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Abstract

The Poisson–Boltzmann equation is widely used to model electrostatics in molecu-
lar systems. Available software packages solve it using finite difference, finite element,
and boundary element methods, where the latter is attractive due to the accurate rep-
resentation of the molecular surface and partial charges, and exact enforcement of the
boundary conditions at infinity. However, the boundary element method is limited to
linear equations and piecewise constant variations of the material properties. In this
work, we present a scheme that couples finite and boundary elements for the linearised
Poisson–Boltzmann equation, where the finite element method is applied in a confined
solute region and the boundary element method in the external solvent region. As a
proof-of-concept exercise, we use the simplest methods available: Johnson–Nédélec cou-
pling with mass matrix and diagonal preconditioning, implemented using the Bempp-cl
and FEniCSx libraries via their Python interfaces. We showcase our implementation
by computing the polar component of the solvation free energy of a set of molecules us-
ing a constant and a Gaussian-varying permittivity. As validation, we compare against
well-established finite difference solvers for an extensive binding energy data set, and
with the finite difference code APBS (to 0.5%) for Gaussian permittivities. We also
show scaling results from protein G B1 (955 atoms) up to immunoglobulin G (20 148
atoms). For small problems, the coupled method was efficient, outperforming a purely
boundary integral approach. For Gaussian-varying permittivities, which are beyond
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the applicability of boundary elements alone, we were able to run medium to large-
sized problems on a single workstation. The development of better preconditioning
techniques and the use of distributed memory parallelism for larger systems remains
an area for future work. We hope this work will serve as inspiration for future de-
velopments that consider space-varying field parameters, and mixed linear-nonlinear
schemes for molecular electrostatics with implicit solvent models.

Keywords: Finite element method, Boundary element method, Poisson–Boltzmann,
Implicit solvent model, Electrostatics.
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The boundary element method is a popular numerical algorithm to solve the Poisson–
Boltzmann equation for molecular electrostatics. However, this technique is limited to linear
equations and piecewise constant variations of the field parameters. Here, we overcome such
limitations by coupling it with a finite element method, implemented using the Bempp-cl
and FEniCSx libraries via their Python interfaces. This results in an efficient, accurate,
flexible, and easy-to-use computational tool for model development.
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INTRODUCTION

In biologically relevant settings, the structure and function of biomolecules are largely de-

termined by the surrounding water, which usually contains salt. To describe these systems

accurately, we need to account for the solvent correctly, which has given rise to a wide range

of models.1 Highly detailed models consider every water molecule and salt ion explicitly. For

solutions with large numbers of molecules, however, these models can be very computation-

ally expensive, so implicit-solvent models—approximated models that use continuum theory

to represent the ionic solution—are often used instead.2,3 In the case of electrostatics, the

implicit-solvent model is mathematically characterized by the Poisson–Boltzmann equation

(PBE)4,5, which is widely used to compute solvation free energies and mean-field potentials.

The implicit-solvent model for electrostatics describes the dissolved molecule as an infinite

medium with a low-dielectric solute-shaped cavity, which contains a charge distribution from

the partial charges—usually a sum of Dirac deltas at the atom’s locations. The outer solvent

region is represented with a high dielectric constant and considers the presence of salt. These

two regions are interfaced by the molecular surface where the continuity of the electrostatic

potential and electric displacement are enforced. The molecular surface can be defined in

various ways6.

The PBE has been solved numerically with finite difference7–10, finite element11–13, bound-

ary element14–19, and analytic20–24 methods. In particular, the boundary element method

(BEM) has proven to be very efficient for high-accuracy calculations18,19, mainly due to the

precise description of the molecular surface and point charges. However, BEM is limited to

constant material properties in each region and the linear version of the PBE. Even though

these limitations are acceptable in a wide range of applications, there are cases when BEM

falls short: for example, if a variable permittivity is required inside the solute25,26, or the

solute is highly charged such that the linear approximation breaks27.

The present article describes a methodology to overcome some of those limitations, by

coupling finite and boundary element methods. This approach brings the best of both

worlds—the flexibility of FEM and the efficiency of BEM—all in an accurate description of

the solute molecule. FEM-BEM coupling is a popular technique in the context of mixed
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linear-nonlinear models,28,29 fracture mechanics,30 fluid-structure interaction,31 acoustics,32

and electromagnetics.33–35 On the other hand, the PBE has been solved with hybrid numeri-

cal methods in the past: for example, by coupling finite differences with boundary elements36

or finite elements37,38 to solve the nonlinear PBE in a specific region, and to implement mod-

ifications to the PBE model (i.e. the size-modified PBE). To the best of our knowledge, this

is the first time finite and boundary elements have been combined in this application. We

are proposing a coupling scheme for the linear Poisson-Boltzmann equation.

In this paper, we prototype this principle with the simplest implementation possible: a

Johnson–Nédélec39 coupling, where we solve using mass-matrix and diagonal precondition-

ing, and without distributed memory execution. This limits the size of problems we can

access currently, however, it sets the basis for future developments that use more elaborate

formulations and algorithms that are readily available in open-source software libraries. In

this work, we use the boundary element library Bempp-cl40 and the finite element library

FEniCSx41,42. These libraries are easy to use and their full functionalities may be accessed

via their Python interfaces, making them ideal tools for easily implementing problems like

this as well as for exploring computational efficiency and moving towards tackling large-scale

problems, such as a full viral capsid.43,44 We hope this work will inspire research along these

lines.

METHODOLOGY

The implicit solvent model

The implicit solvent model2,3 can be described mathematically as a coupled system of partial

differential equations, where the Poisson equation governs in the solvent region (Ω1 in Figure

1), and the Poisson–Boltzmann equation governs in the solute region (Ω2 in Figure 1). These

regions are interfaced by the molecular surface (Γ), where the potential (φ) and electric

displacement (ε∂φ/∂n) are continuous across the surface. The linearised Poisson-Boltzmann
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Figure 1: Representation of a molecule in an implicit solvent.

equation that results from approximating sinh(x) with x follows

∇2φ1(x) = 1
ε1

Nq∑
k=1

qkδ(x,xk) x ∈ Ω1, (1a)

(
∇2 − κ2

)
φ2(x) = 0 x ∈ Ω2, (1b)

φ1(x) = φ2(x), x ∈ Γ, (1c)

ε1
∂φ1

∂n
(x) = ε2

∂φ2

∂n
(x) x ∈ Γ. (1d)

Here, ε1 and ε2 are the dielectric constants in the solute and solvent, respectively; κ is the

inverse of the Debye length, related to the salt concentration; and qk are the values of the

partial charges, located at xk.

The electrostatic potential in Ω1 can be further decomposed into singular and regular

components as φ1 = φc + φr, where φc is the solution to

∇2φc(x) = 1
ε

Nq∑
k=1

qkδ(x,xk) x ∈ Ω1 ∪ Ω2,

φc(x) = 0 as |x| → ∞. (2)

Physically, φc can be interpreted as the Coulomb-type potential from the point charges,

whereas φr, also known as reaction potential, is originated by the polarization of the solvent

and reorganization of the free ions. Usually, ε1 is considered a constant value, yielding an

analytic expression for φc. However, this is not the general case.

Regularized versions of the equations in (1)45,46 are widely used to numerically solve

the Poisson–Boltzmann equation with finite element or finite difference methods, and have
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recently been extended to super-Gaussian permittivities in the solute.47 However, here we use

the standard formulation in (1), as it offers more flexibility when dealing with, for example,

variable permittivities, beyond super-Gaussian descriptions.

A common quantity of interest in implicit solvent models is the polar component of

the solvation free energy, which is the change in Gibbs free energy as the molecule charges

move from vacuum into a solute-shaped cavity inside the solvent. Considering the charge

distribution ρ consists of point charges, this can be calculated as

∆Gsolv = 1
2

∫
Ω1

ρ(x)φr(x) = 1
2

Nq∑
k=1

qkφr(xk). (3)

BEM-BEM coupling

Several possible boundary integral formulations of (1) exist.48 The simplest form was pre-

sented by Yoon and Lenhoff in 199149 and is known as the direct formulation. However, the

resulting system is usually ill-conditioned. Here, we use the better-conditioned formulation

presented by Lu and co-workers,15,50,51 which reads

φ2
2

(
1 + ε1

ε2

)
−
(
KΓ
Y − ε1

ε2
KΓ
L

)
φ2 +

(
V Γ
Y − V Γ

L

)
λ2 =

Nq∑
k=0

qk
4πε2|xΓ − xk|

,

ε1
ε2

(
W Γ
Y −W Γ

L

)
φ2 + λ2

2

(
1 + ε1

ε2

)
+
(
ε1
ε2
K ′ΓY −K ′ΓL

)
λ2 =

Nq∑
k=0

∂

∂nx

(
qk

4πε2|xΓ − xk|

)
, (4)

where φ2 = φ2(xΓ) is the potential on Γ as we approach from Ω2 (i.e. the exterior Dirichlet

trace), and λ2 = ∂
∂n
φ2 is the normal derivative Γ as we approach from Ω2 (i.e. the exterior

Neumann trace). Note that we can obtain φ1 and λ1 from φ2 and λ2 by applying the interface

conditions (1c) and (1d). The operators V , K, K ′, and W that appear in Equation (4) are

the single-layer, double-layer, adjoint double-layer, and hypersingular operators, respectively,

for the Laplace (subscript L) and Yukawa (subscript Y , also known as modified Helmholtz)

7



kernels. These are defined by

V Γ
i ϕ(x) =

∮
Γ

gi(x,x
′)ϕ(x′)dx′,

KΓ
i ϕ(x) =

∮
Γ

∂gi
∂n′

(x,x′)ϕ(x′)dx′,

K ′Γi ϕ(x) =

∮
Γ

gi
∂n

(x,x′)ϕ(x′)dx′,

W Γ
i ϕ(x) = −

∮
Γ

∂2gi
∂n′∂n

(x,x′)ϕ(x′)dx′, (5)

where i ∈ {L, Y }, ϕ(x) can be any distribution over Γ, and

gL(x,x′) =
1

4π|x− x′|

gY (x,x′) =
e−κ|x−x

′|

4π|x− x′|
(6)

are the corresponding free-space Green’s functions.

Having computed the electrostatic potential with Eq. (4), we obtain the reaction potential

(φr) in Eq. (3) by subtracting the Coulombic component from φ1. This gives19

φr(r) = −KΓ
Lφ1(r) + V Γ

L λ1(r), (7)

where r ∈ Ω1. This is valid as long as ε1 is a constant, so we use Eq. (7) for both BEM-BEM

and FEM-BEM coupling simulations with constant ε1.

Novel numerical solution of the Poisson–Boltzmann equation

The boundary element method (BEM) is a standard tool for the numerical solution of the

linear version of the Poisson–Boltzmann equation in molecular electrostatics.52,53 This was

implemented in numerous codes, such as AFMPB,15 TABI,18 PyGBe,19,54 and more recently,

with Bempp-cl48. One strong advantage of BEM is that it reduces the dimension of the

problem by using the boundary integral formulation. Unfortunately, this advantage comes

at a cost: it requires a fundamental solution to be known in order for the method to be

applied. There are many linear problems for which fundamental solutions are not known:

this is the case for the Poisson-Boltzmann equation with a heterogeneous permittivity inside
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the molecule, i.e.

∇ · (ε1(x)∇φ1(x)) =

Nq∑
k=1

qkδ(x,xk) x ∈ Ω1,

(
∇2 − κ2

)
φ2(x) = 0 x ∈ Ω2,

φ1(x) = φ2(x), x ∈ Γ,

ε1(x)
∂φ1

∂n
(x) = ε2

∂φ2

∂n
(x) x ∈ Γ. (8)

A finite element method (FEM) is more suitable for such a case.

The coupling of FEM and BEM is an approach that can be used to solve a wide range of

multiphysics problems on unbounded domains55,56, as it takes advantage of both methods.

On the one hand, the BEM satisfies the infinite boundary conditions exactly when they decay

to zero, and only approximates boundary conditions on surfaces; hence, it is commonly used

for problems involving infinite or semi-infinite domains. On the other hand, the FEM is

known for its robustness and universal applicability, even for problems of inhomogeneous or

non-linear nature. Here, we use the Johnson–Nédélec formulation,39 which is the simplest

formulation of FEM-BEM coupling, and we detail it next.

We start with the variational formulation of the internal problem. Applying integration

by parts to the first equation of (8) we have, for every v ∈ H1
0 (Ω1),

〈ε1∇φ1,∇v〉Ω1
− 〈ε1∂nφ1, v〉Γ =

〈
Nq∑
k=1

qkδ(x,xk), v

〉
Ω1

, (9)

where v is a test function, and 〈ϕ, v〉Γ =
∫

Γ
ϕ(x)v(x) dx and 〈ϕ, v〉Ω1

=
∫

Ω1
ϕ(x)v(x) dx are

the inner products on the surface and in the domain, respectively. Slightly abusing notation,

the product 〈·, ·〉Ω1
on the right-hand side denotes the duality pairing. For the external

problem with BEM, we define the Dirichlet trace57

γ : H1(Ω2)→ H
1
2 (Γ), γf(x) := lim

Ω23y→x∈Γ
f(y),

and we use the direct formulation from the second equation of Eq. (1) to obtain

φ1
2
−KΓ

Y γφ1 + ε1
ε2
V Γ
Y λ1 = 0.

V and K are the single-layer and double-layer operators as defined in Equation (5).
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Then, the coupling problem can be written as: Find φ1 ∈ H1(Ω1) and λ1 ∈ H−
1
2 (Γ) such

that for all v ∈ H1(Ω1) and ζ ∈ H− 1
2 (Γ),

〈ε1∇φ1,∇v〉Ω1
− 〈ε1λ1, v〉Γ =

〈
Nq∑
k=1

qkδ(x,xk), v

〉
Ω1

, (10a)

〈〈
1
2
I −KΓ

Y

)
γφ1, ζ

〉
Γ

+ 1
ε2

〈
V Γ
Y ε1λ1, ζ

〉
Γ

= 0. (10b)

Note that in the case where ε1 is constant, then each ε1 can be moved outside of the inner

product it is inside.

When discretised, this can also be written in matrix form. Let ~φ1 := [φ1
1, . . . , φ

j
1]T be

the vector of canonical basis functions of the finite element space V j
h ⊂ H1(Ω1), and let

~λ1 := [λ1
1, . . . , λ

l
1]T be the vector of canonical basis functions of Λl

h ⊂ H−
1
2 (Γ). We define

the following matrices associated with the corresponding bilinear forms

Aαβ =
〈
ε1∇φα1 ,∇φ

β
1

〉
Ω1

, M̃αβ =
〈
ε1λ

β
1 , γφ

α
1

〉
Γ
,

Kαβ =
〈
KΓ
Y γφ

α
1 , λ

β
1

〉
Γ
, Vαβ =

〈
V Γ
Y ε1λ

α
1 , λ

β
1

〉
Γ
,

Mαβ =
〈
γφα1 , λ

β
1

〉
Γ
,

and vector associated with the corresponding linear form

~fβ :=

〈
Nq∑
k=1

qkδ(x,xk), φ
β
1

〉
Ω1

.

Using the above definitions, the discrete problem in (10) can be written in the following

blocked matrix form:  A −M̃T

1
2
M −K 1

ε2
V

~φ1

~λ1

 =

~f
0

 . (11)

RESULTS AND DISCUSSION

This section presents the verification and performance results of the presented FEM-BEM

coupling scheme for molecules modelled as cavities with constant and varying permittivity.

With a constant permittivity inside the molecule, we tested convergence against an analytic
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expression of the solvation energy of a sphere58, and then compared a more realistic geom-

etry (arginine) with a purely BEM implementation. Then, as a more challenging test, we

performed binding energy calculations from a set of 153 structures,6 and compared them to

well-established codes. We also considered a Gaussian-varying permittivity25,26 inside the

molecular cavity of arginine, and used APBS7 to verify our results. The final tests show the

scaling of the FEM-BEM coupling as the molecule size grows.

All runs were done on a Lenovo ThinkStation P620 with AMD Ryzen ThreadRipper

PRO 3975WX (32-core and 3.5 GHz) and 128 GB RAM.

Software environment

For the finite element computations, we use the software package FEniCSx41,42 while for the

boundary element computations, we use Bempp-cl40 together with Exafmm-t59. FEniCSx is

the successor of the widely used FEniCS finite element library60,61. It provides a convenient

Python interface, describing problems using Unified Form Language (UFL)62, a convenient

domain-specific language specifically designed for finite element discretisations of partial

differential equations. During assembly, the UFL description is transformed into efficient

low-level C++ code and just-in-time compiled63,64. Bempp-cl is a Python package that uses

low-level OpenCL kernels written in C99 to provide optimised assembly routines65. The

built-in dense assembly routines are highly efficient for moderate discretisation sizes up to a

few ten thousand elements.

For very large grid sizes the user can enable fast multipole method (FMM) assembly which

internally is handled in Bempp-cl through an interface to the Exafmm-t FMM library. For N

surface elements this reduces the memory and computational complexity from O(N2) in the

dense assembly case to O(N) in the FMM case, making large boundary element problems

tractable on standard workstations. In this work, we only use the FMM in the performance

analysis for larger structures, as all other cases are small enough to run efficiently with a

dense assembler.

To couple FEniCSx with Bempp-cl we load a volume mesh with FEniCSx. We then

export the corresponding boundary mesh into Bempp-cl and assemble the boundary spaces
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there. Bempp-cl provides numerical trace operators that can translate from the degree of

freedom (DOF) representation in FEniCSx to the DOF representation in Bempp-cl. The

corresponding translation work is handled opaquely and the user only needs to deal with

high-level interfaces of FEniCSx operators, Bempp-cl operators, and trace operators. FMM

assembly fits automatically into this framework and can be enabled or disabled as a simple

configuration option. Once the discrete block matrices in Eq. (11) are built with Bempp-cl

and FEniCSx, we assemble them into one matrix and solve the linear system with Scipy’s66

GMRES, in this case, with a tolerance of 10−5.

Docker images containing FEniCSx, Bempp-cl, and Exafmm-t are publicly available

(https://bempp.com/installation.html), and all codes used to generate the results in

this section are available as Jupyter Notebooks that can be reproducibly executed in an ap-

propriate environment. The results in this section were obtained using version 0.6.0 of FEn-

iCSx and version 0.3.0 of Bempp-cl. All codes to reproduce the results of this manuscript can

be found in the GitHub repository https://github.com/MichalBosy/FEM_BEM_coupling/.

Results with constant permitivitty

In implicit-solvent models, the molecule is usually considered as a region with constant

permittivity: in our computations, we use ε1 = 2. In the solvent region, we used the

permittivity of water (ε2 = 80) and an inverse of the Debye length of κ = 0.125 Å
−1

. In

this case, there is a known analytic solution for φc in Eq. (2), so it is enough to compute

φr. We do this using Eq. (7) with both BEM-BEM and FEM-BEM coupling approaches.

For FEM-BEM, the integral over Γ in Eq. (7) corresponds to the trace of the solution vector

from Eq. (11).

Convergence of a spherical cavity

The Kirkwood sphere58 is a standard benchmark test for the Poisson–Boltzmann equation

in molecular electrostatics. In this case, we considered a spherical cavity of radius R = 2 Å,

with three charges (q1 = 1, q2 = 1, and q3 = 0.75) placed at x1 = (1, 0, 0), x2 = (0.7, 0.7, 0),

and x3 = (−0.5,−0.5, 0). Figure 2 shows the percentage error of the FEM-BEM approach,
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Figure 2: Error for the Kirkwood sphere.

and a reference BEM-BEM implementation, compared to the analytic solution (∆Gsolv =

−336.0396 kcal/mol). In these runs, the FEM mesh was generated using GMSH67 with 2,

6, 21 and 83 vertices per Å
2

on the SES. The triangular mesh on the boundary surface of

the FEM mesh was used for the BEM runs. The error in Figure 2 decays linearly with

the number of vertices on the surface. This agrees with the expected convergence for P1

elements, indicating a correct implementation of the numerical scheme.

Performance with arginine

As a more realistic test, we assessed the performance of the FEM-BEM coupling technique

against a BEM-BEM implementation for arginine. The structure of arginine was taken

from the protein data bank, and parameterized with the Amber68 force field. We generated

surface meshes containing 4.1, 6.7, 8.6, 17, and 24.5 vertices per Å
2

with Nanoshaper.69

These densities correspond to a grid-scale parameter in Nanoshaper equal to 1.6, 2.0, 2.4,

3.4, and 4.0, respectively, where the grid scale is the reciprocal of the average characteristic

length of the triangles. For our BEM-BEM solver, we used these meshes directly. For the

FEM-BEM solver, we created volume meshes from these using pyGAMer,70 which invoked

TetGen71 with a quality parameter (radius-edge ratio) of 1.0.

The solvation energy computed with the two schemes is presented in Figure 3, which,
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Figure 3: Solvation energy for arginine with a constant permittivity.

as expected, converges to a similar answer as the mesh is refined. Figure 4 compares the

iteration count and time-to-solution. The left plot shows that using only BEM outperforms

the coupled FEM-BEM approach in terms of the iteration count. However, if we look at

the total time that solvers take to obtain the solution, we can see the advantage of using

the FEM-BEM coupling. The higher computational cost is caused by the need to use a

hypersingular operator in the BEM formulation, and the fact that we are not using any

acceleration method (i.e. FMM). The timings for the FEM-BEM coupling scale are at a

greater rate than the pure BEM counterpart, indicating that work on preconditioners and

other acceleration methods will be required in order to make the FEM-BEM approach viable

for large problems.

Results with variable permittivity

Note on modelling differences between finite difference and finite/boundary

element methods

To facilitate verification, we conducted a comparative analysis between our FEM-BEM ap-

proach and established Poisson-Boltzmann solvers, including APBS,7 MIBPB,72,73 CPB,74

PBSA,75,76 and Delphi.77 These benchmarks primarily employ finite difference approxima-
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Figure 4: Iteration count (left) and time-to-solution (right) for arginine with a constant

permittivity.

tions, setting the stage for inherent modelling disparities with respect to our FEM-BEM

method, and making this comparison a difficult task. Firstly, the boundary integral for-

mulation in the external domain naturally enforces the decay of the electrostatic potential

to zero at infinity, while finite difference-based solvers necessitate the imposition of effective

boundary conditions along the mesh periphery. This boundary condition critically influences

the electrostatic potential and may deviate from the true solution if the size of the mesh

box is insufficient. Secondly, the definition of the molecular surface differs slightly across

software, resulting in different domain geometries. Our FEM-BEM approach employs a tri-

angulation of the solvent-excluded surface (based on NanoShaper69), while finite difference

meshes produce a staircase representation of this surface. This discrepancy is addressed

by the matched interface technique in MIBPB,72,73 however, the resulting surface does not

exactly match NanoShaper’s triangulation.

Binding energy calculations for a large data set

The binding energy of two molecules in a complex is

∆Gbind = ∆Gsolv,complex −∆Gsolv,1 −∆Gsolv,2 + ∆Gcoul (12)
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where ∆Gsolv,complex is the solvation energy of the complex, ∆Gsolv,1 and ∆Gsolv,2 are the

solvation energies of the two compounds, and ∆Gcoul is the difference in Coulomb energy

between bound and unbound states. This calculation presents a major challenge, as small

errors in solvation energy may have a large impact result in in binding energy, making

accuracy crucial.

Following the data set proposed by Fenley and co-workers,6 available in http://www.sb.

fsu.edu/~mfenley/convergence/downloads/convergence_pqr_sets.tar.gz, and later used

by Wei et al.78 to assess the accuracy of different Poisson-Boltzmann solvers, we tested our

method by computing binding energies. This data set consists of 51 complexes, totalling

153 structures, separated in three families: DNA-drug complexes, different versions of the

barnase-barstar complex, and RNA-peptide complexes. Following the problem setting for

these data sets, we use ε1 = 1, ε2 = 80 and an inverse of the Debye length of κ = 0.10265 Å
−1

.

According to the arginine results in Figure 3, a mesh density of 24 vertices per Å2 gives

a solvation energy that is close to the true solution for a realistic geometry. In that case,

the difference in solvation energy between calculations using finite element grids generated

from a surface mesh of 8.6 and 24.5 vertices per Å2 (a 3× refinement) is less than 1%. Then,

we used surface meshes with 24 vertices per Å2 and a quality parameter of 1.1 in TetGen to

generate the meshes used to compute binding energies in Fenley’s database.

Several structures in the database contained voids inside the molecular region where a

water molecule fits. In a finite difference description, these voids are naturally considered

as pockets of solvent, with the permittivity of water (ε = ε2). Regardless if this is an

appropriate physical model, we also placed the permittivity of bulk water inside cavities

for comparison purposes. In the FEM formalism, we had to detect the elements contained

by cavities and use a piece-wise constant varying description of the permittivity inside the

molecular region, which can be done without any modification in the formulation. A BEM-

BEM formulation can also account for cavities as regions with water’s bulk permittivity,16,19

but involves certain adjustments in the stiffness matrix.

Figures 5, 6, and 7 show the binding energies of structures of DNA-drug complexes,

barnase-barstar complexes, and RNA-peptide complexes, respectively, presented in Fenley’s

data set.6 The data for CPB6 and MIBPB, Delphi, APBS and PBSA were taken from the
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Figure 5: Binding energies for structures corresponding to DNA-drug complexes.
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Figure 6: Binding energies for structures corresponding to the barnase-barstar complex.

literature,78 for the finest mesh reported. From Figures 5, 6, and 7 it is evident that our

FEM-BEM approach gives results that are within the range of the difference between other

software for all 51 complexes. Given the challenging nature of binding energy calculations,

and that our results are consistently comparable to other widely-trusted solvers that use a

different numerical scheme for all 51 complexes, we can positively conclude on the correctness

of our code.
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Modeling the solute with a Gaussian-based variable permittivity

In contrast to a purely BEM approach, FEM-BEM coupling gives the flexibility to con-

sider space-varying field parameters. A popular description of the molecule is to consider

a permittivity that varies like a Gaussian around each atom,25 which has shown enhanced

accuracy in some applications, like pKa calculations.26 In this setting, we define a density

function ρ depending on the position r as

ρ(r) :=
∏
i

(
1− exp

(
‖r− xi‖
σ2R2

i

))
, (13)

where the product runs over all the atoms of the solute, Ri is the van der Waals radius of

atom i, and we used σ = 1. Then, we can compute the permittivity as

ε := (1− ρ) ε1 + ρε2 (14)

As ε is variable, Equation (2) does not have a known analytic solution, and the elec-

trostatic potential in the vacuum state has to be computed numerically. For vacuum cal-

culations, we considered the same distribution of ε inside the molecule as in the solvated

case, but the solvent permittivity was set to ε2 = 2. Other implementations of Gaussian

permittivities also modify the solute permittivity in vacuum calculations, according to a set

cutoff.26 We did not consider a cutoff in our calculations.
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Mesh size (Å) Grid points
∆Gsolv

(kcal/mol)

0.52× 0.52× 0.52 97× 97× 97 −107.6186

0.39× 0.39× 0.39 129× 129× 129 −107.8752

0.26× 0.26× 0.26 193× 193× 193 −108.3378

0.195× 0.195× 0.195 257× 257× 257 −108.5837

0.098× 0.098× 0.098 513× 513× 513 −108.8844

Mesh density

(vert/Å
2
)

DOFs
∆Gsolv

(kcal/mol)

4.1 3 491 −109.931

6.7 5 787 −110.237

8.6 8 844 −109.661

17.0 19 911 −109.369

24.5 32 302 −109.315

Table 1: Solvation energy of arginine with a Gaussian-like permittivity, computed using

APBS (left) and the FEM-BEM approach (right). The mesh density for FEM-BEM corre-

sponds to the vertex density of the surface mesh used to generate the volumetric mesh.

Convergence for arginine with APBS

We used Equation (14) to generate dielectric maps, which we ran on APBS7 for comparison.

We chose APBS because it provides an easy interface to control dielectric maps to ensure

their agreement with the maps imposed in our FEM-BEM coupled approach.

Table 1 shows a comparison of the solvation energy computed with APBS and our FEM-

BEM coupling approach. We can see that they are both converging to equivalent values,

where the solutions on the finest meshes agree to within 0.5% (0.5 kcal/mol). The coarsest

meshes used in both cases are within the recommended densities for accurate solvation

energy simulations with constant permittivity: a finite difference meshes with h = 0.5 Å or

less is recommended for binding energy calculations79 (the result of subtracting two solvation

energies), and a similar study with BEM19 showed that a mesh with 2 vertices per Å
2

gives

acceptable results when computing binding and solvation energies. We see a jump in the

solvation energy for the FEM-BEM results going from 4.1 to 6.7 vertices per Å
2
, but later the

energy monotonically decreases, converging to a solution. This is an indication that mesh

requirements for variable permittivities may be tighter than with a constant permittivity,

even though the jump in dielectric constant across the molecular surface is usually smaller.

Performance analysis for larger structures

In the experiments presented so far, we have only tested the FEM-BEM coupled approach

with small structures. In this section, we study its behaviour with larger structures to eval-
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uate its applicability in more realistic settings, and in test cases where BEM-BEM coupling

is not an alternative. Using the same Gaussian permittivity field inside the molecule, we

computed the solvation free energy of protein G B1 (955 atoms, PDB code 1pgb), lysozyme

(1960 atoms, PDB code 1lyz), the barnase-barstar complex (9464 atoms, PDB code 1x1u),

and immunoglobulin G (20148 atoms, PDB code 1igt). All structures were parameterized

with the Amber80 force field using pdb2pqr.81 The surfaces were meshed with Nanoshaper69

using a grid scale of 1.5, and then volume meshes were generated using pyGAMer70 and

TetGen71 with a radius-edge ratio of 1.0. The solvation free energy and timings for these

runs are presented in Table 2. These results demonstrate that our FEM-BEM coupling im-

plementation can reach medium-to-large-sized proteins on a simple workstation. For these

larger structures, we enabled the FMM capabilities of Bempp-cl.

Table 2 shows that the iteration count increases with the problem size. This is expected

for Johnson–Nédélec coupling, which is the simplest coupling strategy. To isolate the effect

of the increased iterations in the analysis, we separate timings into the setup and solving

time, where the setup time is independent of the number of iterations, and the solving time

corresponds to the time spent in the GMRES solver. The time-per-iteration is computed by

dividing the solving time by the number of iterations. The time per iteration scales closer

to O(N), which is expected as we are using FMM for the BEM portion of the matrix. This

is an indication that the high solving time is mainly due to the increase in iteration count,

and having better-conditioned coupling methods, such as the so-called hybrid approach82,

or more effective preconditioners for the blocked system would have a large impact on the

time to solution.

Even though this scheme is capable of calculating the electrostatic potential in medium-

to-large proteins, the largest test case in Table 2 (1igt) used up 30% of the available RAM.

If we were aiming at larger structures, such as full viruses,43,44 we would require the use

of optimised fast algorithms83,84 and parallelisation of the storage and solver, alongside the

necessary improvements in the conditioning of the system.
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Molecule
FEM

DOFs

BEM

DOFs

∆Gsolv

(kcal/mol)
Iterations

Setup

time (s)

Solving

time (s)

Time per

iter. (s)

Total

time (s)

1pgb 29 434 10 058 −300.888 703 86 472 0.67 789

1lyz 56 114 18 606 −599.310 1 073 336 1 350 1.26 1 686

1x1u 263 181 81 258 −1 982.085 2 791 8 340 11 000 3.94 19 340

1igt 597 575 187 712 −3 294.0157 5 366 41 998 40 100 7.47 82 098

Table 2: Results for larger structures with a variable permittivity.

CONCLUSIONS

This paper presents the first implementation of a FEM-BEM coupling approach to solve

the Poisson–Boltzmann equation for molecular electrostatics. This brings the best of both

worlds: the accuracy and efficiency of BEM to exactly enforce the boundary conditions at in-

finity, and the flexibility of FEM to account for space variations of the material properties and

nonlinearities. After presenting verification results of solvation energy for a sphere and argi-

nine with a constant permittivity inside the solute, and binding energy for an extensive data

set, we showcased our implementation with an advanced modelling technique that considers

Gaussian-varying permittivities in a confined region, with the results validated against the

widely-used APBS software. The final scaling results for larger molecules start from protein

G B1 (955 atoms) and go up to immunoglobulin G (20 148 atoms), proving the applicabil-

ity of this approach for realistic problems. Even though our implementation was able to

reach medium-to-large systems, we recognise the need for further research towards better

preconditioning of the linear system, optimising the coupling technique, acceleration algo-

rithms, and parallel execution, especially as we look towards much larger solutes, like viruses.

We hope this proof-of-concept work will serve as motivation for future model development

that considers space-varying permittivities and Debye lengths, and mixed linear-nonlinear

techniques, especially for highly-charged systems, like nucleic acids.
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