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Abstract: 68 

 69 

This paper discusses the opinion of the Neuroimaging Committee of the European 70 

Association of Nuclear Medicine regarding the role of artificial intelligence, the unmet 71 

needs of AI in standardized applications, and the increasing need for common ethical 72 

standards. 73 

 74 

The first part of this manuscript offers insight into the fundamentals of artificial 75 

intelligence (AI) and provides a general overview of the current role and functions of 76 

AI in nuclear medicine neuroimaging. AI methods offer opportunities for image quality 77 

enhancement, shortening image acquisition time, and potentially reduced dose of the 78 

utilized tracer. In addition, it can facilitate image reading, differential diagnosis and/or 79 

predict cognitive decline. Furthermore, AI-based segmentation can eliminate 80 

meticulous manual annotation and inter-observer variability and offers help to 81 

clinicians with differential diagnosis or automatization of reads (e.g. amyloid 82 

positive/negative), prediction of cognitive decline, detection of epileptogenic focus). 83 

 84 

In the second part, the current clinical applications of artificial intelligence and its 85 

future perspectives in nuclear medicine neuroimaging are reviewed with emphasis 86 

on the potential application of AI in brain oncology, neurodegeneration, epilepsy and 87 

psychiatric disorders.  88 

 89 

 90 

 91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 



4 
 

1. Goal  102 

With an increasing availability of diagnostic and therapeutic options for nuclear 103 

neuroimaging and open science practices, a larger amount of data has become 104 

available, requiring a more complex evaluation (1).   105 

Artificial Intelligence (AI) was first applied in neuroimaging in the early 2000s, when it 106 

was combined with functional magnetic resonance imaging (fMRI) to create more 107 

precise mapping of the activity of the human brain after various specific stimuli. 108 

Despite the potential of the technique being immediately clear, the first reports were 109 

pessimistic (2,3). This was because of the combined need for very large amounts of 110 

data and contemporary, state-of-the-art computing resources. Solutions became 111 

available only in the last decade, which is the reason for today’s AI revolution (4). 112 

Much has been written of the potential application of AI in neuroradiology and in most 113 

recent times in nuclear imaging in several fields, however, a detailed description of the 114 

mechanisms underlying the application of AI in nuclear neuroimaging has not been 115 

fully provided (5,6). 116 

Indeed, the Neuroimaging Committee of the European Association of Nuclear 117 

Medicine believes that an easy-to understand- and position overview on the 118 

principles of AI in nuclear neuroimaging will bring important added value to clinical 119 

studies and to clinical teams.  120 

  121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 



5 
 

2. Introduction and background of AI in neuroimaging 131 

Introduction 132 

AI is designed to perform tasks that would otherwise require human labour. AI is a 133 

technique which enables programs to mimic human cognitive functions, i.e., human 134 

behaviour; therefore, these algorithms can learn from experience. AI essentially learns 135 

from processing large amount of data & recognize specific patterns in the dataset (7). 136 

Background and Nomenclature: machine learning vs. deep learning  137 

Machine learning (ML) is a subset of AI programs/algorithms which uses statistical 138 

methods on training data and which, by doing so, is able to improve. This is typically 139 

an iterative process (the more data we have/insert in the database, the more accurate 140 

is the result). In machine learning often the data is structured and pre-processed (e.g. 141 

radiomics) using well define features). For instance, ML can differentiate normal brain 142 

parenchyma from ischemic parenchyma by using pre-programmed patterns of an 143 

infarct (e.g. hypo attenuating brain tissue, obscuration of the basal ganglia, sulci 144 

effacement in CT) which are paired with the result in the AI computer database 145 

(infarcted brain tissue) (8,9).  146 

Deep learning (DL) is a subset more complex evolution of machine learning. In this 147 

learning process, the ‘raw’ data are presented, and the algorithm learns how to extract 148 

the relevant features (Fig. 2) (10).   149 

Figure 2: Relation between AI, Machine Learning and Deep Learning 150 

 151 

 152 

 153 

 154 

 155 

 156 
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DL was inspired by human brain structures/networks; therefore, this algorithm concept 157 

is called artificial neural network (ANN). It models artificial neurons that collect input 158 

data and weigh each of those inputs. This artificial neuron network operates with an 159 

activation function which combines the weighted average of the input into an output 160 

signal. This signal is received by connected neurons (Fig. 3) (8,10,11).  161 

 162 

Figure 3:  Schematic structure of a Deep Learning method (Artificial Neural Network) 163 

In deep learning the first step is to i) collect a large dataset of images / input layer (several MR 164 

sequences presented in the left-hand side of the figure). ii) Then the computer generates a 165 

set of “unusual images” named convolutional layers which is the main building block of CNN 166 

and contain abnormal findings (also named filters, e.g. abnormal density, intensity, edge, 167 

deviation of anatomical boundaries etc.). iii) Then the images are matched with a dataset of 168 

pre-acquired images with similar features (see the Fig. below: information of infarct, 169 

hemorrhage and metastasis were included in the dataset). Similarly, to what happens in the 170 

human brain, which pools information together, the several convolution layers from the images 171 

are connected each other. iiii) The computer then checks the (millions of) possible combined 172 

information (through several fully connected layers to identify a more complex picture 173 

(relationship between the features) in the database and will give the results based on the 174 

likelihood of similarity. Likewise to human brain, the more information we have, the more 175 

probability we have to make a correct assessment. In the same way, the more convolution 176 

layer information we feed the AI dataset system, the more accurate results will be generated. 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 
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An ANN is able to recognize complex, non-linear patterns in a wide range of complex 190 

data set and it can associate them for instance with specific disorders and estimate 191 

the onset of disease. 192 

The nomenclature of NN/ANN/DL tends to be confusing. Hereafter, we refer to all 193 

neural network architectures as ANN, and if it is a conventional ANN, we denote that 194 

it is "fully-connected". DL, on the other hand, is a special type of ANN which does not 195 

just have fully-connected neural layers, but also has so-called convolutional layers that 196 

extract features from input data (Fig. 3) to create output data. Convolution layer 197 

consists of one or more filters (or Kernel) with different weights that are used to extract 198 

features from the input image (8,10,11).  199 

These convolutional kernels are matched to the given input image at each coordinate 200 

and generate a “meta-image” (a.k.a. convolved image) which highlights several 201 

features such as regions, edges, patterns where the given kernel had a high ratio of 202 

matching.  203 

This resulting “meta-image’ will be weighted and compared to the database into the 204 

computer. The training process of ANN is not only of optimizing weights in the fully-205 

connected network, but also to determine the values of the convolutional kernels. 206 

Hence, DL operates not only with hand-crafted features (e.g., shallow radiomics) but 207 

with learnt features (12–15). 208 

Deep learning is the most used algorithm in medical imaging because it can make 209 

complex decisions on its own. It is worth to mention that, given the high number of 210 

heterogeneous parameters, DL requires a large training dataset to avoid 211 

under/overfitting. It is widely used in structural and functional MRI and positron 212 

emission tomography (PET) imaging. It is specifically designed for image processing, 213 

object identification and segmentation allowing unparalleled accuracy in the field of 214 

neuroradiology (16,17).  215 

 216 

 217 
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3. Physics, clinical aspects, and the need for exhaustive evaluation 218 
and validation in neuroimaging 219 

AI algorithms have shown many potential benefits for brain PET and SPECT, mainly 220 

related to the physics and clinical aspects of the studies. This section is focused on 221 

ensuring these advancements have been rigorously tested and achieved through a 222 

reproducible methodology, with a reliable training and verification method and, 223 

secondly, defining the corresponding ground-truth for an exhaustive validation and 224 

evaluation of AI algorithms.  225 

Lack of generalizability and potential solutions 226 

The crescent interest in AI is not without problems, requiring large validation studies. 227 

Consortium datasets have emerge in molecular neuroimaging including Alzheimer's 228 

Disease Neuroimaging Initiative (ADNI), Parkinson's Progression Markers Initiative 229 

(PPMI) or Open Access Series of Imaging Studies (OASIS), however, more data are 230 

still needed to for the complete translation to clinical routine use. 231 

Open standard datasets will be essential for the development of AI, even though it 232 

may involve significant costs. One possible cost-efficient solution is to make use of 233 

realistic Monte Carlo simulations techniques for generating in silico neuroimaging 234 

datasets, thus allowing for data augmentation from patient data (18). Another solution 235 

to address this challenge is federated learning, which allows AI to be trained on 236 

decentralized datasets from multiple hospitals, while ensuring data privacy and 237 

security. Federated learning has been already applied to training of AI models in 238 

different brain PET challenges, such as reconstruction, segmentation and denoising 239 

using brain PET datasets from multiple institutions (19–21). An even more recent 240 

improvement is swarm learning, that combine Federated learning with blockchain 241 

technologies to further ensure the robustness of the learning process (22). 242 

The ground-truth for AI models 243 

The ground-truth for a given neuroimaging dataset is often uncertain, difficult to 244 

establish and strongly dependent on each application. For instance, ground-truth for 245 

AI models aimed at improving the spatial resolution can be obtained from high-246 

resolution phantom studies, the ground-truth for models focused on denoising should 247 

be obtained from the corresponding raw data acquired during long scans (23). In 248 

Commented [ZK2]: Should we rewrite to: ‘Major 
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clinical applications, the ground-truth for AI models providing automated image 249 

analysis can be datasets analysed visually and processed manually by experienced 250 

nuclear medicine physicians (24). On the other hand, AI models focused on disease 251 

detection should use a ground-truth obtained from cases with a definite diagnosis 252 

confirmed by clinical follow-up as well as other relevant diagnostic tests or 253 

histopathological examination if available (25). Therefore, it is important to have a clear 254 

“ground truth” aim before processing and using any AI model; this process requires by 255 

all clinicians an understanding of the physics and clinical applications of Artificial 256 

intelligence. 257 

 258 

4. Image acquisition, reconstruction, segmentation, registration and 259 
analysis  260 
 261 
In this section we will discuss the potential application of AI to processes of image 262 

formation, which include data acquisition and image reconstruction steps (including 263 

data correction) and post-processing (including registration, normalization, and 264 

analysis). 265 

Acquisition and reconstruction  266 

In the data acquisition stage, deep learning models have been utilized to estimate 267 

Time-of-Flight (ToF) and improve the quantitative accuracy and diagnostic confidence 268 

of PET images reconstructed without ToF, specifically for brain PET (26,27). In 269 

tomographic reconstruction, AI has been employed to enhance the quality of PET and 270 

SPECT images by reducing noise and enhancing image contrast during reconstruction 271 

(28). Deep learning techniques have also demonstrated effectiveness in providing 272 

accurate and generalizable PET attenuation and scatter correction methods (29,30), 273 

and, interestingly, attenuation correction methods without CT (31). Finally, generative 274 

adversarial networks have been employed for motion correction in brain PET, 275 

effectively addressing the challenge of head motion artifacts (32). AIso, they can be 276 

used to dramatically shorten scan times/activity amounts needed (33). 277 

Segmentation and registration: 278 

In post-processing, AI-based segmentation can overcome the time-consuming and 279 

observer-dependent process of manual annotation of brain structures in PET images 280 

Commented [ZK3]: Should we rewrite to: ‘Image 
formation and analysis” 
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(34,35). AI can also assist in the registration of neuroimaging data, via the alignment 281 

of images from different imaging modalities or timepoints and learning the mapping 282 

between images and different modalities (36). Furthermore, AI can facilitate the 283 

extraction of meaningful quantitative parameters from the images, such as, improved 284 

amyloid PET quantification without non-specific contributions (37) and amyloid PET 285 

quantification without using MRI (38). This advance can contribute to the development 286 

and routine accessible use of biomarkers for early diagnosis and personalized 287 

treatment. Moreover, AI might  provide non-invasive estimations of the arterial input 288 

function for brain PET studies, facilitating adoption of absolute quantification in clinical 289 

settings (39).  290 

Interpretability Analysis 291 

Lastly, interpretability and robustness are essential aspects of AI applications in 292 

neuroimaging. By improving interpretability and robustness, we can enhance the 293 

trustworthiness, and clinical utility of AI models and promote the development and 294 

translation of AI technologies in clinical settings. Additionally, we can help identify 295 

potential biases, errors, or limitations in the model, which can be addressed to improve 296 

its performance and generalizability (40). Similarly, some of the AI methods can be 297 

easily supervised. A segmentation task can be easily checked once the segmentations 298 

are generated, so the correctness of the segmentation is easily verified/ supervised.  299 

Some other tasks of AI cannot be easily supervised and require external validation 300 

and, if possible, some explainability testing is of importance. So called explainable AI 301 

techniques are rapidly emerging to improve interpretability, including feature 302 

visualization, saliency maps, and decision trees. These can reveal the key features 303 

and patterns that contribute to the model's predictions or decisions. Another approach 304 

is to incorporate robustness measures, such as adversarial training, regularization, 305 

and uncertainty quantification, into the AI model to increase its resilience to various 306 

types of noise, artifacts, or uncertainties (41). 307 

 308 

 309 

 310 
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5. AI in molecular imaging in neuro-oncology. A review of the current 311 
knowledge and perspectives. 312 

In neuro-oncology, one of the specificities of neuro-oncological applications of AI is a 313 

relatively rare incidence of brain tumors with an annual global age-standardized 314 

incidence of primary malignant brain tumors of about 3 per 100,000 (42), requiring 315 

special modelling workflows or data augmentation techniques (43,44). Radiomics 316 

studies should follow the IBSI (Image Biomarker Standardization Initiative) guidelines 317 

(45). These guidelines cover the image pre-processing, tumor segmentation, and the 318 

image biomarker computation. All the extracted radiomics features are used in a 319 

modelling step, performed in most of the cases with machine learning models. Studies 320 

using deep learning approaches, which can be applied to the entire analysis or to 321 

specific parts of the workflow (46), are for the moment scarce. 322 

Machine learning studies 323 

The first studies using AI in neuro-oncology were based on machine learning models 324 

with conventional PET features for initial characterization of brain lesions (47), 325 

predicting molecular characteristics of gliomas (48–50) including features from 326 

multiparametric MRI (48), and search of recurrences (51) with higher diagnostic 327 

performances as compared to results obtained only with a conventional approach. 328 

Radiomics studies 329 

Most of the radiomics studies in neuro-oncology focused on amino-acid PET 330 

radiotracers in gliomas, at initial diagnosis for grading (52,53) or prediction of important 331 

molecular characteristics (54–59) according to the latest WHO classifications of 332 

gliomas (60), for prognosis (61–63), for search of recurrences (64–66), including the 333 

search for early progression in glioma patients after chemoradiation (67). Interestingly, 334 

some studies investigated radiomics derived from both static but also dynamic 335 

acquisitions at initial diagnosis (68,69), for the prognosis (70) or search for glioma 336 

recurrences (71). The combination of PET radiomics features extracted from several 337 

PET radiotracers (64) or in combination with MRI radiomics features (59) is also of 338 

interest in the field of neuro-oncology. It is also important to perform radiomics 339 

analyses in a multicentric approach ensuring a better guarantee of generalizability of 340 

the obtained results (71). Some studies were focused on methodological approaches 341 
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regarding patient preparation (72) or PET imagereconstruction processes (73) and 342 

their influence on radiomics analyses. Importantly, two methodological studies with 343 
18F-FET relied on the features repeatability (43) and harmonization (44), two crucial 344 

steps for considering the generalization of the results obtained. PET radiomics studies 345 

in gliomas with other radiotracers than amino-acid ones are limited, with 18F-FDG (74–346 

76) or TSPO PET imaging (44). Table 1 summarizes the main radiomics studies in 347 

gliomas compliant with the IBSI guidelines.  348 

Radiomics studies in other brain tumors are relatively limited, mainly to brain 349 

metastases for the initial differential diagnosis (77) and the search for recurrences 350 

(78,79). Rare studies also included primary CNS lymphomas for the differential 351 

diagnosis (80,81). 352 

Deep learning studies 353 

The first studies used deep learning for specific tasks like the tumor segmentation with 354 

PET (82,83) or the attenuation correction in PET/MRI (84). More clinically tasks were 355 

then investigated with equivalent diagnostic performances than expert consensus for 356 

the diagnosis of tumor progression (85), but lower diagnostic performances for the 357 

prediction of molecular characteristics (86). 358 

Perspectives 359 

AI in neuro-oncology is intensively evaluated allowing simplifying steps in radiomics 360 

pipeline such as tumor segmentation, increasing data comparability between 361 

observers and more importantly extracting new features from the images of brain 362 

tumor patients (87). AI is currently primarily represented by radiomics analyses, which 363 

must be performed according to the steps described in the IBSI guidelines to ensure 364 

standardization of processes (45,88), providing promising results with good diagnostic 365 

performances in various clinical indications, including methodological approaches. 366 

Some improvements are nevertheless required for the generalization of the observed 367 

diagnostic performances, by identifying specific radiomic signatures that are easily 368 

transposable across centers. Notably, these efforts concern the feature repeatability 369 

and harmonization through well-defined multicentric studies. This is even more 370 

meaningful for the field of neuro-oncology since CNS tumors are rare diseases with 371 

therefore a limited number of patients, requiring data collection from different centers. 372 
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Studies of PET multi-tracer radiomics analyses and/or combination with 373 

multiparametric MRI and clinical parameters are also encouraged. Another important 374 

point is that diagnostic performances of radiomics models should systematically be 375 

compared to conventional parameters to really appreciate the added value of AI-376 

related methods in each clinical indication before implementation in clinical routine. 377 

Finally, an important effort may be developed to make accessible radiomics data 378 

accessible at the individual level, providing an additional clinical tool to assist the 379 

nuclear medicine physicians in their decisions. 380 

 Table 1. Summary of PET radiomics studies compliant with the IBSI guidelines in 381 

gliomas 382 
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 Radiotracer 
Number 
of 
Patients 

Task Main finding 

Initial 
diagnosis 

   
 

Russo et al., 

2021 (53)  

[11C]-

methionine 
56 Grading AUC of 0.64 

Zhou et al., 2021 

(57) 
[18F]-FET 58 

IDH mutation 

prediction 

AUC of 0.91 

combining PET 

and CT features 

Li et al., 2021 

(68) 
[18F]-FET 159 

TERTp mutation 

prediction in 

glioblastomas 

AUC of 0.82 

Zaragori et al., 

2022 (73) 
[18F]-FDOPA 72 

IDH mutation and 

1p19q codeletion 

prediction 

AUC of 0.83 for 

IDH mutation and 

0.72 for 1p19q 

codeletion 

Zhang et al., 

2022 (89) 
[18F]-FDG 102 

ATRX mutation 

prediction in IDH-

mutant gliomas 

AUC of 0.96 

combining PET 

and MRI features 

Cao et al., 2022 

(77) 
[18F]-FDG 100 

Differentiation 

between 

glioblastoma and 

brain metastases 

AUC of 0.84 

combining PET 

and MRI features 

Papp et al., 

2023 (56) 

[11C]-

methionine 
35 

IDH mutation 

prediction 

Radiomics 

signature differ 

according to sex 

Prognosis     

Li et al., 2023 

(70) 
[18F]-FET 141 

Survival in newly-

diagnosed 

glioblastomas 

AUC of 0.74 

combining PET 

and clinical 

features 

Carles et al., 

2021 (62) 
[18F]-FET 32 

Survival in 

recurrent 

glioblastomas 

AUC of 0.66 for 

recurrence 

location. 
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Radiomics 

signature 

associated to 

survival. 

Recurrence     

Wang et al., 

2020 (64) 

[18F]-FDG 

and 11C-

methionine 

160 

Differentiation of 

treatment-related 

changes from 

glioma 

progression 

AUC of 0.91 with 

an integrated 

model involving 

radiomics 

signature, the 

mean of tumor-

background ratio 

of 18F-FDG, 

maximum of TBR 

of 11C-MET PET, 

and patient age 

Ahrari et al., 

2021 (71) 
[18F]-FDOPA 85 

Differentiation of 

treatment-related 

changes from 

glioma 

progression 

AUC of 0.83 

Müller et al., 

2022 (66) 
[18F]-FET 151 

Differentiation of 

treatment-related 

changes from 

glioma 

progression 

AUC of 0.85 

Methodological     

Gutsche et al., 

2021 (43) 
[18F]-FET 50 

Features 

repeatability 

In tumor VOIs, 

73% of first-order 

features and 71% 

of features 

extracted from 

the gray level co-
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 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

  411 

 412 

 413 

occurrence 

matrix showed 

high 

repeatability. 

Bros et al., 2021 

(72) 
[18F]-FDOPA 54 

Effects of 

Carbidopa 

premedication 

Carbidopa 

impacted 81% of 

radiomics 

features, no 

longer 

significantly 

modified when 

using ratios to 

healthy brain. 

Ahrari et al., 

2022 (73) 
[18F]-FDOPA 57 

Effects of the Point 

Spread Function 

deconvolution 

AUC of 0.83 vs. 

0.79 for the IDH 

mutation after 

applying PSFd. 

Zounek et al., 

2023 (44) 
[18F]-FET and 

[18F]-GE-180 
19 

Features 

harmonization for 

pooling data 

Feature 

distributions 

could be 

successfully 

aligned using 

ComBat except 

for some features 

affected by 

changes in 

patients rank. 
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6. AI in molecular imaging of Epilepsy: A review of the current 414 
knowledge and perspectives. 415 

 416 

Epilepsy is one of the most common neurological disorders characterized by abnormal 417 

excessive firing and synchronisation of neurons leading to seizures. The accurate 418 

identification of the epileptogenic foci is essential to avoid misdiagnosis and select the 419 

correct treatment, especially when resective surgery is necessary as in drug-resistant 420 

epilepsy (90). While nuclear medicine neuroimaging is the key diagnostic tool, allowing 421 

to evaluate metabolic, neurotransmission or perfusion abnormalities occurring in 422 

people with epilepsy, there is an increasing need to define accurate computer-aided 423 

tools to support clinicians. In this context, AI-based tools pave the way for solving such 424 

tasks, fostered by the exceptional advancement in the models we have witnessed in 425 

the last years. ML and DL are currently explored for diverse tasks as cortical lesion 426 

localization (mainly for focal cortical dysplasia - FCD), epileptic focus 427 

detection/lateralization and brain region segmentation (e.g., hippocampus), or for the 428 

diagnosis and prognosis of different epilepsy types. Still, AI has been mostly applied 429 

to MRI or EEG recordings (especially for seizure identification and forecasting), while 430 

their exploitation in the nuclear medicine-epilepsy field is still in its infancy, with a few 431 

studies largely limited to [18F]FDG-PET briefly reviewed in the followings.  432 

 433 

Machine Learning studies 434 

In conventional ML, the classification/regression tasks are combined with an initial step 435 

of feature engineering to extract the image-derived phenotypes to be included in the 436 

different models. The voxel-wise glucose uptake levels have been used in a few 437 

studies (91,92), also combined with dimensionality reduction methods as Principal 438 

Component Analysis (PCA) (92). However, regional measures are still the primary 439 

choice, usually defined as asymmetry/laterality indices calculated from glucose mean 440 

values in a single representative region (93) or in a series of ROIs from common 441 

atlases as Anatomical Automatic Labelling Atlas (AAL) or Freesurfer parcellation 442 

(94,95). All these measures combined with other ML methods (e.g., support vector 443 

machine, random forest and multivariate pattern analysis) have been successfully 444 

applied for lateralization tasks in temporal lobe epilepsy (92,93,95), seizure recurrence 445 

prediction and prognostic assessment in drug-resistant epilepsy (94,96,97), or disease 446 
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classification (patients vs controls) (91,93), with improved performance compared to 447 

conventional and visual approaches.  448 

 449 

Deep Learning studies 450 

Besides two pioneering works focusing on epilepsy lateralization with ANNs 451 

architectures (98,99), DL has been only recently introduced in such domain. DL has 452 

the undeniable advantage of avoiding feature extraction by learning directly from the 453 

images, allowing to improve the classification/prediction performance compared to all 454 

the other approaches. Only few examples are available in the current literature, aiming 455 

at improving the epilepsy lesion characterization (100) or structure segmentation 456 

(101). One study evaluated ANN along with other ML-based approaches for predicting 457 

surgical outcome in mesial temporal lobe epilepsy (92), and one study focused on the 458 

identification of the epileptic foci in paediatric patients with a symmetricity-driven 459 

Siamese CNN, going beyond visual assessment and conventional SPM analysis (89). 460 

Another used DL to predict an individual patient’s “healthy” FDG PET based on their 461 

MRI, which was then subtracted from the real FDG PET to identify metabolic lesions 462 

(Subtraction Interictal PET Co-registered to MRI, “SIPCOM”), again performing better 463 

than conventional SPM analysis (102). 464 

 465 

Perspectives 466 

Despite the methodological advancements, AI applications in molecular imaging of  467 

epilepsy are still limited and confined to specific epilepsy types, possibly because of 468 

the difficulties in finding large (and annotated) datasets to train and generalize the 469 

complex AI-based models, the high heterogeneity of patients with epilepsy and the 470 

need to perform patient-specific fingerprinting, especially when comes to clinics. Multi-471 

centre initiatives, coupled with advanced DL models (e.g., multi-task CNNs, 472 

autoencoders) and data augmentation methods (e.g., generative adversarial networks 473 

or large simulated databases) (100), might help to overcome part of such limitations, 474 

providing more generalizable models and a precise fine-grained characterization of 475 

inter-individual patient variability to progress towards personalized medicine.  476 

Some recent studies have also underlined the importance of combining multi-modal 477 

imaging data, such as metabolic PET with structural or functional MRI, often 478 

leveraging the value of simultaneous PET/MRI acquisitions. These multi-modal data 479 

coupled with AI models can increase the accuracy in predicting the surgical outcomes 480 
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(103,104) and detecting focal epilepsy lesions such as FCD (105,106). All these 481 

approaches therefore deserve further investigations for fully exploiting their potential 482 

and exploring their generalizability in the epilepsy workflow (see the summary of the 483 

cited articles in Table 2).  484 

Table 2: Summary of cited papers  485 

 486 

  Study cohort Task AI method Main finding 
     

Wu et al., 2021 [87]  
23 MTLE patients 
and 24 HC Classification 

MVPA + SVM 
AUC of 0.996 

Beheshti et al., 2020 
[88] 

56 TLE patients 
(MRI negative) 

Focus 
lateralization 

T-test Feature 
ranking + SVM 

Accuracy of 
96.43%  

Peter et al., 2018 
[89] 

17 TLE patients 
and 23 HC 

Focus 
lateralization 
and 
classification 

Lateralization 
indices + LR 

AUC of 0.8 
(lateralization); 
AUC of 0.44 
(classification) 

Kini et al., 2021 [90] 89 TLE patients 

 
Prediction of 
long-term 
seizure 
recurrence RF 

Mean out-of-bag 
accuracy of 0.71 

Shih et al., 2021 [91] 
104 MTLE 
patients 

Focus 
lateralization 

Lateralization 
indices + 7 ML 
classifiers 

Accuracy of ~ 96% 
(validation), 100% 
(test) 

Sinclair et al., 2021 
[92]  82 MTLE patients 

Prediction of 
surgical 
outcome 

LR, SVM, RF, 
ANN AUC of 0.75–0.81 

Lee et al., 2000 [93] 
261 epilepsy 
patients  

Epilepsy 
diagnosis (NA, 
LTLE, RTLE) ANN + LDA 

Average agreement 
between ANN and 
human experts of 
85% (test) 

Kerr et al., 2013 [94] 
105 epilepsy 
patients 

Diagnosis and 
lateralization 
of TLE  MLP 

Accuracy of 88% 
(RTLE) and 83% 
(LTLE); accuracy for 
simultaneous 
diagnosis and 
lateralization of 
76% 

Flaus et al., 2022 
[95]  

Simulated data 
and 10 epilepsy 
patients 

PET image 
quality 
enhancement ResNet 

Improved image 
quality; 
improvement of 
visual lesion 
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detection from 38 
to 75% 

Sundar et al., 2022 
[96]  

10 HC and 14 
non-lesional 
epilepsy patients 
(brain dataset) Segmentation nnU-Net 

89% of the 
cerebral areas with 
DSC > 0.80 

Zhang et al., 2021 
[97] 

201 pediatric TLE 
patients and 24 
HC 

Focus 
localization + 
Classification Siamese CNN 

DSC of 0.51; AUC of 
0.92 (classification) 

Tang et al., 2022 [98] 
141 epilepsy 
patients 

Prediction of 
seizure 
outcomes after 
surgery 

ResNet-34 + 
multi-kernel 
SVM 

AUC from 0.799 to 
0.952 (higher for 
multi-modality) 

Wang et al., 2022 
[99] 

39 mTLE-HS 
patients and 22 
HC 

Prediction of 
seizure 
outcomes after 
surgery GBDT + LR 

AUC of 0.905 
(multi-modality, 
test) 

Lin et al., 2020 [100] 
22 epilepsy 
patients with FCD 

Automatic 
detection of 
FCD lesion XGBoost 

Accuracy of 91% 
(multi-modality) 

Tan et al., 2018 [101] 

28 epilepsy 
patients with FCD 
and 23 TLE 
patients (MRI 
negative) 

Automatic 
detection of 
FCD lesion SVM  

Sensitivity of 93% 
(multi-modality) 

MTLE = mesial temporal lobe epilepsy; HC = healthy controls; MVPA = machine learning-based 
multivariate pattern analysis; SVM = support vector machine; LR = logistic regression; RF = random 
forest; ANN = artificial neural network; NA = no abnormal findings; LDA = linear discriminant 
analysis; MLP = multilayer perceptron; CNN = convolutional neural network; DSC = dice coefficient; 
mTLE-HS = medial temporal lobe epilepsy due to hippocampal sclerosis; GBDT = gradient boosting 
decision tree; FCD = focal cortical dysplasia. (Note: all studies used 18F-FDG radiotracer) 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 
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7. AI in molecular imaging of dementia and movement disorders: A 495 
review of the current knowledge and perspectives. 496 

 497 

The differential diagnosis of neurodegenerative and movement disorders can be quite 498 

complex and is highly dependent on the expertise of the reader. Therefore, AI may 499 

help in the (early) differential diagnosis, especially for less experienced readers. 500 

Multimodal imaging with structural and functional information combined with fluid-501 

based biomarkers is becoming the standard in the diagnostic landscape. In this 502 

multimodal setting AI can be particularly helpful for feature selection. Moreover, AI 503 

might give additional clues about the prognosis. However, the biggest challenge in the 504 

field of AI in neurodegenerative disease is located in a very limited number of available 505 

standards of truth assessments, i.e. autopsies in previously imaged patients. In the 506 

next paragraphs we will review the AI approaches used in the literature and the 507 

perspectives of AI in molecular imaging of degenerative disorders. 508 

 509 

Machine Learning studies 510 

Machine learning already showed tremendous success in the differential diagnosis of 511 

neurodegenerative disorders by pattern recognition of Parkinsonian syndromes using 512 

FDG-PET images more than a decade ago (107). A recent review confirmed that the 513 

performance of a multimodal machine learning model using both structural and 514 

functional data is higher that single modality models (108). In prodromal AD and 515 

Parkinsonian syndromes, artificial intelligence not only showed potential in the early 516 

differential diagnosis, but also to predict future pathological protein accumulation and 517 

clinical deterioration (109–112). Furthermore, machine learning was evaluated for the 518 

discrimination of patients with amyotrophic lateral sclerosis from controls in a 519 

prospective study (113). Apart from differential diagnosis and prognosis, Subtype-and-520 

Stage Inference (SuStaIn) modelling was applied for data-driven identification of four 521 

major subtypes in the Alzheimer’s disease (AD) continuum (108,111,113–115). 522 

 523 

Deep Learning studies 524 

Artificial intelligence using deep learning may help to extract hidden information in 525 

multimodal imaging approaches of neurodegenerative diseases. For example, it can 526 

assist the biomarker discovery, physiology exploration and so on.  527 
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The application of deep learning has been ranged from image quality enhancement 528 

(116), biomarker discovery (117,118)) cross-modality synthesis (117,119,120), 529 

quantification improvement (37,38), phenotype discovery (121) to clinical differential 530 

diagnosis (24,122–124). Brain segmentation, a crucial task to obtain quantitative 531 

parameters such as regional volume or radiotracer uptake, has been successfully 532 

performed by CNN models with high accuracy and fast processing time (125). 533 

Deep learning models trained on normal data of FDG PET can effectively identify a 534 

wide range of brain abnormalities (126).  For Alzheimer’s disease a multimodal deep 535 

learning framework - combining clinical parameters with MRI-data - demonstrated a 536 

high accuracy to discriminate between Lewy body, Alzheimer’s and vascular dementia 537 

(127). Furthermore, a deep learning model using FDG PET scans could demonstrate 538 

the cognitive dysfunction in patients with isolated rapid REM sleep behaviour disorder 539 

(iRBD) (128). Here, iRBD is considered as a very early preclinical symptom of 540 

synucleinopathies such as Parkinson’s disease, Lewy body dementia and multiple 541 

system atrophy. Also, for prognosis AI with deep learning can help since convolutional 542 

neural networks obtained an accuracy of 75% to discriminate between patients with 543 

mild cognitive impairment who will progress to Alzheimer and patients with stable mild 544 

cognitive impairment (114). Several studies have highlighted the use of deep learning 545 

in predicting and differentiating dementia and its related conditions. Deep learning 546 

models achieved notable accuracy in predicting MCI's progression to AD and 547 

outperformed human readers in predicting AD's final clinical diagnosis (129,130). 548 

Other research further emphasized deep learning's accuracy in differentiating and 549 

diagnosing various forms of dementia using diverse radiotracers (24,131–133). Deep 550 

learning has been effective in classifying and diagnosing movement disorders. Notable 551 

results include the consistent accuracy in classifying FDG PET (118,134), DAT PET 552 

(124) or SPECT (135,136) imaging and differentiating PD or parkinsonian types. 553 

 554 

Several investigations focused on refining image analysis and predictive models using 555 

deep learning (137). Studies have shown that deep learning can improve the 556 

association between specific amyloid load (37), cognitive signature (138,139), 557 

enhance spatial normalization (38), and extract longitudinal trajectories (121).  558 

Research has explored the potential of deep learning in generating synthetic PET 559 

images of scarce tracers (120), generating MR images from amyloid PET (119), and 560 

harmonizing image discrepancies (140,141). 561 
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 562 

Perspectives 563 

Future studies need to overcome the lack of validation studies across different centres 564 

and the lack of harmonization of generally accepted AI algorithms to aid in diagnosis 565 

across the neurodegenerative diseases spectrum. Moreover, all AI models are data-566 

driven, so pre-processing of imaging data plays a crucial role. Therefore, pre-567 

processing software also needs to be harmonized and validated. Accommodation of 568 

substantial numbers with standard of truth assessments for validation of AI application 569 

in PET imaging of neurodegenerative disorders remains a challenge and may be 570 

solved by large cohorts such as BioFINDER or ADNI (142,143). Conversely, PET itself 571 

may also be used as a standard of truth assessment for AI driven analysis of fluid 572 

biomarkers or omics data with the goal to find cheap and versatile tools for 573 

characterization of neurodegenerative disorders. 574 

 575 

Table 3: Summary of the cited references as they vary in patient numbers   576 

 577 
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 Radiotracer 
Number 
of 
Patients 

Task Main finding 

Anomaly 
discovery  

   
 

Choi et al. 2019 

(126) 
18F-FDG 1303 

Unsupervised 

identification of 

abnormalities of 

various disorders 

Deep learning 

trained only by 

normal data was 

applicable for 

identifying wide-

range of 

abnormalities in 

brain diseases 

Dementia      

Lu et al. 2018 (37) 18F-FDG 1242 

A multimodal and 

multiscale deep 

neural work to 

predict the risk of 

MCI in conversion 

to AD 

82.4% accuracy in 

identifying the 

individuals with MCI 

who will convert to 

AD at 3 years prior to 

conversion 

Ding et al. 2019 

(130) 
18F-FDG 1042 

Convolutional 

neural network to 

predict final 

diagnosis of AD 

and MCI 

Predicted AD final 

clinical diagnosis 

75.8 months earlier, 

surpassing reader 

performance 

Lee et al. 2022 

(117) 
18F-FDG 511 

Deep learning-

based signature 

from FDG PET to 

objectively and 

quantitatively 

evaluate cognitive 

function 

DL-based cognitive 

signature using FDG 

PET discriminated 

stroke patients with 

dementia with AUC 

of 0.75 

Etminani et al. 2022 

(24) 
18F-FDG 757 

3D deep learning 

model to predict 

final diagnosis of 

Superior AUC for 

predicting final 

diagnoses: DLB 
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AD, DLB, MCI-AD 

and cognitively 

normal 

96.2%, AD 96.4%, 

MCI-AD 71.4%, CN 

94.7%, surpassing 

human reader 

performance. 

Son et al. 2020 

(131) 

18F-

Florbetaben 
430 

Validate DL's 

feasibility over 

visual rating for 

assessing 

diagnosis in 

subjects with 

equivocal amyloid 

PET 

In equivocal scans, 

DL detected a 

significant MMSE 

score change 

difference over 1.76 

years than visual 

reading 

Park et al. 2023 

(132) 

18F-

Flortaucipir 
276 

DL integrate 

multimodal data in 

differentiating of 

cognitively 

unimpaired from 

MCI or AD 

AUC of 0.976 for 

classification of AD 

and 0.850 for 

classification of MCI 

Jo et al. 2020 (133) 
18F-

Flortaucipir 
300 

DL to identify 

informative 

features from tau 

PET for AD 

classification 

Average accuracy of 

90.8% based on five-

fold cross-validation 

in classifying AD 

from cognitively 

normal 

Ryoo et al. 2022 

(128) 
18F-FDG 50 

Test the DL-

based cognitive 

signature derived 

from AD for 

cognitive 

assessment of 

iRBD 

AUC of 0.70 

distinguishes RBD-

MCI from RBD-

nonMCI. The 

baseline DL-based 

cognitive signature is 

significantly higher in 

iRBD patients who 
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experienced 

cognitive decline 

over 2 years 

compared to those 

who didn't 

Movement 
Disorders 

    

Wenzel et al. 2019 

(135) 
123I-FP-CIT 645 

deep 

convolutional 

neural networks 

for automatic 

classification of 

DAT SPECT 

DL achieved 

consistent accuracy 

for the classification 

of DAT SPECT with 

variable site-, 

camera-, or scan-

specific image 

characteristics  

Shen et al. 2019 

(134) 
18F-FDG 350 

Group Lasso 

Sparse Deep 

Belief Network for 

discriminating PD 

and normal 

control subjects 

based on FDG-

PET 

DL classification of 

PD and NC 

outperformed 

conventional 

approaches with 

strong correlation to 

UPDRS and H&Y 

scores 

Adams et al. 2021 

(136) 
123I-FP-CIT 252 

DL to predict 

clinical motor 

function 

evaluation scores 

from longitudinal 

DAT SPECT and 

non-imaging 

clinical measures 

DL with DAT SPECT 

and UPDRS 

enhances 4-year 

motor function 

prediction 

Wu et al. 2022 (118) 18F-FDG 2228 
Metabolic 

imaging indices 

DL achieved high 

accuracy in 
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based on deep 

learning to 

support the 

differential 

diagnosis of 

parkinsonism 

differentiating 

parkinsonism in 

internal and external 

tests 

Zhao et al. 2022 

(124) 
11C-CFT 1017 

Decode the 

discriminative 

information DAT 

imaging using DL 

for the differential 

diagnosis of 

parkinsonism 

Sensitivity of 90.7%, 

84.1%, 78.6% and 

specificity of 88.4%, 

97.5% 93.3% in the 

blind test for the 

differential diagnosis 

of IPD, MSA and 

PSP 

Lu et al. 2023 (129) 
18F-

Florzolotau 
 

A normalization-

free deep-

learning model for 

differentiation of 

PSP and MSA-P 

DL-guided radiomic 

features correlated 

with clinical severity 

of PSP 

Quantification & 
Methodology 

    

Liu et al. 2021 (37) 11C-PiB 172 

Using DL to 

correct non-

specific binding 

due to 

cerebrovascular 

disease   

Specific amyloid load 

after DL-correction 

increased 

association with 

cognitive and 

functional test scores 

by up to 67% 

Kang et al. 2023 

(38) 

18F-

Flutemetamol, 

18F-

Florbetaben, 

1130 

DL-based spatial 

normalization for 

automatic 

quantification of 

Quantification using 

DL-based spatial 

normalization shows 

better correlation 

with that using MRI 
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18F-

Florbetapir 

amyloid PET 

without MRI 

FreeSurfer than 

using MRI SPM  

Reith et al. 2021 

(139) 

18F-

Florbetapir 
1224 

Combine DL-

based imaging 

feature and other 

clinical data to 

predict future 

image features   

A root mean squared 

error of 0.0339 ± 

0.0027 for future 

amyloid SUVR 

prediction 

Choi et al. 2020 

(138) 
18F-FDG 1364 

DL-based 

cognitive 

signature of FDG 

PET adaptable for 

PD and AD 

DL-based signature 

developed from AD 

applies to predict the 

conversion of MCI to 

AD and PD dementia 

Hong et al. 2022 

(121) 

18F-

Flortaucipir 
1080 

Identify the tau 

trajectory and 

quantify the tau 

progression in a 

data-driven 

approach with the 

continuous latent 

space learned by 

variational 

autoencoder 

Identified 4 clusters 

corresponds to 

different tau 

progression. The 

inferred tau 

trajectory agreed 

with the Braak 

staging 

Cross-modality 
synthesis 

    

Wang et al. 2021 

(120) 
18F-FDG 54 

Generate 

synthetic PET 

images of less-

available tracers 

such as synaptic 

density and 

amyloid from FDG 

PET 

SUVR bias for 

synthesizing 11C-

UCB-J: -0.3% ± 7.4% 

(AD), -0.5% ± 7.3% 

(CN); for 11C-PiB: -

1.3% ± 7.5% (AD), -

2.0% ± 6.9% (CN) 
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 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

Choi et al. 2018 

(119)  

18F-

Florbetapir 
261 

Deep generative 

networks to 

generate 

structural MR 

images from 

amyloid PET for 

MR-less 

quantification 

Mean absolute error 

of SUVR by MR-

based method was 

0.04 ± 0.03, 

significantly lower 

than other MR-less 

methods. 

Kim et al. 2021 

(141) 
18F-FDG 1533 

deep learning 

based amyloid 

PET prediction 

based FDG PET 

AUC of 0.86 for 

predicting amyloid-

positive patients 

using FDG PET in 

external test 

Shah et al. 2022 

(140) 

11C-PiB, 18F-

florbetapir 
138 

A Residual 

Inception 

Encoder-Decoder 

Neural Network to 

harmonize the 

difference 

between different 

amyloid PET 

imaging 

Significantly stronger 

between-tracer 

correlations (P < 

.001) were observed 

after harmonization 

for both global 

amyloid burden 

indices and voxel-

wise measurements 



30 
 

8. AI in molecular imaging in psychiatry: A review of the current 589 
knowledge and perspectives. 590 

Diagnosis and evaluation of psychiatric disorders rely almost exclusively on clinical 591 

interviews using the Diagnostic and Statistical Manual of Mental Disorders (DSM) 592 

nosography, with so far limited impact of neuroimaging beyond the issue of differential 593 

diagnosis. Yet, the DSM reliability is regularly questioned by its iterative modifications, 594 

lack of reproducibility of current diagnoses, and therapeutic resistance of many 595 

patients (144–146). In this context, more transdiagnostic approaches are emerging 596 

(147), in -addition to the development of invasive and non-invasive brain stimulation 597 

(148), for which relevant biomarkers are crucial to identify brain signatures, guide 598 

therapeutics and evaluate their effects  (145). PET and SPECT imaging could be 599 

particularly relevant to explore such disorders mainly characterized by dysfunction, in 600 

the absence of morphological lesions, with the possible implementation of various 601 

targets such as the perfusion, metabolism, neurotransmission and neuroinflammation, 602 

and especially the individual application of artificial intelligence tools for precision 603 

medicine (149,150). In this line, machine learning classification from controls has 604 

suggested accurate performance to identify patients with attention-deficit and 605 

hyperactivity disorder using multimodal serotoninergic brain PET imaging (151), 606 

patients with cocaine dependence using brain perfusion SPECT imaging (152), 607 

patients with internet game disorder using metabolic brain PET imaging (153), patients 608 

with major depression using serotoninergic PET imaging (154), or brain metabolic PET 609 

imaging, also demonstrating the value of this last exploration to predict the response 610 

of deep brain stimulation in this context (155). Machine-learned analysis of 611 

[18F]FDOPA PET scans of patients with schizophrenia also showed good performance 612 

for identifying treatment responders and non-responders, with large potential 613 

healthcare cost savings (156). This translation from research to clinical applications 614 

will need more numerous multicentric studies, and to be supported by a paradigm 615 

change in psychiatry towards modern approaches of precision medicine. 616 

 617 

 618 

 619 

 620 

 621 
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9. Role of the EANM in advancing the use of AI in molecular brain 622 
imaging  623 

 624 

As for the whole nuclear medicine community, there is great interest in the molecular 625 

brain imaging field to advance the use of AI in research, translational and potentially 626 

also in daily clinical routine settings. In good time, the EANM has recognized this 627 

desire and leads efforts moving this exciting development forward.  628 

 629 

A series of publications of AI in neuroimaging have emerged in the latest years, 630 

focusing on several different aspects of this complex modality. As often in the past 631 

with methodological imaging advancements, the brain is perfect as the organ of 632 

interest to start with testing such new developments. This is not only as multi-modality 633 

image co-registration is much easier for the head as compared to other body parts, 634 

and as large image databases are easily accessible in case of brain imaging.  635 

However, standardization of clinical brain image recording and imaging protocols as 636 

well as efficient dissemination of data will be essential before data from different 637 

centers can be used as input by AI (157–159). 638 

 639 

As with medical imaging in general, in case of molecular brain imaging, the process 640 

from data acquisition to  diagnosis involves numerous steps (e.g. image 641 

reconstruction, image segmentation, extraction of imaging biomarkers, image 642 

classification, patient stratification). AI methods have now been developed and tested 643 

for one specific step at a time. One could expect in the future that AI based algorithms 644 

could automatically handle all steps in a transparent fashion to the user, though, on 645 

the other hand, the process still needs to be guided by the clinical needs. Results and 646 

type of AI behavior or generalizability need to be evaluated (160–162).  647 

The Neuroimaging committee of the EANM and neuro-nuclear medicine opinion 648 

leaders in general believe the future potential of AI will mainly be (i) to increase image 649 

quality that would translate into a higher diagnostic accuracy and confidence, (ii) to 650 

reduced tracer dose/radiation exposure, (iii) to reduced PET or SPECT scan times, 651 

(iv) to standardize and harmonize image data acquisition, processing and analysis 652 

across centers, and (v) to improve the reporting/communication of the scan results 653 

with the patients, their caregivers and the referring doctors.  654 

 655 

Commented [ZK8]: "EANM should not be mentioned as a 
3rd person in the last paragraph (9)" – from EANM Felix 
 
Is it OK to rewrite like: “The EANM has recognised” --> “We 
have recognised” 
 
“The EANM should focus” --> “We should focus.. “etc  
 
If it's fine, I will rewrite these accordingly.  
 

Commented [ZK9]: I am adding here AH’s Fair AI idea 
It will take 2-3 days to make it nice and comprehensive – I 
believe it is important to him. 
 
Alexander Hammers: 
“Fair AI is close to my heart, and in my opinion still vastly 
under-recognised - I’ve added the citation elsewhere but 
perhaps worth repeating in this summary section along the 
lines of “Standardisation of clinical data recording and 
imaging protocols, clear demographic characterisation of 
controls and patients for Fair AI (REF: Ioannou S et al.), as 
well as efficient dissemination of data will be essential 
before data from different centres can be optimally used as 
input for AI (125 - 127)” 
(A study of demographic bias in cnn-based brain mr 
segmentation 
S Ioannou, H Chockler, A Hammers, AP King, ... 
International Workshop on Machine Learning in Clinical 
Neuroimaging, 13-22” 
 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=QFkozOIAAAAJ&pagesize=80&sortby=pubdate&citation_for_view=QFkozOIAAAAJ:kWvqk_afx_IC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=QFkozOIAAAAJ&pagesize=80&sortby=pubdate&citation_for_view=QFkozOIAAAAJ:kWvqk_afx_IC


32 
 

In clinical practice, it is difficult to foresee what will be happening in the future in 656 

molecular neuroimaging as well in other medical and non-medical fields, e.g. in how 657 

far the human being will be replaced by AI. 658 

All these procedures will help even less experts’ nuclear physicians, all over the globe, 659 

to interpret the images and address the patient to the appropriate specialist, with a 660 

timely management. 661 

In our opinion the role of nuclear medicine physicians will be to supervise the work of 662 

AI, which will decide on the specific subject the technical parameters to adopt, the 663 

scan type, the image reconstruction technique, the count of photons and possible 664 

inclusion of scatter, the clinical information/potential risk assessment and or potential 665 

treatment options. Incorporation of AI into this envisioned automated workflow (from 666 

acquisition and pre-processing to disease and risk identification) will be useful for 667 

complex cases that will benefit the most from expert clinical analysis in situations of 668 

massive data overflow (157).  669 

Most excitingly, the next years will also show whether AI is, in case of molecular brain 670 

imaging, suitable to support or even - at least in some applications - replace the 671 

nuclear medicine physician. General pros for AI in this regard are its availability without 672 

quality/reproducibility differences on a 24/7 base, stable quality, and a potential to 673 

improve over time. As examples, rather straightforward binary decisions like positivity 674 

vs. negativity in case of amyloid PET imaging, or rather complex and experience-675 

dependent differential diagnoses like those obtained by FDG PET imaging in dementia 676 

disorders or atypical Parkinsonian syndromes might be better obtainable in the future 677 

by AI.        678 

 679 

The role of nuclear medicine physicians is likely to evolve as soon as these new AI 680 

techniques (and us, as nuclear medicine experts should by ourselves drive this 681 

developments). will be fully integrated into their practice, and it is therefore important 682 

that the acquisition of a basic understanding of these methods and concepts will 683 

become part of their training (163), a matter the EANM should likewise focus on.  684 

 685 

Nevertheless, there are ongoing challenges to AI in the healthcare system. In clinical 686 

practice, the most prominent and time-consuming obstacle is the implementation of AI 687 

into the already existing workflow. AI can only function at a high level if it is treated as 688 

a fundamental part of the routine protocols rather than a simple add-on within the 689 
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system. More specifically, successful integration of AI into the operation of an 690 

organization requires at the very least a high computational power of the facility, and 691 

proper education of the staff on how to correctly implement AI-generated results, which 692 

most likely take years to be implemented satisfactorily. Consequently, successful 693 

deployment of AI demands international actions led by the EANM and other 694 

stakeholders in the field, including standardized procedures for different AI 695 

applications worldwide (164–166).  696 

 697 

Taken together, the role of organizations like EANM is to define and foresee these 698 

current and potential upcoming issues regarding nuclear medicine related AI 699 

applications. With clear objectives, supported by similarly large organizations 700 

overcoming these issues can be accelerated (167,168).  This also refers to setting up 701 

quality standards on publications dealing with AI in molecular imaging (169).  702 

 703 

Lastly, another concurrent call for EANM is to set internationally recognized ethical 704 

standards for the deployment of AI in nuclear medicine and its associated counterpart 705 

fields. The EANM has recently acknowledged a prominent set of ethical principles from 706 

Currie et al. (170) for the application of AI in nuclear medicine (Fig. 4), however; as AI 707 

algorithms and their reliability will increase, EANM will likely evolve these ethical 708 

codes.   709 

 710 

Figure 4: Decision making of the ethical principles from Currie et al. 711 
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