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Effects of empagliflozin on progression of chronic kidney 
disease: a prespecified secondary analysis from the 
EMPA-KIDNEY trial
The EMPA-KIDNEY Collaborative Group*

Summary
Background Sodium–glucose co-transporter-2 (SGLT2) inhibitors reduce progression of chronic kidney disease and 
the risk of cardiovascular morbidity and mortality in a wide range of patients. However, their effects on kidney disease 
progression in some patients with chronic kidney disease are unclear because few clinical kidney outcomes occurred 
among such patients in the completed trials. In particular, some guidelines stratify their level of recommendation 
about who should be treated with SGLT2 inhibitors based on diabetes status and albuminuria. We aimed to assess the 
effects of empagliflozin on progression of chronic kidney disease both overall and among specific types of participants 
in the EMPA-KIDNEY trial.

Methods EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries 
(Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA), and included individuals aged 18 years or 
older with an estimated glomerular filtration rate (eGFR) of 20 to less than 45 mL/min per 1·73 m², or with an eGFR 
of 45 to less than 90 mL/min per 1·73 m² with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher. 
We explored the effects of 10 mg oral empagliflozin once daily versus placebo on the annualised rate of change in 
estimated glomerular filtration rate (eGFR slope), a tertiary outcome. We studied the acute slope (from randomisation 
to 2 months) and chronic slope (from 2 months onwards) separately, using shared parameter models to estimate the 
latter. Analyses were done in all randomly assigned participants by intention to treat. EMPA-KIDNEY is registered at 
ClinicalTrials.gov, NCT03594110.

Findings Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and then followed up 
for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroups of eGFR included 2282 (34·5%) participants with an 
eGFR of less than 30 mL/min per 1·73 m², 2928 (44·3%) with an eGFR of 30 to less than 45 mL/min per 1·73 m², 
and 1399 (21·2%) with an eGFR 45 mL/min per 1·73 m² or higher. Prespecified subgroups of uACR included 
1328 (20·1%) with a uACR of less than 30 mg/g, 1864 (28·2%) with a uACR of 30 to 300 mg/g, and 3417 (51·7%) with 
a uACR of more than 300 mg/g. Overall, allocation to empagliflozin caused an acute 2·12 mL/min per 1·73 m² 
(95% CI 1·83–2·41) reduction in eGFR, equivalent to a 6% (5–6) dip in the first 2 months. After this, it halved the 
chronic slope from –2·75 to –1·37 mL/min per 1·73 m² per year (relative difference 50%, 95% CI 42–58). The 
absolute and relative benefits of empagliflozin on the magnitude of the chronic slope varied significantly depending 
on diabetes status and baseline levels of eGFR and uACR. In particular, the absolute difference in chronic slopes was 
lower in patients with lower baseline uACR, but because this group progressed more slowly than those with higher 
uACR, this translated to a larger relative difference in chronic slopes in this group (86% [36–136] reduction in the 
chronic slope among those with baseline uACR <30 mg/g compared with a 29% [19–38] reduction for those with 
baseline uACR ≥2000 mg/g; ptrend<0·0001).

Interpretation Empagliflozin slowed the rate of progression of chronic kidney disease among all types of participant 
in the EMPA-KIDNEY trial, including those with little albuminuria. Albuminuria alone should not be used to 
determine whether to treat with an SGLT2 inhibitor.

Funding Boehringer Ingelheim and Eli Lilly.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction 
Chronic kidney disease is common and associated with 
reduced quality of life and increased risks of kidney 
failure (which is fatal without costly kidney replacement 
therapy), cardiovascular disease, and mortality.1–3 Trials 
in chronic kidney disease populations have traditionally 
used dichotomous composite clinical outcomes that 

combine kidney failure (an infrequent outcome) with 
a proportional reduction in kidney function (as measured 
by change in estimated glomerular filtration rate [eGFR]) 
from baseline in excess of a particular threshold, 
usually 40–57%.4 The latter component is now accepted 
by regulatory authorities as a valid surrogate outcome 
for kidney failure itself in randomised trials.4,5 Like all 
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dichotomous outcomes, the majority of such outcomes 
during the trial follow-up period occurs in patients at 
highest risk, unlike in the general population, in which 
the majority of events occur during the lifetime of 
patients at moderate risk because of the much larger 
number of such patients.6 Analyses based on these 
outcomes have less statistical sensitivity for determining 
the effects of treatment among groups of patients who 
are at lower risk of kidney failure (including those with 
better preserved kidney function), but ultimately 
constitute the majority of patients with kidney failure in 
the general population. There is therefore interest in 
examining the annualised rate of decline of kidney 
function (eGFR slope) because this parameter can be 
calculated for all participants, and so eGFR slopes have 
improved statistical sensitivity when comparing the 
effect of an intervention in different types of patients. 
The eGFR slope might also be considered as a valid 
surrogate of chronic kidney disease progression per se 
and be used as a primary outcome in trials.7,8 Importantly, 
the effect of a treatment on eGFR slope is not neces-
sarily homogeneous over time; many renoprotective 
treatments, including renin–angio tensin system (RAS) 
inhibitors, sodium–glucose co-transporter-2 (SGLT2) 
inhibitors, and finerenone, cause an early acute negative 

effect on slope (referred to as an acute dip), followed by 
a long-term (or chronic) reduction in eGFR slope. It is 
therefore important to understand the effects of new 
treatments on these two components of the total slope.

Randomised trials of SGLT2 inhibitors have consistently 
shown that this class of treatment reduces the risk of 
progression of kidney disease (measured with dichotomous 
outcomes) in patients with chronic kidney disease with or 
without diabetes, largely irrespective of underlying primary 
kidney disease.9–12 Secondary analyses of two previous trials 
of SGLT2 inhibitors in chronic kidney disease populations 
found some evidence that the effects of SGLT2 inhibitors 
on the eGFR slope varied in different types of patients, but 
because the trials only recruited patients with significant 
albuminuria, they were limited in their ability to explore 
whether this effect varied according to baseline 
albuminuria as well as other clinical characteristics.13,14 
Here, we present the effects of empagliflozin versus 
placebo on eGFR slope from the EMPA-KIDNEY trial, 
which recruited a uniquely broad range of patients with 
chronic kidney disease at risk of progression, including 
those with minimal albuminuria, low eGFR, and with and 
without diabetes. In a companion paper, we assess the 
effects of empagliflozin on kidney outcomes in participants 
with different types of kidney disease.12

Research in context

Evidence before this study
We searched MEDLINE and Embase via Ovid for randomised 
trials published between database inception and Sept 5, 2022, 
using the search terms “sodium glucose transporter 2 
inhibitors”, “sglt2”, “sglt-2”, “sodium-glucose transporter”, 
“sodium-glucose co-transporter”, “sodium-glucose 
cotransporter”, “ canagliflozin”, “dapagliflozin”, “ertugliflozin”, 
“ipragliflozin”, “luseogliflozin”, “remogliflozin”, “sergliflozin”, 
“sotagliflozin”, or “tofogliflozin”. No language restriction was 
applied. Meta-analysis of the large randomised trials of sodium–
glucose co-transporter-2 (SGLT2) inhibitors shows that they 
reduce the risk of kidney disease progression in patients with 
chronic kidney disease, as well as acute kidney injury and 
cardiovascular morbidity and mortality. These analyses were 
limited by an inability to explore effects in small subgroups or 
patients whose chronic kidney disease was only progressing 
slowly. The EMPA-KIDNEY trial recruited a broad range of 
patients with chronic kidney disease, including patients 
without significant albuminuria. Relatively few clinical kidney 
outcomes occurred in this subgroup during 2 years of 
follow-up, and the results suggested that the proportional 
benefit of allocation to empagliflozin might be smaller at lower 
levels of albuminuria. This has led to some uncertainty about 
the benefits of SGLT2 inhibition in such patients, who 
constitute the majority of the population of patients with 
chronic kidney disease globally. The use of estimates of the 
annualised decline in kidney function (estimated glomerular 
filtration rate [eGFR] slopes) has recently been proposed as an 

alternative outcome for trials in chronic kidney disease. It has 
advantages for exploring the results of large randomised trials 
because all participants provide information so such analyses 
are statistically sensitive.

Added value of this study
These analyses show that empagliflozin caused a modest initial 
drop in kidney function, followed by a substantial slowing of 
the rate of progression of chronic kidney disease in all patients. 
These chronic effects varied by baseline diabetes status, eGFR, 
and urinary albumin-to-creatinine ratio (uACR) in both 
absolute and relative terms, and these interactions were 
independent of each other. In particular, the absolute difference 
in chronic slopes was lower in patients with lower baseline 
uACR, but because this group progressed more slowly than 
those with higher uACR, this translated to a larger relative 
difference in chronic slopes in this group.

Implications of all the available evidence
These results suggest that empagliflozin slows the rate 
of progression of chronic kidney disease in a broad range of 
patients. The findings challenge guidelines that have used 
albuminuria to stratify their level of recommendation about 
who should be treated with SGLT2 inhibitors. Patients with 
lower albuminuria (and consequently at lower risk of 
progression of chronic kidney disease) benefit from treatment 
with SGLT2 inhibition in terms of preservation of kidney 
function, in addition to reductions in risk of acute kidney injury 
and cardiovascular disease.
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Methods 
Study design and participants
EMPA-KIDNEY, a randomised, controlled, phase 3 trial, 
was conducted at 241 centres in eight countries (Canada, 
China, Germany, Italy, Japan, Malaysia, the UK, and the 
USA). Details of EMPA-KIDNEY’s rationale, design, 
protocol, prespecified data analysis plan, and main results 
have been reported previously.11,15,16 Regulatory authorities 
and ethics committees for each centre approved the trial. 
Individuals aged 18 years or older with a race-adjusted 
Chronic Kidney Disease-Epidemiology Collaboration 
equation-based17 eGFR of 20 to less than 45 mL/min 
per 1·73 m² (irrespective of level of albuminuria) or with an 
eGFR of 45 to less than 90 mL/min per 1·73 m² with 
a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g 
or higher at the screening visit were eligible provided they 
were prescribed a clinically appropriate dose of single-agent 
RAS inhibitor, where indicated and tolerated. Patients with 
or without diabetes were eligible, and polycystic kidney 
disease was the only excluded primary kidney disease. 
Individuals receiving at least 45 mg prednisolone daily 
(or equivalent) or had received intravenous immuno-
suppression in the past 3 months were excluded.

All eligible and consenting participants entered a pre-
randomisation run-in phase and were provided with 
a 15-week supply of once-daily placebo tablets. During this 
time, local investigators reviewed screening data, assessed 
current RAS inhibitor use, and approved potential 
participants for later randomisation. Participant-reported 
primary kidney disease was confirmed by local lead 
investigators. Throughout the trial, clinical responsibility 
for participants remained with their local doctors. After 
completing the run-in, willing and eligible participants 
had central samples of blood and urine collected for central 
analysis and long-term storage, and were randomly 
assigned (1:1) to receive oral empagliflozin (10 mg once 
daily) or matching placebo.18 At follow-up visits, participants 
provided information on renal status (ie, any dialysis 
treatment or receipt of a kidney transplant), adherence to 
study treatment (with reasons for stopping), and details 
of concomitant medication. They were also asked in 
a structured interview about any serious adverse events 
(and protocol-specified non-serious adverse events), under-
went clinical measurements of blood pressure and weight, 
and had blood collected for local safety assessment of 
creatinine, liver function, and potassium. Blood samples 
and, at selected visits, urine samples were sent to the 
central laboratory for efficacy analyses and archiving. 
Surviving participants in the UK were asked to provide 
a blood sample for local laboratory analysis of creatinine 
about 4 weeks after their final follow-up visit in order to 
assess the effect of discontinuing empagliflozin on eGFR.

Outcomes 
Annual rate of change in eGFR calculated separately for 
the period from baseline to the final follow-up visit 
(ie, total slope) and for the period from 2 months to the 

final follow-up visit (ie, chronic slope) were tertiary 
outcomes in the original protocol, with exploratory 
analyses of these outcomes prespecified. Acute dips in 
eGFR were calculated as the difference in eGFR between 
baseline and the 2-month follow-up visit.

Statistical analysis
Unless stated otherwise, all analyses were performed 
according to the intention-to-treat principle, including all 
randomly assigned participants. Effects of empagliflozin 
on annual rate of change in eGFR were assessed using 
prespecified shared parameter models,19,20 which were 
used to calculate the chronic eGFR slope. For subgroup 
analyses, absolute differences in chronic slopes were 
calculated, and, from these chronic slope, relative 
differences were calculated by dividing the absolute effect 
and its 95% CI by the mean slope in the placebo group. 
Prespecified subgroup categories for eGFR were less than 
30 mL/min per 1·73 m², 30 to less than 45 mL/min per 
1·73 m², and 45 mL/min per 1·73 m² or higher and those 
for uACR were less than 30 mg/g, 30–300 mg/g, and 
300 mg/g or higher. The lowest eGFR and highest uACR 
categories were further subdivided to give post-hoc 
expanded subgroups (eGFR <20 mL/min per 1·73 m², 
20 to <30 mL/min per 1·73 m², 30 to <45 mL/min per 
1·73 m², ≥45 mL/min per 1·73 m² and less than 30 mg/g, 
30 to 300 mg/g, >300 to <1000 mg/g, 1000 to <2000 mg/g, 
and 2000 mg/g or higher), and the prespecified uACR 
subgroup was also divided by diabetes status. In keeping 
with the prespecified analyses of the chronic slopes, 
effects of empagliflozin on acute dips were estimated 
using linear regression models adjusted for baseline 
variables specified in the minimisation algorithm (age, 
sex, previous diabetes, eGFR, uACR, and region). 
Subgroup-specific effects were estimated through the 
inclusion of treatment by subgroup interaction terms. 
Relative differences in acute dips as a percentage of mean 
baseline eGFR were also calculated. Standard tests for 
heterogeneity or trend across subgroups were performed 
for relative differences in eGFR slopes and acute dips.

Sensitivity analyses for annual rate of change in eGFR 
included the addition of interactions with other key 
subgroups (to standardise the distribution of other 
characteristics across subgroups; post hoc), as well as 
restricting analyses to on-treatment eGFR measurements 
(post hoc) and using eGFR measurements based on 
local creatinine values (prespecified). In the surviving 
UK participants with a 4-week post-final follow-up blood 
sample, the effect of stopping study treatment on mean 
eGFR (after taking account of any differences in eGFR at 
final follow-up) was estimated using linear regression 
models adjusted for age, sex, previous diabetes, and 
uACR, as specified in the minimisation algorithm and 
eGFR at the final follow-up visit. Effects of empagliflozin 
on albuminuria used a prespecified mixed model for 
repeated measures (MMRM) approach.11 The normality 
of residuals assumption was examined for each linear 
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regression model and MMRM through the inspection of 
histograms and Q–Q plots. The assumption of 
homoscedasticity was assessed through visual inspection 

of a plot of fitted values against the residuals. No 
violations of the assumptions underlying the linear 
regression models or MMRM were identified.

eGFR (mL/min per 1·73 m²) uACR (mg/g)

<30 (n=2282) ≥30 to <45 (n=2928) ≥45 (n=1399) <30 (n=1328) 30–300 (n=1864) >300 (n=3417)

Demographics

Age at randomisation, years 65 (13) 64 (13) 58 (15) 71 (9) 66 (13) 59 (14)

Sex

Male 1533 (67·2%) 1937 (66·2%) 947 (67·7%) 725 (54·6%) 1268 (68·0%) 2424 (70·9%)

Female 749 (32·8%) 991 (33·8%) 452 (32·3%) 603 (45·4%) 596 (32·0%) 993 (29·1%)

Race

White 1440 (63·1%) 1833 (62·6%) 586 (41·9%) 1069 (80·5%) 1189 (63·8%) 1601 (46·9%)

Black 98 (4·3%) 119 (4·1%) 45 (3·2%) 71 (5·3%) 89 (4·8%) 102 (3·0%)

Asian 707 (31·0%) 930 (31·8%) 756 (54·0%) 173 (13·0%) 562 (30·2%) 1658 (48·5%)

Mixed 6 (0·3%) 13 (0·4%) 2 (0·1%) 2 (0·2%) 6 (0·3%) 13 (0·4%)

Other 31 (1·4%) 33 (1·1%) 10 (0·7%) 13 (1·0%) 18 (1·0%) 43 (1·3%)

Previous disease

Previous diabetes* 1151 (50·4%) 1371 (46·8%) 518 (37·0%) 647 (48·7%) 943 (50·6%) 1450 (42·4%)

Previous diabetes type

Type 1 31 (1·4%) 28 (1·0%) 9 (0·6%) 11 (0·8%) 20 (1·1%) 37 (1·1%)

Type 2 1106 (48·5%) 1333 (45·5%) 497 (35·5%) 633 (47·7%) 916 (49·1%) 1387 (40·6%)

Other or unknown 14 (0·6%) 10 (0·3%) 12 (0·9%) 3 (0·2%) 7 (0·4%) 26 (0·8%)

History of cardiovascular disease† 718 (31·5%) 828 (28·3%) 219 (15·7%) 484 (36·4%) 579 (31·1%) 702 (20·5%)

Clinical measurements

Systolic blood pressure, mm Hg 137·6 (18·6) 136·0 (18·2) 135·9 (17·8) 130·8 (18·0) 134·3 (17·7) 139·9 (18·0)

Diastolic blood pressure, mm Hg 76·5 (11·8) 77·9 (11·7) 80·9 (11·6) 73·5 (10·7) 75·8 (11·6) 81·0 (11·5)

BMI, kg/m² 30·1 (6·7) 30·1 (6·9) 28·5 (6·5) 31·5 (7·1) 29·9 (6·6) 29·0 (6·6)

Laboratory measurements

eGFR, mL/min per 1·73 m²‡ 24·6 (3·6) 36·8 (4·2) 59·3 (13·5) 35·1 (8·2) 36·3 (12·8) 38·7 (16·8)

<30 2282 (100%) 0 0 386 (29·1%) 639 (34·3%) 1257 (36·8%)

30 to <45 0 2928 (100%) 0 789 (59·4%) 896 (48·1%) 1243 (36·4%)

≥45 0 0 1399 (100%) 153 (11·5%) 329 (17·7%) 917 (26·8%)

uACR, mg/g‡ 410 (59–1373) 187 (26–781) 515 (214–1199) 7 (6–18) 117 (59–202) 1033 (575–1910)

<30 386 (16·9%) 789 (26·9%) 153 (10·9%) 1328 (100%) 0 0

30 to 300 639 (28·0%) 896 (30·6%) 329 (23·5%) 0 1864 (100%)

>300 1257 (55·1%) 1243 (42·5%) 917 (65·5%) 0 0 3417 (100%)

NT-proBNP, ng/L 713 (1681) 470 (1091) 211 (476) 506 (930) 535 (1220) 477 (1384)

HbA1c, mmol/mol 45·5 (13·7) 45·5 (13·7) 43·1 (13·1) 45·5 (12·1) 45·8 (13·4) 44·3 (14·2)

HbA1c, % 4·2% (1·3) 4·2% (1·3) 3·9% (1·2) 4·2% (1·1) 4·2% (1·2) 4·1% (1·3)

Concomitant medication use

RAS inhibitor 1872 (82·0%) 2487 (84·9%) 1269 (90·7%) 1073 (80·8%) 1545 (82·9%) 3010 (88·1%)

Any diuretic 1151 (50·4%) 1271 (43·4%) 393 (28·1%) 777 (58·5%) 868 (46·6%) 1170 (34·2%)

Any lipid-lowering medication 1657 (72·6%) 1955 (66·8%) 766 (54·8%) 992 (74·7%) 1274 (68·3%) 2112 (61·8%)

Cause of kidney disease

Diabetic kidney disease 801 (35·1%) 901 (30·8%) 355 (25·4%) 376 (28·3%) 623 (33·4%) 1058 (31·0%)

Hypertensive or renovascular 
disease

533 (23·4%) 699 (23·9%) 213 (15·2%) 469 (35·3%) 444 (23·8%) 532 (15·6%)

Glomerular disease 452 (19·8%) 636 (21·7%) 581 (41·5%) 66 (5·0%) 344 (18·5%) 1259 (36·8%)

Other or unknown 496 (21·7%) 692 (23·6%) 250 (17·9%) 417 (31·4%) 453 (24·3%) 568 (16·6%)

Data are mean (SD), n (%), or median (IQR). eGFR=estimated glomerular filtration rate. RAS=renin–angiotensin system. uACR=urinary albumin-to-creatinine ratio. *Previous 
diabetes defined as diabetes at randomisation is defined as participant-reported history of diabetes of any type, use of glucose-lowering medication or baseline HbA1c 
≥48 mmol/mol (6·5%) at randomisation visit. †Defined as self-reported history of myocardial infarction, heart failure, stroke, transient ischaemic attack, or peripheral arterial 
disease. ‡Uses central measurement taken at the randomisation visit, or more recent local laboratory result before randomisation. 

Table 1: Baseline characteristics by eGFR and uACR
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The proportion of treatment effect for the primary 
composite outcome of kidney disease progression or 
cardiovascular death explained by on-study uACR, systolic 
blood pressure, diastolic blood pressure, and HbA1c was 
estimated using the landmark method,21,22 adjusting the 
prespecified Cox regression model for 2-month values of 
the biomarkers. Bias-corrected and accelerated bootstrap 
intervals with 10 000 replications were used to construct 
the 95% CIs. Time-to-event analyses defined time at risk 
starting from randomisation, and finishing at the date of 
event of interest, final follow-up, or censoring at the 
earliest of death, loss to follow-up, or withdrawal of 
consent. Assessment of the proportional hazards 
assumption (by testing the significance of an interaction 
between treatment allocation and log[survival time]) 
found no evidence against proportionality for any of the 
time to event outcomes. The landmark method was also 
used to estimate the proportion of the treatment effect on 
chronic slope explained by the same on-study biomarkers. 
Changes in Wald χ² statistics are also presented to 
quantify the reduction in the strength of the association 
between treatment allocation and outcomes after 
adjustment for 2-month biomarkers.

Further statistical details are provided in the previously 
published data analysis plan, appendix (pp 12−13), and 
primary report.11 Analyses used SAS software (version 9.4) 
and R (version 4.3.0).

An independent data and safety monitoring committee 
oversaw safety and the formal interim analysis for 
efficacy. EMPA-KIDNEY is registered at ClinicalTrials.
gov, NCT03594110.

Role of the funding source 
The main trial funder (Boehringer Ingelheim) has 
minority representation on the trial Steering Committee, 

which provided oversight of trial design, data collection, 
and data interpretation. NS, RH, CB, and WH are 
responsible for the analyses performed by the University 
of Oxford (Oxford, UK), where the original full database 
is held.

Results 
Between May 15, 2019, and April 16, 2021, 
6609 participants were randomly assigned and then 
followed up for a median of 2·0 years (IQR 1·5–2·4). 
Prespecified subgroups of eGFR included 2282 (34·5%) 
participants with an eGFR of less than 30 mL/min per 
1·73 m², 2928 (44·3%) with an eGFR of 30 to less than 
45 mL/min per 1·73 m², and 1399 (21·2%) with an eGFR 
45 mL/min per 1·73 m² or higher. Prespecified subgroups 
of uACR included 1328 (20·1%) with a uACR of less than 
30 mg/g, 1864 (28·2%) with a uACR of 30 to 300 mg/g, 
and 3417 (51·7%) with a uACR or more than 300 mg/g 
(table 1). Participants with lower eGFR were older and 
more likely to have diabetes. uACR was highest among 
participants with an eGFR 45 mL/min per 1·73 m² or 
higher, due to the requirement for them to have 
a uACR 200 mg/g or higher at screening to be eligible. 

Participants with a higher uACR were younger, were less 
likely to have diabetes, and had a higher mean eGFR 
(table 1). Baseline characteristics for the expanded eGFR 
and uACR categories are given in the appendix (p 15).

Between randomisation and the 2-month follow-up visit, 
the placebo-adjusted acute dip in eGFR with empagliflozin 
was 2·12 mL/min per 1·73 m² (95% CI 1·83–2·41), or, in 
relative terms, 6% (5–6). The relative effects varied 
significantly across the key subgroups (figure 1) but were 
generally similar across other prespecified subgroups with 
statistical evidence for some effect modification by age, 
BMI, HbA1c, and use of lipid-lowering medication 

Figure 1: Effect of allocation to empagliflozin on acute changes in estimated glomerular filtration rate, by key subgroups
The p value for test of heterogeneity between absolute differences for patients with and without diabetes is 0·0010, the p value for test for trend in absolute differences across eGFR categories is 0·016 
and that across uACR categories is 0·050. eGFR=estimated glomerular filtration rate. uACR=urinary albumin-to-creatinine ratio. 

Relative difference
(95% CI), %

 

–7% (–9 to –6)

–4% (–5 to –3) 

–6% (–8 to –4)

–6% (–8 to –5)

–4% (–5 to –3)

–7% (–9 to –5)

–7% (–8 to –5)

–5% (–6 to –3)

–6% (–6 to –5)

Diabetes; χ1
2  =14·43; pheterogeneity=0·0001

Present

Absent

eGFR (mL/min per 1·73 m²); χ1
2  =7·09; ptrend=0·0078

<30

30 to <45

≥45

uACR (mg/g); χ1
2  =6·49; ptrend=0·011

<30

30 to 300

>300

All participants

Empagliflozin

–3·23 (0·16)

–2·32 (0·15)

–1·21 (0·17)

–3·04 (0·15)

–4·83 (0·24)

–2·24 (0·24)

–2·46 (0·20)

–3·12 (0·15)

–2·74 (0·11)

Mean (SE) acute dip, 
mL/min per 1·73 m²

Baseline eGFR, 
mL/min per 1·73 m²

35·8

38·6

24·6

36·8

59·3

35·1

36·3

38·7

37·3

 –0·57 (0·16)

  –0·65 (0·14)

    0·37 (0·17)

 –0·66 (0·15)

 –2·38 (0·24)

   0·16 (0·23)

   0·05 (0·19)

  –1·36 (0·15)

–0·62 (0·10)

Placebo

–2·66 (–3·11 to –2·22)

–1·67 (–2·07 to –1·27)

–1·58 (–2·06 to –1·10)

–2·38 (–2·81 to –1·95)

–2·45 (–3·11 to –1·79)

–2·40 (–3·05 to –1·76)

–2·51 (–3·05 to –1·97)

–1·77 (–2·19 to –1·34)

–2·12 (–2·41 to –1·83)

Absolute difference (95% CI), 
mL/min per 1·73 m²

–10 –5 0

Larger with empagliflozin Smaller with empagliflozinLarger with empagliflozin Smaller with empagliflozin 

–4 –3 –2 –1 0



Articles

44 www.thelancet.com/diabetes-endocrinology   Vol 12   January 2024

(appendix p 21). In the surviving UK participants with a 
4-week post-final follow-up blood sample, this acute dip 
reversed when study treatment was discontinued, with the 
mean eGFR at 4 weeks post-final follow-up being 
29·89 mL/min per 1·73 m² (SE 0·23) in the empagliflozin 
group and 27·98 mL/min per 1·73 m² (0·24) in the placebo 
group (difference 1·91 mL/min per 1·73 m² [95% CI 
1·26–2·56]), after accounting for any differences at final 
follow-up; appendix p 16), with similar differences 
observed in subgroup analyses by baseline eGFR and 
uACR categories (appendix p 17).

The geometric mean study average uACR was 
202 mg/g (SE 4) in the empagliflozin group and 250 mg/g 
(5) in the placebo group, a relative reduction in the 

empagliflozin group of 19% (95% CI 15 to 23). The 
relative reduction in study average uACR varied 
substantially between different types of participant, in 
particular by baseline uACR (appendix p 18). The relative 
reduction was 5% (95% CI −6 to 15) among patients with 
a baseline uACR of less than 30 mg/g compared with 
26% (20 to 31) among patients with a baseline uACR of 
higher than 300 mg/g.

Overall, allocation to empagliflozin slowed the rate of 
decline in eGFR from 2 months to final follow-up (the 
chronic slope) by 1·37 mL/min per 1·73 m² per year 
(95% CI 1·16–1·59), which represented a 50% (42–58) 
relative reduction in the mean chronic slope (figure 2). 
Larger relative effects were observed among partici-

Figure 2: Absolute and relative effects of allocation to empagliflozin on total slopes and chronic slopes, by prespecified diabetes subgroup, and post-hoc expanded eGFR and uACR subgroups
The p value for test of heterogeneity between absolute difference in chronic slopes for patients with and without diabetes is 0·0085, the p value for test for trend in absolute differences in chronic 
slope across eGFR categories is 0·0013 and that across uACR categories is less than 0·0001. The p value for heterogeneity between absolute differences in total slopes for patients with and without 
diabetes is 0·19, and the p value for test for trend in absolute differences in total slope across eGFR categories is 0·023 and that across uACR categories is less than 0·0001. eGFR=estimated glomerular 
filtration rate. uACR=urinary albumin-to-creatinine ratio. 
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pants with diabetes than those without diabetes 
(62% [50–73] vs 40% [29–51], pheterogeneity=0·0074; figure 2). 
The effect in participants with type 1 diabetes was 
consistent with that seen in those with type 2 diabetes, 
although the power to detect a difference was low due 
to the low number of patients with type 1 diabetes 
(appendix p 22). There was some evidence that the 
relative effects differed across eGFR categories in 
exploratory analyses splitting out the lowest eGFR 
category into less than 20 mL/min per 1·73 m² and 20 to 
less than 30 mL/min per 1·73 m² (ptrend=0·012; figure 2). 

The treatment effects on the primary composite of 
kidney disease progression or cardiovascular death 
across these expanded eGFR categories showed no 
evidence of effect modification by eGFR (ptrend=0·81; 
appendix p 23).

Smaller absolute differences between empagliflozin 
and placebo in chronic slopes were observed in the 
lowest uACR categories, but the mean rate of decline was 
also substantially lower in these groups. As a result, 
when comparing the relative differences in chronic 
slope, this trend was reversed, with participants in the 
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lowest uACR categories having the largest relative 
reduction in the chronic slope (relative reduction 86% 
[95% CI 36–136] in those with uACR <30 mg/g compared 
with 29% [19–38] in those with uACR ≥2000 mg/g, 
ptrend<0·0001; figure 2). The trend seen in the relative 
difference in the chronic slope depending on uACR was 
similar among participants with and without diabetes 
(appendix p 24).

Relative differences in the chronic slope were generally 
similar across other subgroups, with statistical evidence 
for some effect modification by age, HbA1c, and 5-year 
risk of kidney failure, although clear benefits remained 
in all subgroups (figure 3). Differences in the relative 
effects on the chronic slope for the diabetes and uACR 

subgroups were not explained by their correlation with 
other key characteristics (as results were essentially 
unchanged after including interactions with other key 
subgroups; appendix p 25). Results were also similar in 
sensitivity analyses restricted to on-treatment eGFR 
measurements and using eGFR measurements based on 
local laboratory creatinine values (appendix pp 26, 27).

Overall, allocation to empagliflozin slowed the rate of 
decline in eGFR from baseline to final follow-up by 
0·75 mL/min per 1·73 m² per year (95% CI 0·54–0·96), 
which represents a 26% (19–33) relative reduction in the 
mean total slope (figure 2). These differences reflect the 
combinations of the effects on the acute dips in eGFR 
and the chronic slopes. Relative differences in total slope 
were similar across all the expanded key subgroups and 
other subgroups (appendix p 28).

In exploratory analyses, on-study levels of uACR, 
systolic blood pressure, diastolic blood pressure, and 
HbA1c explained 41% (95% CI 23–77) of the treatment 
effect on the primary composite of kidney disease 
progression or cardiovascular death (an attenuation of 
the hazard ratio from 0·73 [0·63 to 0·83] to 0·83 
[0·72 to 0·95], and 67% reduction in χ² from 20·5 to 6·8; 
table 2). uACR alone explained 40% (24 to 73) of the 
treatment effect, whereas systolic blood pressure and 
diastolic blood pressure explained fairly modest 
proportions (10% [3 to 23] and 4% [0 to 11], respectively) 
and HbA1c did not explain any of the treatment effect 
(0% [–5 to 4]; table 2). Similar patterns were observed for 
chronic slope, although the proportion of the treatment 
effect explained by the biomarkers was somewhat lower 
(26% [19 to 35]; appendix p 19).

Figure 3: Effect of allocation to empagliflozin on chronic slopes, by other subgroups
eGFR=estimated glomerular filtration rate. uACR=urinary albumin-to-creatinine ratio. 
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HR (95% CI) for 
empagliflozin vs 
placebo*

Wald χ² Percentage 
reduction in χ²

Proportion of 
treatment effect 
explained (95% CI)

None 0·73 (0·63 to 0·83) 20·5 0 ··

uACR 0·83 (0·72 to 0·95) 7·2 65 40% (24 to 73)

Systolic blood pressure 0·75 (0·65 to 0·86) 16·3 21 10% (3 to 23)

Diastolic blood pressure 0·73 (0·64 to 0·84) 18·9 8 4% (0 to 11)

HbA1c 0·72 (0·63 to 0·83) 20·7 –1 0% (–5 to 4)

uACR, systolic and diastolic 
blood pressure, and HbA1c

0·83 (0·72 to 0·95) 6·8 67 41% (23 to 77)

Analyses were restricted to 5465 participants with measurements of uACR, systolic and diastolic blood pressure, and 
HbA1c at 2 months. Participants with an event in the first 2 months of follow-up were excluded. HR=hazard ratio. 
uACR=urinary albumin-to-creatinine ratio. *After adjustment for biomarkers at 2 months. All analyses were 
additionally adjusted for baseline variables specified in the minimisation algorithm (age, sex, previous diabetes, 
estimated glomerular filtration rate, uACR, and region).

Table 2: Proportion of treatment effect for primary composite outcome explained by 2-month biomarkers 
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Discussion 
Our analyses showed that, in this cohort of patients with 
chronic kidney disease at risk of progression, allocation to 
empagliflozin caused a small dip in kidney function of 
approximately 2 mL/min per 1·73 m² (or 6%) and then 
halved the subsequent rate of long-term loss of kidney 
function. This overall result complements the 29% 
(95% CI 19–38) reduction in risk of kidney disease 
progression when assessed with the categorical composite 
outcome of end-stage kidney disease, a sustained decrease 
from baseline in eGFR of at least 40% or to less than 
10 mL/min per 1·73 m², or death from kidney failure. The 
beneficial effects of empagliflozin on the progression of 
chronic kidney disease varied by diabetes status and 
eGFR, but most prominently by albuminuria, where 
relative benefits might in fact be larger among participants 
with lower albuminuria. These findings are consistent 
with observations in other trials of SGLT2 inhibitors in 
chronic kidney disease, although these trials focused on 
patients with diabetes, significant levels of albuminuria, 
or both.13,14 The broad range of patients included in the 
large EMPA-KIDNEY trial has allowed this to be explored 
in a more diverse population than those included in other 
large trials of SGLT2 inhibition in chronic kidney disease; 
in particular, EMPA-KIDNEY included participants with 
an eGFR of less than 25 mL/min per 1·73 m² and with 
a uACR of less than 200 mg/g who were excluded from 
these previous trials.

The acute dip in eGFR when empagliflozin was initiated 
in EMPA-KIDNEY was modest (in all participant 
subgroups; it was on average <3 mL/min per 1·73 m² or 
<10% of baseline eGFR) and was largely reversible when 
treatment was discontinued. The acute effect was larger 
among participants with diabetes than in those without 
(on both absolute and relative scales), which might reflect 
the greater prevalence and degree of hyperfiltration in 
this group. The acute effect of SGLT2 inhibition on kidney 
function was recognised early in the development of this 
drug class (although not in all studies23) and is believed to 
be due to the acute reduction in intraglomerular pressure 
caused by afferent arteriolar vasoconstriction stimulated 
by increased sodium delivery to the macula densa.24,25 The 
associated rapid reduction in albuminuria supports this 
hypothesis,26 and this reduction in intraglomerular 
pressure is one of the postulated mechanisms of the 
beneficial effects of SGLT2 inhibition on kidney 
function.25 Our exploratory analyses suggest that the 
reduction in albuminuria might be the most important 
measured determinant of the benefits observed in EMPA-
KIDNEY, explaining a fifth of the effect on chronic slopes 
and two-fifths of the effect on the primary composite 
outcome of kidney disease progression, consistent with 
analyses from other trials in chronic kidney disease.27 
These analyses need to be interpreted with some caution 
because they could have been subject to bias due to 
measurement error and residual mediator–outcome 
confounding. Whether this association is due to avoidance 

of direct toxic effects of albumin on tubular function, 
a reduction in intraglomerular pressure, or another 
unmeasured correlate of urinary albumin is not clear. 
However, these analyses also suggest that other 
mechanisms unrelated to albuminuria, blood pressure, 
or glycaemic control contribute to the benefit of SGTL2 
inhibition on kidney function.

Our analyses focused on chronic slopes. Although 
effects on total slope correlate strongly with effects on 
clinical outcomes over short (2–3-year) follow-up 
periods,8 the chronic slope is likely to be more informative 
for longer time periods. When the magnitude of the 
acute dip correlates with the relative reduction in the 
chronic slope (which is plausible because they share 
causal mechanisms, such as reduced intraglomerular 
pressure), this reduces variation between subgroups in 
total slope when measured over 2–3 years. However, this 
would not be the case with longer follow-up (see appendix 
p 29 for an explanatory example). Clinicians seeking to 
delay or avoid kidney failure would usually consider such 
longer time periods for which the chronic slope is most 
relevant. Furthermore, the limited variation in total 
slopes between patient subgroups reduces the ability to 
explore any such differences in treatment effect that 
might exist between those subgroups. This is shown by 
the apparent consistency of treatment effect on total 
slope in EMPA-KIDNEY versus the evidence of effect 
modification when using chronic slopes.

When comparing chronic slopes, we have reported 
both the absolute and relative differences but have 
emphasised the latter. Absolute differences are 
determined by both the background annual rate of 
change in eGFR and the relative effect of treatment, so 
any heterogeneity observed could be due to either of 
these components. This is demonstrated in the analysis 
by baseline uACR: the absolute difference in the chronic 
slope among participants with a uACR of 2000 mg/g or 
higher was 1·82 mL/min per 1·73 m² per year, whereas 
the background chronic slope among participants with 
a uACR of less than 30 mg/g was 0·88 mL/min per 
1·73 m² per year, so it was impossible for the absolute 
difference in the latter subgroup to be similar to that 
observed in the highest uACR subgroup. Indeed, the 
absolute difference in the chronic slope was positively 
associated with baseline uACR; however, the relative 
difference was inversely associated such that partici-
pants with the lowest baseline uACR had the largest 
relative reduction (86% [95% CI 36–136] in those with 
uACR <30 mg/g vs 29% [19–38] in those with uACR 
≥2000 mg/g). There was no strong evidence that this 
association was importantly modified by the presence or 
absence of diabetes. Contrary to some international 
guidelines that only suggest (rather than recommend) 
using SGLT2 inhibitors in patients without diabetes and 
without significant albuminuria (uACR <200 mg/g),28 
these analyses suggest that patients with low albuminuria 
(with or without diabetes) are likely to gain substantial 
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benefit in terms of preservation of kidney function from 
SGLT2 inhibition, in addition to the other benefits of 
reductions in risk of acute kidney injury and 
cardiovascular disease.29 Given the short follow-up in 
EMPA-KIDNEY (median 2 years) it would be expected 
that a treatment that causes a 2 mL/min per 1·73 m² 
acute dip in eGFR in the subgroup of patients with uACR 
<30 mg/g (progressing at only 1 mL/min per 1·73 m² per 
year) would not demonstrate definitive benefits on the 
categorical outcome (by contrast with subgroups with 
higher uACR progressing faster than 2 mL/min per 
1·73 m² per year). These analyses of the chronic slope 
suggest that important benefits would likely emerge with 
longer treatment (see appendix p 29 for an example).

These analyses are limited by the characteristics of 
patients included in EMPA-KIDNEY.11 Few patients with 
type 1 diabetes were included, and patients with 
autosomal dominant polycystic kidney disease or with a 
kidney transplant were not eligible for the trial. In a 
companion paper, we assess whether the effects of 
allocation empagliflozin vary in different types of kidney 
disease.12 The trial deliberately excluded patients at low 
risk of chronic kidney disease progression (ie, those with 
an eGFR of ≥45 mL/min per 1·73 m² and uACR 
<200 mg/g), but demonstrated that the relative benefit 
on the chronic slope was inversely proportional to 
predicted risk of kidney failure. Participants only received 
study treatment for 2 years on average because the trial 
was stopped earlier than planned owing to clear evidence 
of benefit. A further 2 years of off-treatment follow-up is 
underway to assess the longer-term effects of an average 
of 2 years of treatment.

In summary, in EMPA-KIDNEY, allocation to 
empagliflozin compared with placebo caused a modest 
acute dip in eGFR, and then substantially slowed the 
longer-term progression of chronic kidney disease. The 
longer-term benefits varied by diabetes status, eGFR, and 
most prominently uACR (and related characteristics 
such as predicted risk of kidney failure). Although the 
trial stopped early because of clear benefits emerging 
based on results in patients at highest risk, these analyses 
show that patients at lower risk such as those with lower 
levels of albuminuria—many of whom in their lifetime 
would otherwise develop kidney failure—could benefit in 
terms of preservation of kidney function, in addition to 
other proven cardiovascular and mortality benefits.29 If 
widely implemented, use of SGLT2 inhibitors could have 
a substantial effect on the public health impacts of 
chronic kidney disease. 
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