [-] 

1a 11.7% 27.9% 0.36 

1b 11.9% 29.5% 0.26 

2a 0.0% 15.6% 0.19 

2b 0.0% 20.7% 0.04 

3a 0.0% 15.6% 0.19 

3b 0.0% 19.9% 0.05 



 

Occupant presence models 

 

l  

 

47 

 

Table 13. Internal heat gains, heating and cooling demands per conditioned floor 
area obtained from simulations 

Models 

Annual 
internal 

heat gains 
[kWh/m

2
] 

Annual 
heating 
demand 

[kWh/m
2
] 

Annual 
cooling 
demand 

[kWh/m
2
] 

Peak 
internal 

heat gains 
[W/m

2
] 

Peak 
heating 

load 
[W/m

2
] 

Peak 
cooling 

load 
[W/m

2
] 

E 0.0 90.4 5.7 0.0 61.1 23.5 

1a 51.9 65.9 18.5 17.2 49.4 39.4 

1b 49.5 ± 0.03 67.0 ± 0.06 17.9 ± 0.05 18.7 ± 0.53 49.4 ± 0.61 39.6 ± 0.30 

2a 22.3 79.9 9.7 7.0 58.5 30.0 

2b 25.3 ± 0.03 78.2 ± 0.05 10.6 ± 0.03 11.7 ± 0.29 58.1 ± 0.43  31.8 ± 0.73 

3a 23.1 79.5 9.9 7.1 58.6 30.2 

3b 24.8 ± 0.14 78.4 ± 0.09 10.5 ± 0.06 13.9 ± 0.6 58.7 ± 0.36  32.0 ± 1.14  

4 23.1 78.2 9.4 15.2 57.1 27.9 

F 56.8 63.9 21.0 20.3 49.8 41.6 

 

Table 14. Relative error of internal gains, heating and cooling demands with 
reference to model 4 

Models 

Relative error [%] 

Annual 
internal 

heat gains 

Annual 
heating 
demand  

Annual 
cooling 
demand 

Peak 
internal 

heat gains 

Peak 
heating 

load 

Peak 
cooling 

load 

E -100.0% 15.6% -39.4% -100.0% 7.0% -15.8% 

1a 124.7% -15.7% 96.8% 13.2% -13.5% 41.2% 

1b 114.3% -14.3% 90.4% 23.0% -13.5% 41.9% 

2a -3.5% 2.2% 3.2% -53.9% 2.5% 7.5% 

2b 9.5% 0.0% 12.8% -23.0% 1.8% 14.0% 

3a 0.0% 1.7% 5.3% -53.3% 2.6% 8.2% 

3b 7.4% 0.3% 11.7% -8.6% 2.8% 14.7% 

F 145.9% -18.3% 123.4% 33.6% -12.8% 49.1% 
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Figure 13. Cumulative distribution of simulated time-step heating loads 

 

 

Figure 14. Cumulative distribution of simulated time-step cooling loads  
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3.5. Discussion 

3.5.1. Short-term predictions 

The results shown in Figure 7 to Figure 11, Table 10 and Table 11 facilitate 

a number of observations: 

 With the exception of Last Departure (LD) errors, where all three 

models practically display the same performance, the simple non-

probabilistic MT model performs best.  

 The two probabilistic models generally display a comparable level 

of performance, even though Reinhart's model could be argued to 

perform slightly better with regard to the two indicators First 

Arrival time error (FA) and Number of Transitions error (NT).   

 The expectation that at least eighty percent of model predictions 

would display errors below the aforementioned threshold error 

values is fulfilled by none of the models. The best performing non-

probabilistic MT model comes close to meeting this requirement 

but only for one statistics (FA).  

The author suggests that the presented results might have implications 

beyond the performance comparison of the three models considered: 

 Firstly, it must be maintained that the obtained level of predictive 

accuracy was found to be rather low in general. Given the high 

quality and resolution of observational data used for model 

training in the present highly-controlled study, the more practical 

field applications of occupancy prediction models could be 

arguably expected to perform even poorer. It is important to 

emphasize that in the present study empirical data for each 

workplace (occupied by the same individual) was used to train the 

model for predicting the occupancy pattern at the very same 

workplace occupied by the very same individual. This 

circumstance could be reasonably argued to represent an ideal 

training scenario for occupancy models.  
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 Secondly, the study's results suggest that the models, which 

incorporate stochastic elements, do not necessarily display a 

superior predictive performance. Specifically, the two 

probabilistic models were outperformed in terms of their 

predictive potential by the proposed non-probabilistic model. The 

probabilistic models aim to reflect the random diversity in the 

occupancy patterns. This could be important in applications (such 

as the design and sizing of building systems) where the 

consideration of diversity is critical. However, in the case at hand 

(short-term occupancy prediction based on historical data), the 

non-probabilistic model remains close to the overall tendency of 

the past occupancy patterns, yielding thus a better predictive 

performance. 

These remarks are not meant to suggest that the above mentioned issues 

represent conclusive evidence for generally existing limits to the 

predictive potential of occupancy models. For instance, it may be argued 

that the observed rather large model errors apply only to the present 

specific case study, which is limited, amongst other things, in terms of 

building type (office building) and number of workplaces (only eight). 

Likewise, the implemented probabilistic models are not necessarily 

representative of all that is currently available or could be developed in 

the future. Nonetheless, the obtained results do highlight the necessity 

for reflection on the achievable levels of accuracy in predicting future 

occupancy in buildings based on past data. The results of the present case 

study neither assert the full fidelity of occupancy models in predictive 

building systems control, nor do they confirm the contended effective 

pre-eminence of probabilistic occupancy modelling methods. Specifically, 

for applications involving building systems control, a probabilistic 

approach to represent the occupants' presence was not shown to 

enhance the accuracy of the integrated simulation models.  
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3.5.2. Long-term simulations 

The obtained result leads to a number of noteworthy observations. Firstly, 

as illustrated in Figure 12 and considering the values for square root of 

Jensen-Shannon divergence in Table 12, the distribution of stochastic 

predictions of occupancy levels is closer to the actual occupancy level 

distribution. In addition, the observation-based stochastic models of 

occupants’ presence (models 2b and 3b) provide peak values for internal 

heat gains much closer to the reality benchmark, compared to the ones 

with fixed profiles (models 2a and 3a). This, however, does not necessarily 

translate into a better predictive performance concerning indicators such 

as annual heating and cooling demands and peak heating and cooling 

loads (see Table 13).  

Second and foremost, divergence of the simulation results of different 

models is not mainly due to the nature of occupants’ presence models 

(i.e., stochastic versus non-stochastic). Options 1a and 1b yield fairly 

comparable results, as do options 2a and 2b, and options 3a and 3b. The 

significant difference is between generic (standard-based) assumptions 

(options 1a, 1b) and assumptions that rely on actual occupancy 

information (2a, 2b, 3a, 3b, 4). In the present case, standard-based 

assumptions (options 1a and 1b) obviously overestimate the actual 

occupancy (see Mean Error values in Table 12), resulting in systematically 

lower heating loads (see Figure 13) and systematically higher cooling loads 

(see Figure 14). These results are consistent in tendency with those of 

scenario F (full occupancy), which of course represents the ultimate 

overestimation of occupancy, thus resulting in the lowest and highest 

heating and cooling loads respectively. 

The results of this case study suggest that randomization of occupants’ 

presence patterns reduces the distance between the predicted and actual 

distributions of occupancy levels and provides more reliable peak values 

for occupancy loads. However, use of stochastic presence patterns per se 

does not guarantee that simulation results pertaining to typical building-
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level performance indicators (e.g., building annual and peak heating and 

cooling demands and loads) are any closer to reality than simulations 

based on non-probabilistic occupancy patterns. To achieve high-fidelity 

simulation results (at least with regard to building-level performance 

indicators such as heating and cooling annual demands and peak loads) it 

is thus much more important to possess reliable estimations of actual 

occupancy levels than whether probabilistic or non-probabilistic 

representations of presence patterns are deployed.   

To clarify the scope of this part of the study, the author emphasizes that 

Chapter 3 focused on the implications of occupants’ presence models 

(and not occupant behavior models) for simulation results. Nonetheless, 

in the current study the presence of occupants is not assumed to be 

totally irrelevant to equipment and lighting usage. However, the 

corresponding relationship is intentionally kept as simple as possible. 

Specifically, the modeling approaches examined in this study simply 

represent the occupants with a set of three schedules for presence, 

lighting, and equipment (either in a fixed or stochastic manner, either for 

an average person or for individuals). That is, they do not intend to model 

occupants as autonomous agents in the building and consequently, nor do 

they consider feedback loops from environmental conditions back to 

occupants’ behavior. This circumstance is the logical consequence of this 

chapter’s main objective to partially isolate the computable implications 

of occupants’ presence patterns. In this context, one should not forget 

that representation of occupants with the above mentioned set of 

schedules is fairly common in the building performance simulation 

community. Therefore, this can be seen as an initial but important step 

towards assessing the sensitivity of building performance simulation 

results to the choice of different types of occupancy-related models.  

As indicated before, the current work focused on occupants’ presence and 

building-level performance indicators. Hence, the insights gained may not 

be directly applicable to simulation models involving behavioral factors 
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and those with other levels of scale and zonal resolution. As such, it is 

likely that no single occupancy modeling approach can optimally 

accommodate all simulation deployment scenarios. Moreover, a thorough 

evaluation of occupancy-related models in terms of implications for 

building performance simulation results should ideally consider a 

multitude of simulation application scenarios (involving different building 

types, different zonal destinations, different phases of the building 

delivery process, different queries, etc.). This observation underscores the 

critical importance of further studies to explore and document the 

effectiveness level of various types of occupancy models within the multi-

dimensional simulation deployment space. 
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Chapter 4.  

Plug load models 

 

4.1. Background  

Office buildings' energy demand is significant. In Europe, total annual 

energy use of office buildings varies roughly from 100 to 1000 kWh.m-2.a-1, 

depending on factors pertaining to location, construction, environmental 

control systems, as well as equipment types and use patterns [56]. 

Generally speaking, office buildings' energy demand is due to both 

provision of proper indoor conditions (e.g., heating, cooling, ventilation, 

lighting) and operation of office equipment. The latter energy 

requirement is particularly affected by inhabitants' presence and behavior 

[57]. Plug loads play a significant role in office buildings, involving 

computers, peripheral devices, telephones, etc. A large fraction of office 

equipment is controlled by inhabitants [58]. Plug loads are suggested to 

account for more than 20% of primary energy used in office buildings, and 

this ratio is stipulated to increase by 40% in the next 20 years [59,60,61].  

Reliable estimates of plug loads are important for adequate design 

decision making. Specifically, building performance simulation tools 

geared toward assessing buildings' energy and indoor environmental 

performance would benefit from reliable methods to estimate plug loads 

magnitude [62]. The current state of knowledge (including both available 

information in standards and typical simulation input assumptions) with 

regard to the prevailing plug loads in office buildings may be characterized 

as not fully satisfactory. Likewise, compared with other occupancy-relate 

models, there are arguably few studies regarding prediction methods of 

the magnitude and pattern of equipment use in office buildings. Given this 

circumstance, in Chapter 4 the plug load patterns of a number of 

inhabitants of a selected office are empirically explored. Thereby, both 

bulk (e.g., aggregated annual values) and detailed (i.e., time-dependent 
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high resolution) electrical energy use patterns are considered, resulting in 

a simplified linear regression and a stochastic prediction method. Note 

that, given the small scope of the underlying empirical data, it is not 

claimed that the specific formulation of the proposed prediction methods 

is generally valid. Rather, the aim is to document the proposed 

approaches and illustrate their promising potential, which are to be 

further tested and refined via future – more extensive – cross-sectional 

investigations.  

4.2. Methods 

4.2.1. Overview 

The main objective of this chapter is to explore the possibility of 

predicting plug loads of office buildings based on two sets of assumptions, 

namely the installed equipment power (specifically computers and 

peripherals) and the presence patterns of inhabitants. Put in general 

terms, it is hypothesized that plug loads or electrical energy use in an 

office building due to office equipment can be estimated based on 

installed equipment power and the presence patterns of office 

inhabitants. Specifically, two approaches are introduced in the present 

chapter. The first (simplified) approach aims at obtaining aggregate 

estimations such as annual plug loads in an office area or building given 

certain basic input data such as overall presence patterns and installed 

equipment power. The second (probabilistic) approach aims at emulating 

the stochastic nature of load fluctuations. Toward this end, high-

resolution (empirically-based or stochastically generated) time series of 

office inhabitants are utilized. In the following, brief descriptions of the 

empirical setting and these two approaches are provided.  

4.2.2. Monitored data 

To provide both a concise illustration and an initial test of the proposed 

predictive approach toward estimation of office buildings' plug loads, an 
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office area in a University building in Vienna, Austria was selected. The 

area includes both single-occupancy and open-plan office rooms/zones 

(see Table 15). The office area is used by eight regular staff members 

(referred to here as U1 to U8) of different backgrounds (Department 

director, secretarial assistant, academic assistants, research scientists). 

The office area is equipped with a comprehensive monitoring 

infrastructure. Of importance are, for the purposes of the present study, 

sensors for occupancy detection and plug loads monitoring. Specifically, 

plug loads associated with each inhabitant (computers, peripherals, 

telephones, etc.) are monitored on a regular basis. In this study, the 

primary analysis and the basis for model development are based on 15-

minute interval data (inhabitants' presence, plug loads) collected over a 

one-year period (2014). To assess the developed models' reliability, two 

separate sets of empirical data from the years 2013 and 2015 were 

compiled. Note that the data included in this study concerning the 

installed power of desktop computers do not directly reflect their 

nameplate values. Rather, they have been derived based on nameplate 

information according to the insights gained in previous studies. These 

studies suggest that desktop computers consume on average 14 to 36% of 

the rated values [63,64]. In the present treatment, thus, a specific 

coefficient is defined, namely 0.3, which is to be applied to the nameplate 

values of desktop computers' power.  

 

Table 15. Overview of the selected office zones with respective inhabitants, 
areas, and installed power (Qe) 

Space Inhabitants 
Total effective 
installed power [W] 

Area [m
2
] 

Open-plan office area U1, U2, U3, U4, U5 880 43 

Single-occupancy office 1 U6 180 19 

Single-occupancy office 2 U7 90 34 

Single-occupancy office 3 U8 130 17 
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4.2.3. The simplified model 

The author hypothesizes that the plug loads fraction is a function of 

presence probability. A linear version of this relationship could be 

represented as follows: 

𝑃𝐿𝐹𝑖 = 𝑎𝑃𝑃𝑖 + 𝑏 ( 20) 

 

Where 𝑃𝐿𝐹𝑖 is the plug loads fraction at time interval 𝑖, 𝑃𝑃𝑖 is the average 

presence probability at time interval 𝑖, and a and b are coefficients that 

would be empirically obtained. 

Given these assumptions, the energy use associated with plug loads (𝑃𝐿𝐸) 

over a time period consisting of 𝑛 interval with a length of 𝑇 can be 

estimated as follows: 

𝑃𝐿𝐸 = 𝑇 ∑𝑃𝐿𝐹𝑖 ×

𝑛

𝑖=1

𝑄𝑒 ( 21) 

 

Where 𝑄𝑒 is the effective power of the installed equipment at the office. 

Note that if individual presence and plug load profiles are available, this 

method can be used at the levels of individual office occupants as well. 

However, the model is intentionally simplified to rely on the average 

presence profile (for weekdays and weekends) which is commonly 

estimated for different building types in building performance simulation 

efforts. 

For the office area investigated in the present study and using the 

empirical 2014 data, this relationship can be expressed via Equation 22. 

Figure 15 illustrates scatter plot of the 15-min presence probabilities and 

plug load fractions along with the fitted regression line. 

𝑃𝐿𝐹 = 0.53𝑃𝑃 + 0.09 ( 22) 
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Figure 15. Linear regression analysis of the relationship between plug load 
fraction and presence probability for eight inhabitants  

 

4.2.4. The stochastic model 

To explore the potential of a probabilistic approach in predicting plug 

loads, a simple stochastic plug load model was formulated, which utilizes 

three specific Weibull distributions to characterize the following: 

1. Plug load fractions during occupied periods or intermediate 

absences shorter than one hour; 

2. Plug load fractions during intermediate absences longer than one 

hour; 

3. Plug load fractions outside working hours. 

 

Thereby, plug load fractions are picked randomly via inverse transform 

sampling method, whenever the occupancy state falls within one of the 

above possibilities. Consequently, similar to the aforementioned 

simplified model, the electrical energy use can be calculated via Equation 

21.  

The general formulation of a Weibull distribution is as follows, where a is 

the scale parameter and b is known as the shape parameter: 
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𝑓(𝑥|𝑎, 𝑏) =
𝑏

𝑎
(
𝑥

𝑎
)
𝑏−1

𝑒
−(

𝑥
𝑎
)
𝑏

 ( 23) 

 

In order to obtain the parameters of the Weibull distributions, the 

monitored data pertaining to occupancy and plug loads at the studied 

office area in year 2014 was used in the maximum likelihood estimation 

method (see Table 16). Figure 16 illustrates cumulative distribution 

function of the Weibull distributions for the aforementioned cases. 

Whereas the empirical distribution functions could be used to establish 

the stochastic model for the purpose of current study, the fitted Weibull 

distributions were deployed, so that the model can be used (and further 

tested by other researchers) without fully depending on high resolution 

monitoring data on occupancy and equipment use.  

 

Table 16. Parameters of stochastic plug load model’s Weibull distributions 
(obtained from observations in the selected office area for the year 2014) 

Model’s Weibull 
distributions 

a (scale) b (shape) 

1 0.560 1.886 

2 0.377 1.323 

3 0.141 1.072 
 

 

Figure 16. Cumulative distribution function of the stochastic plug load model’s 
Weibull distributions 

 



 

Plug load models 

 

l  

 

60 

However, it should be noted that to use this model the occupancy states 

(occupied or vacant) of individuals at each time interval should be 

provided as input. In this regard two scenarios were considered: A) Use of 

high-resolution monitored data for the whole running period, and B) using 

a stochastic occupancy model to generate non-repeating daily occupancy 

profiles based on limited information about occupancy patterns. While 

the first scenario represents a sort of ideal situation to depict the model’s 

potential, the second scenario offers a more practical option: A number of 

stochastic occupancy models have been emerged, which can use relatively 

simple input information (i.e., observation-based or standard-based 

diversity profiles). For the purpose of current study, the stochastic 

occupancy model developed by Page et al. [44] was used. This model uses 

as input a profile of presence probability and average parameter of 

mobility (μ), which is defined as the ratio of state change probability to 

state persistence probability. Similar to the implementation of the linear 

regression model, the stochastic model was provided with average 

presence profiles for weekdays and weekends. Note that the model itself 

does not include default values for the – potentially highly influential – 

mobility factor. To explore the implications for the method's predictive 

performance, two values for mobility factor were considered, namely 0.5 

and 0.1, leading to scenarios B1 and B2 respectively. Table 3 summarizes 

the implementation scenarios of the stochastic plug load model. 

 

Table 17. Implementation scenarios of the stochastic plug load model 

Scenario Input data Coupled occupancy model 

A 
Individuals’ monitored 
occupancy data 

- 

B1 
Average monitored presence 
profiles for weekdays and 
weekends 

Stochastic model [44] with μ = 0.5 

B2 
Average monitored presence 
profiles for weekdays and 
weekends 

Stochastic model [44] with μ = 0.1 
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4.3. Results and discussion 

4.3.1. The simplified model performance 

Table 18 provides a summary of the monitored and calculated total and 

peak electrical energy use (due to office equipment) in the selected areas 

for the years 2014, 2013, and 2015, together with the predictions’ relative 

errors with reference to the measurements. In addition, to compare the 

distribution of predicted and monitored plug loads, the Jensen–Shannon 

divergence metric was utilized (Equations 17 to 19). 

Table 18 also includes the values of three statistical indicators, namely 

Root Mean Square error (RMSE), Normalized Root Mean Square Error 

(NRMSE), and Mean Bias Error (MBE) for interval by interval comparison 

of the monitored and calculated energy use. 

From the results, it can be inferred that, for the selected case study 

building, the proposed method can provide good predictions of the 

annual electrical energy use for office equipment. Interestingly, the 

proposed method's "predictive" performance was better for the years 

2013 and 2015, even though it was developed based on the 2014 data. 

However, with regard to the peak plug loads and the distribution of time 

interval predictions, the model yields relatively large errors, as it relies on 

average reference-day presence and plug load profiles. 

4.3.2. The stochastic model performance 

As shown in Table 19, the stochastic method's performance in predicting 

annual, peak, and time interval plug loads was evaluated in the same 

manner. However, in case of the stochastic model, the values provided in 

Table 19 are mean values of a 100-run Monte Carlo simulation of the 

model. In addition, as explained before, the stochastic plug load model 

was implemented in 3 different scenarios in terms of input occupancy 

data (Table 17).   
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Table 18. Comparison of simplified plug load model’s predictions with monitored 
electrical energy use associated with plug loads for the years 2013 to 2015 

Model 
Run 

period 

Run period sum Run period peak Distribution Time interval values 

Value 
[kWh] 

RE 
[%] 

Value 
[W] 

RE 
[%] 

JSD 
[-] 

MBE 
[W] 

RMSE 
[W] 

NRMSE 
[%] 

Measured  2014 2289.7 - 1190.9 - - - - - 

Simplified model 2014 1960.4 -14.4 510.3 -57.2 0.44 -37.6 162.8 14.4 

Measured  2013 1978.0 - 1157.8 - - - - - 

Simplified model 2013 1958.1 -1.0 513.5 -55.6 0.51 -2.3 129.3 12.0 

Measured  2015 1801.5 - 1058.4 - - - - - 

Simplified model 2015 1863.1 3.4 503.6 -52.4 0.42 7.0 138.1 13.7 

 

The obtained results suggest that the implemented stochastic method for 

office plug loads does not provide very accurate predictions of the annual 

electrical energy use. However, it provides fairly good estimations of peak 

loads.  

Considering different implementation scenarios of the stochastic plug 

load model, it can be seen that the selection of input parameters for the 

stochastic occupancy model (in this study the parameter of mobility), has 

a large impact on the resulting energy use predictions. Specifically, for the 

office area studied here, setting the parameter of mobility to 0.5 results in 

a large overestimation of annual plug loads. However, when using a 

parameter of mobility of 0.1, model predictions converge to those 

obtained via high resolution occupancy data input. 
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Table 19. Comparison of stochastic plug load model’s predictions  with monitored 
electrical energy use associated with plug loads for the years 2013 to 2015 

Model 
Run 

period 

Run period sum Run period peak Distribution Time interval values 

Value 
[kWh] 

RE 
[%] 

JSD 
[-] 

RE 
[%] 

JSD 
[-] 

MBE 
[W] 

RMSE 
[W] 

NRMSE 
[%] 

Measured 2014 2289.7 - 1190.9 - - - - - 

Stochastic model, 
Scenario B1 

2014 2904.5 26.9 1092.3 -8.3 0.34 70.2 199.4 17.6 

Stochastic model, 
Scenario B2 

2014 2388.1 4.3 1018.1 -14.5 0.35 11.2 182.7 16.2 

Stochastic model, 
Scenario A 

2014 2424.3 5.9 1033.5 -13.2 0.33 15.4 141.5 12.5 

Measured 2013 1978.0 - 1157.8 - - - - - 

Stochastic model, 
Scenario B1 

2013 2835.6 43.4 1098.6 -5.1 0.37 97.9 209.4 19.4 

Stochastic model, 
Scenario B2 

2013 2354.8 19.1 1007.5 -13.0 0.38 43.0 181.7 16.9 

Stochastic model, 
Scenario A 

2013 2374.3 20.0 1057.8 -8.6 0.36 45.3 123.2 11.4 

Measured 2015 1801.5 - 1058.4 - - - - - 

Stochastic model, 
Scenario B1 

2015 2782.7 54.5 1091.9 3.2 0.34 112.0 205.0 20.3 

Stochastic model, 
Scenario B2 

2015 2333.5 29.5 1004.1 -5.1 0.34 60.8 175.2 17.3 

Stochastic model, 
Scenario A 

2015 2322.7 28.9 1009.8 -4.6 0.33 59.5 137.3 13.6 

 

4.3.3.  Comparative performance of the models 

The comparison of model predictions with observed data facilitates a 

number of conclusions. The simplified method provides fairly reasonable 

predictions of annual energy use associated with plug loads. Indeed, the 

performance of the simplified model was in this regard considerably 

better than the more sophisticated probabilistic model implementations 

in the validation years 2013 and 2015 (see Figure 17). However, the 

probabilistic plug load model, independent of the variations implemented, 
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outperforms the simplified model in terms of peak load (see Figure 18) 

and the distribution of predictions. The latter can be inferred from the 

lower values of JSD (see Table 18 and Table 19) and is clearly illustrated 

for year 2013 in Figure 19. With regard to the time interval plug loads, 

comparing the models with the same level of input (the simplified model 

versus the probabilistic model in implementation scenarios B1 and B2), 

reveals a better performance on the side of the simplified model.  

 

 

Figure 17. Annual plug load obtained from different modelling approaches, along 
with the respective monitored values 

 

 

Figure 18. Peak plug load obtained from different modelling approaches, along 
with the respective monitored values 
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Figure 19. Cumulative distribution of plug load fraction obtained from different 
modelling scenarios for year 2013, along with the respective monitored values 
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Chapter 5.  

Window operation models 

 

5.1. Background 

Given the impact of inhabitants' presence and control actions on indoor 

environment, building performance simulation tools increasingly 

incorporate models of occupants' presence and behavior to assess, among 

other things, building energy performance and indoor air quality.  

However, given the complex nature of occupants’ control-oriented 

behavior in buildings, arguably, the representation of occupants in 

building performance simulation falls short of models of other relevant 

factors such as building envelope, building systems, and climatic context. 

In this context, modeling natural ventilation and the occupants' operation 

of windows has gained relatively high attention from the researchers. 

Traditionally, two approaches have been adopted within building 

performance simulation zone models to represent natural ventilation. 

These are namely, representation of natural ventilation as an estimated 

air change rate, and introduction of operable windows with the aid of 

multi-zone airflow models or coupled computational fluid dynamics 

engines. With operable windows in the models, the diversity profiles 

(temporal schedules) and user defined rules (to trigger the state transition 

based on one or a number of environmental parameters) have been 

conventionally used to govern the operation of windows. Of course, the 

simpler approach of user defined air change rates can also be 

implemented using schedules and/or rule-based controls to replicate the 

time-varying nature of natural ventilation in buildings.  

Since more than a decade ago, various stochastic models of window 

operation have been introduced, which consider influential occupancy 

events and the deriving indoor and outdoor environmental factors to 

capture the occupants' interactions with windows [65,66,67,68,69]. In 
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addition, a number of studies have suggested that such stochastic models 

do a better job in predicting occupants’ adaptive behavior and providing 

accurate building performance indicators [70,71,72]. However, previous 

studies in the area have highlighted, on the one side, the lack of inter-

comparison, and the uncertainty in the validity range of the developed 

models [11], and on the other side, the lack of robust algorithms for use of 

these models in building performance simulation [8]. In addition, as 

outlined in previous publications [12,14], arguably, the relationship 

between the purpose of building performance simulation-based studies 

and the choice of occupancy-related models is not sufficiently recognized.  

Given this background, in the current dissertation the author conducts an 

external evaluation of a number of stochastic and non-stochastic window 

operation models in view of their potential in predicting occupants’ 

interactions with windows, and their effectiveness to enhance the 

reliability of thermal comfort and energy performance assessments. 

Toward this end, an office area was selected, for which long-term data on 

outdoor and indoor environment, occupancy, and window operation is 

available. As deployed in previous studies [73,74], such a test bed 

provides the required environmental and occupancy related input data to 

run and evaluate the window operation models with only one major 

shortcoming, namely disregard of the models’ feedback. That is, while the 

outcome of window operation models in an interval (state of window) 

changes the inputs for the next interval (for example indoor air 

temperature or CO2 concentration), the measured indoor environmental 

parameters are resulted from the actual control actions of occupants in 

the monitoring period. Other words, without a “virtual” representation of 

the building performance, one fails to see the impact of model predictions 

on indoor environmental parameters and provide valid inputs for the 

models. Therefore, to evaluate the predictive performance of window 

operation models in a more convincing manner, the author takes 

advantage a calibrated simulation model of the office area in addition to 

the full set of required monitored data. Using the building calibrated 
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simulation model, the implications of different window operation models 

for simulation-based assessments of building heating energy demand and 

occupants’ thermal comfort could be also studied. 

Thus, the study allows for exploration of a number of essential questions 

with regard to the use of rule-based and stochastic window operation 

models: To what degree do these models predict the occupant’s 

interaction with windows in a new setting, with and without calibration to 

on-site data? To which extent do the results of simulations that use rule-

based window control schemes or stochastic models of window operation 

differ from a reference building model, which utilizes actual window 

operation data? Does the use of existing stochastic window operation 

models enhance the accuracy of simulation results, even without 

calibration with on-site window operation data?  

5.2. Methods 

5.2.1. Overview 

In a nutshell, the present study deploys long-term monitored data from an 

office area and the calibrated simulation model of this building to conduct 

an external evaluation of a number of stochastic and non-stochastic 

window operation models with respect to a) their potential in predicting 

occupants’ interaction with windows, and b) their effectiveness to 

enhance the reliability of building performance simulation results. 

5.2.2. Empirical data for model calibration and evaluation 

An office area at TU Wien (Vienna, Austria) was selected for the study 

including an open space with multiple workstations and a single-

occupancy closed office. For the purpose of current study, the focus was 

specifically on seven workstations, in which each occupant has access to 

one manually operable casement window. Only the enclosed office entails 

one workstation and two windows, but one of these windows is not 

operable (see Figure 20 for the arrangement of monitored occupants and 
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operable windows assigned in the office area). The occupants’ presence, 

state of windows and a number of indoor environment variables 

(including air temperature, humidity, and CO2 concentration) are 

monitored on a continuous basis. Outdoor environmental parameters 

(including air temperature and precipitation) are also continuously 

monitored via building's weather station. For the present study, 15-

minute interval data from a calendar year (referred to as calibration 

period) was used to calibrate the coefficients of stochastic window 

operation models. A separate set of data obtained from another calendar 

year (referred to as validation period) was used to evaluate the predictive 

performance of the models. 

 

Figure 20. Schematic illustration of the office area, observed occupants (P1-P7) 
and operable windows (W1-W7). 

 

5.2.3. Selected window operation models 

Three existing stochastic and three simple non-stochastic window 

operation models were studied. The stochastic models (referred here as 

A, B, and C) are derived based of occupant behavior at office buildings and 

are widely referenced in the building performance simulation community. 

They are all Markov chain based logistic regression models that estimate 

the probability of window opening and closing actions based on the 

previous window state and a number of occupancy-related and 

environmental independent variables. Table 20 provides a list of 
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independent variables considered in the models. To the author’s 

knowledge, at least two of these models are implemented within well-

known building performance simulation tools (model A in ESP-r and model 

C in IDA ICE).  

The non-stochastic models (referred as D, E, and F) are defined based on 

simple rules according to the common practice in use of building 

performance simulation tools without integration of stochastic models 

(models D and F are, for example, integrated in EnergyPlus). Model D 

works with an indoor temperature threshold and indoor and outdoor 

temperature inputs, whereas model E uses an indoor temperature dead-

band together with indoor and outdoor temperature inputs to trigger 

window opening and closing actions. Model F, uses the comfort 

temperate calculated based on EN15251 as the assumed trigger of 

opening and closing actions. 

In the current study, new variations of models A and C (denoted as A* and 

C*) were also included, as the original models did not capture a key 

behavioral feature in the building under study where the inhabitants are 

requested not to leave the windows open when they leave the office due 

to storm damage risk. In addition, two benchmark pseudo-models 

(denoted as G and H) were considered, whose purpose is to put the 

performance of the selected models into perspective. A brief description 

of the aforementioned models is provided below: 

 Model A, developed by Rijal et al. [66], estimates the probability 

of opening and closing windows based on outdoor and operative 

temperature, when operative temperature is outside a dead-band 

(Comfort temperature ± 2°C).  

 Model A*, a variation of Model A, always returns a closing action 

upon each occupant's last departure. 

 Model B, developed by Yun and Steemers [67], is derived based 

on summer data, and is specifically fitted to buildings without 

night time ventilation. It estimates the probability of opening 
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windows upon first arrival and the probability of window opening 

and closing actions within intermediate occupancy interval (i.e. 

after first arrival and before last departure) based on indoor 

temperature. 

 Model C, developed by Haldi and Robinson [68], estimates the 

probability of opening and closing actions at arrival times (first 

and intermediate ones), intermediate occupancy intervals, and 

the departure times (intermediate and last ones) based on a 

number of occupancy-related and environmental independent 

variables (see Table 20). 

 Model C*, a variation of Model C, always returns a closing action 

upon each occupant's last departure.  

 Model D, a non-stochastic model, operates as follows: windows 

are opened if indoor temperature is greater than outdoor 

temperature and indoor temperature is greater than 26 °C. 

Otherwise the windows are closed.   

 Model E, a non-stochastic model, is formulated as follows: 

windows are opened if indoor temperature is greater than 

outdoor temperature and indoor temperature is greater than 

26°C. Windows are closed if the indoor temperature is less than 

22°C. 

 Model F, a non-stochastic model, operates as follows: windows 

are opened if the operative temperature is greater than the 

comfort temperature calculated from the EN15251 adaptive 

comfort model. Following the definition of comfort temperature 

for free-running period in EN15251, the windows can be opened 

only if weighted running average of the previous 7 daily average 

outdoor air temperatures is above 10°C and below 30°C.  

 Model G, a benchmark pseudo-model that "predicts" windows are 

always open. 

 Model H, a benchmark pseudo-model that "predicts" windows are 

always closed.   
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It should be noted that all the models are implemented such that the 

opening and closing actions on each window are triggered only if the 

occupant associated with that window is present (see Figure 20, which 

illustrates the arrangement of monitored occupants and the operable 

windows assigned to them).  
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Table 20. Selected stochastic window operation models,  their independent 
variables, and the original and calibrated estimates of coefficients  

Model Type 
Occupancy 

phase 
Independent variables 

and constant terms 
Original 

coefficients 
Adjusted 

coefficients 

A 
Opening 
& closing 

- 

Intercept -6.430 -13.963 ± 1.733 

Operative temperature 0.171 0.461 ± 0.077 

Outdoor temperature 0.166 0.022 ± 0.020 

B 

Opening 

First arrival 
Intercept -4.849 ± 1.075 -13.797 ± 1.014 

Indoor temperature 0.218 ± 0.045 0.501 ± 0.042 

Intermediate 
Intercept -0.629 ± 0.226 -11.049 ± 0.740 

Indoor temperature 0.030 ± 0.010 0.274 ± 0.031 

Closing Intermediate 
Intercept 0.209 ± 0.049 12.554 ± 1.112 

Indoor temperature -0.007 ± 0.002 -0.651 ± 0.047 

C 

Opening 

Arrival 

Intercept -13.700 ± 0.400 -10.120 ± 1.063 

Indoor temperature 0.308 ± 0.017 0.231 ± 0.050 

Outdoor temperature 0.040 ± 0.004 0.064 ± 0.014 

Preceding absences > 8h 1.826 ± 0.048 1.809 ± 0.130 

Occurrence of rain -0.430 ± 0.120 -0.531 ± 0.464 

Intermediate 

Intercept -11.780 ± 0.300 -7.065 ± 1.252 

Indoor temperature 0.263 ± 0.014 0.070 ± 0.060 

Outdoor temperature 0.039 ± 0.004 0.080 ± 0.016 

Ongoing presence duration -0.001 ± 0.000 -0.372 ± 0.076 

Occurrence of rain -0.336 ± 0.088 0.072 ± 0.418 

Departure 

Intercept -8.720 ± 0.230 -6.101 ± 0.359 

Daily outdoor temperature 0.135 ± 0.008 0.126 ± 0.021 

Following absences > 8h 0.850 ± 0.120 NA 

Ground floor 0.820 ± 0.140 NA 

Closing 

Arrival 

Intercept 3.950 ± 0.390 3.963 ± 3.141 

Indoor temperature -0.286 ± 0.018 -0.192 ± 0.152 

Outdoor temperature -0.050 ± 0.005 -0.109 ± 0.040 

Intermediate 

Intercept -4.140 ± 0.240 7.044 ± 1.617 

Indoor temperature 0.026 ± 0.011 -0.323 ± 0.077 

Outdoor temperature -0.063 ± 0.002 -0.142 ± 0.019 

Departure 

Intercept -8.680 ± 0.250 -0.337 ± 1.951 

Indoor temperature 0.222 ± 0.024 -0.049 ± 0.098 

Daily outdoor temperature -0.094 ± 0.007 -0.066 ± 0.036 

Following absences > 8h 1.534 ± 0.077 1.587 ± 0.231 

Ground floor -0.845 ± 0.074 NA 
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5.2.4. Office area calibrated simulation model 

The office area was modeled in the building energy simulation tool 

EnergyPlus 8.4.0. It was assumed that the floor and ceiling surfaces of the 

office are adiabatic, as the office is situated between two occupied floors. 

In the zoning scheme, the open-plan south and north-oriented spaces 

were separated from the central corridor. However, using the network-

based multi zone airflow model of EnergyPlus [29], the airflows across the 

external windows and the connected spaces were simulated. Figure 20 

illustrates the building floor plan and the modeled area. 

The constant input parameters governing bulk airflow simulation in the 

EnergyPlus model (namely open windows discharge coefficient and closed 

windows air mass flow coefficient) were set based on a previous model 

calibration effort [75]. Therein, the building model was populated with 

high-resolution monitored data on occupants’ presence, operation of 

windows, use of lights and equipment as well as heat delivery rate of the 

building hydronic heating system to exclude the time-varying parameters 

from calibration procedure. Consequently, in such an ideal situation for 

calibration of model’s constant input parameters, the discharge 

coefficient of open windows and the air mass flow coefficient of closed 

windows were subjected to an optimization-based calibration to minimize 

the root-mean-square deviation of simulated indoor air temperatures 

from measurements. Table 21 summarizes basic information about the 

office area energy model.  

In the present study, the building calibrated simulation model is used as a 

test bed for evaluation of window operation models, which allows for 

considering the models feedback, i.e. the impact of models’ output 

(window states) on models’ input (indoor temperature). The calibrated 

building model also makes it possible to determine the impact of window 

operation (and use of different window operation models) on the 

simulated building performance indicators. To fulfill these purposes, a 

model was needed that could represent the building performance in 
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validation period with high accuracy. Therefore, the monitored data 

pertaining to occupancy, plug loads, use of lights, and operation of 

heating system were incorporated into the calibrated building model as a 

set of full-year data streams with a resolution of 15-minute intervals. This 

data set was obtained in the validation period. However, to represent the 

operation of internal venetian blinds, due to lack of relevant monitored 

data, the author relied on the observations and the information received 

from the occupants. The resulting model, when fed with actual window 

operation data as the benchmark model, predicts the hourly indoor 

temperatures in validation year with a Normalized Mean Bias Error of 

2.8% and a Coefficient of Variation of Root-Mean-Square Error of 4.8%. 

The low values of these indicators (which are suggested in [76] to evaluate 

the accuracy of calibrated simulation models) show the relatively high 

accuracy of model with slight overestimation of indoor temperatures.  

The described building simulation model served as a basis, into which the 

selected window operation models were integrated, such that in each 

variation of the building model, the occupants’ interactions with windows 

are represented using one of the selected window models. For each 

occupant in the building, individual occupancy data and zone-level indoor 

environmental factors are provided for the window operation model. That 

is, at each simulation time-step, the window model is executed separately 

for each occupant. A benchmark model was also built, which contained 

the actual operation of windows based on the monitored data obtained in 

the validation period.  

The modeled building is not air-conditioned and it only uses a hydronic 

heating system to actively maintain thermal comfort in the cold season. In 

the model, the heating and free-running periods was set based on the 

measurements of the radiators’ surface temperature in the validation 

period, according to which the free-running season starts from April 22 

and ends on September 25. In this period, the building model simulates 
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the free-floating temperatures, which result - among other things - from 

window opening and closing actions.  

To represent the building performance in heating season, two approaches 

were adopted for the different model evaluation purposes. In one 

variation of the building model, which was used to evaluate the predictive 

potential of window operation models, the building hydronic system 

heating rate is incorporated into the model in a simplified manner (for 

calculation details see [75]). Through this basic representation of heating 

system, the impact of predicted window operations on indoor 

temperature is considered. However, in the model used to obtain building 

performance indicators, an ideal non-limited heating system was defined, 

which maintains the indoor temperature of different zones according to 

the measured indoor temperatures in the validation period. This approach 

makes it possible to obtain, as building performance indicator, the annual 

and peak heating demands to maintain the indoor temperatures 

preferred by occupants, and to see the impact of different window 

operation prediction on these performance indicators. 

The building model was exposed to the outdoor environmental conditions 

in the validation period, using an EnergyPlus weather data file generated 

from the on-site weather station measurements. The measured dataset 

included outdoor air temperature, air humidity, atmospheric pressure, 

global horizontal radiation, diffuse radiation, wind speed, and wind 

direction.  
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Table 21. Basic office area data and modeling assumptions 

Building data / Modeling assumptions Value 

Net conditioned floor area [m
2
] 187.6 

Gross wall area [m
2
] 120.1

 

Average window-wall ratio [%] 26.7 

Exterior walls U-value [W.m
-2

.K
-1

] 0.65 

Exterior windows U-value [W.m
-2

.K
-1

] 2.79 

Exterior windows SHGC [-] 0.77 

Number of occupants [-] 7 

Maximum lighting power density [W.m
-2

] 4.1 

Maximum equipment power density [W.m
-2

] 9.9 

Number of operable windows [-] 7 

Windows discharge coefficient when open [-] 0.284 

Windows air mass flow coefficient when closed [kg.s
-1

.m
-1

] 4.15×10
-4

 

 

5.2.5. Evaluation scenarios for window operation predictions 

Two approaches were adopted to evaluate window operation models in 

view of their potential in predicting the occupants’ interaction with 

windows:  

1) Use of a set of monitored data pertaining to indoor and outdoor 

environment as well as occupants’ presence and interaction with 

windows. Here, the impact of window operation models’ outputs 

on indoor environmental inputs is neglected. 

2) Use of a calibrated building performance model populated with 

the same set of monitored data. Here, the calibrated building 

model simulates the impact of predicted window operations on 

indoor environmental inputs. 

In the first approach, which has been adopted in previous studies [73, 74], 

at each time-step the environmental input data for the models is provided 

from the monitored dataset. Hence, models' predictions of window states 

do not have any impact on the indoor environmental factors for the next 
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time step. This circumstance represents a simplification in previous 

publications regarding window operation model validation. Therefore, in 

the second approach, the author suggests additional use of a calibrated 

simulation model to examine, to which extent and for which kind of 

window operation models, an evaluation study without considering the 

models’ feedback is reliable. 

In both approaches, the performance of window operation models to 

predict the inhabitants' interactions with windows are evaluated for a 

one-year-long validation period, whereby the models are fed with 

monitored occupancy-related and outdoor environmental data from the 

same period according to their independent variables. The required 

indoor environmental factors, however, are provided from different 

sources. That is, in the first approach from the measurements in the same 

period, and in the second approach from the building simulation outputs. 

In addition, in case of the stochastic window operation models, to 

conduct the evaluation in a comprehensive manner, both original and 

adjusted coefficients of the logit functions were used. Whereas the 

original coefficients are published by model developers, the adjusted 

coefficients are obtained from re-fitting the models to a separate set of 

data obtained from the building under study in the calibration period. The 

models with original coefficients are specified with a subscript “O” and 

the ones with calibrated coefficients with a subscript “C”. Note that the 

latter option (involving the possibility of adjusting model coefficients 

based on observations in actual buildings) has no relevance to model 

deployment scenarios pertaining to building design support, but may be 

of some interest in operation scenarios of existing buildings. Table 20 lists 

the stochastic models’ independent variables, and the original and 

adjusted estimates of their coefficients.    
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5.2.6. Evaluation statistics for window operation predictions 

For the purpose of the current study, the following indicators were used 

to evaluate the predictive performance of window operation models: 

 Fraction of correct open state predictions [%]: This is the number 

of correctly predicted open state intervals divided by the total 

number of open state intervals.  

 Fraction of correct closed state predictions [%]: This is the number 

of correctly predicted closed state intervals divided by the total 

number of closed state intervals.  

 Fraction of correct state predictions [%]: This is the number of 

correctly predicted interval states divided by total number of 

intervals. 

 Fraction of open state [%]: This is the total window opening time 

divided by the observation time.  

 Mean number of actions per day [d-1] averaged over the 

observation time. 

 Open state durations' median and interquartile range [hour]. 

 Closed state durations' median and interquartile range [hour]. 

From the above indictors, the fraction of correct open state predictions 

(as “true positive rate”), fraction of open state, mean number of actions 

per day, median open state duration, and median closed state duration 

have been suggested in previous studies [68,73,74] to evaluate the 

predictive performance of window operation models. Three indictors 

were added to the previous work, namely fraction of correct closed state 

predictions to express models' state prediction performance, and the 

interquartile range of open state and closed state durations to capture the 

spread of window states' durations.  

5.2.7. Building performance indicators 

To study the implications of using different window operation models for 

building performance simulation results in a systematic manner, different 



 

Window operation models 

 

l  

 

80 

building performance indicators were considered in heating and free-

running seasons. For the heating season, two basic building-level 

performance indicators were studied, namely annual and peak heating 

demand per floor area, which address the required heating energy to 

maintain the occupants’ desired temperature set-points. These 

performance indicators are widely used in the simulation community, 

especially in situations where the user wishes to study the thermal 

performance of a building without modelling a full HVAC system. As the 

use of dynamic building performance simulation for the derivation of peak 

heating demand is not well established, three variations of peak heating 

demand based on 15-min and hourly integrated results as well as the 

99.6th percentile of time-step heating demands were obtained. These 

variations allow for better analysis of the performance of window 

operation models in comparison with the benchmark model.  

Concerning the free-running season, the minimum, average and maximum 

value of free-floating indoor temperatures were obtained. In addition, the 

occupants’ thermal comfort based on EN15251 adaptive thermal comfort 

model was assessed. More specifically, as building performance 

indicators, the fraction of time that the occupants are present, but the 

temperature is below or above the limits defined in EN15251 adaptive 

comfort model for existing buildings were calculated (Category III, with an 

acceptable range of comfort temperature  4K). It should be noted that 

while thermal comfort indicators have been calculated for the occupied 

hours in the free-running season, the minimum, average and maximum 

free-floating temperatures are calculated regardless of occupancy states. 

5.2.8. Implementation of window operation models  

For the evaluation of window operation models without considering the 

models’ feedback, the models were implemented in Matlab environment, 

in which the data pre- and post-processing, calibration of the logistic 

regression models and the Monte Carlo-based executions of the 

stochastic models could be smoothly accomplished. The models were 
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implemented with complete set of input parameters published by the 

modelers. Only, given the proximity of measured indoor air and indoor 

surface temperatures in the present study, in implementation of Model A 

outside building simulation model, the operative temperature assumed to 

be equal to indoor temperature. 

In order to evaluate the predictive performance of window operation 

models with their feedbacks on indoor environment, and to explore the 

effectiveness of these models to enhance the reliability of building 

performance simulation results, the models were implemented within the 

building simulation model using the EnergyPlus runtime language. For the 

implementation of the models in EnergyPlus the author benefited from a 

study by Gunay et al. [8] and their offered public models. However, due to 

the different approaches in representing the occupants’ diversity (using 

the measured occupant data and the estimated single values for models’ 

coefficients in this study versus an artificial sample of occupants and use 

of randomly selected coefficients form the reported estimation errors in 

the other study), and a number of simplifications and modification applied 

on the models in the public repository, the author needed to rewrite the 

codes to a large extent for the purpose of this study.  

It is worthwhile to mention that, the authors in [8] have tried to resolve 

some of the shortcomings in the models, whereas in the current study it 

was tried to implement the models as exact as possible based on original 

publications, and to document the required modifications. An example of 

the model modifications applied for the aforementioned study is the 

addition of a condition to window models A and C (in case of model C only 

for opening actions upon arrival) that limits the applicability of the derived 

opening probabilities to situations that the outdoor temperature is above 

15 °C. While this addition seems to improve the performance of models in 

winter, it does not disclose the potential large errors that could result 

from the deployment of the models in their original form. 
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As a technical issue associated with integration of window models into 

building simulation, it should be also noted that, to the author’s 

knowledge, using EnergyPlus runtime language (or any other simulation 

runtime environment), input information such as last departure time and 

the duration of following absence could be provided for the models, only 

if the occupancy patterns are known before the simulation. If the 

occupants’ presence is also predicted runtime (using another integrated 

stochastic model), it is not possible to detect occupancy events that 

depend on the later executions of the presence model. In such a case, one 

needs to execute the presence model before the simulation and populate 

the building model with new sets of required occupancy information for 

each Monte-Carlo run, which cannot be seen as a very smooth workflow. 

In this case, the monitored presence data was pre-processed using Matlab 

codes and the resulting occupancy-relevant information such as last 

departure time and the duration of following absences were fed into the 

model as schedules based on external CSV files. 

5.3. Results and discussion 

5.3.1. Model evaluation approaches 

The obtained values of evaluation indicators for different window 

operation models are given in Table 22 (without considering the models’ 

feedback) and Table 23 (by considering the models’ feedback via 

calibrated building performance model). These values are obtained from 

model executions in the whole validation period (a full calendar year). In 

case of stochastic models, the results are obtained via a 50-run Monte-

Carlo simulation of window operation models (In all following tables, a 

single-value output from the stochastic models represents mean value of 

the multiple model executions. When a range of values is provided, it 

denotes the mean and standard deviation of the outcomes). 

As mentioned before, most behavioral models use some indoor 

environmental data as independent variables. However, empirical 
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evaluation of such models typically ignores action consequences for the 

indoor environment. To address this very problem, the evaluation was 

conducted using two alternatives, namely with and without inclusion of 

models’ feedback. Given the respective results shown in Table 22 and 

Table 23, the models appear to perform similarly relative to each other, 

with and without considering their feedback. However, without 

considering the models’ feedback (in this case, regarding the indoor 

temperature), the evaluation efforts can fail to provide reliable results. 

For example, the without-feedback evaluation method largely 

overestimates the fraction of open state and opening duration in model A, 

as the measured indoor temperatures do not fall below the dead-band 

defined in this model to close the windows. This tendency can be seen 

less dramatically in the fraction of open state predicted by model C. The 

disregard of models’ feedback also hides the tendency of non-stochastic 

models D and F to predict an unrealistically large number of actions. As 

such, windows are operated according to these models as soon as the 

temperature falls below or rises above a certain threshold, which, in the 

realistic scenario (including feedback) would result in a large number of 

opening and closing actions. However, without considering the models’ 

feedback, opening of the window does not reduce the indoor air 

temperature and is therefore not followed by a prompt closing action.   

Given these circumstances, it can be inferred that validation efforts 

pertaining to window operation models (or any behavioral model with 

indoor environmental input), which neglect the models’ feedback would 

be inconclusive. Therefore, the use of calibrated simulation models is 

more likely to provide a dependable analysis of the window operation 

models’ performance. 
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Table 22. Evaluation statistics without inclusion of models’ feedback 

Models 
Fraction of 

correct open 
state [%] 

Fraction of 
correct 

closed state 
[%] 

Fraction 
of correct 

states 
[%] 

Fraction 
of open 

state 
[%] 

 Actions 
per day 

[d
-1

] 

Opening duration 
[hour] 

Closing Duration 
[hour] 

Median IQR Median IQR 

Observed 100.0 100.0 100.0 4.1 0.28 1.8 5.3 23.5 55.3 

Ao 71.8 39.2 40.5 61.3 0.01 1180.0 2803.2 452.8 1442.3 

Ao* 26.0 98.7 95.7 2.3 0.10 4.9 4.1 23.9 96.6 

Bo 47.5 84.4 82.9 16.9 5.37 0.5 0.5 0.5 0.8 

Co 61.3 70.1 69.7 31.2 0.09 44.3 102.6 97.3 212.5 

Co* 22.2 97.9 94.8 2.9 0.15 4.2 4.7 76.3 157.5 

Ac 80.9 46.4 47.8 54.7 0.01 1380.1 1318.2 635.0 974.1 

Ac* 30.8 98.8 95.9 2.4 0.10 4.8 5.5 22.0 106.5 

Bc 42.0 95.1 92.9 6.4 0.29 3.7 5.8 42.4 81.1 

Cc 55.0 80.6 79.6 20.9 0.17 5.2 26.1 56.7 118.7 

Cc* 33.7 97.5 94.9 3.8 0.22 3.2 5.6 54.2 110.1 

D 32.0 98.7 96.0 2.6 0.35 0.8 2.3 1.8 18.0 

E 51.5 97.8 95.9 4.2 0.14 7.8 5.0 17.8 48.1 

F 45.3 93.7 91.7 7.9 0.95 0.8 2.8 1.0 15.0 

G 100.0 0.0 4.1 100.0 0.0 8760.0 0.0 - - 

H 0.0 100.0 95.9 0.0 0.0 - - 8760.0 0.0 

 

Table 23. Evaluation statistics with inclusion of models’ feedback 

Models 
Fraction of 

correct open 
state [%] 

Fraction of 
correct closed 

state [%] 

Fraction 
of correct 

states 
[%] 

Fraction 
of open 

state 
[%] 

 Actions 
per day 

[d
-1

] 

Opening duration 
[hour] 

Closing Duration 
[hour] 

Median IQR Median IQR 

Observed 100.0 100.0 100.0 4.1 0.28 1.8 5.3 23.5 55.3 

Ao 44.0 85.2 83.5 16.0 0.05 18.6 59.0 152.2 308.8 

Ao* 47.2 96.9 94.9 4.9 0.21 5.7 5.3 22.4 66.0 

Bo 41.8 88.4 86.5 12.9 5.2 0.5 0.5 0.5 0.8 

Co 54.2 78.2 77.2 23.1 0.07 37.1 91.2 133.7 313.2 

Co* 30.9 97.5 94.7 3.7 0.18 4.5 4.9 56.4 120.9 

Ac 41.3 86.0 84.2 15.1 0.04 19.8 93.1 172.5 408.2 

Ac* 44.4 97.5 95.3 4.2 0.18 5.4 5.4 23.6 76.2 

Bc 44.6 96.4 94.3 5.3 0.31 2.8 5.9 38.3 76.3 

Cc 47.9 83.9 82.5 17.4 0.16 3.7 22.8 63.0 128.5 

Cc* 35.4 97.2 94.7 4.1 0.24 3.2 5.8 45.8 97.6 

D 36.0 97.6 95.1 3.8 1.25 0.3 0.3 0.5 2.5 

E 54.3 95.8 94.1 6.3 0.23 6.8 6.0 18.8 47.9 

F 44.1 94.8 92.8 6.8 1.78 0.3 0.5 0.5 1.3 

G 100.0 0.0 4.1 100.0 0.0 8760.0 0.0 - - 

H 0.0 100.0 95.9 0.0 0.0 - - 8760.0 0.0 
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5.3.2. Window operation predictions 

To better illustrate the performance of models in terms of different 

evaluation indicators, Figure 21, Figure 22, and Figure 23 show the 

models' prediction errors under consideration of their feedback. Note that 

in these figures, models' relative error percentages are displayed in a 

logarithmic scale: For instance, a value of 1 read from the y-axis denotes a 

relative error of 10% in the evaluation indicator with reference to the 

benchmark. This mode of representation facilitates a better visibility of 

the differences in models' behavior. 

 

 

Figure 21. Errors of stochastic window operation models with original coefficients 
and no adjustment as well as non-stochastic models in terms of 5 evaluation 

statistics 
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Figure 22. Errors of stochastic window operation models with original coefficients 
and adjusted to buildings without night time ventilation as well as non-stochastic 

models in terms of 5 evaluation statistics 

 

 

Figure 23. Errors of stochastic window operation models with calibrated 
coefficients and adjusted to buildings without night time ventilation as well as 

non-stochastic models in terms of 5 evaluation statistics 
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A fundamental question with regard to the application of behavioral 

models concerns their capability in reproducing empirical observations. 

Thus, it may be first asked if the models could, in the present case, 

provide acceptable approximations of the observations. Assuming a 

threshold of ±20% for the relative error of model predictions as a 

reasonable benchmark, it can be concluded that without adjustments 

(night-time ventilation, calibrated coefficients), none of the studied 

models performs satisfactorily (see Table 22 and Table 23 as well as Figure 

21). Only regarding the indicator "fraction of correct state predictions" do 

the non-stochastic models meet this criterion. Note that the models do 

not appear to perform better, when instead of the conventional no- 

feedback assumption (see Table 22), a more realistic simulation-based 

test with feedback inclusion is conducted (see Table 23). However, the 

nighttime ventilation adjustment markedly improves the performance of 

the stochastic models Ao* and Co* (see Figure 22). Furthermore, 

calibrating the coefficients of stochastic models via observational data 

results in a significant improvement of their predictive performance. 

Specifically, for indicators "fraction of correct state predictions", 

"predicted fraction of open state", and "the number of daily actions", 

these models' relative errors remains roughly under 30% (see Figure 23). 

More specifically, concerning the models’ performance in heating and 

free-running seasons, Figure 24, Figure 25 and the results provided in 

Table 24 facilitate a number of observations: 

 In heating season, the stochastic models – especially with original 

coefficients – overestimate the fraction of open state and the 

duration of window openings. Even considering models A* and C* 

(as models indented to be used for this season and adjusted to 

the building under study in terms of night time ventilation) the 

overestimation of opening duration in heating season is 

considerable (see Figure 24).  
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 Based on the monitored data, the occupants have opened the 

windows more than 200 times in the heating season, but they 

have kept windows open for short durations (with a median 

opening duration of 0.25 h versus that of 3.75 h in free-running 

season). As a result, the overall fraction of open state in this 

period is only 0.7%. However, the studied stochastic models, 

which do not distinguish between the heating and free-running 

seasons, could not capture this occupants' behavioral tendency in 

the heating season.  

 In contrast, the non-stochastic models, with the exception of 

model F (whose assumed heating season based on EN15251 does 

not fully match that of the studied building) tend to disregard 

window operation in heating season.  

 In the free-running season, leaving aside the required night-time 

ventilation adjustment, the stochastic models provide better 

predictions of occupants’ interactions with windows compared to 

non-stochastic ones. However, the stochastic model Bo is an 

exception, which largely overestimates the fraction of open state 

and number of actions.  

 The non-stochastic models fail to correctly predict the number of 

actions and duration of opening state in free-running season. As 

shown in Figure 25, non-stochastic models without a dead-band 

(models D and F) largely overestimate the number of actions. 

Model E performs noticeably better in terms of the number of 

actions, but overestimates the fraction of open state and median 

opening duration.  
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Figure 24. The magnitude of relative error in fraction of open state, number of 
actions, and median opening duration in the heating season 

 

 

Figure 25. The magnitude of relative error in fraction of open state, number of 
actions, and median opening duration in the free-running season 
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Table 24. Window operation indicators at heating and free-running periods from 
model executions with feedback 

 Heating period Free-running period 

 
Models 

Fraction of 
open state 

[%] 

Number 
of actions [-] 

Opening 
duration 

median [h] 

Fraction of 
open state 

[%] 

Number 
of actions [-] 

Opening 
duration 

median [h] 

Benchmar
k 

0.7 238.0 0.3 8.7 470.0 3.8 

Ao 2.5 ± 0.2 61.6 ± 4.3 16.8 ± 0.4 33.8 ± 0.7 67.1 ± 5.7 62.2 ± 20.4 

Ao* 1.2 ± 0.0 107.2 ± 5.8 3.9 ± 0.3 9.8 ± 0.1 417.6 ± 5.6 6.5 ± 0.2 

Bo 11.6 ± 0.1 7459.1 ± 37.1 0.3 ± 0.0 12.9 ± 0.1 6563.3 ± 41.3 0.3 ± 0.0 

Co 6.8 ± 0.7 69.2 ± 5.5 20.4 ± 1.6 44.8 ± 2.2 112.0 ± 7.2 64.3 ± 10.7 

Co* 1.3 ± 0.1 111.9 ± 8.4 3.6 ± 0.4 6.8 ± 0.2 352.2 ± 9.2 4.8 ± 0.3 

Ac 2.0 ± 0.1 47.3 ± 4.1 16.4 ± 0.5 32.5 ± 0.6 63.5 ± 3.7 80.9 ± 17.5 

Ac* 0.9 ± 0.0 81.0 ± 4.8 3.6 ± 0.4 8.7 ± 0.1 378.1 ± 6.9 6.1 ± 0.2 

Bc 1.3 ± 0.1 289.5 ± 12.8 1.0 ± 0.1 10.5 ± 0.2 510.6 ± 11.8 5.1 ± 0.3 

Cc 3.3 ± 0.6 170.4 ± 10.1 1.2 ± 0.2 36.0 ± 1.6 250.1 ± 12.9 16.5 ± 2.7 

Cc* 0.9 ± 0.1 181.5 ± 12.9 1.1 ± 0.1 8.3 ± 0.2 419.1 ± 12.6 4.9 ± 0.3 

D 0.0 28.0 0.3 8.6 2997.0 0.3 

E 0.1 13.0 1.0 13.9 489.0 7.5 

F 1.4 937.0 0.3 13.9 3608.0 0.3 

G 100.0 0.0 4992.0 100.0 0.0 3768.0 

H 0 0 0 0 0 0 

 

5.3.3. Annual heating demand predictions 

As shown in Table 25, non-stochastic window operation models, with the 

exception of model F (which suffers from disagreement between the 

assumed and actual heating season), provide closer estimations of annual 

heating demand compared to the stochastic models with original 

coefficients. Among the stochastic ones, models Ao, Bo, and Co show very 

large errors in annual heating demand assessment. In case of models Ao 

and Co windows stay open after occupants’ last departure, which 

contradicts the occupants’ behaviour at the modelled building. With a 

modification of these models to force a closing action before last 

departure, predictions of models A* and C* get much closer to the 

benchmark. However, even these two models tend to somewhat 

overestimate annual heating demand, which is more obvious in case of 

original coefficients. This can be explained by larger fraction of window 
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open state in heating season compared to actual operation of windows by 

occupants (Table 24). Model B, however, is originally derived based on 

summer data, and the obtained results show that using such a model for 

an annual simulation can yield very large errors in estimation of building 

performance indicators addressing the heating season. Figure 26 

illustrates the annual heating demands obtained from models A*, C*, D, 

and E in comparison with the benchmark value. 

 

Table 25. Obtained values for building heating demand indicators 

 
Models 

Annual 
[kWh.m

-2
] 

Hourly aggregated peak 
[W.m

-2
] 

15-min aggregated peak 
[W.m

-2
] 

99.6 
Percentile 

[W.m
-2

] 

Benchmark 64.7 47.9 89.3 38.5 

Ao 468.3 ± 6.2 250.5 ± 4.0 258.2 ± 3.7 222.4 ± 9.7 

Ao* 68.0 ± 0.2 137.1 ± 12.7 143.1 ± 10.9 85.9 ± 4.2 

Bo 142.5 ± 0.9 224.2 ± 20.8 320.7 ± 29.7 180.5 ± 3.0 

Co 135.9 ± 9.5 134.1 ± 28.1 144.1 ± 29.6 102.5 ± 20.1 

Co* 69.7 ± 1.0 92.6 ± 17.7 100.5 ± 18.6 59.3 ± 5.8 

Ac 451.3 ± 13.7 245.3 ± 6.9 253.1 ± 7.5 207.1 ± 16.6 

Ac* 66.1 ± 0.3 114.8 ± 17.4 120.5 ± 17.2 64.3 ± 8.2 

Bc 77.8 ± 1.4 132.7 ± 23.5 148.1 ± 27.1 84.7 ± 6.0 

Cc 82.0 ± 3.6 84.7 ± 15.3 96.7 ± 15.5 59.2 ± 7.8 

Cc* 66.6 ± 0.5 73.2 ± 12.5 86.0 ± 14.6 48.8 ± 2.9 

D 62.8 60.4 82.3 29.8 

E 63.3 75.9 80.7 30.0 

F 73.7 132.8 146.4 77.4 

G 684.6 380.3 392.9 310.4 

H 62.4 37.4 45.5 29.5 
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Figure 26. The annual heating demands obtained from adjusted stochastic 
models with original and calibrated coefficients, along with the non-stochastic 

ones in comparison with benchmark model  

 

5.3.4. Peak heating demand predictions 

The peak heating demand in one year may not be the most appropriate 

benchmark to analyze the predictive performance of stochastic window 

operation models, because it only represents a single instance of 

possibilities in reality as opposed to probabilistic distributions of 

performance indicator values. Nonetheless, the corresponding results 

could be fairly informative for model comparison purposes. The 99.6th 

percentile of heating demands was also provided to make the benchmark 

less affected by single events. 

Considering the 15-min and hourly-integrated peak heating demand 

values provided in Table 25, the non-stochastic models (with the 

exception of model F) have provided closer values to the benchmark 

compared to the stochastic models with original coefficients. This is also 

illustrated in Figure 27 and Figure 28, which only include the stochastic 
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models adjusted to the building under study. The 99.6th percentile of peak 

heating demand was underestimated by the non-stochastic models. The 

stochastic models, however, overestimated the 99.6th percentile of 

heating demand to the extent that the benchmark single value does not 

fall within the standard deviation of the predictions. 

The overestimation of hourly aggregated peak heating demand by 

stochastic models can be explained by large number and long periods of 

coincident window openings in one-hour intervals. Whereas in the 

benchmark mode peak heating demand occurs at a winter early morning 

with 2 windows open for only one 15-min interval, the predictions show 

concurrent hour-long openings of 2 to 6 windows. This observation 

applies also to 15-min interval analyses, albeit in a less dramatic manner. 

To further clarify this issue, Table 26 shows the number of open windows, 

the office area air change rate, and the outdoor temperature at the time 

of peak. As it can be seen from the results provided in Table 26, the 

stochastic models overestimate the number of coincident open windows 

in cold conditions. Concurrent opening of 4 out of 7 windows in an office 

when the outdoor temperature is around zero is rather unrealistic. This 

highlights the necessity for a better representation of occupants’ diversity 

and the interrelations between occupant’s control oriented actions. 

Besides, to benefit from the of stochastic models’ potential in generating 

more realistic distributions and peak values of occupancy-related 

parameters, stochastic weather data inputs should be also deployed. With 

deployment of the common typical year weather data for building 

performance simulation, there is no guarantee that the realistic peak 

values predicted by the occupancy-related models translate into accurate 

(or absolute) peak heating (or cooling) demands.  

Obviously, the non-stochastic models perform worse in terms of the 

number of coincident window opening. However, as they limit window 

operation under cold conditions, very large errors in estimation of peak 

heating demand are not resulted.  
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Table 26. Number of open windows at peak heating demand , along with air 
change rate and outdoor temperature  

 
 

Models 

15-min aggregated 
Peak heating demand 

[W.m
-2

] 

Number of open 
windows at peak 

load [-] 

Office area air 
change rate at peak 

load [h
-1

] 

Outdoor 
temperature at 
peak load [°C] 

Benchmark 89.3 2 2.0 -3.4 

Ao 258.2 ± 3.7 4.4 ± 1.2 8.2 ± 1.0 -2.9 ± 2.1 

Ao* 143.1 ± 10.9 4.3 ± 0.8 6.3 ± 0.8 5.6 ± 2.0 

Bo 320.7 ± 29.7 5.8 ± 0.6 11.2 ± 1.7 -2.0 ± 1.9 

Co 144.1 ± 29.6 4.1 ± 1.8 5.0 ± 1.4 -0.2 ± 3.4 

Co* 100.5 ± 18.6 4.7 ± 1.1 3.4 ± 1.1 1.3 ± 2.5 

Ac 253.1 ± 7.5 3.0 ± 1.5 9.2 ± 1.3 -0.7 ± 2.5 

Ac* 120.5 ± 17.2 3.9 ± 0.7 4.7 ± 0.9 4.2 ± 3.2 

Bc 148.1 ± 27.1 3.0 ± 0.7 4.8 ± 1.1 -1.3 ± 2.6 

Cc 96.7 ± 15.5 3.3 ± 1.8 3.4 ± 1.1 0.9 ± 3.9 

Cc* 86.0 ± 14.6 3.7 ± 1.6 2.8 ± 0.9 0.5 ± 3.4 

D 82.3 4.0 4.4 9.9 

E 80.7 4.0 4.3 10.2 

F 146.4 7.0 11.1 11.1 

G 392.9 7.0 13.7 -2.2 

H 45.5 0 0.1 7.4 

 

 

Figure 27. Hourly aggregated heating demands obtained from adjusted stochastic 
models with original and calibrated coefficients, along with the non-stochastic 

ones in comparison with benchmark model  
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Figure 28. The 15-min aggregated heating demands obtained from adjusted 
stochastic models with original and calibrated coefficients, along with the non-

stochastic ones in comparison with benchmark model  

 

5.3.5. Free-running season assessments 

According to Table 27, except for models Co* and Cc*, the studied window 

operation models underestimate the occupants’ discomfort in the free-

running season. A number of stochastic models (Bo, Co, and Cc) predict 

that the occupants operate the windows such that the zone operative 

temperature falls below the lower limit of EN15251 Category III, which is 

not the case in reality. However, the stochastic models Bo, Co* and Cc* do 

a better job than the non-stochastic ones in providing realistic thermal 

comfort assessments in the free running season. Non-stochastic models 

imply de facto an automated window operation mode. The resulting 

discomfort minimization is thus beyond what is realistically achievable via 

adaptive actions.  

Concerning the predicted free-floating temperatures, the stochastic 

models that disregard the specific operational circumstances in the 
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building (such as models Ao and Co without any adjustment with regard to 

night-time ventilation) can yield larger errors compared to simple non-

stochastic models (Figure 29). However, as shown in Figure 30, stochastic 

models A* and C*, which consider the unavailability of nigh-time 

ventilation in the studied building, provide more accurate assessments of 

free-floating temperatures in non-heating season, even without 

calibration to on-site data. 

 

Table 27. Obtained values for free-running building performance indicators 

 
 

Models 

Minimum 
temperature 

[°C] 

Average 
temperature 

[°C] 

Maximum 
temperature 

[°C] 

Fraction below 
EN15251 
limit [%] 

Fraction above 
EN15251 
limit [%] 

Benchmark 20.4 26.8 35.9 0.0 5.5 

Ao 17.6 ± 0.4 25.0 ± 0.0 35.2 ± 0.0 0.0 ± 0.0 0.6 ± 0.0 

Ao* 21.5 ± 0.0 26.6 ± 0.0 35.6 ± 0.0 0.0 ± 0.0 2.7 ± 0.0 

Bo 14.8 ± 0.6 25.8 ± 0.0 35.0 ± 0.2 0.2 ± 0.1 4.5 ± 0.2 

Co 15.6 ± 1.1 23.7 ± 0.2 35.2 ± 0.2 1.3 ± 0.8 0.6 ± 0.0 

Co* 19.9 ± 0.9 26.9 ± 0.0 35.9 ± 0.2 0.0 ± 0.0 7.8 ± 0.7 

Ac 18.0 ± 0.5 25.1 ± 0.0 35.3 ± 0.0 0.0 ± 0.0 0.6 ± 0.0 

Ac* 21.6 ± 0.0 26.7 ± 0.0 35.7 ± 0.0 0.0 ± 0.0 2.9 ± 0.1 

Bc 19.4 ± 0.8 26.4 ± 0.0 35.6 ± 0.1 0.0 ± 0.0 2.9 ± 0.2 

Cc 17.1 ± 1.0 24.5 ± 0.1 35.2 ± 0.2 0.1 ± 0.1 0.6 ± 0.0 

Cc* 19.9 ± 1.0 26.7 ± 0.0 35.7 ± 0.2 0.0 ± 0.0 5.0 ± 0.6 

D 21.7 26.6 33.4 0.0 2.8 

E 20.6 26.3 35.5 0.0 2.5 

F 15.8 26.1 35.3 0.0 3.5 

G 10.2 21.6 35.1 26.3 0.4 

H 21.6 27.8 34.9 0.0 25.0 
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Figure 29. Cumulative distribution of free-floating temperatures obtained from 
stochastic models Ao, Bo, and Co, non-stochastic models D and F, as well as 

benchmark and pseudo-models G and H.  

 

 

Figure 30. Cumulative distribution of free-floating temperatures obtained from 
stochastic models Ao*, Bo, and Co*, non-stochastic models D and F, as well as 

benchmark and pseudo-models G and H.  
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Chapter 6.  

Conclusion 

 

6.1. Contributions 

As noted at the outset of this dissertation, deployment of occupancy 

models in building performance simulation requires a rigorous standard 

concerning the evaluation of the models' predictive performance. To 

address this issue, the author suggested an evaluation approach of 

occupant presence models. Thereby, the building simulation models 

deployment scenarios were considered in formulation of the evaluation 

workflow and metrics. In this context, from the author’s view, an 

evaluative approach similar to the one applied in this dissertation – albeit 

on a larger scale – would be critical for future studies that intend to 

evaluate and improve the predictive potential of occupancy models. 

Moreover, to explore the implications of different presence models for a 

number of standard building performance simulation results, the annual 

heating and cooling demands and peak heating and cooling loads of an 

office area were computed using a dynamic energy simulation tool. 

Thereby, conventional standard-based diversity profiles, observational 

average and individual occupancy-related schedules, random realizations 

of these profiles, and the year-long observational data on occupancy, 

lighting, and equipment use were deployed to represent occupants’ 

presence in the simulation model. The results suggest that stochastic 

models can provide a better representation of occupants’ presence in 

terms of distribution and peak values. However, this does not mean that 

they are necessarily more reliable in simulating building-level energy 

performance indicators. Moreover, the discrepancy in the results of 

different modeling approaches is not primarily due to the probabilistic 

versus non-probabilistic nature of the occupants’ presence models. 
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Rather, the key difference is between generic (standard-based) 

assumptions and those that rely on actual occupancy information. 

With regard to the plug loads, the study points to a potentially useful 

relationship between inhabitants' presence, their respective installed 

equipment power, and the resulting electrical energy use. Using this 

relationship, a simplified non-stochastic and a stochastic method for the 

prediction of electrical energy use in buildings due to office equipment 

operation were proposed and tested.  

In addition, a number of stochastic and non-stochastic window operation 

models were also studied to evaluate their predictive performance and 

their effectiveness to enhance the reliability of common building 

performance simulation results. The results suggest that the stochastic 

window operation models, if deployed in accordance to the operational 

circumstances in the buildings under study, could provide more realistic 

predictions of occupants’ interactions with windows and thermal comfort 

assessments in free-running season. However, the author could not infer 

superior performance of these models for heating demand assessments, 

as they could not capture the occupants’ behavior in the studied building 

during wintertime, which might have been motivated by energy 

conservation considerations. On the other hand, the non-stochastic 

models - despite simplifications such as neglecting the possible window 

openings in heating season - proved to be reliable for specific simulation 

queries, assessing annual heating demand being a case in point. However, 

predicting large number of window opening and closing actions and the 

inherent tendency to trigger concurrent actions hinder the non-stochastic 

window operation models from contributing to simulation studies in 

which the occupants’ control over natural ventilation plays an important 

role. 
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6.2. Future research 

In author’s view the study results have implications beyond the 

performance comparison of the models considered. The observed 

possible large deviations from reality underlines the need for clear 

documentation of associated uncertainties with existing occupant 

presence and behavior models in different deployment scenarios as well 

as development of more generally applicable occupancy-related models.  

Moreover, as stressed before, the present study was based on a limited 

set of empirical data obtained from one office area. Ongoing and future – 

more extensive – cross-sectional investigations in this area are expected 

to utilize a larger empirical foundation and thus lead to more 

representative and inclusive development and evaluation of occupant 

behavior models that could be embedded in high resolution building 

performance modeling and energy simulation applications. 
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