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EDITORIAL SUMMARY: CONIPHER: a computational framework for accurately inferring subclonal 
structure and the phylogenetic tree from multi-sample tumour sequencing, accounting for both copy 
number alterations and mutation errors. 
 
 
PROPOSED TWEET: CONIPHER: a computational framework for scalable phylogenetic 
reconstruction with error correction from tumours 
 
 
PROPOSED TEASER: CONIPHER reconstructs tumour evolutionary history 
 
 



 

KEY POINTS: 
● CONIPHER is a computational framework for accurately inferring subclonal structure and 

phylogenetic relationships from multi-sample tumour sequencing, accounting for both copy 
number alterations and mutation errors. 

 
● Benchmarking analyses on simulations show that CONIPHER outperforms similar methods, 

and in particular scales to a large number of tumour samples and clones. This enables 
automated phylogenetic analysis which can be effectively applied to large sequencing 
datasets generated with different technologies. 

 

Abstract 
 

Intra-tumour heterogeneity provides the fuel for the evolution and selection of subclonal tumour 

cell populations. However, accurate inference of tumour subclonal architecture and reconstruction 

of tumour evolutionary history from bulk DNA sequencing data remains challenging. Frequently, 

sequencing and alignment artefacts are not fully filtered out from real cancer somatic mutations 

and errors in the identification of copy number alterations or complex evolutionary events (e.g. 

mutation losses) affect the estimated cellular prevalence of mutations. Together, such errors 

propagate into the analysis of mutation clustering and phylogenetic reconstruction. In this paper 

we present a new computational framework, CONIPHER (COrrecting Noise In PHylogenetic 

Evaluation and Reconstruction), that accurately infers subclonal structure and phylogenetic 

relationships from multi-sample tumour sequencing, accounting for both copy number alterations 

and mutation errors. CONIPHER has been used to reconstruct subclonal architecture and tumour 

phylogeny from 421 multi-sample tumours with high-depth whole-exome sequencing (WES) from 

the TRACERx421 dataset, as well as 126 primary-metastatic cases. CONIPHER outperforms 

similar methods on simulated datasets, and in particular scales to a large number of tumour 

samples and clones, while completing in under 1.5 hours on average. As such, CONIPHER 

enables automated phylogenetic analysis which can be effectively applied to large sequencing 

datasets generated with different technologies. CONIPHER can be run with basic knowledge of 

bioinformatics, and R and bash scripting languages. 
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Introduction 

 
Cancer is an evolutionary process1, in which the heritable accumulation of somatic mutations 

results in the formation of heterogeneous subpopulations of cancer cells, referred to as intra-

tumour heterogeneity (ITH)2. Most cancer evolution studies quantify ITH from DNA sequencing 

data by identifying the unique complements of somatic mutations that are carried by these 

different subpopulations of cells, or ‘subclones’. Accurately reconstructing the genomic profile of 

each subclone, and inferring the evolutionary hierarchy between the subclones present in a 

tumour is important, not only for studying the biology of the disease trajectory, but because a 

tumour subclone harbouring a treatment-resistant genomic variant could have important clinical 

implications, and could be used to guide therapeutic decision making3. 

 
 

In recent years, progress in next-generation sequencing technology and computational 

methodology has revealed significant ITH in several cancer types4. However, a single tumour 

tissue biopsy sample may contain a mixture of many thousands of heterogeneous normal and 

cancer cells, making the full deconvolution of subclonal populations and their phylogenetic 

ordering from bulk DNA sequencing challenging. While single-cell sequencing techniques are 

promising approaches providing unprecedented resolution to cancer evolutionary analysis, they 

remain highly specialised techniques with various technical and financial challenges that limit their 

application to large cohorts of tumour samples, particularly in clinical settings. In fact, the most 
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recent and large cancer sequencing studies such as the TRACERx5 and PCAWG6 studies still 

rely on bulk sequencing. Therefore, accurate and automatic pipelines for tumour evolutionary 

analysis from bulk sequencing data, especially multi-region and multi-site datasets, still represent 

an important unmet need. 

 
 

Typically, subclonal reconstruction algorithms leverage the observed variant allele 

frequency (VAF) of single-nucleotide mutations measured from aligned DNA sequencing reads 

in order to quantify the prevalence of somatic events7. Due to the presence of somatic copy 

number alterations (SCNAs) and normal cell admixtures, the VAF alone is not an accurate 

estimator of the population frequency of the variant. Therefore, most existing algorithms apply 

different approaches to correct the VAF for tumour purity and SCNAs to infer estimates of the 

cancer cell fraction (CCF) of a mutation, which defines the proportion of cancer cells in the sample 

that carry the mutation8. 

To reconstruct clonal evolution, computational methods cluster together mutations with 

similar CCFs in all samples sequenced into ‘subclonal clusters’, under the assumption that they 

are likely present in a similar set of cells and that they represent a clonal expansion at a similar 

evolutionary time point8. Then, by nesting subclonal cluster CCFs based on evolutionary 

principles for constraining lineage relationships, algorithms seek to infer the evolutionary ordering 

of clusters and reconstruct the full tumour phylogenetic tree2 (Table 1). Such principles include 

the ‘sum condition’9, (sometimes referred to as the ‘pigeonhole principle’)10 which states that the 

CCF of a parental cluster must be greater than or equal to the sum of its daughter cluster CCFs 

in all tumour samples, and ‘crossing rule’, which states that for two subclonal clusters A and B, if 

CCF(A) > CCF(B) in at least one tumour sample, and CCF(A) < CCF(B) in one or more distinct 

tumour samples, then A and B must be on distinct branches of the phylogenetic tree11,1211. 

 
 

Three key challenges make the accurate estimation of mutation CCFs from bulk 

sequencing data, assigning mutations to clusters, and inferring evolutionary ordering between 

mutation clusters non-trivial. 
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First, errors in both mutation and copy number calling (e.g., sequencing artefacts, 

misalignments, etc) may result in errors in the estimated CCFs and, hence, in the identification of 

false mutation clusters that do not reflect true biological signals. For example, subclonal SCNAs 

undetected by copy-number calling algorithms can result in a genomically clustered group of 

mutations having a distinct CCF which reflects the copy number event and not the true underlying 

prevalence of the mutations. Unless explicitly removed, such clusters will be propagated and will 

impact the phylogenetic tree reconstruction. However, most of the existing algorithms that cluster 

mutations and reconstruct tumour phylogenetic trees assume that the input data is error free13, 

either in terms of SNVs9, SCNAs14, or both15. Thus, a cluster resulting from mutation or SCNA 

errors will be given equal weight to a bona-fide mutation cluster which might erroneously impact 

the reconstruction of the tumour phylogenetic tree. 

 
 

Second, SCNAs can result in the loss of mutations when genomic segments that contain 

the locus of their mutated alleles are deleted8. Mutation losses violate the commonly enforced 

infinite sites assumption (i.e., the assumption in which mutations occur at most once at a particular 

genomic locus and cannot be lost by reversion mutation13). When analysing these lost mutations, 

their CCFs will appear lower than the CCFs of the other mutations that represent the same clonal 

expansion (i.e. that are part of the same edge of the tumour phylogenetic tree). Hence, accounting 

for mutation losses is important for inferring the correct mutation cell fraction. In this paper, we 

refer to the fraction of cancer cells that either carry a mutation, or whose ancestors carried the 

mutation before mutation loss, as the phylogenetic cancer cell fraction (PhyloCCF)8. This concept 

has been introduced and used in previous studies2. 

 
 

Finally, most current subclonal reconstruction methods are limited in their ability to 

accurately cluster and construct phylogenetic trees based on large multi-sample studies. In 

particular, to account for SCNAs during the estimation of CCFs from the observed VAFs, some 

phylogenetic reconstruction algorithms aim to jointly model the evolution of SNVs and SCNAs10. 
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However, due to the complexity of these models, these algorithms do not scale to the high 

numbers of mutations found in the whole-genome and whole-exome sequencing studies16, and 

neither to the large number of tumour samples sequenced in recent multi-sample tumour studies2. 

 

To address previous limitations, we develop CONIPHER (COrrecting Noise In 

PHylogenetic Evaluation and Reconstruction), a novel algorithm to automatically reconstruct 

subclonal mutation clusters, tumour phylogeny and subclone cell proportions from bulk 

sequencing data and account for uncertainty. CONIPHER is characterised by three novel features 

that address key challenges in phylogenetic reconstruction described above: (1) an approach to 

remove biologically improbable clusters that either are driven by likely-erroneous mutations or by 

subclonal SCNAs, (2) a method to correct for complex evolutionary events, including mutation 

losses8, and (3) an efficient extension of previous and new approaches that allows CONIPHER 

to scale to a high number of primary tumour samples per patient. 

 

Despite the rich literature on tumour phylogeny reconstruction14, how features of the 

inferred tumour phylogenies relate to the biology of tumour growth, in terms of selection, mutation 

rates and rates of chromosomal instability, remains unclear. This protocol enables a user-friendly, 

straightforward computational framework for analysis of tumour phylogenies in R, including 

calculation of subclone proportions in each tumour sample. CONIPHER has been used to 

automatically reconstruct the tumour phylogenetic trees for 421 patients with non-small cell lung 

cancers (NSCLC) with primary and metastatic disease in the recent TRACERx421 study5,17,18. 

 

Development of the protocol 
Automated tumour phylogenetic reconstruction from bulk DNA sequencing of tumours with 

a large number of mutations enables an in depth analysis of tumour evolution. To accurately 

reconstruct the tumour phylogenetic tree we posit that it is imperative to account for mutation 

losses and erroneously clustered mutations. Correct tree reconstruction will affect interpretation 
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of downstream analyses of evolutionary relationships between specific driver mutations, and 

inference of metastatic seeding and dissemination patterns. Hence, we created CONIPHER to 

process and construct tumour phylogenetic trees for 432 tumours from 421 patients with NSCLC 

from the TRACERx lung cohort5. We will now first outline the CONIPHER method before showing 

that CONIPHER outperforms previous algorithms on simulations. 

 

 
 
 

Overview of the CONIPHER method 
 

CONIPHER takes as input processed mutation data from bulk DNA sequencing (for example 

using Mutect219 and Varscan20), as well as SCNAs, purity and ploidy, which can be computed by 

existing and well established methods, such as ASCAT21, HATCHet22, Sequenza23, and 

Battenberg24. We report recommended mutation preprocessing steps in Supplementary Methods 

1. CONIPHER subsequently performs mutation clustering, followed by tumour phylogeny 

reconstruction, and finally computes subclone proportions (Figure 1). Below, we describe an 

overview of the method. We provide a more detailed explanation of the method in Supplementary 

Methods 2, including statistical tests performed and exact values of the parameters and 

thresholds. 

 
Subclonal mutation clustering. The first stage in CONIPHER is the estimation of PhyloCCFs 

and clustering of somatic mutations (Figure 1a-d). This stage can be broken down into four main 

components, which were designed with attention given to minimise the error introduced at each 

subsequent stage. First, copy number preprocessing of every mutation is performed (Figure 1a), 

in which the PhyloCCF of every mutation is calculated, by transforming the measured VAF by 

expected mutation copy number and tumour purity to compute the CCF metric25, and taking into 

account both clonal and subclonal SCNAs2. Secondly, a pre-clustering stage is implemented to 

split mutations in distinct groups, such that each group only contains mutations that are clearly 

present or clearly absent in the same set of tumour samples (Figure 1b, Supplementary Methods 
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2 – Section 2.1)5. Similar to recent methods26, this step prevents the mixing of these mutations in 

the same cluster, an error that has been observed for most existing mutation clustering 

algorithms26. In addition, insertion/deletion mutation (indel) VAFs are corrected, if indel calls are 

(optionally) provided as input (as detailed in the Procedure, Supplementary Methods 2 – Section 

2.1). Thirdly, CONIPHER applies Dirichlet clustering using the PyClone algorithm (v.0.13.17) to 

each group of mutations separately to identify the candidate mutation clusters (Figure 1c). Finally, 

post-processing and quality control is performed on the inferred mutation clusters (Figure 1d). 

First, clusters that appear to be driven by copy number loss are removed2. Subsequently, mutation 

clusters are removed that comprise a small number of mutations (user-defined) and pairs of 

subclonal clusters are merged if their difference is driven solely by a subclonal copy number 

correction (Figure 1d, Supplementary Methods 2 – Section 2.1). 

 
 
 
 

Phylogenetic tree building. The second and main stage of CONIPHER is reconstruction of the 

tumour phylogenetic tree. This stage takes the output from the previously performed mutation 

clustering as input, namely, inferred assignments of mutations to mutation clusters, and mutation 

PhyloCCF estimates. Notably, this stage is compatible with mutation clustering performed from 

other methods. The phylogenetic tree building stage can be broken down into four main 

components: cluster nesting, growing the tree, enumerating the solution space of alternative 

phylogenies, and computing subclone proportions. 

 
 
 

 
 

Mutation cluster nesting. First, 95% confidence intervals are computed to obtain estimates for 

average PhyloCCF values for each mutation cluster identified in the clustering stage, in each 

tumour sample (Figure 1e, Supplementary Methods 2 – Section 2.2). Secondly, two one-sided 

tests are performed comparing PhyloCCF values between every possible pair of clusters in each 

tumour sample, in order to determine whether one cluster could potentially be nested within the 
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other (Figure 1f). The truncal cluster is assigned as the cluster that can nest all other clusters 

(Figure 1f). A test is additionally performed to check whether each cluster could be classified as 

subclonal within any given tumour sample, or whether it is indistinguishable from the truncal 

cluster (Supplementary Methods 2 – Section 2.2)5. 

 
 

In order to prevent artefactual mutation clusters from being assigned to a branch of the 

phylogenetic tree, the genomic positions of mutations within each cluster are inspected. If all 

mutations in a cluster are less evenly distributed across chromosomes than would be expected 

based on the distribution of mutations across chromosomes in the truncal cluster, the cluster is 

deemed as potentially copy number driven and therefore removed from subsequent analysis. 

Notably, in the TRACERx primary NSCLC cohort5, we verify that the mutations removed with 

clusters that do not fit the phylogenetic tree are consistent with truncal mutations subject to copy 

number loss, as evidenced by mutational signature distributions (Supplementary Methods 3, 

Supplementary Figure 1). Cluster nesting is summarised as a nesting matrix and can be 

represented as an ancestral graph (Figure 1f). 

 
 

Growing the phylogenetic tree. Then, the ancestral graph is pruned to attempt to produce a 

tree structure with no cycles (Figure 1g). This method favours a more linear tree topology 

structure, as opposed to a more branched structure. Subsequently, clusters are removed from 

the tree that are the cause of the following issues: (i) cycles in the tree, or (ii) CCFs of tree 

branches at each tree level exceeding a user-defined threshold (by default a CCF buffer of 10% 

is used, Supplementary Methods 2 – Section 2.3). Clusters are removed such that the fewest 

mutations possible are removed from the phylogenetic tree. This stage returns one ‘default’ 

tumour phylogenetic tree. 

 
 

Growing the forest. After identifying the default tree, our algorithm enumerates all possible 

alternative phylogenies that fit the identified cluster nesting structure of the pruned ancestral graph 

(Figure 1h). First, all combinations of clusters are identified that could be moved to descend from 
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a different parental node, without causing graph cycles (i) or tree-level issues (ii) as described 

above (Supplementary Methods 2 – Section 2.4). All possible phylogenetic trees are provided as 

output. 

 
 

After all potential trees are identified, tree branches, or edges, that are common to all trees 

are classified as “consensus” branches, conversely, branches that are found in only a subset of 

trees are classified as “non-consensus” branches. 

 
 

CONIPHER additionally provides two methods for summarising the solution space of 

multiple phylogenetic trees per tumour (Figure 1i). First, CONIPHER computes the tree(s) that 

generates the lowest amount of nesting error, which we term the sum condition error (SCE). 

Secondly, CONIPHER computes the tree(s) comprising branches, or tree edges, most commonly 

shared amongst alternative trees in the solution space, by computing the edge probability. We 

describe the calculation of the SCE and edge probability metrics in Supplementary Methods 2 – 

Section 2.4. 

 
 
 
 

Computing subclone proportions. Finally, CONIPHER automatically computes the proportion 

of cells in each tumour sample belonging to each genomically homogeneous subclone, or the 

“subclone proportions'', based on the inferred default tree and tumour phylogeny with lowest SCE 

(Figure 1j, Supplementary Methods 2 – Section 2.5). Notably, subclone proportions will sum to 1 

in each tumour sample and will only correspond to the mutation cluster PhyloCCF in the case of 

terminal nodes on the phylogenetic tree. This enables an analysis of recent subclonal expansions 

in a tumour, which was found to be prognostic in our companion manuscript5. 

 
 
 

Benchmarking and evaluating the performance of CONIPHER 
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A realistic simulation framework for tumour evolution. We benchmarked the performance of 

CONIPHER using a simulation framework introduced within the TRACERx421 study, that 

comprises generated tumour phylogenies, mutation clusters, and related bulk sequencing data5. 

Ground truth simulations were designed to model the evolution of genetic variants frequently 

observed in NSCLC, including somatic SNVs, truncal/subclonal SCNAs, and truncal/subclonal 

whole genome doubling (WGD) events. In particular, the simulation framework models the effect 

of such SCNAs and WGD events on the overlapping SNVs, thus resulting in SNV mutation losses 

or changes in SNV multiplicity (i.e., number of copies harbouring the SNV). A cohort of 150 

simulated tumours was used to benchmark CONIPHER (Simulated Dataset 1, Supplementary 

Methods 4): 50 simulated tumours with 2-3 samples per tumour (low category), 50 simulated 

tumours with 4-7 samples per tumour (medium category), and 50 simulated tumours with >7 

samples per tumour (high category), totalling a collection of 150 simulated tumours. Full 

mathematical details of the simulation framework are reported in Supplementary Methods 4 – 

Section 4.1 and our companion paper5. In Simulated Dataset 1 an erroneous cluster not fitting the 

ground truth tree topology was introduced. An analogous dataset comprising 150 simulated 

tumours with no erroneous cluster was also generated (Simulated Dataset 2, Supplementary 

Methods 4 - Section 4.2). Finally, a third simulated dataset comprising 36 simulated tumours was 

generated in the same way as Simulated Dataset 1, with varying sequencing coverage (Simulated 

Dataset 3, Supplementary Methods 4 - Section 4.2). 

 
 
 
 

Comparison of CONIPHER with current state-of-the-art methods. Based on the ground truth 

simulations generated using the simulation framework5, we compared CONIPHER for 

reconstructing tumour subclonal mutation clusters and inferring tumour phylogeny with five 

current state-of-the-art approaches (Figure 2). Specifically, we compared our clustering method 

with PyClone, as well as our clustering and phylogenetic tree building method with PhyloWGS10, 

LICHeE15, CITUP13 and Pairtree27, with each of these methods only comprising a subset of the 
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features introduced in CONIPHER (Table 1). Overall, CONIPHER is able to identify mutation 

clusters (Figure 2a) and reconstruct tumour phylogenies (Figure 2b) with higher accuracy than 

other methods (Supplementary Methods 4 – Section 4.2), and obtains consistently high 

performance with sequencing coverage >50x (validated on Simulated Dataset 3; Supplementary 

Methods 4 – Section 4.3, Supplementary Figure 2). When providing the true mutation clusters, 

we additionally demonstrated a similar improvement in performance when benchmarking only the 

tree building method of CONIPHER with previous methods that provide the same feature, i.e., 

LICHeE, CITUP, and Pairtree (Figure 2).  

 

Table 1. Comparison table of phylogenetic tree inference methods. 
 

Method Date Mutatio

n 

presenc

e 

/ 

absence 

assignm 

ent 

Mutatio

n loss 

inferen

ce 

Subclo

na l

 SC

NA 

correct

io n 

SNV 
 

error 

correc

tio n 

Scalabl
e 

Multi

ple 

soluti

on s 

Clone 
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calculation 

CITUP13 2015 N N N N Y Y N 

PhyloWGS1
0 

2015 N Y Y N N Y N 

LICHeE15 2015 Y N N Y Y Y N 

PASTRI9 2017 N N N N Y Y N 

Pairtree27 2022 N N Y N Y Y N 

CONIPHER 2023 Y Y Y Y Y Y Y 

Table comparing functionalities offered by various state-of-the-art mutation clustering and phylogenetic 
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reconstruction algorithms. 
 
 

Scalability of method. We compared the scalability of CONIPHER with the other methods by 

using the simulated tumours with increasing numbers of samples and tumour clones (low, 

medium, and high categories, Simulated Dataset 1; see above). We found that CONIPHER and 

Pairtree were able to infer tumour phylogeny for every simulated tumour, whereas the other 

methods failed to run or complete the reconstruction for 12-98% of simulated tumours within the 

time frame allowed (8 hours). In particular, PhyloWGS was unable to complete tumour 

phylogenetic reconstruction on any of the simulated tumours in the medium or high category and 

only able to reconstruct 3/50 trees in the low category (Figure 2c). 

 
 

Presence-absence informed clustering. Distinguishing whether mutations are absent or 

present in certain samples is an important feature in certain applications, for example when 

assessing the presence of mutations in primary tumour samples compared to metastases17. As 

such, we explicitly compared the performance of CONIPHER’s mutation clustering to other 

methods, to evaluate how differences in the clustering would affect the downstream phylogenetic 

tree analysis (Figure 2d). We found that CONIPHER and LICHeE had the highest mutation 

presence precision in every tumour sample. In particular, the presence-absence classification 

stage in CONIPHER led to improved mutation presence precision in the high category, compared 

to the other methods for which performance decreased with larger simulations. We note that these 

results suggest the improved accuracy of CONIPHER to distinguish presence/absence of 

mutations in certain samples compared to the similar method previously introduced by LICHeE. 

 
 

Measuring mutation losses. Losses of mutations due to CNAs have been observed to be 

frequent in cancer5,8,17. As CONIPHER is one of the few methods that takes these events into 

consideration and applies related corrections, we assessed the impact of this feature on the 

accuracy of mutation clustering by evaluating the sensitivity in the identification of truncal 

mutations. Truncal mutations that are affected by subclonal losses might impact downstream 

https://paperpile.com/c/Ze1jHv/WMNiq
https://paperpile.com/c/Ze1jHv/OTnVq+WMNiq+s3Mn0


 

mutation clustering and related phylogenetic analysis if not taken into account8. Consistent with 

this expectation, we found that methods that do not account for mutation loss, such as CITUP 

and Pairtree, had a lower truncal sensitivity in all simulation categories (Figure 2e). We also 

observed that when running Pairtree with CONIPHER clustering, the truncal sensitivity was 

greatly improved, thereby indicating that Pairtree was not directly accounting for mutation losses 

(Figure 2e). Clustering performance may directly impact the truncal sensitivity independently of 

tree building, so we also evaluated the performance of each tree building method on the set of 

ground truth simulated clusters per simulation (Figure 2f & 2g). We found that CITUP failed in all 

150/150 (100%) instances, which we hypothesise is due to the inability to account for mutation 

loss. Pairtree and LICHeE were able to identify the correct truncal mutation cluster in 83/150 

(55%) and 84/150 (56%) of the simulated instances respectively, compared with CONIPHER that 

was best able to account for mutation loss and correctly identified the truncal mutation cluster in 

141/150 (94%) of ground truth instances. 

 
Accurate error removal. Bulk DNA sequencing data may contain a significant degree of error; 

however, most existing methods for phylogenetic reconstruction ignore the presence of errors 

and noisy mutations in the input data (Table 1). To mitigate the impact of errors, CONIPHER aims 

to identify mutation clusters driven by sequencing noise, and removes these. We evaluated the 

extent to which CONIPHER correctly identifies and removes mutational sequencing noise by 

injecting an artefactual cluster in the simulated tumours (Simulated Dataset 1), and comparing 

the number of simulations in which the artefact cluster is removed (Figure 2h). Notably, the 

artefact cluster is not necessarily incompatible with the tree structure (i.e. it was not necessarily 

biologically implausible). CONIPHER was able to accurately identify and remove error-driven 

mutations in 77/150 simulated tumours (51%), compared to LICHeE that removed noisy clusters 

in 3/150 simulated tumours (2%), and CITUP and Pairtree which did not identify the noisy clusters 

in any instances. For simulations with a low number of samples per tumour, CONIPHER also 

often failed to remove the erroneous cluster (38/50 simulated tumours). In these cases, many 

‘error clusters’ still fit the tree, without the need to remove any mutations. By contrast, for 

https://paperpile.com/c/Ze1jHv/s3Mn0


 

simulations with a high number of samples, the erroneous cluster was correctly identified in 38/50 

simulated tumours (76%). 

 
 
 

Multiple alternative tree solutions. Most existing methods provide multiple solutions for the 

reconstruction of tumour phylogenies and rank these solutions according to their likelihood, or to 

some objective score. We thus used the ground truth simulations to assess whether the tree 

ranking of CONIPHER allows the identification of the true tree as a high-rank solution. To do this, 

we measured whether phylogenetic tree solutions with higher mutation descendant accuracy 

gave better performing sum condition error (SCE) and edge probability metric scores. We 

observed that for simulated tumour cases for which CONIPHER identified more than one potential 

tree structure, the alternative trees that were reconstructed with the highest mutation descendant 

accuracy had lower SCE scores compared to less accurate alternative phylogenetic trees 

(Supplementary Figure 3a, Supplementary Methods 4 – Section 4.4). Evaluating the performance 

of the CONIPHER tree building stage on the set of ground truth clusters from Simulated Dataset 

2 (a simulated dataset with no mutation loss and no error-driver mutations, Supplementary 

Methods 4 – Section 4.2), we also observed that the inferred edges that were present in the 

ground truth tree were shared amongst a larger number of alternative tree solutions than edges 

not present in the ground truth tree (Supplementary Figure 3b). Finally, we observed that the 

highest ranking tree solutions based on the SCE and edge probability metrics had a higher 

descendant accuracy than alternative tree solutions (Supplementary Figure 3c, Supplementary 

Methods 4 – Section 4.4). 

 
 
 
 
 

Realistic reconstruction of tumour evolutionary history. We assessed the impact of the 

different performance of the benchmarked methods, including CONIPHER, CITUP, LICHeE and 

Pairtree, by comparing their results when applied on the sequencing data previously generated 



 

for CRUK0063, a metastatic case from the TRACERx421 cohort from our companion study17 

(Supplementary Figure 4). We found CONIPHER produced the most realistic reconstruction of 

mutation clusters and tumour phylogeny, as supported by a reasonable assignment of the truncal 

cluster (compared with LICHeE and Pairtree) (Supplementary Figure 4a, b) and separating of 

mutations by presence and absence (compared with CITUP) (Supplementary Figure 4c, 

Supplementary Methods 5). Step-by-step reconstruction of the evolutionary history of CRUK0063 

using CONIPHER is detailed in the Procedure. 

 
 
 
 

Advantages and limitations of CONIPHER 
 

CONIPHER performs mutation clustering and phylogenetic tree building from processed bulk 

DNA sequencing data. This can be from bulk whole genome sequencing (WGS), whole exome 

sequencing (WES) or a targeted sequencing approach. It is highly scalable and can reconstruct 

tumour phylogenies from tumours with many samples and many clusters in a time frame of the 

order of minutes. CONIPHER assigns mutations to the phylogenetic tree more accurately than 

other state-of-the-art methods and in particular improves the quality of the mutations assigned to 

the tree, by taking into account biological constraints in order to remove error-driven signal. 

CONIPHER for phylogenetic tree building is compatible with input from mutation clustering 

performed using other methods and automatically computes subclone proportions in each tumour 

sample. 

 
 

However, CONIPHER does have limitations. CONIPHER does not currently support raw 

sequencing data as input and requires processed data from bulk DNA sequencing. In particular, 

we assume that mutation and copy number calling algorithms have been applied to the raw 

sequencing data. 
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Required expertise 
 

CONIPHER is straightforward to implement from the command line, using basic knowledge of 

Linux/Unix syntax. CONIPHER output is in both human readable form (.tsv files) and additionally 

.RDS objects for use in the R programming language. Knowledge of scripting languages would 

be helpful for users who wish to use CONIPHER output for downstream analyses; however, non-

experts in bioinformatics should be able to run CONIPHER using the command line only to obtain 

mutation clustering and tumour phylogenies with correct input data. The current implementation 

of CONIPHER is written in the R programming language. 

 
Experimental design 

 
The CONIPHER Procedure is composed of two main stages: a clustering stage (Steps 1 - 3) and 

a tree building stage (Step 4) (Figure 3). The clustering stage is optional, and can be replaced by 

a mutation clustering method of the user’s choice. At each stage, output directories are generated 

containing both data and summary plots (Boxes 1 and 2). Both stages can be run from the 

command line. Alternatively, both stages can be run with a wrapper end-to-end; that is, the 

clustering stage automatically generates output that is taken as input to the tree building stage 

(see below). Both clustering and tree building stages can also be run in an interactive R session, 

either separately, or end-to-end (see the Github page, 

https://github.com/McGranahanLab/CONIPHER, for further details). 

 
Preprocessing input data 

 
Preprocessing of mutations. Somatic mutation calling and filtering should be carried out by the 

user, before input to CONIPHER. The details on the mutation preprocessing steps used in the 

TRACERx study can be found in Supplementary Methods 1 and our companion manuscript5. 

 
Preprocessing of input.tsv. Our protocol requires as input one file, input.tsv, that is a 

mutation table containing information about each point mutation in each tumour sample 

https://github.com/McGranahanLab/CONIPHER
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sequenced (Figure 4). This input table can be used as input for both clustering and tree building 

stages, with specific column names required for each stage. We provide a complete description 

of all columns required in input.tsv for CONIPHER clustering and tree building stages in the 

input table in Table 2. 

 
 

The CONIPHER input table input.tsv is in long format, with a new row for each mutation, 

for each tumour sample sequenced (Figure 4). Mutation clustering takes as input the genomic 

position of every mutation in every tumour sample, the copy number at the genomic position of 

each mutation (COPY_NUMBER_A, COPY_NUMBER_B), and an estimate of the tumour purity (or 

aberrant cell fraction, ACF) and ploidy (PLOIDY) within each sample (Figure 4, pink box). 

Columns COPY_NUMBER_A and COPY_NUMBER_B can represent the major and minor copy 

number alleles, respectively, or alternatively, phased copy number values can be used. Tree 

building takes the same table as input, with additional columns required (green box, Figure 4): 

mutation cluster assignments (CLUSTER), estimates of the PhyloCCF (CCF_PHYLO) and observed 

CCF (CCF_OBS), and mutation copy number estimates for each mutation in each sample 

(MUT_COPY). These data and table columns are generated automatically by the clustering stage 

(Figure 3). 

Optionally, an additional column (MUT_TYPE) can be included in input.tsv with a flag 

indicating the mutation type. Currently, there are two mutation types supported: SNV 

(MUT_TYPE==“SNV”) or an indel (MUT_TYPE==“INDEL”) (Table 2). 

 

 

Preprocessing of input_seg.tsv. Optionally, a copy number segmentation file 

input_seg.tsv can be provided as input (see example CRUK006317 in PROCEDURE), which 

is used in the clustering stage to generate a copy number plot across the genome with overlaid 

mutation copy numbers. This table is in long format, with a new row for one copy number segment 

in one tumour sample. The first column SAMPLE describes the tumour sample identifier. Columns 
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CHR, STARTPOS and ENDPOS indicate the genomic segment. Columns COPY_NUMBER_A and 

COPY_NUMBER_B indicate the copy number of the major and minor alleles, respectively. These 

values can be integer copy number or raw fractional copy number. 

 

 

 
 

Conventions 
 

In our companion manuscripts5,17, the naming convention is to refer to “tumour regions” when 

referring to multiple distinct bulk samples taken from one tumour. In this manuscript we instead 

refer to the more general term “tumour samples” (SAMPLE) when referring to any sample with 

available sequencing data to be processed through CONIPHER. Chromosome names can be 

either with or without ‘chr’ prefix (e.g. ‘1’ or ‘chr1’). Chromosomes X and Y are ignored in this 

procedure. 

 
Execution of full pipeline 

 
An example wrapper script to run both stages of the pipeline end-to-end 

(wrapper_conipher.sh) is available to download from the CONIPHER-wrapper GitHub page 

(https://github.com/McGranahanLab/CONIPHER-wrapper). This wrapper is designed to be run 

for one case in the analysis cohort. A description of how to run each CONIPHER step individually 

is detailed in the Procedure below, in which both the CONIPHER clustering and tree building 

wrappers are run on processed WES data from a patient with metastatic disease from the 

TRACERx421 cohort, case CRUK006317. 

 
 
 

MATERIALS 
 

EQUIPMENT 
 

https://paperpile.com/c/Ze1jHv/OTnVq+WMNiq
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● Data files are required for each tumour in the analysis cohort (input.tsv, optionally 

input_seg.tsv) as described in section Input data of the Experimental Design. 

● A standard computer system with a Linux or macOS operating system is required to run 

CONIPHER from the command line. CONIPHER can be run using access to Conda. 

Details can be found in Software Requirements. 

● Programme source code is publicly available for our CONIPHER R package at 

https://github.com/McGranahanLab/CONIPHER, and for our CONIPHER clustering and 

tree building wrapper at https://github.com/McGranahanLab/CONIPHER-wrapper. 

 
EQUIPMENT SETUP 

 

Hardware requirements 
 

Memory requirements depend on whether the input data is from whole exome or whole genome 

sequencing data. It is recommended to run the method using at least 8GB memory. 

 
Software requirements 

 
Access to a high performance computing (HPC) system is recommended for tumours with a large 

number of samples and mutations, but CONIPHER clustering and tree building can also be run 

on a local machine. CONIPHER clustering relies on the PyClone algorithm7 and therefore needs 

to be run within a Conda environment (see instructions in section Installation). If only running 

CONIPHER tree building, the CONIPHER package can be installed directly in R (3.6.1 <= version 

< 4.2).  

 
 
 

Installation 
 

CONIPHER code repository can be downloaded from GitHub and installed using Bioconda. We 

have created an R package for CONIPHER clustering and tree building with full package 

installation and interactive run instructions at (https://github.com/McGranahanLab/CONIPHER). 

We have additionally created a Github repository with a CONIPHER wrapper to run both 

https://github.com/McGranahanLab/CONIPHER
https://github.com/McGranahanLab/CONIPHER-wrapper
https://paperpile.com/c/Ze1jHv/HQEQ9
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CONIPHER clustering and tree building end-to-end from the command line 

(https://github.com/McGranahanLab/CONIPHER-wrapper/). Instructions for creating the Conda 

environment required to run clustering and tree building are detailed below and in the README.md 

file in the CONIPHER-wrapper Github repository. 

 

● To install the CONIPHER Bioconda package, open the terminal and run the following 

command: 

 

conda create -n conipher -c conda-forge -c bioconda pyclone conipher 

 

● To install the CONIPHER-wrapper, navigate to a desired directory and run the following 

command: 

 

git clone git@github.com:McGranahanLab/CONIPHER-wrapper.git 

 

 

 
Table 2. Description of required and optional columns in input.tsv. 
 

Column name Column description Required for clustering 
input 

Required for tree 
building input 

CASE_ID Tumour case identifier Required Required 

SAMPLE Sample identifier Required Required 

CHR Chromosome identifier Required Required 

POS Genomic position of 
mutation in 
chromosome 

Required Required 

REF Reference 
allele 
nucleotide 

Required Required 

ALT Alternative nucleotide Required Required 

REF_COUNT No. reads of reference 
allele 

Required Required 

https://github.com/McGranahanLab/CONIPHER-wrapper/


 

VAR_COUNT No. reads of variant 
allele 

Required Required 

DEPTH Sequencing depth Required Required 

COPY_NUMBER_A Copy number at 
mutation position, 
allele A 

Required Required 

COPY_NUMBER_B Copy number at 
mutation position, 
allele B 

Required Required 

ACF Aberrant cell 
fraction/purity in 
tumour sample 

Required Required 

PLOIDY Tumour ploidy in 
tumour sample 

Required Required 

MUT_TYPE Optional flag for 
mutation type (either 
“SNV” or “INDEL”) 

Optional Not required 

MUT_COPY Mutation copy 
number/multiplicity 

Not required Required 

CCF_PHYLO Mutation PhyloCCF Not required Required 

CCF_OBS Mutation CCF Not required Required 

CLUSTER Mutation 
cluster 
assignment 

Not required Required 

Columns from left to right: (1) input.tsv column name, (2) description of column input data, (3) requirement 
of column for input into clustering, and (4) requirement of column for input into tree building. 

 
 
 
 
 
 
 
 
 

PROCEDURE 
 

Stage 1: Mutation clustering - TIMING: 10 min - 6 hrs 
 



 

 
 

! CRITICAL. The tumour identifier in column CASE_ID and tumour sample identifier in column 

SAMPLE must include a prefix character string common to all patients in the cohort, for example 

prefix ‘CRUK’ in the toy case CRUK0000 (Figure 4). The input table should be in tab-separated 

format (input.tsv), should have no additional column with row names or numbers, and should 

have no quotation marks for character string entries. 

! CRITICAL. In cases of multiple genomically distinct tumours detected within one patient, 

CONIPHER should be implemented separately for each tumour (Supplementary Note 1, 

Considering patients input to CONIPHER with multiple genomically distinct tumours). 

 
 

1| Prepare input.tsv file. An example input.tsv for TRACERx case CRUK0063 is shown 

below. The case CRUK0063 has WES data available for 5 primary tumour samples 

(CRUK0063_SU_T1.R3 - CRUK0063_SU_T1.R7) and two metastatic samples 

(CRUK0063_SU_FLN1 - CRUK0063_BR_T1.R1): 

CASE_ID SAMPLE CHR POS REF ALT REF_COUNT VAR_COUNT DEPTH
 COPY_NUMBER_A COPY_NUMBER_B ACF PLOIDY MUT_COPY CCF_PHYLO CCF_OBS CLUSTER 
CRUK0063 CRUK0063_BR_T1.R1 1 1854811 C G 406 0 406 3 0
 0.19 2.85 0 0 0 1 
CRUK0063 CRUK0063_SU_FLN1 1 1854811 C G 111 26 137 2 1
 0.16 3.44 2.51 1.33 1 1 
CRUK0063 CRUK0063_SU_T1.R3 1 1854811 C G 222 0 222 2 1
 0.12 3 0 0 0 1 
CRUK0063 CRUK0063_SU_T1.R4 1 1854811 C G 155 43 198 2 1
 0.26 3.65 1.9 0.949 1 1 
CRUK0063 CRUK0063_SU_T1.R5 1 1854811 C G 184 43 229 2 1
 0.25 3.83 1.71 0.857 1 1 
CRUK0063 CRUK0063_SU_T1.R6 1 1854811 C G 205 42 247 2 1
 0.14 3.64 2.59 1.3 1 1 
CRUK0063 CRUK0063_SU_T1.R7 1 1854811 C G 177 32 209 2 1
 0.13 3.6 2.5 1.27 1 1 
CRUK0063 CRUK0063_BR_T1.R1 1 2525963 - A 105 25 130 3 0
 0.19 2.85 2.58 1.13 1 4 

 
 

When running the clustering and tree building pipeline for a cohort of tumours, it is recommended 

to save the input and output in a distinct directory for each tumour case ${CASE_ID}, for 

example:   

inputTSV="${CASE_ID}/input.tsv" 

outDir="${CASE_ID}/"  



 

 

2| (Optional) Prepare input_seg.tsv file. This table can optionally be provided as input to 

create an across-genome copy number plot. This file describes the estimated copy number across 

the genome for each tumour sample. An example input_seg.tsv for case CRUK0063 is 

shown below: 

SAMPLE CHR STARTPOS ENDPOS COPY_NUMBER_A COPY_NUMBER_B 
CRUK0063_SU_T1.R3 1 1154343 24194770 1.84 0.819 
CRUK0063_SU_T1.R4 1 1154343 24194770 2.06 0.987 
CRUK0063_SU_T1.R5 1 1154343 24194770 2.03 1.02 
CRUK0063_SU_T1.R6 1 1154343 24194770 1.99 0.969 
CRUK0063_SU_T1.R7 1 1154343 24194770 1.97 0.995 
CRUK0063_BR_T1.R1 1 1154343 24194770 3.28 0.264 
CRUK0063_SU_FLN1 1 1154343 24194770 1.89 0.843 
CRUK0063_SU_T1.R3 1 24200891 24201115 0.802 0 

 

! CRITICAL STEP. For file input_seg.tsv, the tumour sample identifiers in column SAMPLE 

and chromosome identifiers in column CHR should correspond to those in input.tsv. 

 

3| Run mutation clustering for one patient with the following command, specifying inputs for the 

parameters of file names: –-patient, --out_dir, --input_tsv_loc, and optionally --

input_seg_tsv_loc: 

 

Rscript run_clustering.R --case_id ${CASE_ID} --out_dir ${outDir} --

input_tsv_loc ${inputTSV} 

 

A full description of all parameters available for the clustering stage can be found in Table 3. For 

anticipated outputs see Box 1 and Figure 5. 

 
 
Table 3. Description of parameters as input into CONIPHER clustering stage. 
 

Parameter Parameter description Parameter data 
type (in R) 

Default value 

 --case_id A tumour case identifier Character Please specify 



 

 --out_dir File path to desired output directory Character Please specify 

--input_tsv_loc File path to input mutation table in 
correct format 

Character Please specify 

--input_seg_tsv_loc File path to a copy number segment 
table used for plotting only 

Character Optionally specify 
(default = NULL) 

--
subclonal_copy_corr 
ection 

Should subclonal copy number 
correction be used? 

Logical TRUE 

--
only_truncal_subclo 
nal_copy_correction 

Should only truncal subclonal copy 
number correction be used? 

Logical TRUE 

--pyclone_yaml_loc File path to template yaml file for 
PyClone (to specify Dirichlet 
clustering parameters). If not 
specified, the default CONIPHER 
yaml file is used 

Character Optionally specify 
(default = NULL) 

--min_cluster_size Minimum number of mutations 
required in a cluster to be included in 
the analysis 

Integer 5 

--
multiple_test_correct 
ion 

Should multiple testing correction be 
applied for the copy number correcting 
mutations? 

Logical TRUE 

--clean_clusters Should the clusters be cleaned and 
merged? 

Logical TRUE 

--clonal_cutoff Lower threshold of PhyloCCF to be 
considered truncal 

Double 0.9 

--
propClonal_thresh
ol d 

Proportion of mutations in a cluster 
that need to be considered truncal in 
order to merge back into the trunk 

Double 0.25 

--fix_absentCCFs Should PhyloCCF of absent mutations 
be set to 0? 

Logical TRUE 

--burn_in Burn in for Dirichlet Process Integer 1000 

--seed Seed for PyClone Integer 1024 



 

--nProcs Number of cores allocated to run script 
in parallel 

Integer 1 

 
 
Box 1: ANTICIPATED CLUSTERING OUTPUT 

 
Running  the  clustering  stage  will  output  the following files in patient-specific directory 

 
"${CASE_ID}/Clustering/": 

 
 

OUTPUT DATA: 
 

● <CASE_ID>.SCoutput.CLEAN.tsv. This is a mutation table in the same format as 

input.tsv, including columns for: mutation cluster assignments (CLUSTER); mutation 

cell fraction estimates, including the PhyloCCF (CCF_PHYLO) and observed CCF 

(CCF_OBS); and mutation copy number estimates for each mutation in each sample 

(MUT_COPY). Additionally, there is a column mutation_id, which is an identifier for the 

mutation in the form: <CASE_ID>:<CHR>:<POS>:<REF>:<ALT>. By convention, cluster 

names are integers, ordered by the number of mutations assigned to that cluster (so the 

cluster with the largest number of mutations will be labelled as CLUSTER==1, and so forth). 

● <CASE_ID>.SCoutput.FULL.tsv. This is a mutation table in the same format as the 

file <CASE_ID>.SCoutput.CLEAN.tsv described above, except with one additional 

column: CLEAN, which is a logical flag indicating whether this mutation was deemed ‘dirty’ 

and removed (CLEAN==FALSE), or deemed ‘clean’ and kept (CLEAN==TRUE). The subset 

of this table based on CLEAN==TRUE is identical to the table  

<CASE_ID>.SCoutput.CLEAN.tsv. 

● <CASE_ID>.removed.muts.txt. This is a mutation table containing the mutations that 

were removed during the clustering stage. Each row is a new mutation. Tumour sample-

specific information is found in columns that begin with <SAMPLE>.*. NOTE: this file will 

not be generated if no mutations are removed. 

Deleted: Wrapper script filename: run_clustering.R.

Commented [6]: We have decided to remove this 



 

 
 

OUTPUT PLOTS: 
 

● <CASE_ID>_pyclone_cluster_assignment_copynumber_clean.pdf. This 

output is a series of across-genome plots of each mutation plotted at its genomic position 

(x-axis) against its mutation copy number (y-axis), coloured by the cluster it was assigned 

to in mutation clustering. Each new row shows a new tumour sample. If the 

input_seg.tsv file was additionally provided, the copy number of each segment will 

be plotted: black indicates allele A, while green indicates allele B. The first page of the pdf 

displays all mutations from every cluster. The subsequent pages display the same 

segment copy number information for each sample, with mutations from only one cluster 

overlaid. Histograms on the right hand side of cross-genome plots (on all pages except 

the first page) indicate the frequency of mutations at each copy number value. An example 

of sample 5 from page 1 of the pdf for case CRUK0063 is shown in Figure 5a. 

● <CASE_ID>.removedCPN.muts.pdf. This output plot is identical to the above, except 

restricting to only mutations that were removed during the mutation clustering post-

processing step. Each mutation is coloured by the cluster it was assigned to in mutation 

clustering. Each new row shows a new tumour sample. Histograms on the right hand side 

indicate the frequency of mutations at each integer copy number value. NOTE: this file will 

not be generated if no mutations are removed. An example of samples 

CRUK0063_BR_T1.R1 and CRUK0063_SU_FLN1 for case CRUK0063 are shown in 

Figure 5b. 

● <CASE_ID>.heatmap.pdf. This output shows a heatmap of presence/absence of each 

mutation (rows) in each tumour sample (columns). The colour bar on the left indicates 

removed mutations (blue) and kept mutations (yellow). 

● <CASE_ID>.cluster.ccf.heatmap.pdf. This output shows a heatmap of the 

inferred PhyloCCF of each mutation (rows) in each tumour sample (columns). The colour 

bar on the left indicates the assigned cluster. 



 

● <CASE_ID>.pyclone_cluster_assignment_phylo_clean.pdf. This output 

shows a scatter plot of the PhyloCCF of each (non-removed) mutation between each 

pair of samples. Each mutation is coloured by the assigned cluster. An example of one 

pair of samples from case CRUK0063 is shown in Figure 5c. 

 
[Production: end of Box 1] 
 
 
 
 

Stage 2: Phylogenetic tree building - TIMING: 1 min - 1 hrs 
 

4| Run tree building for one patient with one of the following commands: 
 

● If running CONIPHER tree building from CONIPHER clustering output: 
 
 

Rscript run_treebuilding.R --input_tsv_loc 

${outDir}"/Clustering/"${CASE_ID}".SCoutput.CLEAN.tsv" --out_dir 

${outDir} --prefix CRUK 

 

 

● If running CONIPHER tree building directly from an input.tsv file: 

 
Rscript run_treebuilding.R --input_tsv_loc ${inputTSV} --out_dir 

 
${outDir} --prefix CRUK 

 
 

A full description of all parameters for the tree building stage can be found in Table 4. For 

anticipated outcomes see Box 2 and Figures 6 and 7. Guidance on exploring the mutations 

removed during the CONIPHER tree building stage can be found in Supplementary Note 2. 

Additional output produced by CONIPHER includes data for analysis in R, described in the 

Supplementary Note 3. 
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Table 4. Description of parameters as input into CONIPHER tree building stage. 

Parameter Parameter description Paramete
r data 
type (in 
R) 

Default value 

–input_tsv_loc File path to input mutation table in 
correct format 

Character Please specify 

–out_dir File path to desired output directory Character Please specify 

–prefix Tumour identifier prefix Character Please specify 

–ccf_buffer PhyloCCF buffer allowance for testing 
tree level issue 

Integer 10 

–pval_cutoff P-value cut off for testing tree level 
issue 

Double 0.01 

–use_boot Should bootstrapping be used to 
compute confidence intervals? 

Logical TRUE 

–merge_clusters Should similar clusters be merged if 
possible? 

Logical TRUE 

–correct_cpn_clusters Should clusters driven by copy number 
errors be removed? 

Logical TRUE 

–adjust_noisy_cluster s Should noisy clusters be adjusted? Logical FALSE 

–adjust_noisy_cluster 
s_prop 

What is the minimum proportion of 
mutations required to be present in a 
sample to avoid cluster adjustment? 

Double 0.05 

–min_ccf What is the minimum CCF threshold to 
consider a mutation as present in a 
sample? 

Double 0.01 

–min_cluster_size What is the minimum number of 
mutations required in a cluster to be 
included in analysis? 

Integer 5 



 

–multi_trees Should alternative plausible tumour 
phylogenies be explored? 

Logical TRUE 

Wrapper script filename: run_treebuilding.R. 
 
 

! CRITICAL STEP. NOTE: CONIPHER tree building implements its own cluster merging process 

in addition to cluster merging in the CONIPHER clustering stage (Supplementary Methods 2). By 

default similar clusters are merged if possible (merge_clusters==TRUE) and bootstrapped 

confidence intervals are used (use_boot==TRUE). These settings are recommended. 

 

! CRITICAL STEP. If running tree building only, it is required that all columns in the input file 

${inputTSV} are present. NOTE: if an alternative clustering method is used, which does not 

output an estimate of PhyloCCF as well as observed CCF per mutation, the column CCF_PHYLO 

should be manually added to the input table, with identical entries to column CCF_OBS. 

 

Box 2: ANTICIPATED TREE BUILDING OUTPUT 
 

Running the tree building stage will output the following files in patient-specific directory 
 
“${CASE_ID}/Trees/”: 

 
 

OUTPUT DATA: 
 

● allTrees.txt. This is a text file containing all potential inferred phylogenetic trees, in 

the format below. This file can be parsed into any scripting language for further analysis. 

### 11 trees 
# tree 1 
2 1 
8 3 
21 4 
1 5 
… 
# tree 2 
2 8 
8 21 
2 1 
17 20 
… 
 



 

The first row of the file indicates how many alternative phylogenies were detected by the 

tree building algorithm. Each alternative tumour phylogeny number X begins with a 

header: # tree X. For each tree, each new row of allTrees.txt is a tree branch, or 

edge, connecting a pair of distinct clusters. The first column indicates the parental node; 

the second column indicates the child node. 

! CRITICAL. Tree number 1 (# tree 1) always refers to the default tree generated by 

the tree building algorithm. 

● alternativeTreeMetrics.txt. This is a tab-delimited text file containing summary 

metrics of all alternative phylogenetic trees, whereby each row of the table indicates one 

alternative tree (treeID). 

treeID sum_condition_error SCE_ranking lowest_SCE edge_probability_score
 edge_probability_ranking highest_edge_probability 
1 2.46 1 Lowest SCE tree -13.8 1 Highest edge probability tree 
2 2.67 2 Alternative tree -13.8 1 Highest edge probability tree 
3 2.85 4 Alternative tree -28.2 6 Alternative tree 
4 3.19 8 Alternative tree -17.1 3 Alternative tree 
5 2.8 3 Alternative tree -18.3 5 Alternative tree 

6 3.09 6 Alternative tree -14.9 2 Alternative tree 
7 3.47 11 Alternative tree -17.1 3 Alternative tree 
8 3.05 5 Alternative tree -18.3 5 Alternative tree 
9 3.36 9 Alternative tree -14.9 2 Alternative tree 
10 3.47 10 Alternative tree -18.2 4 Alternative tree 
11 3.19 7 Alternative tree -18.2 4 Alternative tree 
 

The treeID column value directly corresponds to the alternative tree number in the full 

alternative tree list allTrees.txt. The second column sum_condition_error gives the 

sum condition error value for that tree, and subsequent column SCE_ranking is an ordering of 

the trees from lowest error (SCE_ranking==1) to highest. Correspondingly, lowest_SCE is a 

binary flag to indicate whether this tree had the lowest error (‘Lowest SCE tree’) or not 

(‘Alternative tree’). Similarly, the fourth column edge_probability_score gives the 

edge probability score for that tree, and subsequent column edge_probability_ranking is 

an ordering of the trees from highest edge probability (edge_probability_ranking==1) to 

lowest. Column highest_edge_probability is a binary flag to indicate whether this tree had 

the maximal edge probability score (‘Highest edge probability tree’) or not 

(‘Alternative tree’). Any ties within either SCE_ranking or 



 

edge_probability_ranking are labelled with the same rank. 

● clusterInfo.txt. This is a tab-delimited text file containing a table detailing 

information about each mutation cluster, whereby each row of the table indicates one 

cluster (clusterID) in one tumour sample (SAMPLE), as shown below. 

clusterID truncal treeClust cpnRemClust nMuts SAMPLE meanCCF CCF_CI_low
 CCF_CI_high clonality clone_proportions_default 

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R3 0 0 0 absent 0 

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R4 99 96.4 102 clonal 0 

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R5 99 96.9 101 clonal 0 

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R6 98 95 100 clonal 28 

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R7 100 96.5 103 clonal 0 

1 FALSE TRUE FALSE 174 CRUK0063_SU_FLN1 103 99.2 107 clonal 0 

1 FALSE TRUE FALSE 174 CRUK0063_BR_T1.R1 0 0 0 absent 0 

2 TRUE TRUE FALSE 91 CRUK0063_SU_T1.R3 101 95.3 106 clonal 0 

 

 
The cluster name in clusterID matches the cluster names input into tree building (in either 

 
<CASE_ID>.SCoutput.CLEAN.tsv or input.tsv). The second column truncal indicates 

whether this cluster was assigned to be the truncal cluster of the phylogenetic tree. Only one 

unique cluster will be assigned to be truncal. The third column treeClust indicates whether the 

cluster was assigned to a branch of the phylogenetic tree (treeClust==TRUE). If a cluster was 

identified as erroneous due to being composed of biologically implausible mutations only, column 

treeClust will have a value of FALSE. If the cluster was identified as erroneous due to subclonal 

copy number alterations undetected during clustering, column treeClust will have a value of 

FALSE and cpnRemClust will have a value of TRUE. Column nMuts describes the number of 

SNVs assigned to that cluster. The columns meanCCF, CCF_CI_low, and CCF_CI_high 

describe the distribution of PhyloCCF values for all mutations in that clusterID in that SAMPLE. 

Column clonality describes whether that clusterID in that SAMPLE was classified as being 

either: absent, subclonal or clonal within that sample (Supplementary Methods 2). Finally, column 

clone_proportions_default describes the subclone proportion of that clusterID in that 

SAMPLE, computed from the default phylogenetic tree (tree 1). 

● cloneProportionsMinErrorTrees.txt. This is a tab-delimited text file containing 

subclone proportion tables in long format from only phylogenetic trees with the lowest 



 

SCE. Each row corresponds to one clusterID from one treeID. In example 

CRUK0063 below, the lowest SCE tree was the default tree (tree 1). Values in the table 

indicate the subclone proportion of the subclone resulting from that clusterID within 

that sampled tumour sample (column). For each treeID, columns should sum to 100. 

CRUK0063_SU_T1.R3 CRUK0063_SU_T1.R4 CRUK0063_SU_T1.R5 CRUK0063_SU_T1.R6 CRUK0063_SU_T1.R7 CRUK0063_SU_FLN1
 CRUK0063_BR_T1.R1 clusterID treeID 

0 0 0 28 0 0 0 1 1 

0 0 0 0 0 0 0 2 1 

6.65 0 0 0 0 0 0 3 1 

0 0 0 0 0 0 38 4 1 

0 0 0 0 0 5.92 0 5 1 

0 25 0 27 25 0 0 6 1 

0 0 0 23 1 0 0 7 1 

0 0 0 0 0 0 0 8 1 

57 0 0 0 0 0 0 9 1 

17 0 0 0 0 0 0 10 1 

0 0 0 0 0 0 37 11 1 

0 6.68 11.5 0 0 0 0 12 1 

0 0 0 0 0 0 13 15 1 

0 0 0 0 0 0 12 16 1 

0 17.8 0 0 18.3 0 0 17 1 

0 0 0 0 0 33.1 0 18 1 

0 0 0 0 0 61 0 19 1 

0 0 25.5 0 0 0 0 20 1 

19.4 0 0 0 0 0 0 21 1 

0 0 14 0 27 0 0 22 1 

0 50.5 0 22 28.7 0 0 23 1 

0 0 49 0 0 0 0 24 1 

 

 

● subclonalExpansionScoreMinErrorTrees.txt. This is a tab-delimited text file 

containing subclonal expansion scores (column subclonal_expansion_score) for each 

tumour sample (column sample) computed from the phylogenetic tree(s) with the lowest 

SCE (column treeID). The subclonal expansion score is computed as the maximum 

PhyloCCF of all terminal (leaf) nodes present in that tumour sample. NOTE: for multi-sample 

tumour cases, there may exist a sample with no terminal node present, in which case the 

subclonal expansion score for this sample is set to 0. The tumour level subclonal expansion 

score is taken as the maximum subclonal expansion score across tumour samples. 

sample subclonal_expansion_score subclonal_expansion_score_tumour treeID 

CRUK0063_SU_T1.R3 0.568 0.619 1 

CRUK0063_SU_T1.R4 0.509 0.619 1 

CRUK0063_SU_T1.R5 0.493 0.619 1 

CRUK0063_SU_T1.R6 0.505 0.619 1 

CRUK0063_SU_T1.R7 0.619 0.619 1 

CRUK0063_SU_FLN1 0.613 0.619 1 



 

CRUK0063_BR_T1.R1 0.366 0.619 1 

 

● consensusBranches.txt. This is a text file containing all branches (parent-child pairs) 

of the phylogenetic tree that were identified to be present across all alternative 

phylogenies, as shown in example CRUK0063 below. First column: parent node; second 

column: child node. 

1 18 
 
1 5 
 
10 9 
 
12 6 
 

… 

 

 
● consensusRelationships.txt. This is a text file containing all ancestor-descendent 

pairs that were identified to be present across all alternative phylogenies, as shown in 

example CRUK0063 below. First column: ancestral node; second column: descendent 

node. 

1 12 
 
1 17 

 
1 18 

 
1 19 

 

… 
 

● treeTable.tsv. This is a tab-separated mutation table in the format of input.tsv, 

except with extra columns: originalCLUSTER and treeCLUSTER. originalCLUSTER 

indicates the cluster ID this mutation was assigned to in the clustering stage (and will 

correspond to column CLUSTER in the input.tsv to the tree building stage). 

treeCLUSTER indicates the final cluster name the mutation is assigned to after 

treebuilding. Note: originalCLUSTER and treeCLUSTER are identical, except in cases 

of cluster merging (Supplementary Methods 2). 

CASE_ID SAMPLE CHR POS REF ALT REF_COUNT VAR_COUNT DEPTH COPY_NUMBER_A
 COPY_NUMBER_B ACF PLOIDY MUT_COPY CCF_PHYLO CCF_OBS originalCLUSTER
 treeCLUSTER 

CRUK0063 CRUK0063_SU_T1.R3 1 1854811 C G 222 0 222 2
 1 0.12 3 0 0 0 1 1 
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CRUK0063 CRUK0063_SU_T1.R3 1 2525963 - A 301 2 303 2
 1 0.12 3 0.14 0 0.11 4 4 

CRUK0063 CRUK0063_SU_T1.R3 1 6311357 A G 473 46 519 2
 1 0.12 3 1.54 0.833 1 2 2 

CRUK0063 CRUK0063_SU_T1.R3 1 11845281 G C 287 0 287 2
 1 0.12 3 0 0 0 1 1 

CRUK0063 CRUK0063_SU_T1.R3 1 19683908 G C 133 0 133 2
 1 0.12 3 0 0 0 1 1 

CRUK0063 CRUK0063_SU_T1.R3 1 24082766 C T 145 0 146 2
 1 0.12 3 0 0 0 1 1 

CRUK0063 CRUK0063_SU_T1.R3 1 25784848 - T 458 0 458 2
 1 0.12 3 0 0 0 1 1 

CRUK0063 CRUK0063_SU_T1.R3 1 27105550 C T 312 4 316 2
 1 0.12 3 0.219 0.219 0.22 21 21 

 
OUTPUT PLOTS: 

 
● pytree_and_bar.pdf. The left side of the output shows a barplot of the mean estimated 

PhyloCCF values of each mutation cluster (rows) in each sample (columns), with a 

bootstrap computed 95% confidence interval (Figure 1, Supplementary Methods 2). If the 

cluster was classified as ‘clonal’ within that tumour sample, the corresponding bar has a 

black outline (for example, bars for truncal cluster 2 have a black box in every tumour 

sample). The right hand side of the figure shows the inferred default phylogenetic tree. 

Each node pie chart corresponds to the same mutation cluster shown in the barplot, 

whereby each piece of the pie corresponds to a tumour sample sampled and is shaded 

by the mean PhyloCCF of that mutation cluster in that sample. The numbers of mutations 

per cluster are shown, as well as clusters identified as comprising erroneous mutations 

and removed (right side). If copy number driven clusters are removed, these are indicated 

on the right-hand side in the middle. Tree removed clusters are indicated on the bottom 

right-hand side. Tree branches that are black indicate this branch is a consensus branch 

and was found to be present in all alternative phylogenies. Grey branches indicate non-

consensus branches. An example is shown in Figure 6. 

● pytree_multipletrees.pdf displays all alternative phylogenetic trees identified in 

the tree building procedure. Black branches indicate consensus branches and grey 

branches indicate non-consensus branches. An example is shown in Figure 7. 

 
[Production: end of Box 2] 
 



 

 
 

?TROUBLESHOOTING 
 

A troubleshooting table is provided (Table 5).. 

 

Table 5. Troubleshooting. 

Procedure Step Problem Possible Reason Possible Solution 

Step 3 | Clustering Error message:  
‘Sample IDs do not 
match between 
input_tsv and 
input_seg_tsv’ 

This means that the 
sample ID character 
strings do not match in the 
two input files.  
input_tsv and 
input_seg_tsv’ 

Ensure the sample 
identifiers in the 
input_seg.tsv file are 
identical to the sample 
identifiers in the 
input.tsv file. 

Step 4 | Tree building Error message: 
’No prefix 
specified. Please 
indicate a prefix 
for the current 
tumour case.’ 

This means no tumour 
sample prefix was 
specified when running 
the tree building wrapper. 

To fix the error, indicate a 
character string that 
represents the tumour 
case prefix using flag --
prefix when running 
the tree building stage 
from command line. 

Step 4 | Tree building Error message: 
‘Incorrect prefix 
specified. Please 
input the correct 
prefix for the 
current tumour 
case.’ 

This means a prefix was 
specified that does not 
match a string within the 
values in the CASE_ID or 
SAMPLE columns in the 
input table. 

To fix the error, input the 
correct prefix using flag --
prefix. 

 
 
Timing 
 
Step 1, Data preprocessing: 5 min 

Step 2, Data preprocessing (optional): 5 min 

Step 3, Mutation clustering: 10 min - 6 hrs 

Step 4, Phylogenetic tree building: 1 min - 1 hrs 

 

We report average time to run CONIPHER mutation clustering and tree building stages on 

simulated tumours with varying numbers of samples and clones in Supplementary Note 4. For 

tumours with a large number of samples or mutations run time may be longer. 
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ANTICIPATED RESULTS 
 

A successful completion of the procedure results in, at least, the following output files:  

 

CLUSTERING STAGE: 

● <CASE_ID>.SCoutput.CLEAN.tsv 

● <CASE_ID>.removed.muts.txt (if mutations were removed) 

● <CASE_ID>.pyclone_cluster_assignment_copynumber_clean.pdf 

● <CASE_ID>.removedCPN.muts.pdf (if mutations were removed) 

● <CASE_ID>.heatmap.pdf 

● <CASE_ID>.cluster.ccf.heatmap.pdf 

● <CASE_ID>.pyclone_cluster_assignment_phylo_clean.pdf 

 

TREEBUILDING STAGE:  

● allTrees.txt 

● alternativeTreeMetrics.txt 

● cloneProportionsMinErrorTrees.txt 

● clusterInfo.txt 

● cloneProportionsMinErrorTrees.txt 

● subclonalExpansionScoreMinErrorTrees.txt 

● consensusBranches.txt 

● consensusRelationships.txt 

● treeTable.tsv 

● pytree_and_bar.pdf 

● pytree_multipletrees.pdf 

 

A detailed description of the anticipated output files for clustering is given in Box 1 and Figure 5 



 

and for tree building in Box 2 and Figures 6 and 7. Additional files produced during the Procedure 

are listed in Supplementary Note 3. 

 

 
Code availability 

 
Code to run the CONIPHER clustering and tree building wrapper functions can be found with 

documentation and run examples on the Github page 

https://github.com/McGranahanLab/CONIPHER-wrapper. The source code for the CONIPHER R 

package can be found on the Github page https://github.com/McGranahanLab/CONIPHER. The 

simulation framework can be found on the Github page https://github.com/zaccaria-

lab/TRACERx_simulation_tool. 
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Figure Legends 

 
 
 

Figure 1. Overview of the CONIPHER clustering and tree building methods. a. Minor 
subclonal copy number alterations affecting the locus of mutations are corrected for, e.g. a gain 
affecting two mutations on chr3q of allele B (green line) in tumour sample S3. b. Mutations are 
grouped based on presence/absence within each tumour sample. c. Dirichlet clustering7 is 
performed separately on each group of mutations determined in the previous step. This returns 
an estimate of the PhyloCCF of each mutation and its assigned cluster. d. Finally mutation copy 
number post-processing is applied to correct for errors propagated through mutation clustering. 
Clusters are removed if they are evidenced to be driven by copy number loss, and if subclonal 
copy number correction has created an additional subclonal cluster, this subclonal cluster’s 
mutation PhyloCCF values are un-corrected and merged with the most similar cluster. e. The 
mean (bar plot, value) and 95% confidence intervals (black line) of the distribution of mutation 
PhyloCCFs for each inferred mutation cluster in each sample are computed. The total number of 
mutations per cluster are shown in brackets. Pie chart shading represents the mean CCF of that 
cluster in each sample. f. For each pair of clusters, PhyloCCF distributions are compared using 
two one-sided Wilcoxon tests, to test whether one cluster can be nested within the other. The 
truncal cluster is defined as that cluster which can nest all other clusters. The chromosomal 
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distributions of all mutations in a cluster are checked and clusters are removed if all mutations are 
localised, indicating a missed copy number alteration. All clusters are additionally tested against 
the truncal cluster to determine cluster clonality in each tumour sample. This step returns a nesting 
matrix and ancestral graph. g. The ancestral graph is pruned to create a phylogenetic tree 
structure. Issue clusters that either (i) create cycles in the graph, or (ii) result in PhyloCCF values 
that sum to more than the user-defined threshold per tree level are identified and removed, to 
return a default phylogenetic tree. h. Clusters on the default tree are permuted to determine all 
possible alternative trees that do not cause issues (i) or (ii). i. Alternative phylogenetic trees are 
ranked according to two metrics, 1) trees generating the smallest amount of Sum Condition Error 
(SCE) (average amount of CCF error generated at each tree level), and 2) trees with the highest 
edge probability (trees comprising edges which appear most frequently across the solution space 
of alternative trees). j. Subclone proportions based on each mutation cluster on the tree are 
computed for the default tree and tree with lowest SCE. 

 
Figure 2. Benchmarking CONIPHER against current state-of-the-art methods. The 
performance of CONIPHER was evaluated against existing methods on 150 simulated tumours 
(Simulated Dataset 1 – see Supplementary Methods 4). All existing methods were run using 
default parameters. Three categories of simulations were generated with different numbers of 
samples - low (2-3 samples), medium (4-7 samples), and high (>7 samples). a. CONIPHER 
clustering performance is compared against PyClone using the mutation clustering Adjusted Rand 
Index (ARI). b. CONIPHER tree building performance is compared against LICHeE, CITUP, and 
Pairtree using mutation descendent accuracy. c. Scalability of combined CONIPHER clustering 
and tree building is compared with LICHeE, CITUP, PhyloWGS and Pairtree. Bar plots indicate 
the success status of simulations run in the time frame allowed (8 hours). Opaque coloured bars 
indicate successfully completed simulations, transparent coloured bars indicate failed 
simulations, and grey bars indicate simulations that did not complete execution within the set time. 
d. Mutation presence precision is computed to compare presence/absence of mutations in 
CONIPHER, LICHeE, CITUP, and Pairtree. e. Truncal sensitivity is computed for truncal 
mutations to assess performance in the presence of mutation losses between CONIPHER, 
LICHeE, CITUP, Pairtree, and Pairtree tree building run with CONIPHER clustering. f. Run 
success of tree building methods based on the ground truth simulated clusters. g. Truncal 
sensitivity computed from tree building methods run on the ground truth simulated clusters. h. 
Detection of error-driven clusters is compared between CONIPHER, LICHeE, CITUP, and 
Pairtree using noisy cluster sensitivity. The box plots represent the upper and lower quartiles (box 
limits), the median (centre line) and the vertical bars span 1.5x the interquartile range). 

 
Figure 3. Method workflow. CONIPHER is composed of two stages that are run sequentially: 
mutation clustering and tree building. The tree building stage is compatible with other clustering 
methods. 

 
Figure 4. Example input table for clustering and tree building: input.tsv. The clustering stage 
only considers the columns in the pink box. The tree building stage considers all columns in both 
pink and green boxes. This toy tumour example CRUK0000 has two sequenced tumour samples 
CRUK0000_R1 and CRUK0000_R2. 
 
Figure 5. Example panels from CONIPHER clustering stage output. a. Panel of estimated 
mutation copy number of each mutation from each cluster in one sample from 
CRUK0063_pyclone_cluster_assignment_copynumber_clean.pdf. Mutations are coloured 
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according to their assigned cluster. The y-axis corresponds to the copy number, and the x-axis to 
the position along the genome. b. Panel of estimated mutation copy number of every mutation 
removed from the clustering stage in metastatic samples CRUK0063_BR_T1.R1 and 
CRUK0063_SU_FLN1 from CRUK0063.removedCPN.muts.pdf. Mutations are coloured 
according to their assigned cluster. The y-axis corresponds to the copy number, and the x-axis to 
the position along the genome. c. Scatter plot comparing estimated PhyloCCF of all mutations in 
two tumour samples CRUK0063_BR_T1.R1 and CRUK0063_SU_T1.R3 in 
CRUK0063.pyclone_cluster_assignment_phylo_clean.pdf. Mutations are coloured by their 
assigned cluster. 

 
Figure 6. Example pytree_and_bar.pdf for case CRUK0063. This plot is produced in the tree 
building stage, and contains the estimated PhyloCCF bar plots for each cluster in each tumour 
sample (left), the inferred default tree structure (middle) and the number of mutations in each 
cluster kept in the tree (right top) and removed from the tree (right bottom). 

 
Figure 7. Example pytree_multipletrees.pdf for case CRUK0063. This output plot contains all 
potential alternative phylogenetic trees inferred by CONIPHER in the tree building stage. The 
alternative trees are plotted by row, i.e. the top left tree plot is alternative tree # 1 (the default 
tree), to the right of this is alternative tree # 2, and so on. 

 


