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Artificial selection of microbial communities: what have 
we learnt and how can we improve? 
Joshua L Thomas*, Jamila Rowland-Chandler* and  
Wenying Shou   

Microbial communities are capable of performing diverse 
functions with important bioindustrial and medical applications. 
One approach to improving community function is to breed new 
communities by artificially selecting for those displaying high 
community function (‘community selection’). Importantly, 
community selection can improve the function of interest 
without needing to understand how the function arises, just like 
in classical artificial selection of individuals. However, 
experimental studies of community selection have had varied 
and largely limited success. Here, we review a conceptual 
framework to help foster an understanding of community 
selection and its associated challenges, and provide broad 
insights for designing effective selection strategies. 
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Introduction 
Microbial communities are important for human health 
and the biogeochemical cycling of elements. Members of a 
community interact when one member affects the phy-
siology of another by, for example, releasing nutrients or 
toxins [1–3]. Consequently, microbial communities can 
perform community functions, defined as community-level 
activities that are not equal to the sum of monoculture 
activities (Figure 1a). Examples include the bioindustrial 
synthesis of certain natural products [4,5], protection 
against pathogens [6], and the degradation of harmful 

waste compounds [7,8]. Note that if a community-level 
activity is the sum of monoculture activities, then we can 
simply focus on individual species, as the community 
context is no longer necessary. 

Community function can be improved using two broad 
approaches. In the ‘bottom-up’ approach, microbial com-
munities can be constructed with a set of engineered 
species, each optimized to perform an activity contributing 
to the community function [9]. However, this requires a 
mechanistic understanding of interactions and how they 
give rise to community function, which is often unknown. 
Alternatively, in the ‘top-down’ approach, community 
function can be improved via artificial community selection: 
directed evolution of communities to achieve a high 
community function. Importantly, the top-down approach 
does not require an understanding of how interactions 
generate community functions, yet interactions that drive 
community function can be revealed by comparing 
evolved versus ancestral communities. 

A community selection experiment consists of multiple 
selection cycles. Each cycle (Figure 1b) starts with a set 
of ‘Newborn’ communities (Newborns) at low cell den-
sities, which are allowed to grow over a period of ‘ma-
turation’ time defined by the experimentalist (olive 
arrows) into ‘Adult’ communities (Adults). During 
community maturation, cells interact, proliferate, and 
possibly mutate. At the end of a cycle, Adults displaying 
the highest community function are chosen to ‘re-
produce’ (pink arrows): each is used to inoculate mul-
tiple Newborns for the next selection cycle. 

In principle, community selection should improve 
community function. However, experimental commu-
nity selection studies have shown varied and largely 
limited success ([10–13,16–19,20], reviewed in Refs.  
[21–24]). Often, community selection failed to improve 
community function compared with selection for low 
function or random selection, with some studies even 
reporting a decrease in community function despite se-
lection. This begs the question: why might community 
selection have limited efficacy in experimental systems? 

In this review, we first build a conceptual framework to 
facilitate an understanding of community selection and 
what makes it challenging. Second, we aim to provide 
broad insights to help experimentalists devise effective 
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community selection strategies. For conceptual clarity, 
we also provide a glossary of key terms. 

The Jekyll-and-Hyde nature of community 
selection 
Evolution can operate on any type of biological entity, 
that is, any structure with a boundary such that the birth, 
growth, survival, or death of one entity is separable from 
that of other similar entities [25]. Entities can be mole-
cules, organelles, cells, or communities. Successfully 
selecting a trait has three requirements: variation in the 
trait among entities, differential survival of entities 

based on the trait, and inheritance of the trait from 
parent to its offspring [26] (Figure 1b, bottom). 

Despite what the name might suggest, community selection 
involves the selection on two types of entities: communities 
and individuals. Communities are the substrate for inter- 
community selection, which acts during community re-
production (pink arrows in Figure 1b) and favors high 
community function (‘Dr. Jekyll’). In contrast, individual 
cells are the substrate for intra-community selection, 
which acts during community maturation (olive arrows in  
Figure 1b) and favors fast-growing individuals that may be 
deleterious to community function (‘Mr. Hyde’). 

Figure 1  
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The artificial selection of microbial community function. (a) Community functions emerge from interactions among community members. Thus, the 
function of a community (purple halo) does not equal the sum of the activities of monocultures. For example, in a starch-degrading community [11], all 
species could produce starch-degrading enzymes, but the total activity of a community differed from the sum of monocultures due to interactions that 
affected species growth. As another (strict-sense) example, a community of Desulfovibrio vulgaris and Methanococcus maripaludis, but not the two 
monocultures, can convert lactate to methane in the absence of sulfate [27]. (b) The community selection process. A selection cycle starts with 
Newborn communities consisting of different species (different shapes), which ‘mature’ over time (olive arrows) to become Adult communities. During 
maturation, cells interact, proliferate, and possibly mutate (represented by different shades of the same shape). Adult communities with high functions 
(dark-purple shades) are chosen to inoculate offspring Newborns of the next selection cycle. Effective community selection requires three key 
elements: variation in Adult community function, differential survival based on community function, and inheritance of community function from a 
parent Adult to offspring Adults. (c) For costly community functions, inter-community selection must overcome intra-community selection. Inter- 
community selection occurs during community reproduction and favors communities with high community function, while intra-community selection 
occurs during community maturation and favors fast-growing mutants, which may contribute less to community function. Note that fast growth does 
not necessarily translate to high fitness in the context of community selection: although a faster grower is favored during community maturation, it may 
be selected against during community reproduction. (d) Intra-community evolution favors fast-growing (teal) mutants, which can reduce the 
inheritance of genotype composition between parent and offspring generations and deplete variation among offspring communities. 
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Intra- and inter-community selection act in opposition 
when community function is costly, that is, when con-
tributing to community function reduces the growth 
rate of an individual (Figure 1c). Therefore, ‘cheaters’, 
mutants that contribute less to community function in 
favor of faster growth (Figure 1c, teal genotype), can 
evolve and spread through the population, reducing 
community function. Community function is also re-

duced if a fast-growing species outcompetes a slow- 
growing species essential for community function. A 
telltale of a costly community function is that it will 
decline in the absence of community selection due to 
intra-community selection. Costly community functions 
will be the focus of this review since they are often 
observed in experimental systems (e.g. [11,16]), and are 
more difficult to improve compared with noncostly 
community functions. 

The Price equation links selection response 
with variation, inheritance, and selection 
strength 
The efficacy of community selection is determined by 
the variation, selection, and inheritance of community 
function. The Price equation quantitatively links these 
three key elements to selection response over one cycle, 
the details of which are described in Box 1. 

When applied to community selection, the Price equa-
tion (Figure 2c, Box 1) describes how the average com-
munity function changes after one selection cycle 
([28,29], see critiques in Ref. [32]): 

P
= ×

+

Selection response after one selection cycle Biometric heritability Selection strength

Avg. transmission infidelity

hFF ww FF

FF

[ ] 2 Cov( , )

[ ] (1)  

The Price equation describes selection response over one cycle 

The Price equation [28,29] can be applied to any type of biological entity. In the following derivation, italic symbol represents an element, while bold 
symbol represents a vector, and [ ] operates on a vector to obtain its expected or average value. Let PFi be the function (trait) value of parent i
( i N1 ; Figure 2a). OFF[ ]i is the expected function of i s offspring without selection. Based on its function value PFi , parent i has Wi number of 
offspring (absolute fitness) after selection. Let WW[ ] be the average number of offspring across all parents. Then, parent i has a relative fitness wi

(= W WW[ ]i ). Let ww denote the vector of relative fitness for all parents. Note that the average relative fitness =ww[ ] 1. Fi , the selection response 
of lineage i over one round of selection, is the difference between the parent function PFi and the offspring function after selection Ow FF[ ]i i , that is, 

O P=F w FFF[ ]i i i i

Now we apply an algebra trick: 

O O O O O P= + = +
=

F F w Fww FF FF FF ww FF FF[ ] [ ] [ ] [ ] [ ] [ ] [ ]i i i i i i i i i

F0 i

Note that ΔFi is the transmission infidelity of lineage i , the difference between the parent function PFi and its average offspring function OFF[ ]i

without selection (Figure 2a blue dash arrow). From the above equation, the average selection response across all parents is then given by 

O O O O= … … +
=

FF ww FF FF ww FF FF FF[ ] [ { [ ], , [ ]}] [ [ ]] [{ [ ], , [ ]}] [ ]N N

ww

1

[ ]

1

Here, O O…ww FF FF{ [ ], , [ ]}N1 is the vector of the element-wise product of the two vectors, and FF[ ] is the average transmission infidelity across all 
lineages. Recall that for two vectors x and y , their covariance =xx yy xx yy xx yyCov( , ) [ ] [ ] [ ]. Thus, the above equation becomes 

O O= … +FF ww FF FF FF[ ] Cov( , { [ ], , [ ]}) [ ]N1

where Oww FFCov( , { [ ]}) describes the covariance between parent fitness with the respective average offspring function. This covariance term can 
be transformed to covariance between parent fitness and parent function if we assume a linear relationship between parent and offspring function 
(Figure 2b) 

O P= + +h FFF[ ] .i i i i
2

where h2 is the slope of linear least squares regression between parent trait and average offspring trait, θi is the intercept, and εi is the residual. h2, 
also known as the ‘biometric heritability’, attempts to measure the proportion of F’s variance that is heritable [30,31]. With a linear parent–offspring 
relation, fitness does not covary with residual (i.e. =wwCov[ , ] 0), and the Price equation becomes 

P
P O

P= + =h hFF ww FF FF
FF FF

FF
[ ] Cov( , ) [ ] where

Cov( , { [ ]})
Var( )

.2 2

In summary, the Price equation (Figure 2c) describes the selection response of any entity over one cycle ( FF[ ]) as a function of selection strength 
( Pww FFCov( , )), and inheritance in the form of both biometric heritability (h2) and transmission infidelity ( FF[ ]). Not surprisingly, biometric heritability 
is linked to transmission infidelity ΔF. Since O P= +FF FF FF{ [ ]} , 

P P

P

P P

P
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Here, FF[ ] is the selection response after one cycle — 
the difference between the expected function of all 
parents before selection and the expected function of all 
offspring after selection (Figure 2a, gray arrow). h2 is the 
biometric heritability of community function, the slope 
of the linear least squares regression between parent 
function and average offspring function (Figure 2b, 
gold). Pww FFCov( , ) is the covariance between parent re-
lative fitness w (the number of offspring from a parent 
divided by the average number of offspring after selec-
tion) and parent function PFF . FF[ ] is the average 
transmission infidelity (teal dash arrow in Figure 2b), the 
average change in community function from a parent to 
its offspring without inter-community selection. Trans-
mission infidelity is driven by eco-evolutionary dynamics 
and stochastic factors, which alter genotype and species 
compositions during community maturation and re-
production. For example, as cheaters rise in frequency, 
community function will tend to decline from parent to 
offspring, leading to a negative average transmission 
infidelity FF[ ] (Figure 2b, teal arrow). 

The Price equation contains all three key elements of 
evolution. Selection strength is described by 

Pww FFCov( , ), the covariance of parent fitness with parent 
community function. Inheritance of community function 
(Figure 2b) is described by biometric heritability h2 and 
the average transmission infidelity FF[ ], which are 

interconnected (Box 1, last paragraph). Variation in 
parent community function PFFVar( ) is more subtle, but 
is included in biometric heritability h2 (Box 1, last 
equation), as well as in selection strength since covar-
iance between fitness and function only makes sense in 
the presence of variation in function. Over the course of 
selection, as the fittest communities are selected, varia-
tion among communities decreases, which slows down 
the improvement of community function. Interestingly, 
biometric heritability also becomes low, possibly further 
reducing improvement [10,11,33]. 

Understanding community selection: 
community function determinants and 
landscape 
Similar to phenotypes of individuals, which are shaped by 
genotype and environment, community function is 
shaped by ‘community function determinants’ (‘de-
terminants’). Determinants are factors that vary among 
communities, and whose variation causes community 
function to vary [34]. Examples of determinants include 
genotype compositions within each species (‘genotype 
determinant’), species composition of a community 
(‘species composition determinant’), and environmental 
variables (‘environmental determinant’). Measurement 
noise is also a determinant since measured community 
function is the actual substrate of selection. Some de-
terminants, such as environmental variability and 

Figure 2  
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The Price equation links selection response to key elements of evolution. (a) Mathematical nomenclature for selection response of a community 
function after one round of selection. The higher the community function, the darker the shade of purple ring. Lineage i is used as an example. (b) The 
inheritance of community function can be described by biometric heritability h2 (the slope of parent–offspring linear regression, gold) and average 
transmission infidelity FF[ ] (the average displacement of the regression line from perfect inheritance, teal). Perfect inheritance is achieved when 
parent and offspring functions are identical (dotted line, slope h2 = 1 and displacement FF[ ] = 0). (c) The Price equation.   
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measurement noise, are not heritable from parent to off-
spring generations. Some determinants, such as the gen-
otype composition of each species, are heritable to a 
certain degree under some conditions. Other determi-
nants, such as species composition, may or may not be 
heritable, as we will discuss below. Overall, under-
standing the variation and inheritance of determinants 
allows us to understand the variation and inheritance of 
community function. Below, we will discuss genotype 
and species composition determinants in greater detail, as 
they are likely important for most community functions. 

Genotype composition determinants are often heritable 
The genotype determinant of a species in community can 
be calculated at the Newborn stage as the average genotype 
value, that is, the average phenotype, of individuals within 
the species [34]. Although genotype values, such as growth 
rates, should not be averaged in general, averaging turns out 
to be valid when intra-community evolution is slow [34]. A 
genotype determinant, such as the average fraction of re-
source invested on community function, can be inherited 
from a parent Newborn to its offspring Newborns: For ex-
ample, a cheater-dominated parent community will likely 
generate cheater-dominated offspring communities [34]. 
However, inheritance can be compromised by intra-com-
munity evolution during community maturation, and by 
stochastic sampling of genotypes during community re-
production. 

Species composition determinants may or may not be 
heritable depending on ecological dynamics 
Species composition determinants can be defined as the 
fractional abundance of species in a Newborn if the total 
biomass of the Newborn is held constant. Species com-
position determinant is often defined in a Newborn rather 
than in an Adult for two reasons: first, Newborn species 
composition can influence community function as initial 
conditions for ordinary differential equations. For example, 
the total amount of product accumulated in an Adult can 
dependent on Newborn species composition [34]. Second, 
Adult species composition may not serve as a determinant 
if different Newborn species compositions become iden-
tical during community maturation. This can arise due to 
an ‘ecological attractor’, a stable equilibrium such that after 
small perturbations, the system will return to that equili-
brium (Figure 3a i). Note that an equilibrium is not always 
an attractor, for example, with a semistable attractor, a 
small perturbation may or may not drive the system to a 
new equilibrium (Figure 3a iii, dotted line). If the com-
munity has only one attractor and if the attractor is reached 
during maturation, then species composition is non-
heritable (Figure 3a i). If the community has multiple 
attractors, species composition becomes a heritable de-
terminant (Figure 3a ii). In communities that lack stable 
attractors, species composition may or may not be heri-
table. For example, species composition is heritable in 
communities with a semistable attractor (Figure 3a iii), but 

nonheritable in a community exhibiting chaotic dynamics 
(Figure 3a iv). 

Understanding heritability of community function in 
terms of heritability of determinants 
Community function can be approximated as the linear 
sum of its determinants, if intra-community evolution is 
sufficiently slow and if determinants are narrowly dis-
tributed among communities [48]. Consider a simple 
case where community function F has two determinants: 
x that is heritable (positive hx

2, the slope of parent–off-
spring regression of x) and y that is nonheritable 
( =h 0y

2 ). If the linear approximation holds, then for 
community i, its function is 

+ + +x yFi i i i (2) 

where α and β express how much the corresponding 
determinant affects community function, θ is the inter-
cept, and ε is the residual of linear regression. If, ad-
ditionally, the residual term is uncorrelated with 
determinants and if the determinants are independent of 
each other, it can be shown that the heritability of 
community function F is [48] 

h
h xx

FF
Var( )

Var( )
.x2

2 2

(3)  

This is intuitive, as it states that the heritability of a 
community function is determined by variation in the 
heritable determinant relative to variation in the com-
munity function. This can then be substituted into Price 
equation (1) to estimate selection response. 

Constructing the community function landscape from 
determinants 
We can visualize how community function varies with 
determinants, heritable and nonheritable, using a com-
munity function landscape (Figure 3b and c). For any 
community on the landscape, its determinants can be 
read off the axis, while its function can be read from 
community function contours (purple lines, varying 
shades corresponding to different levels of community 
function). If communities to be selected are scattered in 
a region where contours are parallel to the axis of the 
heritable determinant (Figure 3b, bottom), then varia-
tions in community function are solely due to variations 
in the nonheritable determinant, and thus selection will 
not be effective. Conversely, in regions where contours 
are perpendicular to the axis of the heritable determi-
nant (Figure 3b, top), selection will be effective. 

The effectiveness of community selection can be vi-
sualized as selection progress, change in the heritable de-
terminant over one selection cycle, which defines the 
heritable portion of the selection response in the Price 
equation. Note that although selection response is 
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described by the Price equation, only the heritable 
portion — selection progress — can be propagated into 
future cycles. Thus, selection becomes effective when 
variation in heritable determinants (‘heritable variation’) 
is increased (Figure 3d i), when variation in nonheritable 
determinants (‘nonheritable variation’) is decreased 
(Figure 3d ii), or when communities are moved from a 
low-inheritance region to a high-inheritance region [34] 
(Figure 3d iii). Even when a landscape cannot be 

visualized, whenever selection is deemed ineffective, we 
can test different strategies and choose the strategy 
conferring the highest biometric heritability [34]. This 
method worked effectively in Xie et al.’s (2021) study, as 
did methods that reduce nonheritable variations, such as 
reproducing the parent community via a cell sorter to 
sort precise biomass of each species into Newborns, in-
stead of pipetting which introduces fluctuations in spe-
cies composition [35]. 

Figure 3  

Current Opinion in Microbiology

Understanding selection progress in terms of community function determinants and landscape. (a) Heritability of the species composition determinant 
depends on ecological dynamics. Each shade represents an independent community lineage. (i) Species composition varies among parent Newborns, 
but during maturation moves toward one and only one attractor (dashed line in the left panel). Parent Adults are reproduced through pipetting (pink 
arrow), which introduces stochastic variation into the offspring Newborns (center panel). In this case, species compositions in offspring Newborns are 
uncorrelated with those in parent Newborns, and thus species composition is not heritable (right panel). (ii) With multiple attractors, a parent Newborn 
will tend toward the closest attractor, and species composition is heritable. (iii) Although communities with a composition slightly above or below the 
semistable attractor (dotted line) will reach different equilibria, species composition is heritable overall. (iv) A chaotic system where species 
composition is nonheritable. The dynamics is based on a two-species community where one species has a constant population (set at 0.5) and the 
other grows according to the logistic difference equation: xt+1 = 4xt(1 − xt). The initial x was set to 0.1, 0.3, 0.48, and 0.75, and maturation time = 40. The 
system is chaotic from most initial conditions, but when the parent Newborn fraction = 0.75, species composition remains constant. Systems without 
attractors can exhibit other behaviors, such as remaining at the present value indefinitely until perturbed, and in this case, species composition 
determinant will be heritable. (b) Community function heritability is determined by the orientation of community function contours on the community 
function landscape with respect to the axes of heritable and nonheritable determinants. (c) Landscape topology, including the presence of attractors, 
constrains evolutionary trajectories. This makes selection outcomes dependent on starting positions. Community function landscapes can contain 
multiple ‘peaks‘ of high community function and ‘valleys’ of low community function between peaks. Thus, depending on their starting points, 
communities can get stuck at lower fitness peaks (i), or climb to the global maximum (ii). (d) Strategies for improving selection progress. In this graph, a 
community’s determinants, defined in the Newborn stage, can be read off the axes, while its function, defined in the Adult stage, can be read off the 
community function contours. Selection progress can be measured as a change in any heritable determinant over one selection cycle (represented by 
the length of an orange arrow, or if no progress). Selection efficacy can be improved by increasing variation in the heritable determinant (i), or 
decreasing variation in the nonheritable determinant (ii). (iii) Selection progress also increases by moving communities from regions of low inheritance 
to regions of high inheritance.   

6 Microbial Systems and Synthetic Biology  

www.sciencedirect.com Current Opinion in Microbiology 2024, 77:102400 



Challenges and solutions for designing 
effective selection strategies 
Community selection is challenging because manip-
ulating an experimental variable often exerts opposing 
effects. For example, increasing variation often leads to 
reduced inheritance (Table 1, f), and increasing selec-
tion strength leads to reduced variation (Table 1, g). 
Intra-community evolution also exerts opposing effects: 
although it supplies new mutations critical for improving 
community function, it also favors fast-growing cheater 
mutants. As cheaters take over, all communities will be 
similarly dominated by cheaters (low variation among 
communities), and community function will decline 

from parent to offspring (low inheritance from parent to 
offspring) (Figure 1d). Indeed, when selecting for chitin- 
degrading communities, as chitin degradation became 
faster, maturation time had to be shortened to prevent 
nondegrading species from taking over communities  
[16]. Therefore, when we try to increase heritable var-
iation (Figure 3d i), intra-community evolution should 
not be significantly accelerated. Thus, strategies that 
tend to increase the rate of intra-community evolution, 
such as increasing mutation rate, increasing Newborn 
population size, or increasing the number of doublings 
by supplementing extra resources or prolonging ma-
turation time, may not be effective (Table 1). In  

Table 1 

Manipulation of an experimental variable often exerts opposite effects on key elements for selection success.     

Experimental design and 
manipulations 

Pros Cons  

(a) Increase the total number of 
communities under selection  

• Increases variation without sacrificing 
inheritance  

• Experimentally more challenging  
• May not be very effective [36–38] (e.g. scaling with 

log n( ) where n is the number of communities [36]) 

(b) Reduce population size in 
Newborns  

• Increases inheritance by reducing intra- 
community evolution (Figure 1d)  

• Increases stochastic variations in 
species and genotype compositions 
among offspring  

• Decreases variation by restricting the number of new 
mutants arising  

• Decreases inheritance by increasing stochastic variations 
among Newborns (e.g. rare species or rare genotypes 
can be lost by chance) 

(c) Reduce mutation rate or 
resource availability  

• Increases variation and inheritance by 
reducing intra-community evolution  

• Decreases variation by reducing mutational opportunities 

(d) Increase maturation time  • Increases inheritance by allowing 
species composition to stabilize  

• Decreases variation and inheritance by increasing intra- 
community evolution (Figure 1d) 

(e) Promote species coexistence 
(e.g. engineering dependency 
between species)  

• Increases inheritance (e.g. by preventing 
species loss)  

• Can trap communities in low-inheritance regions of 
community function landscape [34] 

(f) Selectively add or remove 
species during community 
reproduction  

• Increases variation by creating new 
community compositions [39]  

• Decreases inheritance between parent offspring 
generations 

(g) Choose fewer Adults to 
reproduce  

• Increases selection strength  • Decreases variation by omitting communities that have 
desired genotypes but display low function driven by for 
example, unfavorable measurement noise [35]  

Selection outcome can become highly variable among replicate runs if selection is too stringent, although 
community function improvement becomes more limited if selection is too lenient [40]. Simulations suggest 
that a large range of intermediate-strength selection regimes produce similar selection efficacy [35]. 

(h) ’Migrant pool’ reproduction 
(mixing parent Adult communities 
before reproduction)  

• Can potentially pull together 
complementary members from different 
parents  

• Decreases variation by homogenizing parents (e.g. 
allowing cheaters to spread)  

• Decreases inheritance by making offspring resemble the 
migrant pool rather than parent 

Versus ‘Propagule’ reproduction (no 
mixing of parent Adult communities 
before reproduction)  

• Increases inheritance from parent to 
offspring  

• Maintains some variation  

• The initial ecological variations among communities will be 
rapidly lost as the top-functioning lineages take over. 
Unless sufficient variation is introduced through mutation 
or migration, selection response rapidly plateaus [11,41,42]   

Artificial selection of microbial communities Thomas, Rowland-Chandler and Shou 7 

www.sciencedirect.com Current Opinion in Microbiology 2024, 77:102400 



Table 1, we summarize a (nonexhaustive) list of ex-
perimental variables that can be manipulated, and the 
pros and cons associated with each. 

How might we implement the above principles to im-
prove community function? Owing to the commonly 
occurring trade-off between variation and inheritance 
(Table 1), multiple manipulations are sometimes needed 
to promote both variation and inheritance, as demon-
strated by previous theoretical studies. For example, 
Chang et al. [39] first ensured inheritance by allowing 
communities to reach an equilibrium, so that parent and 
offspring communities would share similar species 
compositions. Then, heritable variations were in-
troduced to a subset of offspring communities by, for 
example, introducing or removing species. As another 
example, Vessman et al. [38] increased heritable varia-
tion by introducing species into or removing species 
from some of the Newborns, and to facilitate in-
heritance, species composition was adjusted to a target 
value in each round of selection. Both methods out-
performed the standard community reproduction 
methods, that is, migrant pool or propagule reproduction 
(Table 1). In general, if communities harbor or evolve  
[43] attractors (e.g. [44–46]), evolutionary trajectories 
may be restricted along the attractors [34], and explora-
tion of the wider community function landscape is pre-
vented. In this case, periodically perturbing and 
destabilizing species composition, for example, by in-
ducing chaos [47] and then allowing composition to 
stabilize, could allow communities to move between 
different heritable species compositions. This could 
move communities out of local optima (Figure 3c) or 
move communities from regions of low heritability to 
regions of high heritability (Figure 3d iii, [34]). 

In conclusion, many experimental variables in commu-
nity selection studies can have concurrent positive and 
negative effects on variation and inheritance, which 
makes improving community function difficult. Even 
increasing variation or inheritance does not always im-
prove community function. For example, while heritable 
variation can drive selection progress, nonheritable var-
iation cannot. Likewise, although inheritance is im-
portant for securing selection progress, periodically 
reducing inheritance by introducing heritable variation is 
important for improving community function. 

The field of community selection is still in its infancy. 
Owing to high computational demands, theoretical work 
on selecting ecologically complex communities generally 
has not considered evolution (e.g. [39,41]), or has con-
sidered evolution in an unrealistic manner (e.g. [36]). 
Other theoretical work considered ecological–evolutionary 
dynamics, but was restricted to simple two-species com-
munities (e.g. [34,35,37,43]). An important next step for 

theoretical studies is to integrate evolution and ecology in 
many-species communities. This will facilitate a better 
understanding of how community function evolves in 
complex systems and the design of more effective selec-
tion strategies. Empirical work on complex communities 
has been largely limited, with any improvement in com-
munity function likely relying on selection of preexisting 
standing variation across subcommunities. This causes any 
improvement to level off quickly as variation is depleted 
by selection (e.g. [11,41,42]). Thus, an important next step 
for experimental studies is to systematically test different 
strategies, such as those listed in Table 1, for their ability 
to improve community function. More specifically, we 
need to understand the effect of each strategy on variation 
and inheritance, as this will allow us to identify strategies 
that improve one without sacrificing the other, or improve 
both simultaneously. Together, these efforts will lay the 
foundation for a mature discipline of microbial bio-
technology, with applications in domains from waste 
treatment to medicine. 
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Glossary 

Entity: A biological entity (‘entity’) is a biological structure with a boundary, such that 
the birth, growth, survival, or death of an entity is separable from that of other 
similar entities. This is due to chemical or physical coupling within an entity and the 
lack of equivalent coupling between entities. 

Interaction: Instances where one community member affects the physiology of another, 
for example, by releasing nutrients, toxins, or signaling molecules. 

Community function: Community-level activities that are not the sum of activities in 
monoculture, arising from interactions between community members. Community 
function is generally defined in the Adult stage. 

Costly community function: A community function is costly if contributing to this function 
slows down cell growth in at least one member species. 

Community function determinants (determinants): Factors whose variation drives variation 
in community function. Examples include genotype composition, species compo-
sition, and environmental conditions. Determinants are generally defined in the 
Newborn stage, except for factors that are not present at initiation, e.g., measure-
ment noise of community function. The inheritance of determinants is on a spec-
trum, i.e., determinants can be heritable or non-heritable to greater or lesser extents. 

Community selection: The process of breeding new communities by artificially selecting 
for high community function. 

Newborn and Adult community: A Newborn community (“Newborn”) is the initial low 
cell density community at the beginning of a selection cycle. A Newborn grows and 
matures into an Adult community (“Adult”). A chosen Adult community is used to 
inoculate Newborn communities of the next selection cycle. 

Parent and offspring community: A parent community is a community in the parent 
generation that is selected for reproduction. The community is then partitioned into 
multiple offspring communities. Both parent and offspring communities have 
Newborn and Adult stages. To measure selection response, we compare community 
functions of parent Adult and offspring Adult. To measure selection progress, we 
compare heritable determinants of parent Newborn and offspring Newborn. 

Evolution and selection: Selection is the differential survival of entities, and is part of 
evolution. Evolution also includes the emergence of new traits through, for example, 
mutations. 

Intra- and Inter-community selection: Intra-community selection is natural selection acting 
on individuals within a community during maturation, and favors faster growers. 
Inter-community selection is artificial selection acting on communities during 
community reproduction, and favors high community function. 

Inheritance: Resemblance between parent and offspring. 
Biometric Heritability: The slope of a linear regression between parent and average 

offspring trait values. 
Transmission Infidelity: The difference between the parent trait and the average offspring 

trait in the absence of selection. 
Selection Strength: The covariance between the number of offspring and parent trait, i.e., 

how many offspring an Adult parent produces based on its trait. 
Ecological attractor: The species composition that Newborns with different initial com-

positions converge on during community maturation.  
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