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Abstract

Personalized text-to-image (T2I) synthesis based on dif-
fusion models has attracted significant attention in recent
research. However, existing methods primarily concentrate
on customizing subjects or styles, neglecting the exploration
of global geometry. In this study, we propose an approach
that focuses on the customization of 360-degree panoramas,
which inherently possess global geometric properties, using
a T2I diffusion model. To achieve this, we curate a paired
image-text dataset specifically designed for the task and
subsequently employ it to fine-tune a pre-trained T2I dif-
fusion model with LoRA. Nevertheless, the fine-tuned model
alone does not ensure the continuity between the leftmost
and rightmost sides of the synthesized images, a crucial
characteristic of 360-degree panoramas. To address this
issue, we propose a method called StitchDiffusion. Specif-
ically, we perform pre-denoising operations twice at each
time step of the denoising process on the stitch block con-
sisting of the leftmost and rightmost image regions. Fur-
thermore, a global cropping is adopted to synthesize seam-
less 360-degree panoramas. Experimental results demon-
strate the effectiveness of our customized model combined
with the proposed StitchDiffusion in generating high-quality
360-degree panoramic images. Moreover, our customized
model exhibits exceptional generalization ability in produc-
ing scenes unseen in the fine-tuning dataset. Code is avail-
able at https://github.com/littlewhitesea/StitchDiffusion.

1. Introduction
360-degree panoramic images [11, 33, 36, 54] are ex-

tensively utilized in virtual reality (VR) devices, such as

head mount displays [3]. Unlike ordinary two-dimensional

(2D) images, which have a limited viewing range, 360-

degree panoramas encompass the entire 360◦ × 180◦ field

of view. This allows viewers to explore a scene from

any angles, providing them with an immersive experience.

The inherent globally geometric properties of 360-degree

*Corresponding author. All experiments, data collection and process-

ing were conducted in University College London.

panoramas stem from this unique characteristic. There are

various types of projections [50] used to represent 360-

degree panoramas. In this paper, we specifically focus on

the equirectangular projection (ERP), which represents the

360-degree panoramic image on a 2D surface. In this con-

text, two essential properties of a 360-degree panorama

arise: (1) the width of a 360-degree panoramic image is

twice its height, and (2) the leftmost and rightmost sides of

a 360-degree panorama are continuous.

Diffusion models [9,10,51] perform better in generating

photorealistic and diverse images compared with generative

adversarial networks (GANs) [8, 14], leading to increasing

attention over the past two years. Thanks to their excel-

lent generation quality and controllability, diffusion models

have been widely explored for tackling numerous challeng-

ing tasks [4,15,18,24,30,37,45]. Notably, diffusion models

applied to text-to-image (T2I) synthesis [29, 35, 37, 40] can

produce high-quality images corresponding to descriptive

text prompts, making them highly popular on social media.

However, these models have limitations when it comes to

synthesizing instances of customized concepts, such as a

user’s pet or personal item.

To handle this challenge, several personalized T2I gen-

eration algorithms [12, 17, 20, 38, 44] have been proposed.

These algorithms enable the customization of T2I diffusion

models by providing multiple images of a specific subject or

concept, resulting in the synthesis of images containing the

subject or concept in diverse contexts. Different from these

existing personalized technologies [12, 20, 38] which focus

on customizing specific subjects (e.g., dog, sunglasses) or

styles (e.g., oil painting, pop art), our work aims to explore

the customization of global geometry.

Specifically, we focus on customization of a T2I diffu-

sion model for synthesizing 360-degree panoramas with in-

herent globally geometric properties. To begin, we build

a paired image-text dataset called 360PanoI. Due to lim-

ited computational resources and the need for fine-tuning

efficiency, we employ the Low-Rank Adaptation (LoRA)

[19, 39] technology to fine-tune a pre-trained T2I diffusion

model using the collected 360PanoI dataset. However, we

encounter difficulties when generating 360-degree panora-
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(a)MultiDiffusion w/ Latent Diffusion

H

2H
(b) MultiDiffusion w/ our customized model

2H
(c) StitchDiffusion w/ our customized model

2H

Figure 1. Example results of three different methods with the text prompt ‘V ∗, a living room with a couch and a table’, where V ∗ refers to

the trigger word. To easily recognize the continuity or discontinuity between the leftmost and rightmost sides of the generated image, we

copy the leftmost area indicated by the red dashed box and paste it onto the rightmost side of the image. The notation ‘w/’ denotes ‘with’.

Our customized model is achieved by fine-tuning latent diffusion. Compared with MultiDiffusion [5] combined with latent diffusion in (a),

MultiDiffusion [5] with our customized model in (b) generates more visually appealing content. Moreover, in contrast to (b), our proposed

StitchDiffusion with the customized model in (c) successfully synthesizes a seamless 360-degree panoramic image.

mas using the fine-tuned diffusion model, even with the use

of MultiDiffusion [5], a recent method for producing tradi-

tional panoramas but disregarding the continuity between

the leftmost and rightmost sides of the synthesized image

(as shown in Figure 1). To address this issue, we put for-

ward a tailored generation process named StitchDiffusion
for synthesizing 360-degree panoramas. In the StitchDiffu-
sion approach, we perform pre-denoising operations twice

at each time step of the denoising process on the stitch

block, which is constituted of the leftmost and rightmost im-

age regions. After the denoising process is completed, we

conduct a global cropping to produce the final image. This

method guarantees that the fine-tuned T2I diffusion model

generates seamless 360-degree panoramic images. More-

over, despite the limited number of scenes in our 360PanoI
dataset, the fine-tuned diffusion model demonstrates excel-

lent generalization capabilities to unseen scenes. In other

words, the fine-tuned diffusion model can successfully syn-

thesize 360-degree panoramas of scenes not present in the

fine-tuning dataset. This observation indicates that T2I dif-

fusion models possess the potential to effectively capture

and represent global geometry.

The contributions of this work can be summarized as

follows: (1) We make the first attempt to explore the cus-

tomization of 360-degree panoramas using T2I diffusion

models, which is beneficial for employing T2I diffusion

models in various application scenarios, such as indoor de-

sign and VR content creation. Our experimental results

demonstrate that T2I diffusion models possess the capa-

bility to produce 360-degree panoramas with inherent ge-

ometric properties and generalize this ability to unseen

scenes. (2) We propose a stitch method called StitchDiffu-
sion as part of the generation process to synthesize seamless

360-degree panoramic images, which ensures the continu-

ity between the leftmost and rightmost sides of the synthe-

sized panoramas. (3) We curate a paired image-text dataset

called 360PanoI specifically for the synthesis of 360-degree

panoramas. This dataset serves as a valuable resource for

future studies and advancements in the field of 360-degree

panoramic images.

2. Related Work
Text-to-Image Diffusion Models. Text-to-image (T2I)

synthesis based on diffusion models [16, 29, 35, 37, 37, 40]

can generate images that align with the provided text

prompts, which have showcased unprecedented levels of

diversity and fidelity. We will only introduce several rep-

resentative works here; for more comprehensive informa-

tion, we refer readers to the survey paper [52]. GLIDE [29]

stands out as a pioneering T2I diffusion model that uses

classifier-free guidance in the T2I synthesis process. Dif-

ferent from GLIDE requiring to train its text encoder, Im-

agen [40] utilizes a pre-trained large transformer language

model to encode textual input for image generation. Both

GLIDE and Imagen operate in the pixel space, which de-

mands substantial computational resources. To alleviate

this requirement, latent diffusion models (LDMs) propose

to train diffusion model in the latent space, significantly re-

ducing the computational burden. In our work, we adopt

LDM as the foundational model due to its relatively lower

demand for computing resources.

Personalized Text-to-Image Generation. Given one or

multiple images of a specific subject or style provided by

users, personalized text-to-image (T2I) generation [2, 12,

13, 17, 20, 38, 41, 42, 44, 46, 48] based on diffusion models

aims to synthesize instances of the specific subject or style

in diverse contexts. These personalized techniques can be

broadly categorized into three groups. The first category

is the personalization-by-inversion approach, initially ex-

plored in Textual Inversion [12]. This method optimizes

an input vector in the textual embedding space to repre-

sent the desired subject or style. To enhance its expres-

sive power, Extended Textual Inversion [46] and NeTI [2]

propose optimizing multiple vectors and employing a neu-

ral mapper, respectively, resulting in stronger representa-

tions. DreamBooth [38], on the other hand, is a pioneer-

ing personalization-by-fine-tuning method. It introduces a

class-specific prior preservation loss to mitigate language
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drift [21, 28], and fine-tunes the entire T2I diffusion model

for binding unique identifiers to user-provided subjects.

In contrast, Custom Diffusion [20] and SVDiff [17] fine-

tune only a small portion of parameters for improved effi-

ciency. However, these approaches still require fine-tuning

the diffusion model for each user-specific subject. Rec-

ognizing this limitation, personalization-by-encoder meth-

ods [13, 41, 48] have been proposed for rapid customiza-

tion of T2I models. Specifically, these methods first train

a mapping encoder, which is then used to directly map

arbitrary input images into word embeddings representing

the subject. Unlike the existing personalized approaches

that concentrate on customizing specific subjects or artis-

tic styles, our work in this paper explores the customiza-

tion of global geometry, specifically 360-degree panoramic

images. The successful customization of such complex ge-

ometries would demonstrate the inherent ability of T2I dif-

fusion models to capture intricate spatial representations.

Panorama Generation. GAN-based panorama genera-

tion algorithms [7, 25, 26, 31, 43, 47, 49] have been exten-

sively studied. In contrast, Text2Light [6] adopts a text-

conditioned global sampler and structure-aware local sam-

pler to generate panoramic images by sampling from a

dual-codebook representation. Recently, diffusion models

have also shown promising results in panorama synthe-

sis [5, 22, 53]. DiffCollage [53] utilizes a semantic seg-

mentation map as the condition for the diffusion model

and generates 360-degree panoramas based on a complex

factor graph. On the other hand, PanoGen [22] employs

latent diffusion to synthesize new indoor panoramic im-

ages with a recursive image outpainting technology based

on multiple text descriptions. Distinguishing itself from

PanoGen [22], MultiDiffusion [5] simultaneously samples

the panoramic image through blending diffusion paths of

all overlapped cropped patches to synthesize high-quality

images. However, MultiDiffusion [5] does not guarantee

the continuity between the leftmost and rightmost sides of

the generated image, which is a natural property of the 360-

degree panorama. To deal with this problem, we propose

in this paper a method called StitchDiffusion. This ap-

proach leverages our customized diffusion model to syn-

thesize panoramas that exhibit continuity between the left-

most and rightmost sides, resulting in a seamless viewing

experience. Moreover, we demonstrate in this paper that

our customized diffusion model possesses strong general-

ization capabilities, allowing it to generate a wide range of

360-degree panoramas in various contexts, even for scenes

not present in the fine-tuning dataset.

3. Methodology
In this section, we first briefly review the use of Mul-

tiDiffusion [5] to synthesize panoramic images. Then, we

describe the process of customizing a pre-trained T2I dif-

fusion model for 360-degree panoramas. Finally, we intro-

duce our proposed method, StitchDiffusion, which is able to

handle the issue of discontinuity between the leftmost and

rightmost sides of the generated 360-degree panoramic im-

age when using MultiDiffusion [5].

3.1. Preliminaries

Given a pre-trained T2I diffusion model Γ, the sequen-

tial denoising process of this model, gradually from a noisy

image IT to the final clean image I0, could be expressed as

It−1 = Γ(It, δ) , t ∈ {T, T − 1, · · · , 1} , (1)

where I is in the image space I = R
H×W×C , and δ is the

textual embedding of a text prompt. A target of MultiDiffu-
sion [5] is to generate a panoramic image aligning with the

given text prompt without the need for any training or fine-

tuning of the diffusion model Γ, which serves as a reference

model. To this end, MultiDiffusion [5] defines a different

T2I diffusion model Ω called MultiDiffuser, which operates

in an image space J . Its sequential denoising process is

Jt−1 = Ω(Jt, δ) , t ∈ {T, T − 1, · · · , 1} , (2)

where J is in the image space J = R
H×W ′×C , and W ′ is

greater than or equal to W .

To establish a connection between the target image space

J and reference image space I, MultiDiffusion [5] further

defines n mappings Fi : J → I, where i ∈ {1, 2, · · · , n}.

At time step t of the denoising process, Fi(Jt) ∈ I is the

i-th H×W cropped patch of image Jt. These n overlapped

cropped patches cover the whole image Jt, illustrated in

Figure 2(c). The value of n is determined by

n =
W ′ −W

ω
+ 1 , (3)

where ω denotes the horizontal sliding distance between ad-

jacent cropped patches. Using these mappings, the new

denoising process of diffusion model Ω at time step t is

achieved by solving the following optimization problem:

Ω(Jt, δ) = argmin
J∈J

n∑

i=1

‖Fi(J)− Γ(Fi(Jt), δ)‖2 . (4)

In fact, this is a least-square problem and the corresponding

closed-form solution is

Ω(Jt, δ) =

n∑

i=1

F−1
i (1)∑n

j=1 F
−1
j (1)

⊗F−1
i (Γ(Fi(Jt), δ)) , (5)

where 1 is in the image space I = R
H×W×C , and its all

pixel values are equal to 1. By leveraging this new denois-

ing process, MultiDiffuser Ω can directly utilize the pre-

trained T2I diffusion model Γ without any training or fine-

tuning steps to generate panoramic images aligned with the

given text prompt.
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F1(Jt)
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(a)

(b)                           (c)     

Figure 2. Overview of MultiDiffusion [5] for panorama generation. (a) The input Jt and output Jt−1 of the MultiDiffuser Ω at time step

t during the denoising process. (b) Illustration of the mapping Fi (directly cropping a patch from an image) and inverse mapping F−1
j ,

where i, j ∈ {1, 2, · · · , n}. (c) Detailed inner process of the MultiDiffuser Ω at time step t during the denoising process. Here, Γ(·, δ)
denotes the pre-trained T2I diffusion model with the textual embedding δ from a given text prompt, and ω is the horizontal sliding distance

between adjacent cropped patches. Note that MultiDiffusion cannot guarantee the continuity between the leftmost and rightmost sides of

generated panoramic images.

Diffusion Model

Text Encoder
LoRA Frozen Updated

text prompt

Figure 3. Illustration of customizing a T2I diffusion model with

LoRA [19] for synthesizing 360-degree panoramic images. The

paired image-text data used during the fine-tuning process are

from our collected 360PanoI dataset.

3.2. Customizing Models with LoRA

To customize a pre-trained T2I diffusion model for 360-

degree panorama synthesis, we start by collecting a dataset

of 360-degree panoramic images. Then, these images are

tagged using BLIP [23], creating a paired image-text dataset

called 360PanoI. More detailed information about the col-

lected dataset can be found in Section 4.1. For the fine-

tuning process, we employ Low-Rank Adaptation (LoRA)

[19] technology, which was initially proposed for fine-

tuning large language models. Specifically, LoRA intro-

duces trainable rank decomposition matrices into the pre-

trained model, allowing for faster adaptation to downstream

tasks with lower computational requirements compared to

full fine-tuning. Recent work [39] has validated the effec-

tiveness of LoRA in pre-trained T2I diffusion models. Con-

sidering its efficiency and low demand for computational

resources, we employ LoRA to fine-tune the pre-trained dif-

fusion model for generating 360-degree panoramic images

using the 360PanoI dataset, as shown in Figure 3.

Given the ground-truth image Igt and its corresponding

textual embedding δ, the preliminary customized model Γθ

with LoRA is fine-tuned by using the loss function Lpano to

denoise a variably-noised image αtI
gt + σtε as follows:

Lpano = EIgt,δ,ε,t

[
γt‖Γθ(αtI

gt + σtε, δ)− Igt‖2] , (6)

where θ refers to the trainable matrices of LoRA, ε and γt
represent the noise following a Gaussian distribution and

the functions of diffusion process time t, respectively, and

αt and σt are terms used to manage the noise schedule and

the sample quality, respectively. Upon completing the fine-

tuning process, we obtain the final customized diffusion

model denoted as Γθ̂, where θ̂ denotes the updated parame-

ters of LoRA.

3.3. StitchDiffusion for 360-degree Panoramas

Firstly, let us review two natural properties of a 360-

degree panorama represented by the equirectangular pro-

jection [50]: (1) the width W of the 360-degree panoramic

image is twice its height H , resulting in a final generated

panorama size of H × 2H; (2) there should be continuity

between the leftmost and rightmost sides of the 360-degree

panorama. However, as shown in Figure 2, the MultiDif-
fusion method fails to ensure this continuity. To solve this

4936



Jt ( , )

(b)

(a)
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( Fn+1(Jt), )

W2 W2

Jt 1

J0 Jsyn

Figure 4. Overview of our proposed StitchDiffusion for generating 360-degree panoramas. (a) At each time step t of the denoising process,

the H ×W stitch block undergoes pre-denoising operations twice, which is constituted by the leftmost (H × W
2

) and rightmost (H × W
2

)

regions of the image Jt. Here, the value of W is twice that of H . (b) The global cropping denoted by the blue dashed box of the final clear

result J0 is taken to achieve the 360-degree panorama Jsyn. Note that if image J0 (H × 4H) is divided horizontally along the middle into

two equal parts, then the left half (H × 2H) of J0 is identical to the right half (H × 2H) of J0, which could ensure the continuity between

the leftmost and rightmost sides of the Jsyn obtained from global cropping.

problem and guarantee seamless 360-degree panoramas, we

put forward a new generation process called StitchDiffusion.

Specifically, we utilize the MultiDiffuser Ω to generate a

panoramic image J with a resolution of H×(2H + 2H) us-

ing the customized diffusion model Γθ̂, that is, W ′ in Equa-

tion 3 is equal to 4H . In addition, for MultiDiffuser Ω at

time step t of denoising process in Figure 2, we additionally

employ the customized diffusion model Γθ̂ to perform pre-

denoising operations twice on a stitch block, which consists

of the leftmost (H × W
2 ) and rightmost (H × W

2 ) regions

of the current noisy image Jt, as illustrated in Figure 4(a).

Here, W is twice the value of H . In this situation, the cor-

responding denoising process at time step t of our proposed

StitchDiffusion can be expressed as

Jt−1 =

2∑

j=1

jF−1
n+1(1)

Λ
⊗ jF−1

n+1(Γθ̂(
jFn+1(Jt), δ))

+
n∑

i=1

F−1
i (1)

Λ
⊗ F−1

i (Γθ̂(Fi(Jt), δ)) ,

(7)

where jFn+1(·) and jF
−1
n+1(·) denote the j-th additional

mapping and inverse mapping of the stitch block, respec-

tively, Λ denotes 1F
−1
n+1(1) +

2F
−1
n+1(1) +

∑n
j=1 F

−1
j (1).

Using the denoising process of our StitchDiffusion, we can

get a clear image J0 with a resolution of H × (2H +W )
at the end of the entire denoising process. To obtain the fi-

nal 360-degree panoramic image Jsyn with a resolution of

H × 2H , we perform a global cropping operation on J0:

Jsyn = J0[
W

2
: −W

2
] , (8)

illustrated in Figure 4(b). This operation ensures that the

leftmost and rightmost sides of the panoramic image Jsyn
are continuous, as desired for a 360-degree panorama.

4. Experiments

4.1. Dataset and Implementation Details

Dataset. We collected 120 360-degree panoramic images

in the real world from Poly Haven [1]. The images were

sourced from a variety of scenes, including indoor, nature,

night, outdoor, skies, studio, sunrise-sunset, and urban set-

tings. Each scene consists of 15 panoramas. Due to limited

computational resources, we performed an 8x rescale op-

eration on these images using bilinear interpolation to ob-

tain 360-degree panoramas with a resolution of 512× 1024
pixels. Subsequently, we utilized BLIP [23] to tag these

processed images. However, the generated text prompts

contained poor tags such as ‘3 6 0 picture’, which might

potentially impact the fine-tuning process. Therefore, we

removed these tags. Additionally, we introduced a trigger

word ‘360-degree panoramic image’, denoted as V ∗ in this

paper, into each text prompt. Finally, our 360PanoI dataset

is constituted of 120 360-degree panoramas with a resolu-

tion of 512 × 1024 pixels, along with their corresponding

text prompts. We present one sample image for each scene

in the supplementary material.

Implementation Details. To customize a T2I diffu-

sion model for 360-degree panorama synthesis using the

360PanoI dataset, we employed latent diffusion and LoRA

[19]. In detail, the LoRA architecture consists of two lin-

4937



H

2H 2H 2H

H
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Figure 5. Visual comparison among MultiDiffusion [5] combined with latent diffusion (the first row), Text2Light [6] (the second row) and

our method (the third row). The corresponding text prompts of these images from left to right are ‘V ∗, futuristic flat, concept art’, ‘V ∗,

cartoon new york street’, and ‘V ∗, university campus, foggy night’, respectively. To demonstrate the discontinuity or continuity between

the leftmost and rightmost sides of the generated image, we copy the left area denoted by the red dashed box and paste it onto the rightmost

side of the image. We can see that our method generates seamless and plausible 360-degree panoramas corresponding to the input text

prompts. For more comparison results, please refer to the supplementary material.

Table 1. Quantitative comparison between our method and latent

diffusion (LD) combined with MultiDiffusion [5]. Our method

consisting of the customized model and StitchDiffusion is supe-

rior to the baseline in terms of both CLIP-score and FID.

Method CLIP-score↑ FID↓
LD+MultiDiffusion 0.752±0.023 177.886±6.478

Ours 0.768±0.005 160.960±6.431

ear layers with an intermediate dimension of 32. During

fine-tuning, we used a batch size of 2 and set the learning

rate for the T2I diffusion model to 1e-4. The fine-tuning

process was performed for 10 epochs using AdamW [27],

which took approximately 40 minutes to complete. In the

inference stage, we set the values of H and W to 512 and

1024, respectively, while the horizontal sliding distance ω
between adjacent cropped patches was set to 128 in image

space. It is important to highlight that the practical imple-

mentation of our StitchDiffusion process operates on J and

I within latent space. That means the values of H , W and

ω in latent space are 64, 128 and 16, respectively. All ex-

periments were conducted on a single Tesla T4 GPU.

4.2. Comparisons

Due to the absence of a direct approach based on dif-

fusion model for producing 360-degree panoramic images

from an input text prompt, we adopt MultiDiffusion [5], a

state-of-the-art method to generate normal panoramas, in

combination with latent diffusion as a baseline. Further-

more, we compare our approach with Text2Light [6], a

state-of-the-art non-diffusion-based technique. The visual

results are presented in Figure 5. We can see that the base-

line method yields images with unsatisfactory content. No-

tably, the leftmost and rightmost sides of the images gener-

ated by the baseline are not continuous, indicating its inabil-

ity to synthesize 360-degree panoramas. While Text2Light

achieves improved continuity in synthesized images, it fails

to capture the essence of ‘futuristic’ and ‘cartoon’ themes in

the text prompts. In contrast, our proposed method consist-

ing of the customized diffusion model and StitchDiffusion
produces seamless and plausible 360-degree panoramic im-

ages corresponding to the text prompts.

To further quantitatively assess the plausibility of images

generated by different methods, we first collected additional

20 real 360-degree panoramas from Poly Haven [1] as our

ground truth, and then applied the same processing method-

ology outlined in Section 4.1 to acquire their text prompts.

With these text prompts in hand, we attempted to gener-

ate the corresponding images using Text2Light. However,

we found that some text prompts exceeded the token limit
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V , japanese anime style downtown city street, 
afternoon

H

2H
V , cyberpunk city in a foggy night, science fiction 

industrial hard science concept art

2H
V , futuristic hyper-realistic environment, Epic 

concept art

2H

Figure 6. Visual results of unseen scenes synthesized by our method. Despite the fact that the collected 360PanoI dataset only contains 8

scenes from the real world, our customized model with the proposed StitchDiffusion effectively produces 360-degree panoramas of diverse

unseen scenes, showcasing its excellent generalization ability. More generated images can be seen in the supplementary material.

H

(a) our customized model (b) our customized model w/ MultiDiffusion (c) our customized model w/ StitchDiffusion
2H 2H 2H

Figure 7. Ablation study on StitchDiffusion. The corresponding text prompt of these images is ‘V ∗, traditional french cafe in the street,

small village’. The customized model cannot ensure continuity between the leftmost and rightmost sides of the generated image, even with

MultiDiffusion [5]. In contrast, StitchDiffusion enables the customized model to generate a 360-degree panorama.

w/o trigger word

w/ trigger word

w/o trigger word

w/ trigger word

Figure 8. Ablation study on the trigger word V ∗. The correspond-

ing text prompts of left and right images in the second row are

‘V ∗, cyberpunk city, neon lights, science fiction’ and ‘V ∗, mag-

ical campus, hyper realistic’, respectively. With the trigger word

included in the text prompt, the generated images cover the entire

360◦ × 180◦ field of view. Here, ‘w/o’ and ‘w/’ refer to ‘without’

and ‘with’, respectively.

of Text2Light, preventing Text2Light from synthesizing im-

ages with them as inputs. In contrast, both our method and

latent diffusion combined with MultiDiffusion [5] can han-

dle all text prompts of the ground truth panoramas. For a

fair comparison, we only synthesized the corresponding im-

ages using our method and latent diffusion combined with

MultiDiffusion [5].

Now, with these generated images and their correspond-

ing ground truth, we can calculate the quantitative results

for the two methods. Specifically, we randomly cropped

1000 patches of size 512 × 512 from the 20 ground truth

images and recorded the locations of each patch. Using

these recorded locations, we similarly cropped correspond-

ing 1000 patches from the generated images. Next, we

employed the image encoder of CLIP [34] to extract em-

beddings of these patches. We then calculated the aver-

age cosine similarity between the embeddings of the gen-

erated patches and the real patches, denoted as CLIP-score.

Additionally, we utilized the Frechet Inception Distance

(FID) [32] to quantify the distance between the distribution

of generated patches and the distribution of real patches.

To further verify the effectiveness and robustness of our

method in generating plausible images, we repeated the

generation process 10 times, and then calculated the cor-

responding mean and standard deviation of the two metrics.

The quantitative results, as shown in Table 1, indicate that

our method outperforms the baseline in terms of the two

metrics.

4.3. Generalizability

To evaluate the generalization ability of our customized

diffusion model to unseen scenes, we fed a variety of text

prompts describing scenes not included in the 360PanoI
dataset into the model. The corresponding generated im-

ages are presented in Figure 6. It is evident that our cus-

tomized diffusion model using the proposed StitchDiffusion
produces visually appealing 360-degree panoramas of di-

4939



one time of pre-denoising two times of pre-denoising three times of pre-denoising

Figure 9. Ablation study on the number of pre-denoising times. The corresponding text prompt is ‘V ∗, an old city close up, sharp focus’.

Although leftmost and rightmost sides of the generated image are continuous when conducting the pre-denoising operation on the stitch

block only once at time step t of our StitchDiffusion, local content inconsistency in the red solid box appears in the image. Increasing the

number of pre-denoising operations can improve the local content consistency (see the blue and green solid boxes). Considering a trade-off

between computational efficiency and image quality, we choose to perform the pre-denoising operations twice on the stitch block.

verse unseen scenes, such as Japanese anime style, cyber-

punk, and hyper-realistic environment. Remarkably, these

results are achieved even though the collected 360PanoI
dataset only contains 8 scenes from the real world, which

highlights the excellent generalizability of our customized

T2I diffusion model.

4.4. Ablation Studies

We only present a subset of our ablation studies here;

other ablation studies are in the supplementary material.

StitchDiffusion Ablation. To study the effect of our pro-

posed StitchDiffusion method on the generated results, we

conducted a comparative analysis. Specifically, we com-

pared the images synthesized by our customized diffusion

model with and without StitchDiffusion. In addition, we in-

troduced the results produced by combining the customized

diffusion model with MultiDiffusion [5] for a more compre-

hensive comparison. The generated images are displayed

in Figure 7. We can observe that the customized diffu-

sion model alone is unable to synthesize 360-degree panora-

mas, primarily due to the limited capability of the diffusion

model to capture and represent the continuous properties

of these images. While MultiDiffusion demonstrates effec-

tiveness in generating ordinary panoramic images, it also

encounters difficulties in ensuring continuity between the

leftmost and rightmost sides of the generated images. How-

ever, by incorporating our designed StitchDiffusion method,

the customized model accurately synthesizes seamless 360-

degree panoramic images.

Trigger Word Ablation. To investigate the impact of the

trigger word V ∗ on the synthesis process, we conducted

a comparison between images generated by our method

with and without the trigger word included in the input text

prompts. The visual results are shown in Figure 8. We can

see that the trigger word V ∗ plays a crucial role in the gener-

ated image. When the trigger word is omitted from the text

prompt, the resulting image fails to encompass the entire

field of view spanning 360 degrees horizontally and 180 de-

grees vertically. Conversely, when the text prompt includes

the trigger word, our customized model with StitchDiffusion
successfully produces 360-degree panoramas.

Number of Pre-Denoising Times Ablation. In our

StitchDiffusion method, we perform pre-denoising opera-

tions twice on the stitch block at each time step t of the de-

noising process, as depicted in Figure 4. To explore the im-

pact of the number of pre-denoising operations on the syn-

thesized images, we conducted an experiment comparing

the results obtained with different numbers of pre-denoising

operations at each time step t. The results are presented

in Figure 9. We can see that when we only conduct one

pre-denoising operation, despite the leftmost and rightmost

sides of the generated image are continuous, there is a local

content inconsistency exampled by the red solid box in the

image. However, by conducting two or three pre-denoising

operations on the stitch block, our customized model ef-

fectively generates high-quality 360-degree panoramic im-

ages without noticeable local content inconsistency. For a

higher computational efficiency, we adopt the approach of

performing pre-denoising operations twice in our method.

5. Conclusion
In this study, we have explored the customization of a

T2I diffusion model for generating 360-degree panoramas.

Our approach involved the establishment of a paired image-

text dataset called 360PanoI, followed by fine-tuning la-

tent diffusion using LoRA. However, the fine-tuned diffu-

sion model alone falls short in ensuring the continuity be-

tween the leftmost and rightmost sides of the generated im-

ages. To address this limitation, we proposed a method

called StitchDiffusion, which successfully enables the cus-

tomized diffusion model to synthesize seamless 360-degree

panoramas. Through extensive experiments, we have veri-

fied the effectiveness of the proposed method and demon-

strated that our customized diffusion model exhibits excep-

tional generalization ability, producing diverse and high-

quality 360-degree panoramic images even in previously

unseen scenes. The applications of our work are vast, par-

ticularly in fields such as indoor design, game and VR con-

tent creation, where the utilization of 360-degree panora-

mas is prevalent. Moreover, the 360PanoI dataset we col-

lected will be beneficial for any future investigations into

360-degree panoramic images.
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