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Abstract9

The advancements in machine learning techniques have encouraged researchers to apply the10

techniques to a myriad of software engineering tasks that use source code analysis, such as11

testing and vulnerability detection. Such a large number of studies hinders the community fro12

understanding the current research landscape. This paper aims to summarize the current13

knowledge in applied machine learning for source code analysis. We review studies belonging14

twelve categories of software engineering tasks and corresponding machine learning techniq15

tools, and datasets that have been applied to solve them. To do so, we conducted an extensiv16

literature search and identified 494 studies. We summarize our observations and findings with17

the help of the identified studies. Our findings suggest that the use of machine learning18

techniques for source code analysis tasks is consistently increasing. We synthesize commonly19

used steps and the overall workflow for each task and summarize machine learning techniqu20

employed. We identify a comprehensive list of available datasets and tools useable in this21

context. Finally, the paper discusses perceived challenges in this area, including the availabilit22

standard datasets, reproducibility and replicability, and hardware resources.23

24

Keywords: Machine learning for software engineering, source code analysis, deep learning, dat25

tools.26

1. Introduction27

In the last two decades, we have witnessed significant advancements in Machine Learning28

including Deep Learning (dl) techniques, specifically in the domain of image [237, 476], text [25529

and speech [418, 166, 165] processing. These advancements, coupled with a large amoun30

open-source code and associated artifacts, as well as the availability of accelerated hardware, h31

encouraged researchers and practitioners to use ml techniques to address software enginee32

problems [513, 561, 27, 248, 34].33

The software engineering community has employed ml and dl techniques for a variety of a34

cations such as software testing [275, 361, 564], source code representation [27, 191], source c35

quality analysis [34, 45], program synthesis [248, 540], code completion [288], refactoring36

code summarization [295, 252, 24], and vulnerability analysis [440, 429, 501] that involve sou37

code analysis. As the field of Machine Learning for Software Engineering (ml4se) is expanding,38

number of available resources, methods, and techniques as well as tools and datasets, is als39

creasing. This poses a challenge, to both researchers and practitioners, to fully comprehend40

landscape of the available resources and infer the potential directions that the field is taking41

Sharma et al. | | November 10, 2023 |
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this context, literature surveys play an important role in understanding existing research, find42

gaps in research or practice, and exploring opportunities to improve the state of the art. By43

tematically examining existing literature, surveys may uncover hidden patterns, recurring them44

and promising research directions. Surveys also identify untapped opportunities and formula45

of new hypotheses. A survey also serves as an educational tool, offering comprehensive cover46

of the field to a newcomer.47

In fact, there have beennumerous recent attempts to summarize the application-specific kn48

edge in the form of surveys. For example, Allamanis et al. [27] present key methods to mo49

source code using ml techniques. Shen and Chen [440] provide a summary of research meth50

associatedwith software vulnerability detection, software program repair, and software defect51

diction. Durelli et al. [132] collect 48 primary studies focusing on software testing using mach52

learning. Alsolai and Roper [34] present a systematic review of 56 studies related to main53

ability prediction using ml techniques. Recent surveys [487, 13, 45] summarize application o54

techniques on software code smells and technical debt identification. Similarly, literature revi55

on program synthesis [248] and code summarization [348] have been attempted. We comp56

in Table 1 the aspects investigated in our survey with respect to existing surveys that review57

techniques for topics such as testing, vulnerabilities, and program comprehension with our58

vey. Existing studies, in general, kept their focus on only one category; due to that readers co59

not grasp existing literature belonging to various software engineering categories in a consis60

form. In addition, existing surveys do not always provide datasets and tools in the field. Our sur61

covers a wide range of software engineering activities; it summarizes a significantly large num62

of studies; it systematically examines available tools and datasets for ml that would suppor63

searchers in their studies in this field; it identifies perceived challenges in the field to encour64

the community to explore ways to overcome them.65

In this paper, we focus on the usage of ml, including dl, techniques for source code anal66

Source code analysis involves tasks that take the source code as input, process it, and/or prod67

source code as output. Source code representation, code quality analysis, testing, code sum68

rization, and program synthesis are applications that involve source code analysis. To the bes69

our knowledge, the software engineering literature lacks a survey covering a wide range of sou70

code analysis applications using machine learning; this work is an attempt to fill this research71

In this survey, we aim to give a comprehensive, yet concise, overview of current knowledge72

appliedmachine learning for source code analysis. We also aim to collate and consolidate avail73

resources (in the form of datasets and tools) that researchers have used in previous studies74

this topic. Additionally, we aim to identify and present challenges in this domain. We believe75

our efforts to consolidate and summarize the techniques, resources, and challenges will help76

community to not only understand the state-of-the-art better, but also to focus their efforts77

tackling the identified challenges.78

This survey makes the following contributions to the field:79

• It presents a summary of the applied machine learning studies attempted in the source c80

analysis domain.81

• It consolidates resources (such as datasets and tools) relevant for future studies in this82

main.83

• It provides a consolidated summary of the open challenges that require the attention of84

researchers.85

The rest of the paper is organized as follows. We present the followed methodology, includ86

the literature search protocol and research questions, in Section 2. Section 2.3, Section 3, Sectio87

and Section 5 provide the detailed results of our findings. We present threats to validity in Sectio88

and conclude the paper in Section 6.89

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 2 o
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Table 1. Comparison Among Surveys. The “Category” column refers to the software engineering task the su

covers. The “Scope” column indicates the focus of the study; TML refers to traditional machine learning an

refers to deep learning techniques. The “Data&Tools” column indicates if a survey reviews available datas

and tools for ml-based applications, the “Challenges” column shows whether the study identifies challeng

the field studied, the “Type” column refers to the type of literature survey, and the “#Studies” column refe

the number of studies included in a given survey. We use “–” to indicate that a field is not applicable to a ce

study and NA for the number of studies column, where the study does not explicitly mention selection cri

and the number of selected studies.

Category Article Scope Data Chall- Type #Stud

& Tools enges

Program

Comprehension

Nazar et al. [348] TML Tools No Lit. survey 59

Zhang et al. [560] DL Data No Lit. survey NA

Song et al. [458] TML & DL No Yes Lit. survey NA

Testing

Omri and Sinz [361] DL No No Lit. survey NA

Durelli et al. [132] TML & DL No Yes Mapping study 48

Hall and Bowes [181] TML Yes Yes Meta-analysis 21

Zhang et al. [564] TML & DL No Yes Lit. survey 46

Pandey et al. [368] TML No Yes Lit. survey 154

Singh et al. [452] TML No No Lit. survey 13

Vulnerability

analysis

Li et al. [271] DL Yes Yes Meta-analysis –

Shen and Chen [440] DL No Yes Meta-analysis –

Ucci et al. [501] TML No Yes Lit. survey 64

Jie et al. [215] TML No No Lit. survey 19

Hanif et al. [187] TML & DL No Yes Lit. survey 90

Quality
assessment

Alsolai and Roper [34] TML No No Lit. survey 56

Tsintzira et al. [487] TML Yes Yes Lit. survey 90

Azeem et al. [45] TML Yes No Lit. survey 15

Caram et al. [77] TML No No Mapping study 25

Lewowski and Madeyski [259] TML Yes No Lit. survey 45

Prog. synthesis
Goues et al. [162] TML & DL No Yes Lit. survey NA

Le et al. [248] DL Yes Yes Lit. survey NA

Prog. synthesis

& code
representation Allamanis et al. [27] TML & DL Yes Yes Lit. survey 39+48

Software engg.

tasks Yang et al. [544] DL Data Yes Lit. survey 250

Source-code
analysis Our study TML & DL Yes Yes Lit. survey 494

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 3 o
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2. Methodology90

First, we present the objectives of this study and the research questions derived from such91

jectives. Second, we describe the search protocol we followed to identify relevant studies.92

protocol identifies detailed steps to collect the initial set of articles as well as the inclusion93

exclusion criteria to obtain a filtered set of studies.94

2.1 Research objectives95

This study aims to achieve the following research objectives (ROs).96

RO1. Identifying specific software engineering tasks involving source code that have been attem97

using machine learning.98

Our objective is to explore the extent to which machine learning has been applied to ana99

and process source code for SE tasks.We aim to summarize how ml can help engineers ta100

specific SE tasks.101

RO2. Summarizing the machine learning techniques used for these tasks.102

This objective explores the ml techniques commonly applied to source code for perform103

the software engineering tasks identified above. We attempt to synthesize amapping of ta104

(along with related sub-tasks) and corresponding ml techniques.105

RO3. Providing a list of available datasets and tools.106

With this goal, we aim to provide a consolidated summary of publicly available datasets107

tools along with their purpose.108

RO4. Identifying the challenges and perceived deficiencies in ml-enabled source code analysis and109

nipulation for software engineering.110

With this objective, we aim to identify challenges, and opportunities arising when appl111

ml techniques to source code for SE tasks, as well as to understand the extent to which112

have been addressed in the articles surveyed.113

2.2 Literature search protocol114

We identified 494 relevant studies through a four step literature search. Figure 1 summarizes115

search process. We elaborate on each of these phases in the rest of this section.116

Figure 1. Overview of the search process

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 4 o
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2.2.1 Literature search—Phase 1117

We split the phase 1 literature search into two rounds. In the first round, we carried out an118

tensive initial search on six well-known digital libraries—Google Scholar, SpringerLink, ACM Di119

Library, ScienceDirect, IEEE Xplore, and Web of Science during Feb-Mar 2021. We formulate120

set of search terms based on common tasks and software engineering activities related to sou121

code analysis. Specifically, we used the following terms for the search: machine learning code,122

chine learning code representation, machine learning testing,machine learning code synthesis,mac123

learning smell identification,machine learning security source code analysis,machine learning softw124

quality assessment,machine learning code summarization,machine learning program repair,mac125

learning code completion, and machine learning refactoring. We searched minimum seven page126

search results for each search term manually; beyond seven pages, we continued the search127

less we get two continuous search pages without any new and relevant articles. We adopted128

mechanism to avoid missing any relevant articles in the context of our study.129

In the second round of phase 1, we identified a set of frequently occurring keywords in the130

cles obtained from the first round for each category individually. To do that, we manually scan131

the keywords mentioned in the articles belonging to each category, and noted the keywords132

appeared at least three times. If the selected keywords are too generic, we first check whe133

adding machine learning would improve the search results. For example, machine learning134

program generation occurred multiple times in the program synthesis category; we combined b135

of these terms to make one search string i.e., program generation using machine learning. In o136

cases, we tried to reduce the scope of the search term by adding qualifying terms. Consider fea137

learning as an example: it is so generic that would result in many unrelated results. We redu138

the search scope by adding source code in the search i.e., searching using feature learning in so139

code. We carried out this additional round of literature search to augment our initial search te140

and reduce the risk of missing relevant articles. The full list of search terms used in the sec141

round of phase 1 can be found in our replication package [438]. Next, we defined inclusion142

exclusion criteria to filter out irrelevant studies.143

Table 2. Search terms and corresponding relevant studies found in the second round of phase 1.

Category Search terms #Studie

Vulnerability

analysis

feature learning in source code 9

vulnerability prediction in source code using machine learning 70

deep learning-based vulnerability detection 8

malicious code detection with machine learning 45

Testing

word embedding in software testing 2

automated Software Testing with machine learning 12

optimal machine learning based random test generation 1

Refactoring

source code refactoring prediction with machine learning 39

automatic clone recommendation with machine learning 14

machine learning based refactoring detection tools 16

search-based refactoring with machine learning 6

Quality
assessment

web service anti-pattern detection with machine learning 25

code smell prediction models 34

machine learning-based approach for code smells detection 17

software design flaw prediction 37

linguistic smell detection with machine learning 2

software defect prediction with machine learning 66

machine learning based software fault prediction 35

Program

synthesis

automated program repair methods with machine learning 45

144

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 5 o
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program generation with machine learning 2

object-oriented program repair with machine learning 15

predicting patch correctness with machine learning 3

multihunk program repair with machine learning 9

Program

comprehension

autogenerated code with machine learning 6

commits analysis with machine learning 34

supplementary bug fixes with machine learning 9

Code
summarization

automatic source code summarization with machine learning 43

automatic commit message generation with machine learning 19

comments generation with machine learning 11

Code review
security flaws detection in source code with machine learning 20

intelligent source code security review with machine learning 2

Code
representation

design pattern detection with machine learning 10

human-machine-comprehensible software representation 1

feature learning in source code 6

Code
completion

missing software architectural tactics prediction with machine

learning

1

software system quality analysis with machine learning 6

package-level tactic recommendation generation in source code 3

identifier prediction in source code 13

token prediction in source code 29

145

Inclusion criteria:146

• Studies and surveys that discuss the application of machine learning (including dl) to sou147

code to perform a software engineering task.148

• Resources revealing the deficiencies or challenges in the current set of methods, tools,149

practices.150

Exclusion criteria:151

• Studies focusing on techniques other than ml applied on source code to address softw152

engineering tasks e.g., code smell detection using metrics.153

• Articles that are not peer-reviewed (such as articles available only on arXiv.org).154

• Articles constituting a keynote, extended abstract, editorial, tutorial, poster, or panel dis155

sion (due to insufficient details and limited length).156

• Studies whose full text is not available, or is written in any other language than English.157

We considered whether to include studies that do not directly analyze source code. O158

source code is analyzed to extract features, and machine learning techniques are applied to159

extracted features. Furthermore, researchers in the field either create their own dataset (in160

case, analyze/process source code) or use existing datasets. Removing studies that use a dat161

will make this survey incomplete; hence, we decided to include such studies.162

During the search, we documented studies that satisfy our search protocol in a spreadsh163

including the required meta-data (such as title, bibtex record, and link of the source). The spr164

sheet with all the articles from each phase can be found in our online replication package [4165

Each selected article went through amanual inspection of title, keywords, and abstract. The ins166

tion applied the inclusion and exclusion criteria leading to inclusion or exclusion of the article167

the end, we obtained 1, 576 articles after completing Phase 1 of the search process.168

2.2.2 Literature search—Phase 2169

We first identified a set of categories and sub-categories for common software engineering ta170

These tasks are commonly referred in recent publications [147, 27, 440, 45]. These catego171

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 6 o
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and sub-categories of common software engineering tasks can be found in Figure 3. Then172

manually assigned a category and sub-category, if applicable, to each selected article based on173

(sub-)category to which an article contributes the most. The assignment was carried out by on174

the authors and verified by two other authors. We computed Cohen's Kappa [329] to measure175

initial disagreement; we found a strong agreement among the authors with 𝜅 = 0.87. In cas176

disagreement, each author specified a key goal, operation, or experiment in the article, indica177

the rationale of the category assignment for the article. This exercise resolved the majority of178

disagreements. In the rest of the cases, we discussed the rationale identified by individual auth179

and voted to decide a category or sub-category to which the article contributes the most. In180

phase, we also discarded duplicates or irrelevant studies not meeting our inclusion criteria a181

reading their title and abstract. After this phase, we were left with 1, 098 studies.182

2.2.3 Literature search—Phase 3183

In the last decade, the use of ML has increased significantly. The research landscape invol184

source code and ml, which includes methods, applications, and required resources, has chan185

significantly in the last decade. To keep the survey focused on recent methods and applicati186

we focused on studies published after 2011. Also, we discarded papers that had not rece187

enough attention from the community by filtering out all those having a `citation count < (20188

publication year)'. We chose 2021 as the base year to not penalize studies that came out rece189

hence, the studies that are published in 2021 do not need to have any citation to be included in190

search. We obtain the citation count from digital libraries manually during Mar-May 2022. A191

applying this filter, we obtained 977 studies.192

2.2.4 Literature search—Phase 4193

In this phase, we discarded those studies that do not satisfy our inclusion criteria (such as w194

the article is too short or do not apply any ml technique to source code for SE tasks) after read195

the whole article. The remaining 494 articles are the selected studies that we examine in de196

For each study, we extracted the core idea and contribution, the ml techniques, datasets and t197

used aswell as challenges and findings unveiled. Next, we present our observations correspond198

to each research goal we pose.199

2.3 Assigning articles to software engineering task categories200

Towards achieving RO1, we tagged each selected article with one of the task categories based201

the primary focus of the study. The categories represent common software engineering ta202

that involve source code analysis. These categories are code completion, code representation, c203

review, code search, dataset mining, program comprehension, program synthesis, quality assessm204

refactoring, testing, and vulnerability analysis. If a given article does not fall in any of these catego205

but is still relevant to our discussion as it offers overarching discussion on the topic; we put206

study in the general category. Figure 2 presents a category-wise distribution of studies per y207

It is evident that the topic is engaging the research community more and more and we obse208

in general, a healthy upward trend. Interestingly, the number of studies in the scope drop209

significantly in the year 2021.210

Some of the categories are quite generic and hence further categorization is possible based211

specific tasks. For each category, we identified sub-categories by grouping related studies toge212

and assigning an intuitive name representing the set of the studies. For example, the testing c213

gory is further divided into defect prediction, and test data/case generation. We attempted to as214

a sub-category to each study; if none of the sub-categories was appropriate for a study, we did215

assign any sub-category to the study. One author of this paper assigned a sub-category to e216

study based on the topic to which that study contributed the most. The initial assignment217

verified by two other authors of this paper, where disagreements were discussed and resolve218

reach a consensus. Figure 3 presents the distribution of studies per year w.r.t. each category219

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 7 o
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Figure 2. Category-wise distribution of studies

Figure 3. Category- and sub-categories-wise distribution of studies

corresponding sub-categories.220

To quantify the growth of each category, we compute the average increase in the numbe221

articles from the last year for each category between the years 2012 and 2022. We observed222

the program synthesis and vulnerability analysis categories grew most with approximately 44%223

50% average growth each year, respectively.224

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 8 o
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n
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ys

is

Support Vector Regression TML-SUP-MOD-SVR 0 0 0 0 0 0 0 1 0 1 0

Support Vector Machine TML-SUP-MOD-SVM 0 0 0 0 0 8 2 41 4 3 31

Polynomial Regression TML-SUP-MOD-POLY 0 0 0 0 0 0 0 1 0 0 0

Logistic Regression TML-SUP-MOD-LOG 0 1 0 0 1 2 2 22 4 1 8

Locally Deep Support Vector Machines TML-SUP-MOD-LDSVM 0 0 0 0 0 0 0 0 0 0 1

Linear Regression TML-SUP-MOD-LR 0 0 0 0 0 2 0 10 1 1 7

Linear Discriminant Analysis TML-SUP-MOD-LDA 1 1 0 0 0 0 0 0 0 0 2

Least Median Square Regression TML-SUP-MOD-LMSR 0 0 0 0 0 0 0 1 0 0 0

LASSO TML-SUP-MOD-LSS 0 0 0 0 0 0 0 0 0 0 1

Boosted Decision Trees TML-SUP-TR-BDT 0 0 0 0 0 0 0 0 0 0 1

Classification And Regression Tree TML-SUP-TR-CART 0 0 0 0 0 0 1 1 0 0 0

Co-forest Random Forest TML-SUP-TR-CRF 0 0 0 0 0 0 0 1 0 0 1

Decision Forest TML-SUP-TR-DF 0 0 0 0 0 0 0 0 0 0 1

Decision Jungle TML-SUP-TR-DJ 0 0 0 0 0 0 0 0 0 0 1

Decision Stump TML-SUP-TR-DS 0 0 0 0 0 0 0 0 0 0 2

Decision Tree TML-SUP-TR-DT 0 1 1 0 0 8 3 52 2 1 19

Extra Trees TML-SUP-TR-ET 0 0 0 0 0 0 0 3 0 0 0

Gradient Boosted Trees TML-SUP-TR-GBT 0 0 0 0 0 0 1 1 0 0 0

Gradient Boosted Decision Tree TML-SUP-TR-GBDT 0 0 0 0 0 0 0 0 0 0 2

ID3 TML-SUP-TR-ID3 0 0 0 0 0 0 0 0 0 0 1

Random Tree TML-SUP-TR-RT 0 0 0 0 0 0 0 2 0 0 2

Random Forest TML-SUP-TR-RF 1 1 1 0 0 12 3 45 3 1 21

COBWEB TML-SUP-IN-CWEB 0 0 0 0 0 0 0 1 0 0 0

KStar TML-SUP-IN-KS 0 0 0 0 0 0 0 5 0 0 0

K-Nearest Neighbours TML-SUP-IN-KNN 0 0 0 0 0 3 0 13 0 1 9

Bayes Net TML-SUP-PRO-BN 0 1 1 0 0 1 0 8 1 0 6

Bayes Point Machine TML-SUP-PRO-BPM 0 0 0 0 0 0 0 0 0 0 1

Bernoulli Naives Bayes TML-SUP-PRO-BNB 0 0 0 0 0 0 0 3 0 0 2

Gaussian Naive Bayes TML-SUP-PRO-GNB 0 0 0 0 0 0 0 5 0 0 1

Graph random-walk with absorbing states TML-SUP-PRO-GRASSHOPER 0 0 0 0 0 1 0 0 0 0 0

Transfer Naive Bayes TML-SUP-PRO-TNB 0 0 0 0 0 0 0 1 0 0 0

Naive Bayes TML-SUP-PRO-NB 0 0 0 0 0 7 1 40 2 2 16

Multinomial Naive Bayes TML-SUP-PRO-MNB 0 0 0 0 0 0 0 3 1 0 1

Decision Table TML-SUP-RUL-DTB 0 0 0 0 0 0 0 1 0 0 0

Ripper TML-SUP-RUL-Ripper 0 0 0 0 0 1 0 10 0 0 4

Learn-to-Rank Diverse Rank TML-SUP-LR-DR 0 0 0 0 0 1 0 0 0 0 0

Hierarchical Clustering TML-UNSUP-CLS-HC 0 0 0 0 0 0 1 0 0 0 0

KMeans TML-UNSUP-CLS-KM 0 0 0 0 0 0 0 1 0 0 1

Fuzzy Logic TML-UNSUP-OTH-FL 0 0 0 0 0 0 0 1 0 0 0

Maximal Marginal Relevance TML-UNSUP-OTH-MMR 0 0 0 0 0 1 0 0 0 0 0

Latent Dirichlet Allocation TML-UNSUP-OTH-LDAA 0 0 0 1 0 9 0 3 1 0 0

Gene Expression Programming TML-EVO-GEP 0 0 0 0 0 0 0 2 0 0 0

Genetic Programming TML-EVO-GP 0 0 0 0 0 0 0 3 0 0 0

AdaBoost TML-GEN-AB 0 0 0 0 0 0 0 13 2 2 4

Binary Relevance TML-GEN-BR 0 0 0 0 0 0 0 1 0 0 0

Classifier Chain TML-GEN-CC 0 0 0 0 0 0 0 1 0 0 0

Cost-Sensitive Classifer TML-GEN-CSC 0 0 0 0 0 0 0 2 0 0 0

Ensemble Learning TML-GEN-EL 0 0 0 0 0 1 0 3 0 0 0

Ensemble Learning Machine TML-GEN-ELM 0 0 0 0 0 0 0 1 0 0 0

Gradient Boosting TML-GEN-GB 0 0 0 0 0 2 1 8 0 0 3

Gradient Boosting Machine TML-GEN-GBM 0 0 0 0 0 1 0 1 0 0 1

Statiscal Machine Translation TML-GEN-SMT 0 0 0 0 0 0 1 0 0 0 0

Neural Machine Translation TML-GEN-NMT 1 1 0 0 0 0 5 1 0 0 0

Multiple Kernel Ensemble Learning TML-GEN-MKEL 0 0 0 0 0 0 0 1 0 0 0

Neural Machine Model TML-GEN-NLM 0 0 0 0 0 1 0 0 0 0 0

Majority Voting Ensemble TML-GEN-MVE 0 0 0 0 0 0 0 1 0 0 0

Bagging TML-GEN-B 0 0 0 0 0 0 0 11 0 0 1

LogitBoost TML-GEN-LB 0 0 0 0 0 0 0 4 1 0 1

Kernel Based Learning TML-GEN-KBL 0 0 0 0 0 0 0 1 0 0 0
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Instance-based

Probabilistic-based

Rule-based

Clustering

Other

Evolutionary

Meta-algorithms / 

General Approaches

Table 3. Usage of ML techniques in the selected studies (Part-1)
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Bidirectional GRU DL-RNN-Bi-GRU 1 0 0 0 0 0 0 0 0 0 1 2

Bidirectional RNN DL-RNN-Bi-RNN 0 0 0 0 0 1 0 0 0 0 0 1

Bidirectional LSTM DL-RNN-Bi-LSTM 0 0 0 0 0 5 2 2 0 0 3 12

Gated Recurrent Unit DL-RNN-GRU 1 1 0 0 0 9 0 1 0 0 3 15

Hierarchical Attention Network DL-RNN-HAN 1 0 0 0 0 1 0 0 0 0 0 2

Recurrent Neural Network DL-RNN-RNN 3 3 0 1 0 9 5 0 0 0 2 23

Pointer Network DL-RNN-PN 0 1 0 0 0 0 0 0 0 0 0 1

Modular Tree Structured RNN DL-RNN-MTN 1 1 0 0 0 0 0 0 0 0 0 2

Long Short Term Memory DL-RNN-LSTM 3 4 0 1 0 21 10 6 1 1 5 52

Gated Graph Neural Network DL-GRA-GGNN 0 0 0 1 0 0 2 0 0 0 0 3

Graph Convolutional Networks DL-GRA-GCN 0 0 0 0 0 0 0 0 0 0 1 1

Graph Interval Neural Network DL-GRA-GINN 1 0 0 0 0 0 0 0 0 0 0 1

Graph Neural Network DL-GRA-GNN 2 0 0 0 0 3 0 1 0 0 0 6

Convolutional Neural Network DL-CNN-CNN 3 0 0 1 0 4 2 8 0 0 5 23

Faster R-CNN DL-CNN-FR-CNN 0 0 0 0 0 0 0 0 0 1 0 1

Text-CNN DL-CNN-TCNN 0 0 0 0 0 0 0 0 0 0 1 1

Artificial Neural Network DL-ANN 0 1 0 0 0 2 1 21 3 1 3 32

Autoencoder DL-AE 1 0 0 0 0 0 0 2 0 0 1 4

Deep Neural Network DL-DNN 2 0 0 1 0 6 2 5 1 0 4 21

Regression Neural Network DL-RGNN 0 0 0 0 0 0 0 1 0 0 0 1

Multi Level Perceptron DL-MLP 0 0 0 0 0 2 3 14 1 1 5 26

Bidirectional Encoder Representation from Transformers DL-XR-BERT 0 0 0 0 0 1 1 0 0 0 0 2

CodeBERT DL-XR-CodeBERT 1 0 0 0 0 0 1 0 0 0 0 2

Generative Pretraining Transformer for Code DL-XR-GPT-C 0 0 0 0 0 0 1 0 0 0 0 1

Transformer DL-XR-TF 2 1 2 0 0 4 3 1 0 0 0 13

Bilateral Neural Network DL-OTH-BiNN 0 0 0 0 0 0 0 1 0 0 0 1

Cascade Correlation Network DL-OTH-CCN 0 0 0 0 0 0 0 1 0 0 0 1

Code2Vec DL-OTH-Code2Vec 5 0 0 0 0 1 0 0 0 0 0 6

Deep Belief Network DL-OTH-DBN 0 0 0 0 0 0 0 2 0 0 2 4

Doc2Vec DL-OTH-Doc2Vec 0 0 0 0 0 0 0 0 0 0 2 2

Encoder-Decoder DL-OTH-EN-DE 3 1 0 0 0 17 10 0 0 0 0 31

FastText DL-OTH-FT 0 0 0 0 0 0 0 0 0 0 1 1

Functional Link ANN DL-OTH-FLANN 0 0 0 0 0 0 0 1 0 0 0 1

Guassian Encoder-Decoder DL-OTH-GED 0 0 0 0 0 0 1 0 0 0 0 1

Global Vectors for Word Representation DL-OTH-Glove 1 0 0 0 0 0 0 0 0 0 0 1

Word2Vec DL-OTH-Word2Vec 0 0 0 0 0 0 0 1 0 0 0 1

Sequence-to-Sequence DL-OTH-Seq2Seq 1 0 0 0 0 2 2 0 0 1 0 6

Reverse NN DL-OTH-ReNN 0 0 0 0 0 0 0 1 0 0 0 1

Residual Neural Network DL-OTH-ResNet 0 0 0 0 0 0 1 1 0 0 0 2

Radial Basis Function Network DL-OTH-RBFN 0 0 0 0 0 0 0 1 0 0 0 1

Probabilistic Neural Network DL-OTH-PNN 0 0 0 0 0 0 0 1 1 0 0 2

Node2Vec DL-OTH-Node2Vec 0 0 0 0 0 0 0 1 0 0 0 1

Neural Network for Discrete Goal DL-OTH-NND 0 0 0 0 0 0 0 2 0 0 0 2

Double Deep Q-Networks RL-DDQN 0 0 0 0 0 0 0 0 0 1 0 1

Reinforcement Learning RL-RL 0 0 0 0 0 3 0 0 0 0 0 3

Hybrid Adaptive neuro fuzzy inference system OTH-HYB-ANFIS 0 0 0 0 0 0 0 1 0 0 0 1

Expectation Minimization OTH-OPT-EM 0 0 0 0 0 0 0 1 0 0 0 1

Gradient Descent OTH-OPT-GD 0 0 0 0 0 0 1 0 0 0 0 1

Stochastic Gradient Descent OTH-OPT-SGD 0 0 0 0 0 0 0 2 0 0 0 2

Sequential Minimal Optimization OTH-OPT-SMO 0 0 0 0 0 0 0 5 0 0 1 6

Particle Swarm Optimization OTH-OPT-PSO 0 0 0 0 0 0 0 1 0 0 0 1

Reinforcement 

Learning

Others Optimization 

Techniques

D
ee

p
 L

ea
rn

in
g

RNN

Graph

CNN

Vanilla

Transformers

Other

Table 4. Usage of ML techniques in the selected studies (Part-2)

3. Literature Survey Results225

We document our observations per category and subcategory by providing a summary of the226

isting efforts to achieve RO2 of the study. Table 3 and Table 4 show the frequency of the var227

ml techniques per software engineering task category used in the selected studies. The tables228

classify the ml techniques into a hierarchical classification based on the characteristics of the229

techniques. Specifically, the first level of classification divides ml techniques into traditional230

chine learning (tml), deep learning (dl), reinforcement learning (rl), and others (oth) that incl231

hybrid and optimization techniques. Furthermore, we identify sub-categories and ml techniq232

corresponding to each category. To generate these tables, we identified ml techniques use233
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each study while summarizing the study. Given that a study may use multiple ml techniques234

developed a script to split the techniques and create a csv file containing one ml technique235

the corresponding paper category. We then compute a number of times for each ml techni236

for each software engineering task category to generate the tables. In these tables we refer to237

techniques with their commonly used acronym along with their category and sub-category. It i238

ident from these tables that svm, rf, and dt are the most frequently used traditional ml techniq239

whereas, the rnn family (including lstm and gru) is the most commonly used dl technique.240

Evolution ofML techniques use over time: In addition, we segregate the identified ml techniq241

by their category (i.e., tml, dl, rl, and oth) and year of publication. Figure 4 presents the summ242

of the analysis. We observe that majorly traditional ml and dl approaches are used in this fi243

We also observe that the use of dl approaches for source code analysis has significantly increa244

from 2016.245

Figure 4. Usage of ML techniques by categories per year

Venueandarticle categories: We identified andmanually curated the software engineering ve246

for each study discussed in our literature review. Figure 5 shows the venues for the conside247

categories. We show the most prominent venues per category. Each label includes a num248

indicating the number of articles published at the same venue in that category.249

We observe that icse is the top venue, appearing in three categories. ieee Access is the top j250

nal for the considered categories. Machine learning conferences such as iclr also appear as251

top venues for the program synthesis category. The category program comprehension exhibits252

highest concentration of articles to a relatively small list of top venues where approximately253

of articles come from the top venues (with at least four studies). On the other hand, research254

publish articles related to testing, code completion, and vulnerability analysis in a rather diverse255

of venues.256

Target programming languages: We identified the target programming language of each st257

to observe the focus of researchers in the field by category. Figure 6 presents the result of258

analysis. We observe that for most of the categories, Java dominates the field. For quality as259

ment category, studies also analyzed source code written in C/C++, apart from Java. Research260

analyzed Python programs also, apart from Java, for studies belonging to program comprehen261

and program synthesis. This analysis, on the one hand, shows that Java, C/C++, and Python are262

most analyzed programming languages in this field; on the other hand, it points out the lac263

studies targeting other prominent programming languages per category.264

Popular models: As part of collecting metadata and summarizing studies, we identified the265

posed model, if any, for each selected study. We considered novel proposed models only and266

the name of the approach or method in this analysis. We also obtained the number of citat267

for the study. In Table 5, we present the most popular model, in no particular order, by using268

number of citations as the metric to decide the popularity. We collected the number of citat269

at the end of August 2023 and included all the models with corresponding citations over 100.270

In the rest of this section, we delve into each category and sub-category at a time, break d271

the entire workflow of a code analysis task into fine-grained steps, and summarize the met272

and ml techniques used. It is worth emphasizing that we structure the discussion around the273

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 11 o



Journal Pre-proof

del

ntal

tion

cess

that

e is

350,

ype

tion

tern

h is

del

ine

el is

Shar f 98
Jo
ur

na
l P

re
-p

ro
of

Figure 5. Top venues for each considered category

cial steps for each category (e.g., model generation, data sampling, feature extraction, and mo274

training).275

3.1 Code representation276

Raw source code cannot be fed directly to a dl model. Code representation is the fundame277

activity to make source code compatible with dl models by preparing a numerical representa278

of the code to further solve a specific software engineering task. Code representation is the pro279

of transforming the textual program source code into a numerical representation i.e., vectors280

a dl model can accept and process [227]. Studies in this category emphasize that source cod281

a richer construct and hence should not be treated simply as a collection of tokens or text [282

27]; the proposed techniques extensively utilize the syntax, structure, and semantics (such as t283

information from an ast). The activity transforms source code into a numerical representa284

making it easier to further use the code by ml models to solve specific tasks such as code pat285

identification [342, 480], method name prediction [32], and comment classification [514].286

In the training phase, a large number of repositories are processed to train a model whic287

then used in the inference phase. Source code is pre-processed to extract a source code mo288

(such as an ast or a sequence of tokens) which is fed into a feature extractor responsible to m289

the necessary features (for instance, ast paths and tree-based embeddings). Then, an ml mod290
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Figure 6. Target programming languages for each considered category

trained using the extracted features. Themodel produces a numerical (i.e., a vector) representa291

that can be used further for specific software engineering applications such as defect predic292

vulnerability detection, and code smells detection.293

Dataset preparation: Code representation efforts start with preparing a source code model.294

majority of the studies use the ast representation [350, 30, 563, 25, 91, 31, 32, 540, 67, 525295

377, 376]. Some studies [439, 22, 44, 83, 574, 219, 352, 343, 134] parsed the source code as tok296

and prepared a sequence of tokens in this step. Hoang et al. [194] generated tokens repres297

ing only the code changes. Furthermore, Sui et al. [465] compiled a program into llvm-ir.298

inter-procedural value-flow graph (ivfg) used was built on top of the intermediate representa299

Thaller et al. [480] used abstract semantic graphs as their codemodel. Nie et al. [353] used dat300

offered by Jiang et al. [209] that offers a large number code snippets and comment pairs. Fin301

Brauckmann et al. [66] and Tufano et al. [490] generated multiple source code models (ast,302

and byte code).303

Feature extraction: Relevant features need to be extracted from the prepared source codemo304

for further processing. The first category of studies, based on applied feature extraction me305

nism, uses token-based features. Nguyen et al. [350] prepared vectors of syntactic context306

ferred to as syntaxeme), type context (sememes), and lexical tokens. Shedko et al. [439] generat307

stream of tokens corresponding to function calls and control flow expressions. Karampatsis e308

[221] split tokens as subwords to enable subwords prediction. Path-based abstractions is the b309

of the second category where the studies extract a path typically from an ast. Alon et al. [30] u310

paths between ast nodes. Kovalenko et al. [235] extracted path context representing two tok311
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Table 5. Popular models proposed in the selected studies.

Model #Citations Model #Citation

Transfer Naive Bayes [307] 513 Code Generation Model [551] 651

Path-based code representa-

tion [30]

230 Multi-headed pointer net-

work [507]

128

Inst2Vec [57] 234 Code-NN [204] 681

DeepCoder [47] 612 ASTNN [563] 498

Code2Seq [31] 643 Code2Vec [32] 1,093

TBCNN [342] 695 Program as graph model [67] 159

SLAMC [352] 130 Coding criterion [377] 128

TransCoder [408] 115 TreeGen [468] 124

Codex [93] 897 AlphaCode [270] 317

in code and a structural connection along with paths between ast nodes. Alon et al. [31] enco312

each ast path with its values as a vector and used the average of all of the k paths as the decod313

initial state where the value of k depends on the number of leaf nodes in the ast. The deco314

then generated an output sequence while attending over the k encoded paths. Peng et al. [3315

proposed ``coding criterion'' to capture similarity among symbols based on their usage using316

structural information. Peng et al. [376] used open-source parser Tree-Sitter to obtain ast for e317

method. They split code tokens into sub-tokens respective to naming conventions and gene318

path using ast nodes. The authors sets 32 as themaximumpath length. Finally, Alon et al. [32]319

used path-based features along with distributed representation of context where each of the p320

and leaf-values of a path-context ismapped to its corresponding real-valued vector representa321

Another set of studies belong to the category that used graph-based features. Chen et al.322

created ast node identified by an api name and attached each node to the corresponding ast n323

belonging to the identifier. Thaller et al. [480] proposed feature maps; feature maps are hum324

interpretation, stacked, named subtrees extracted from abstract semantic graph. Brauckm325

et al. [66] created a dataflow-enriched ast graph, where nodes are labeled as declarations, s326

ments, and types as found in the Clang1 ast. Cvitkovic et al. [115] augmented ast with sema327

information by adding a graph-structured vocabulary cache. Finally, Zhang et al. [563] extra328

small statement trees along with multi-way statement trees to capture the statement-level329

cal and syntactical information. The final category of studies used dl [194, 490] to learn featu330

automatically.331

ML model training: The majority of the studies rely on the rnn-based dl model. Among th332

some of the studies [514, 191, 525, 66, 31] employed lstm-based models; while others [563,333

221, 540, 67] used gru-based models. Among the other kinds of ml models, studies employed334

based [115, 528], dnn [350], conditional random fields [30], svm [274, 394], cnn-based models335

342, 480], and transformer-based models [376]. Some of the studies rely on the combinatio336

different dl models. For example, Tufano et al. [490] employed rnn-based model for learn337

embedding in the first stage which is given to an autoencoder-based model to encode arbitr338

long streams of embeddings.339

A typical output of a code representation technique is the vector representation of the sou340

code. The exact form of the output vector may differ based on the adopted mechanism. O341

the code vectors are application specific depending upon the nature of features extracted342

training mechanism. For example, Code2Vec produces code vectors trained for method na343

prediction; however, the same mechanism can be used for other applications after tuning344

selecting appropriate features. Kang et al. [220] carried out an empirical study to observe whe345

1https://clang.llvm.org/
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the embeddings generated by Code2Vec can be used in other contexts. Similarly, Pour et al. [3346

used Code2Vec, Code2Seq, and CodeBERT to explore the robustness of code embedding mo347

by retraining the models using the generated adversarial examples.348

The semantics of the produced embeddings depend significantly on the selected features. S349

ies in this domain identify this aspect and hence swiftly focused to extract features that cap350

the relevant semantics; for example, path-based features encode the order among the tok351

The chosen ml model plays another important role to generate effective embeddings. Given352

success of rnn with text processing tasks, due to its capability to identify sequence and patt353

rnn-based models dominate this category.354

3.2 Testing355

In this section, we point out the state-of-the-art regardingml techniques applied to software tes356

Testing is the process of identifying functional or non-functional bugs to improve the accuracy357

reliability of a software. In this section, we offer a discussion on test cases generation by emplo358

ml techniques.359

3.2.1 Test data and test cases generation360

A usual approach to have a ml model for generating test oracles involves capturing data from361

application under test, pre-processing the captured data, extracting relevant features, using a362

algorithm, and evaluating the model.363

Dataset preparation: Researchers developed a number of ways for capturing data from a364

cations under test and pre-process them before feeding them to an ml model. Braga et al.365

recorded traces for applications to capture usage data. They sanitized any irrelevant informa366

collected from the programs recording components. AppFlow [197] captures human-even367

quences from a smart-phone screen in order to identify tests. Similarly, Nguyen et al. [351]368

gested Shinobi, a framework that uses a fast r-cnn model to identify input data fields from369

tiple web-sites. Utting et al. [505] captured user and system execution traces to help genera370

missing api tests. To automatically identify metamorphic relations, Nair et al. [345] suggested371

approach that leveragesml techniques and testmutants. By using a variety of code transforma372

techniques, the authors' approach can generate a synthetic dataset for training models to pre373

metamorphic relations.374

Feature extraction: Some authors [65, 505] used execution traces as features. Kim et al. [2375

suggested an approach that replaces sbst's meta-heuristic algorithms with deep reinforcem376

learning to generate test cases based on branch coverage information. [164] used code qu377

metrics such as coupling, dit, and nof to generate test data; they use the test data generate378

predict the code coverage in a continuous integration pipeline.379

ML model training: Researchers used supervised and unsupervised ml algorithms to gene380

test data and cases. In some of the studies, the authors utilized more than one ml algorithm381

achieve their goal. Specifically, several studies [65, 230, 505, 345] used traditional ml algorith382

such as Support Vector Machine, Naive Bayes, Decision Tree, Multilayer Perceptron, Random Fo383

AdaBoost, Linear Regression. Nguyen et al. [351] used the dl algorithm Fast r-cnn. Similarly, [1384

used lstm to automate generating the input grammar data for fuzzing.385

3.3 Program synthesis386

This section summarizes the ml techniques used by automated program synthesis tools and t387

niques in the examined software engineering literature. Apart from amajor sub-category prog388

repair, we also discuss state-of-the-art corresponds to code generation and program translation389

categories in this section.390
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3.3.1 Program repair391

AutomatedProgramRepair (apr) refers to techniques that attempt to automatically identify patc392

for a givenbug (i.e., programmingmistakes that can cause anunintended run-timebehavior), w393

can be applied to software with a little or without human intervention [162]. Program repair394

ically consists of two phases. Initially, the repair tool uses fault localization to detect a bug in395

software under examination, then, it generates patches using techniques such as search-ba396

software engineering and logic rules that can possibly fix a given bug. To validate the genera397

patch, the (usually manual) evaluation of the semantic correctness2 of that patch follows.398

According to Goues et al. [162], the techniques for constructing repair patches can be divi399

into three categories (heuristic repair, constraint-based repair, and learning-aided repair) if400

consider the following two criteria: what types of patches are constructed and how the sea401

is conducted. Here, we are interested in learning-aided repair, which leverages the availab402

of previously generated patches and bug fixes to generate patches. In particular, learning-ai403

based repair tools use ml to learn patterns for patch generation.404

Typically, at the pre-processing step, such methods take source code of the buggy revisio405

an input, and those revisions that fixes the buggy revision. The revision with the fixes includ406

patch carried out manually that corrects the buggy revision and a test case that checks whe407

the bug has been fixed. Learning-aided-based repair ismainly based on the hypothesis that sim408

bugs will have similar fixes. Therefore, during the training phase, such techniques can use featu409

such as similarity metrics to match bug patterns to similar fixes. Then, the generated patches410

on those learnt patterns. Next, we elaborate upon the individual steps involved in the proces411

program repair using ml techniques.412

Dataset preparation: The majority of the studies extract buggy project revisions and man413

fixes from buggy software projects. Most studies leverage source-code naturalness. For insta414

Tufano et al. [492] extracted millions of bug-fixing pairs from GitHub, Amorim et al. [39] le415

aged the naturalness obtained from a corpus of known fixes, and Chen et al. [97] used nat416

language structures from source code. Furthermore, many studies develop their own large-s417

bug benchmarks. Ahmed et al. [10] leveraged 4,500 erroneous C programs, Gopinath et al. [1418

used a suite of programs and datasets stemmed from real-world applications, Long and Rin419

[297] used a set of successful manual patches from open-source software repositories, and M420

hadi and Hemmati [326] used the ManySStuBs4J dataset containing natural language descrip421

and code snippets to automatically generate code fixes. Le et al. [249] created an oracle for pre422

ing which bugs should be delegated to developers for fixing and which should be fixed by re423

tools. Jiang et al. [211] used a dataset containing more than 4 million methods extracted. W424

et al. [533] used Spoon, an open-source library for analyzing and transforming Java source c425

to build a model for each buggy program revision. Pinconschi et al. [382] constructed a dat426

containing vulnerability-fix pairs by aggregating five existing dataset (Mozilla Foundation Secu427

Advisories, SecretPatch, NVD, Secbench, and Big-Vul). The dataset i.e., PatchBundle is publicly a428

able on GitHub. Cambronero and Rinard [76] proposed a method to generate new superv429

machine learning pipelines. To achieve the goal, the study trained using a collection of 500 su430

vised learning programs and their associated target datasets from Kaggle. Liu et al. [287] prepa431

their dataset by selecting 636 closed bug reports from the Linux kernel and Mozilla databa432

Svyatkovskiy et al. [475] constructed their experimental dataset from the 2700 top-starred Pyt433

source code repositories on GitHub. CODIT [82] collects a new dataset—Code-ChangeData, con434

ing of 32,473 patches from 48 open-source GitHub projects collected from Travis Torrent.435

Other studies use existing bug benchmarks, such asDefects4J [218] and IntroClass [250], w436

already include buggy revisions and human fixes, to evaluate their approaches. For instance, S437

et al. [416], Lou et al. [299], Zhu et al. [582], Renzullo et al. [406], Wang et al. [518], and C438

2The term semantic correctness is a criterion for evaluating whether a generated patch is similar to the human fix for a

bug [291].
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et al. [101] leveraged Defects4J for the evaluations of their approaches. Additionally, Dantas e439

[118] used the IntroClass benchmark and Majd et al. [313] conducted experiments using 119440

C/C++ programs within Code4Bench. Wu et al. [534] used the DeepFix dataset that contains 46441

correct C programs and 6,975 programs with errors for their graph-based dl approach for syn442

error correction.443

Some studies examine bugs in different programming languages. For instance, Svyatkov444

et al. [474] used 1.2 billion lines of source code in Python, C#, JavaScript, and TypeScript progr445

ming languages. Also, Lutellier et al. [305] used six popular benchmarks of four programm446

languages (Java, C, Python, and JavaScript).447

There are also studies that mostly focus on syntax errors. In particular, Gupta et al. [178] u448

6,975 erroneous C programswith typographic errors, Santos et al. [421] used source code files449

syntax errors, and Sakkas et al. [419] used a corpus of 4,500 ill-typed OCaml programs that lea450

compile-time errors. Bhatia et al. [59] examined a corpus of syntactically correct submissions451

a programming assignment. They used a dataset comprising of over 14,500 student submiss452

with syntax errors.453

Finally, there is a number of studies that use programming assignment from students.454

instance, Bhatia et al. [59], Gupta et al. [178], and Sakkas et al. [419] used a corpus of 4,50455

typed OCaml student programs.456

Feature extraction: The majority of studies utilize similarity metrics to extract similar bug457

terns and, respectively, correct bug fixes. These studies mostly employ word embeddings for c458

representation and abstraction. In particular, Amorim et al. [39], Svyatkovskiy et al. [474], San459

et al. [421], Jiang et al. [211], and Chen et al. [97], leveraged source-code naturalness and app460

nlp-based metrics. Tian et al. [483] employed different representation learning approaches461

code changes to derive embeddings for similarity computations. Similarly, White et al. [533] u462

Word2Vec to learn embeddings for each buggy program revision. Ahmed et al. [10] used sim463

metrics for fixing compile-time errors. Additionally, Saha et al. [416] leveraged a code simila464

analysis, which compares both syntactic and semantic features, and the revision history of a465

ware project under examination, from Defects4J, for fixing multi-hunk bugs, i.e., bugs that req466

applying a substantially similar patch to different locations. Furthermore, Wang et al. [518] inv467

gated, using similarity metrics, how these machine-generated correct patches can be semanti468

equivalent to human patches, and how bug characteristics affect patch generation. Sakkas e469

[419] also applied similarity metrics. Svyatkovskiy et al. [475] extracted structured representa470

of code (for example, lexemes, asts, and dataflow) and learn directly a task over those represe471

tions.472

There are several approaches that use logic-basedmetrics based on the relationships of the473

tures used. Specifically, Van Thuy et al. [506] extracted twelve relations of statements and blo474

for Bi-gram model using Big code to prune the search space, and make the patches generate475

Prophet [297]more efficient and precise. Alrajeh et al. [33] identified counterexamples andwitn476

traces using model checking for logic-based learning to perform repair process automatically.477

et al. [74] used publicly available examples of faulty models written in the B formal specifica478

language, and proposed B-repair, an approach that supports automated repair of such a for479

specification. Cambronero and Rinard [76] extracted dynamic program traces through identi480

tion of relevant apis of the target library; the extracted traces help the employed machine learn481

model to generate pipelines for new datasets.482

Many studies also extract and consider the context where the bugs are related to. For insta483

Tufano et al. [492] extracted Bug-Fixing Pairs (bfps) from millions of bug fixes mined from Git484

(used as meaningful examples of such bug-fixes), where such a pair consists of a buggy code c485

ponent and the corresponding fixed code. Then, they used those pairs as input to an Enco486

Decoder Natural Machine Translation (nmt) model. For the extraction of the pair, they used487

GumTree Spoon ast Diff tool [140]. Additionally, Soto and Le Goues [459] constructed a corpu488

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 17 o



Journal Pre-proof

ces

ner-

age

fed

nos-

67]

tion

pro-

ort.

rre-

am

ode

rom

rror

76]

of a

sary

,3 a

heir

ing

d in

tion

ech-

ther

ses

ano

real

nmt
ach

del,

ded

inal

that

ticu-

,4 to

age

pair.

ap-

ons.

d, a

ring

pre-

e, to

em-

rors.

Shar f 98
Jo
ur

na
l P

re
-p

ro
of

delimiting debugging regions in a provided dataset. Then, they recursively analyzed the differen489

between the Simplified Syntax Trees associated with EditEvent’s. Mesbah et al. [335] also ge490

ated astdiffs from the textual code changes and transformed them into a domain-specific langu491

called Delta that encodes the changes thatmust bemade tomake the code compile. Then, they492

the compiler diagnostic information (as source) and the Delta changes that resolved the diag493

tic (as target) into a Neural Machine Translation network for training. Furthermore, Li et al. [2494

used the prior bug fixes and the surrounding code contexts of the fixes for code transforma495

learning. Saha et al. [415] developed a ml model that relies on four features derived from a496

gram's context, i.e., the source-code surrounding the potential repair location, and the bug rep497

Similarly, Mashhadi and Hemmati [326] used a combination of natural language text and co498

sponding code snippet to generated an aggregated sequence representation for the downstre499

task. Finally, Bader et al. [46] utilized a ranking technique that also considers the context of a c500

change, and selects the most appropriate fix for a given bug. Vasic et al. [507] used results f501

localization of variable-misuse bugs. Wu et al. [534] developed an approach, ggf, for syntax-e502

correction that treats the code as a mixture of the token sequences and graphs. LIN et al. [2503

and Zhu et al. [582] utilized ast paths to generate code embeddings to predict the correctness504

patch. Chakraborty et al. [82] represent the patches in a parse tree form and extract the neces505

information (e.g., grammar rules, tokens, and token-types) from them. They used GumTree506

tree-based code differencing tool, to identify the edited ast nodes. To collect the edit context, t507

proposal, CODIT, converts the asts to their parse tree representation and extracts correspond508

grammar rules, tokens, and token types.509

ML model training: In the following, we present the main categories of ml techniques foun510

the examined papers.511

Neural Machine Translation: This category includes papers that apply neural machine transla512

(nmt) for enhancing automated program repair. Such approaches can, for instance, include t513

niques that use examples of bug fixing for one programming language to fix similar bugs for o514

programming language. Lutellier et al. [305] developed the repair tool called CoCoNuT that u515

ensemble learning on the combination of cnns and a new context-aware nmt. Additionally, Tuf516

et al. [492] used nmt techniques (Encoder-Decoder model) for learning bug-fixing patches for517

defects, and generated repair patches. Mesbah et al. [335] introduced DeepDelta, which used518

for learning to repair compilation errors. Jiang et al. [211] proposed cure, a nmt-based appro519

to automatically fix bugs. Pinconschi et al. [382] used SequenceR, a sequence-to-sequence mo520

to patch security faults in C programs. Zhu et al. [582] proposed a tool Recoder, a syntax-gui521

edit decoder that takes encoded information and produces placeholders by selecting non-term522

nodes based on their probabilities. Chakraborty et al. [82] developed a technique called codit523

automates code changes for bug fixing using tree-based neural machine translation. In par524

lar, they proposed a tree-based neural machine translation model, an extension of OpenNMT525

learn the probability distribution of changes in code.526

Natural Language Processing: In this category, we include papers that combine natural langu527

processing (nlp) techniques, embeddings, similarity scores, and ml for automated program re528

Tian et al. [483] carried out an empirical study to investigate different representation learning529

proaches for code changes to derive embeddings, which are amendable to similarity computati530

This study uses bert transformer-based embeddings. Furthermore, Amorim et al. [39] applie531

word embeddingmodel (Word2Vec), to facilitate the evaluation of repair processes, by conside532

the naturalness obtained from known bug fixes. Van Thuy et al. [506] have also applied word re533

sentations, and extracted relations of statements and blocks for a Bi-grammodel using Big cod534

improve the existing learning-aid-based repair tool Prophet [297]. Gupta et al. [178] used word535

beddings and reinforcement learning to fix erroneous C student programswith typographic er536

3https://github.com/GumTreeDiff/gumtree
4https://opennmt.net/
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Tian et al. [483] applied a ml predictor with bert transformer-based embeddings associated wit537

gistic regression to learn code representations in order to learn deep features that can encode538

properties of patch correctness. Saha et al. [416] used similarity analysis for repairing bugs539

may require applying a substantially similar patch at a number of locations. Additionally, W540

et al. [518] used also similarity metrics to compare the differences among machine-generated541

human patches. Santos et al. [421] used n-grams and nns to detect and correct syntax errors.542

Logic-based rules: Alrajeh et al. [33] combined model checking and logic-based learning to543

port automated program repair. Cai et al. [74] also combined model-checking and ml for prog544

repair. Shim et al. [444] used inductive program synthesis (DeeperCoder), by creating a simple545

main Specific Language (dsl), and ml to generate computer programs that satisfies user req546

ments and specification. Sakkas et al. [419] combined type rules and ml (i.e.,multi-class classi547

tion, dnns, and mlp) for repairing compile errors.548

Probabilistic predictions: Here, we list papers that use probabilistic learning and ml approac549

such as association rules, Decision Tree, and Support Vector Machine to predict bug locations550

fixes for automated program repair. Long and Rinard [297] introduced a repair tool called Prop551

which uses a set of successful manual patches from open-source software repositories, to le552

a probabilistic model of correct code, and generate patches. Soto and Le Goues [459] condu553

a granular analysis using different statement kinds to identify those statements that are m554

likely to be modified than others during bug fixing. For this, they used simplified syntax trees555

association rules. Gopinath et al. [161] presented a data-driven approach for fixing of bug556

database statements. For predicting the correct behavior for defect-inducing data, this study u557

Support Vector Machine and Decision Tree. Saha et al. [415] developed the Elixir repair appro558

that uses Logistic Regression models and similarity-score metrics. Bader et al. [46] develope559

repair approach called Getafix that uses hierarchical clustering to summarize fix patterns in560

hierarchy ranging from general to specific patterns. Xiong et al. [537] introduced L2S that use561

to estimate conditional probabilities for the candidates at each search step, and search algorith562

to find the best possible solutions. Gopinath et al. [160] used Support Vector Machine and ID3563

path exploration to repair bugs in complex data structures. Le et al. [249] conducted an empi564

study on the capabilities of program repair tools, and applied Random Forest to predict whe565

using genetic programming search in apr can lead to a repair within a desired time limit. Aleti566

Martinez [16] used themost significant features as inputs to Random Forest, Support Vector Mach567

Decision Tree, andmulti-layer perceptronmodels.568

Recurrent neural networks: dl approaches such as rnns (e.g., lstm and Transformer) have been u569

for synthesizing new code statements by learning patterns from a previous list of code statem570

i.e., this techniques can be used to mainly predict the next statement. Such approaches o571

leverage word embeddings. Dantas et al. [118] combined Doc2Vec and lstm, to capture depen572

cies between source code statements, and improve the fault-localization step of program re573

Ahmed et al. [10] developed a repair approach (Tracer) for fixing compilation errors using r574

Recently, Li et al. [267] introduced DLFix, which is a context-based code transformation learn575

for automated program repair. DLFix uses rnns and treats automated program repair as c576

transformation learning, by learning patterns from prior bug fixes and the surrounding code577

texts of those fixes. Svyatkovskiy et al. [474] presented IntelliCode that uses a Transformer mo578

that predicts sequences of code tokens of arbitrary types, and generates entire lines of synt579

cally correct code. Chen et al. [97] used the lstm for synthesizing if–then constructs. Simil580

Vasic et al. [507] applied the lstm in multi-headed pointer networks for jointly learning to loca581

and repair variable misuse bugs. Bhatia et al. [59] combined neural networks, and in partic582

rnns, with constraint-based reasoning to repair syntax errors in buggy programs. Chen et al. [1583

applied lstm for sequence-to-sequence learning achieving end-to-end program repair through584

SequenceR repair tool they developed. Majd et al. [313] developed SLDeep, statement-level585

ware defect prediction, which uses lstm on static code features.586
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Apart from above-mentioned techniques, White et al. [533] developed DeepRepair, a re587

sive unsupervised deep learning-based approach, that automatically creates a representatio588

source code that accounts for the structure and semantics of lexical elements. The neural netw589

language model is trained from the file-level corpus using embeddings.590

3.3.2 Code generation591

592

An automated code generation approach takes specification, typically in the form of natural593

guage prompts, and generates executable code based on the specification [551, 395, 474].594

elaborate on the studies that involve generating source code using ml techniques.595

Dataset preparation: Yin and Neubig [552] proposed a transition-based neural semantic pa596

namely tranx, which generates formal meaning representation from natural language text. T597

usedmultiple datasets for their study—dataset proposed by Dong and Lapata [128] containing598

geography-related questions, Django dataset [358], as well asWikiSQL dataset [576]. Similarly,599

et al. [468] and Shin et al. [446] used the HearthStone dataset [283] for Python code genera600

in addition, Shin et al. [446] used the Spider [557] dataset for training. Liang et al. [272] used601

semantic parsing datasetWebQuestionsSP[550] consisting 3, 098 question-answer pairs for train602

and 1, 639 for testing. Bielik et al. [60] used the Linux Kernel dataset [222], and the Hutter P603

Wikipedia dataset.5 Devlin et al. [122] evaluated their architecture on 205 real-world Flash-Fi604

stances [170]. Xiong et al. [537] used training data stemming from two Defects4J projects and t605

related JDK packages. Wei et al. [530] conducted experiments on Java and Python projects colle606

from GitHub used by previous work (such as by Hu et al. [198], Hu et al. [199], Wan et al. [511]607

Some studies curated datasets for their experiments. For example, Chen et al. [93] crea608

HumanEval, a dataset containing 164 programming problems crafted manually for evaluation.609

ilarly, Li et al. [270] first used a curated set of public GitHub repositories implemented in sev610

popular languages such as C++, C#, Java, Go, and Python for pre-training. They created a data611

CodeContests, for fine-tuning. The dataset includes problems, solutions, and test cases scra612

from the Codeforces platform. Furthermore, IntelliCode [474] is trained on 1.2 billion line613

source code written in the Python, C#, JavaScript and TypeScript programming languages.614

manis et al. [28] evaluated their models on a large dataset of 2.9 million lines of code. Cai et al.615

used a training set that contains 200 traces for addition, 100 traces for bubble sort, 6 traces for t616

logical sort, and 4 traces for quicksort. Devlin et al. [121] used programming examples that inv617

induction, such as I/O examples. Shu and Zhang [449] used training data to generate program618

various levels of complexity according to 45 predefined tasks (e.g., Split, Join, Select). Murali e619

[344] used a corpus of about 150, 000 api-manipulating Android methods. Shin et al. [447] prop620

a new approach to generate desirable distribution for the target datasets for program induc621

and synthesis tasks.622

Feature extraction: Studies in this category extensively used ast during the feature extrac623

step. tranx [552] maps natural language text into an ast using a series of tree-construction624

tions. Similarly, Sun et al. [468] parsed a program as an ast and decomposed the program625

several context-free grammar rules. Also, the study by Yin and Neubig [551] transformed s626

ments to asts. These asts are generated for all well-formed programs using parsers provide627

the programming language under examination. Furthermore, Rabinovich et al. [395] develop628

model that used a modular decoder, whose sub-models are composed using natively genera629

asts. Each sub-model is associated with a specific construct in the ast grammar, and, then,630

invoked when that construct is required in the output tree.631

Some studies in the category used examples of input and output to learn code genera632

Euphony [257] learns good representation using easily obtainable solutions for given progra633

DeepCoder [47] observes inputs and outputs, by leveraging information from interpreters. T634

5http://prize.hutter1.net/
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DeepCoder searches for a program that matches the input-output examples. Similarly, Chen e635

[99] developed a neural program synthesis from input-output examples. Shu and Zhang [4636

extracted features from string transformations, i.e., input-output strings, and use the learned637

tures to induce correct programs. Devlin et al. [122] used I/O programming examples and de638

oped a dsl for synthesizing related programs.639

Finally, the rest of the studies used tokens from source code as their features. For exam640

Chen et al. [97] and Li et al. [270] extracted tokens from source code. Allamanis et al. [28] extra641

features that refer to program semantics such as variable names. Xiong et al. [537] extracted642

eral features, including context, variable, expression, and position features, from the source c643

to train their ml models. Devlin et al. [121] focused on extracting features from programs tha644

volve induction. Murali et al. [344] extracted low-level features (e.g., api calls). Liang et al. [272]645

used tokens and graphs extracted from the data sets used. Shin et al. [446] considered idioms (646

named operators) from programs in an extended grammar. Bielik et al. [60] leveraged langu647

features, using datasets of ngrams in their experiments. Maddison andTarlow [310] considered648

tures of variables and structural language features. Cummins et al. [113] used language featu649

to synthesize human-like written programs. Shin et al. [447] used different features related to650

operations e.g., program size, control-flow ratio, and so on. Chen et al. [98] extracted features f651

programming-language arguments. Wei et al. [530] leveraged the power of code summariza652

and code generation. The input of code summarization is the output of code generation; the653

proach applies the relations between these tasks and proposes a dual training framework to t654

these tasks simultaneously using probability and attention weights along with dual constraint655

ML model training: A majority of the studies in this category relies on the rnn-based eco656

decoder architecture. tranx [552] implemented a transition system that generates an ast f657

a sequence of tree-constructing actions. The system is based on a lstm-based encoder-deco658

model where the encoder encodes the input tokens into its corresponding vector representa659

and the decoder generates the probabilities of tree-constructing actions. Also, Yin and Neu660

[551] proposed adata-driven syntax-basedneural networkmodel for generation of code in gen661

purpose programming languages such as Python. Cai et al. [75] implemented recursion in the N662

ral Programmer-Interpreter framework that uses an lstm controller on four tasks: grade-sch663

addition, bubble sort, topological sort, and quicksort. Bielik et al. [60] designed a language TC664

for character-level languagemodeling, and program synthesis using lstm. Cummins et al. [113665

plied lstm to synthesize compilable, executable benchmarks. Chen et al. [98] used reinforcem666

learning to predict arguments (e.g., CALL, REDUCE). Devlin et al. [122] presented a novel varian667

the attentional rnn architecture, which allows for encoding of a variable size set of input-ou668

examples. Wei et al. [530] used Seq2Seq, Bi-lstm, lstm-based models to exploit the code sum669

rization and code generation for automatic software development. Furthermore, Rabinovich e670

[395] introduced Abstract Syntax Networks (ASNs), an extension of the standard encoder-deco671

framework.672

Some of the studies employed transformer-based models. Sun et al. [468] proposed Tree673

for code generation. They implemented an ast readerer to combine the grammar rules with674

and mitigated the long-dependency problem with the help of the attention mechanism use675

Transformers. Similarly, Li et al. [270] implemented a transformer architecture for AlphaCode. C676

et al. [93] proposed Codex that is a gpt model fine-tuned on publicly available code from Git677

containing up to 12B parameters on code. IntelliCode by Svyatkovskiy et al. [474] is a multilin678

code completion tool that predicts sequences of code tokens of arbitrary types. IntelliCode is679

able to generate entire lines of syntactically correct code. It uses a generative transformer mo680

Euphony [257] targets a standard formulation, syntax-guided synthesis, by extending the gr681

mar of given programs. To do so, Euphony uses a probabilistic model dictating the likelihoo682

each program. DeepCoder [47] leverages gradient-based optimization and integrates neural683

work architectures with search-based techniques. Szydlo et al. [477] investigated the concep684
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source code generation of machine learning models as well as the generation algorithms for c685

monly usedmlmethods. Chen et al. [99] introduced a technique that is based on execution-gui686

synthesis and uses a synthesizer ensemble. This approach leverages semantic information to687

semble multiple neural program synthesizers. Chen et al. [97] used latent attention to comp688

token weights. They found that latent attention performs better in capturing the sentence s689

ture. Allamanis et al. [28] used dl models to learn semantics from programs. They used the co690

graph structure and learned program representations over the generated graphs. Xiong et al. [5691

applied the gradient boosting tree algorithm to train theirmodels. Devlin et al. [121] used the tr692

fer learning and k-shot learning approach for cross-task knowledge transfer to improve prog693

induction in limited-data scenarios. Shu and Zhang [449] proposed NPBE (Neural Programmin694

Example) that teaches a dnn to compose a set of predefined atomic operations for stringmanip695

tions. Murali et al. [344] trained a neural generator on program sketches to generate source c696

in a strongly typed, Java-like programming language. Liang et al. [272] introduced the Neural S697

bolic Machine (NSM), based on a sequence-to-sequence neural network induction, and apply698

semantic parsing. Shin et al. [446] employed non-parametric Bayesian inference to mine the c699

idioms that frequently occur in a given corpus and trained a neural generative model to op700

ally emit named idioms instead of the original code fragments. Maddison and Tarlow [310] u701

models that are based on probabilistic context free grammars (PCFGs) and a neuro-probabil702

language, which are extended to incorporate additional source code-specific structures.703

3.3.3 Program translation704

705

In this section, we list studies that use ml that can be used, for instance, for translating source c706

from one programming language to another by learning source-code patterns. Le et al. [248]707

sented a survey on dl techniques including machine translation algorithms and applications.708

et al. [357] used statistical machine translation (smt) and proposed a method to automatically709

erate pseudo-code from source code for source-code comprehension. To evaluate their appro710

they conducted experiments, and generated English or Japanese pseudo-code from Python s711

ments using smt. Then, they found that the generated pseudo-code is mostly accurate, and it712

facilitate code understanding. Roziere et al. [408] applied unsupervised machine translatio713

create a transcompiler in a fully unsupervised way. TransCoder uses beam search decodin714

generate multiple translations. Phan and Jannesari [380] proposed PrefixMap, a code sugges715

tool for all types of code tokens in the Java programming language. Their approach uses statis716

machine translation that outperforms nmt. They used three corpus for their experiments—a la717

scale corpus of English-German translation in nlp [304], the Conala corpus [553], which cont718

Python software documentation as 116,000 English sentences, and the msr 2013 corpus [23].719

3.4 Quality assessment720

The quality assessment category has sub-categories code smell detection, clone detection, and qu721

assessment/prediction. In this section, we elaborate upon the state-of-the-art related to eac722

these categories within our scope.723

3.4.1 Code smell detection724

Code smells impair the code quality and make the software difficult to extend and maintain [4725

Extensive literature is available on detecting smells automatically [435]; ml techniques have b726

used to classify smelly snippets from non-smelly code. First, source code is pre-processed to727

tract individual samples (such as a class, file, or method). These samples are classified into pos728

and negative samples. Afterwards, relevant features are identified from the source code and th729

features are then fed into anmlmodel for training. The trainedmodel classifies a source code s730

ple into a smelly or non-smelly code.731
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Dataset preparation: The process of identifying code smells requires a dataset as a gro732

truth for training an ml model. Each sample of the training dataset must be tagged appro733

ately as smelly sample (along with target smell types) or non-smelly sample. Many authors b734

their datasets tagged manually with annotations. For example, Fakhoury et al. [139] develo735

a manually validated oracle containing 1, 700 instances of linguistic smells. Pecorelli et al. [3736

created a dataset of 8.5 thousand samples of smells from 13 open-source projects. Some737

thors [11, 336, 110, 206, 180] employed existing datasets (Landfill and Qualitas) in their stu738

Tummalapalli et al. [500, 497, 499] used 226 WSDL files from the tera-PROMISE dataset. Oliv739

et al. [360] relied on historical data and mined smell instances from history where the smells w740

refactored.741

Some efforts such as one by Sharma et al. [437] used CodeSplit [434, 433] first to split sou742

code files into individual classes and methods. Then, they used existing smell detection tools [743

432] to identify smells in the subject systems. They used the output of both of these task744

identify and segregate positive and negative samples. Similarly, Kaur and Kaur [226] used sm745

identified by Dr Java, EMMA, and FindBugs as their gold-set. Alazba and Aljamaan [14] and Dew746

gan et al. [124] used the dataset manually labelled instances detected by four code smell dete747

tools (i.e., iPlasma, PMD, Fluid Tool, Anti-Pattern Scanner, and Marinescu's detection rule).748

dataset labelled six code smells collected from 74 software systems. Zhang and Dong [569]749

posed a large dataset BrainCode consisting 270, 000 samples from 20 real-world applications.750

study used iPlasma to identify smells in the subject systems.751

Liu et al. [290] adopted an usual mechanism to identify their positive and negative sam752

They assumed that popular well-known open-source projects are well-written and hence all of753

classes/methods of these projects are by default considered free from smells. To obtain pos754

samples, they carried out reverse refactoring e.g.,moving a method from a class to another clas755

create an instance of feature envy smell.756

Feature extraction: The majority of the articles [52, 223, 240, 174, 8, 360, 390, 149, 42, 148,757

111, 38, 114, 336, 290, 179, 495, 110, 500, 417, 497, 499, 226, 176, 124, 14, 206, 569, 173] in this c758

gory use object-orientedmetrics as features. Thesemetrics include class-levelmetrics (such as759

of code, lack of cohesion among methods, number of methods, fan-in and fan-out) and method-l760

metrics (such as parameter count, lines of code, cyclomatic complexity, and depth of nested conditio761

We observed that some of the attempts use a relatively small number of metrics (Thongkum762

Mekruksavanich [481] and Agnihotri and Chug [8] used 10 and 16 metrics, respectively). Howe763

some of the authors chose to experiment with a large number of metrics. For example, Amo764

et al. [38] employed 62, Mhawish and Gupta [336] utilized 82, and Arcelli Fontana and Zanoni765

used 63 class-level metrics and 84 method-level metrics.766

Some efforts diverge from the mainstream usage of using metrics as features and used a767

native features. Lujan et al. [303] used warnings generated from existing static analysis tool768

features. Similarly, Ochodek et al. [356] analyzed individual lines in source code to extract769

tual properties such as regex and keywords to formulate a set of vocabulary based features (s770

as bag of words). Tummalapalli et al. [498] and Gupta et al. [175] used distributed word re771

sentation techniques such as Term frequency-inverse Document Frequency (TFIDF), Continu772

Bag Of Words (CBW), Global Vectors for Word Representation (GloVe), and Skip Gram. Simil773

Hadj-Kacem and Bouassida [180] generated ast first and obtain the corresponding vector re774

sentation to train a model for smell detection. Furthermore, Sharma et al. [437] hypothesized775

dl methods can infer the features by themselves and hence explicit feature extraction is no776

quired. They did not process the source code to extract features and feed the tokenized cod777

ml models.778

MLmodel training: The type of ml models usage can be divided into three categories.779

Traditional ml models: In the first category, we can put studies that use one or more traditiona780
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models. These models include Decision Tree, Support Vector Machine, Random Forest, Naive Ba781

Logistic Regression, Linear Regression, Polynomial Regression, Bagging, andMultilayer Perceptron.782

majority of studies [303, 240, 174, 8, 360, 390, 149, 148, 374, 481, 111, 127, 114, 495, 110, 498,783

226, 124, 14, 175, 206, 180, 173] in this category compared the performance of various ml mo784

Some of the authors experimented with individual ml models; for example, Kaur et al. [223]785

Amorim et al. [38] used Support Vector Machine and Decision Tree, respectively, for smell detec786

Ensemble methods: The second category of studies employed ensemble methods to detect sm787

Barbez et al. [52] and Tummalapalli et al. [496] experimented with ensemble techniques suc788

majority training ensemble and best training ensemble. Saidani et al. [417] used the Ensemble Cl789

fier Chain (ECC) model that transforms multi-label problems into several single-label problem790

find the optimal detection rules for each anti-pattern type.791

dl-based models: Studies that use dl form the third category. Sharma et al. [437] used cnn,792

(lstm), and autoencoders-based dlmodels. Hadj-KacemandBouassida [179] employed autoen793

based dl model to first reduce the dimensionality of data and Artificial Neural Network to clas794

the samples into smelly and non-smelly instances. Liu et al. [290] deployed four different dlmo795

based on cnn and rnn. It is common to use other kinds of layers (such as embeddings, dense,796

dropout) alongwith cnn and rnn. Gupta et al. [176] used eight dlmodels and Zhang andDong [5797

proposed Metric–Attention-based Residual network (MARS) to detect brain class/method. M798

used metric–attention mechanism to calculate the weight of code metrics and detect code sm799

Discussion: A typical ml model trained to classify samples into either smelly or non-smelly sam800

The majority of the studies focused on a relatively small set of known code smells— god class801

303, 223, 174, 8, 360, 149, 167, 42, 111, 78, 179], feature envy [52, 223, 8, 149, 42, 148, 111, 437, 1802

long method [223, 174, 149, 167, 42, 148, 111, 45, 179], data class [223, 360, 149, 167, 42, 148],803

complex class [303, 174, 360]. Results of these efforts vary significantly; F1 score of the ml mo804

vary between 0.3 to 0.99. Among the investigated ml models, authors widely report that Deci805

Tree [45, 148, 13, 174] and Random Forest [45, 148, 240, 42, 336] perform the best. Other meth806

that have been reported better than other ml models in their respective studies are Support Ve807

Machine [496], Boosting [302], and autoencoders [437].808

Traditional ml techniques are the prominent choice in this category because these techniq809

works well with fixed size, fixed column meaning vectors. Code quality metrics capture the810

tures relevant to the identification of smells, and they have fixed size, fixed column meaning811

tors. However, such vectors do not capture subjectivity inherent in the context and hence so812

studies rely on alternative features such as embeddings generated by ast representations to f813

dl models such as rnn.814

3.4.2 Code clone detection815

Code clone detection is the process of identifying duplicate code blocks in a given software sys816

Software engineering researchers have proposed not only methods to detect code clones a817

matically, but, also verify whether the reported clones from existing tools are false-positives or818

using ml techniques. Studies in this category prepare a dataset containing source code sam819

classified as clones or non-clones. Then, they apply feature extraction techniques to identify820

vant features that are fed into ml models for training and evaluation. The trained models iden821

clones among the sample pairs.822

Dataset preparation: Manual annotation is a common way to prepare a dataset for applyin823

to identify code clones [340, 341, 532]. Mostaeen et al. [340] used a set of tools (NiCad, Deck824

iClones, CCFinderX and SourcererCC) to first identify a list of code clones; they then manually825

dated each of the identified clone set. Yang et al. [542] used existing code clone detection too826

generate their training set. Some authors (such as Bandara and Wijayarathna [49] and Hamm827

et al. [183]) relied on existing code-clone datasets. Zhang and Khoo [562] used NiCad to detec828

clone groups from each version of the software. The study mapped the clones from a cons829
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tive version and used the mapping to predict clone consistency at both the clone-creating and830

clone-changing time. Bui et al. [72] deployed an interestingmechanism to prepare their code-cl831

dataset. They crawled through GitHub repositories to find different implementations of sortin832

gorithms; they collected 3,500 samples from this process.833

Feature extraction: Themajority of the studies relied on the textual properties of the source c834

as features. Bandara and Wijayarathna [49] identified features such as the number of charac835

and words, identifier count, identifier character count, and underscore count using the antlr836

Some studies [340, 341, 339] utilized line similarity and token similarity. Yang et al. [542] and H837

mad et al. [183] computed tf-idf along with other metrics such as position of clones in the838

Cesare et al. [79] extracted 30 package-level features including the number of files, hashes of839

files, and common filenames as they detected code clones at the package level. Zhang and K840

[562] obtained a set of code attributes (e.g., lines of code and the number of parameters), con841

attribute set (e.g.,method name similarity, and sum of parameter similarity). Similarly, Shenea842

and Kalita [441] obtained metrics such as the number of constructors, number of field access,843

super-constructor invocation from the program ast. They also employed program depende844

graph features such as decl_assign and control_decl. Along the similar lines, Zhao and Huang [5845

used cfg and dfg (Data Flow Graph) for clone detection. Some of the studies [72, 532, 142] re846

on dl methods to encode the required features automatically without specifying an explicit se847

features.848

MLmodel training:849

Traditional ml models: Themajority of studies [341, 49, 339, 441, 562] experimented with a num850

of ml approaches. For example, Mostaeen et al. [341] used Bayes Network, Logistic Regression,851

Decision Tree; Bandara and Wijayarathna [49] employed Naive Bayes, K Nearest Neighbors, AdaB852

Similarly, Sheneamer and Kalita [441] compared the performance of Support Vector Machine, Li853

Discriminant Analysis, Instance-Based Learner, Lazy K-means, Decision Tree, Naive Bayes, Multil854

Perceptron, and Logit Boost.855

dl-based models: dl models such as ann [340, 339], dnn [142, 571], and rnn with Reverse ne856

network [532] are also employed extensively. Bui et al. [71] and Bui et al. [72] combined ne857

networks for ml models' training. Specifically, Bui et al. [71] built a Bilateral neural network858

top of two underlying sub-networks, each of which encodes syntax and semantics of code in859

language. Bui et al. [72] constructed BiTBCNNs—a combination layer of sub-networks to enc860

similarities and differences among code structures in different languages. Hammad et al. [1861

proposed a Clone-Advisor, a dnn model trained by fine-tuning GPT-2 over the BigCloneBench c862

clone dataset, for predicting code tokens and clone methods.863

3.4.3 Defect prediction864

To pinpoint bugs in software, researchers used various ml approaches. The first step of this865

cess is to identify the positive and negative samples from a dataset where samples could be a t866

of source code entity such as classes, modules, files, and methods. Next, features are extra867

from the source code and fed into an ml model for training. Finally, the trained model can868

sify different code snippets as buggy or benign based on the encoded knowledge. To this869

we discuss the collected studies based on (1) data labeling, (2) features extract, and (3) ml mo870

training.871

Dataset preparation: To train an ml model for predicting defects in source code a labeled dat872

is required. For this purpose, researchers have used some well-known and publicly avail873

datasets. For instance, a large number of studies [80, 157, 316, 454, 85, 58, 320, 453, 81, 517,874

265, 125, 386, 307, 229, 90, 116, 520, 442, 129, 455, 568, 73, 126, 423, 521, 281, 404, 263, 224,875

246, 457, 366, 318, 393, 323, 470, 137, 365, 554, 469, 120, 12, 15] used the promise dataset [4876

Some studies used other datasets in addition to promise dataset. For example, Liang et al. [2877

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 25 o



Journal Pre-proof

ntin-

rom

ious

317,

rce

28].

233,

, 12,

ber

om-

fect

nal

r of

rce

ode

opy

s of

[266,

] for

the

an

ates

ach

ode

sing

and

res

del

ting

dels.

ges

dict

ams

rds,

s by

d in

453,

120,

nal

Sim-

tion,

od-

Shar f 98
Jo
ur

na
l P

re
-p

ro
of

used Apache projects and Qiao et al. [393] used mis dataset [306]. Xiao et al. [535] utilized a Co878

uous Integration (ci) dataset and Pradel and Sen [387] generated a synthetic dataset. Apart f879

using the existing datasets, some other studies prepared their own datasets by utilizing var880

GitHub projects [314, 190, 455, 7, 315, 372, 491] including Apache [266, 64, 117, 141, 364, 460,881

105, 400], Eclipse [583, 117] and Mozilla [311, 233] projects, or industrial data[64].882

Feature extraction: The most common features to train a defect prediction model are the sou883

code metrics introduced by Halstead [182], Chidamber and Kemerer [103], and McCabe [3884

Most of the examined studies [80, 157, 316, 454, 85, 320, 517, 106, 314, 315, 307, 229, 73, 86,885

427, 141, 224, 217, 359, 246, 41, 21, 457, 522, 318, 393, 323, 469, 554, 470, 120, 105, 137, 400886

364, 460, 388, 317, 15, 372, 488] used a large number of metrics such as Lines of Code, Num887

of Children, Coupling Between Objects, and Cyclomatic Complexity. Some authors [365, 456] c888

bined detected code smells with code qualitymetrics. Furthermore, Felix and Lee [144] used de889

metrics such as defect density and defect velocity along with traditional code smells.890

In addition to the above, some authors [81, 125, 58, 386] suggested the use of dimensio891

space reduction techniques—such as Principal Component Analysis (pca)—to limit the numbe892

features. Pandey and Gupta [367] used Sequential Forward Search (sfs) to extract relevant sou893

codemetrics. Dos Santos et al. [129] suggested a sampling-based approach to extract source c894

metrics to train defect predictionmodels. Kaur et al. [225] suggested an approach to fetch entr895

of change metrics. Bowes et al. [64] introduced a novel set of metrics constructed in term896

mutants and the test cases that cover and detect them.897

Other authors [387, 568] used embeddings to trainmodels. Such studies, first generate asts898

141, 263, 366, 273], a variation of asts such as simplified asts [281, 88], or ast-diff [521, 491899

a selected method or file could be considered. Then, embeddings are generated either using900

token vector corresponding to each node in the generated tree or extracting a set of paths from901

ast. Singh et al. [455] proposed a method named Transfer Learning Code Vectorizer that gener902

features from source code by using a pre-trained code representation dlmodel. Another appro903

for detecting defects is capturing the syntax and multiple levels of semantics in the source c904

as suggested by Dam et al. [116]. To do so, the authors trained a tree-base lstm model by u905

source code files as feature vectors. Subsequently, the trained model receives an ast as input906

predicts if a file is clear from bugs or not.907

Wang et al. [520] employed the Deep Belief Network algorithm (dbn) to learn semantic featu908

from token vectors, which are fetched from applications' asts. Shi et al. [442] used a dnn mo909

to automate the features extraction from the source code. Xiao et al. [535] collected the tes910

history information of all previous ci cycles, within a ci environment, to train defect predict mo911

Likewise to the above study, Madhavan and Whitehead [311] and Aggarwal [7] used the chan912

among various versions of a software as features to train defect prediction models.913

In contrast to the above studies, Chen et al. [90] suggested the dtl-dp, a framework to pre914

defects without the need of features extraction tools. Specifically, dtl-dp visualizes the progr915

as images and extracts features out of themby using a self-attentionmechanism [508]. Afterwa916

it utilizes transfer learning to reduce the sample distribution differences between the project917

feeding them to a model.918

ML model training: In the following, we present the main categories of ml techniques foun919

the examined papers.920

Traditional ml models: To train models, most of the studies [80, 157, 316, 454, 85, 58, 320,921

81, 106, 125, 386, 314, 315, 184, 367, 129, 455, 229, 225, 73, 520, 393, 323, 469, 554, 470,922

105, 400, 364, 460, 456, 388, 317, 15, 372, 224, 359, 246, 144, 318, 457, 21, 404] used traditio923

ml algorithms such as Decision Tree, Random Forest, Support Vector Machine, and AdaBoost.924

ilarly, Jing et al. [217], Wang et al. [522] used Cost Sensitive Discriminative Learning. In addi925

other authors [265, 517, 307] proposed changes to traditional ml algorithms to train their m926
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els. Specifically, Wang and Yao [517] suggested a dynamic version of AdaBoost.NC that adjust927

parameters automatically during training. Similarly, Li et al. [265] proposed ACoForest, an ac928

semi-supervised learning method to sample the most useful modules to train defect predic929

models. Ma et al. [307] introduced Transfer Naive Bayes, an approach to facilitate transfer learn930

from cross-company data information and weighting training data.931

dl-basedmodels: In contrast to the above studies, researchers [90, 116, 387, 266, 427] used dlm932

els such as cnn and rnn-based models for defect prediction. Specifically, Chen et al. [90], Al Qa933

et al. [12], Li et al. [263], Pan et al. [366] used cnn-based models to predict bugs. rnn-based m934

ods [116, 491, 88, 273, 141, 281] are also frequently used where variations of lstm are use935

for defect prediction. Moreover, by using dl approaches, authors achieved improved accuracy936

defect prediction and they pointed out bugs in real-world applications [387, 266].937

3.4.4 Quality assessment/prediction938

Studies in this category assess or predict issues related to various quality attributes such as r939

bility, maintainability, and run-time performance. The process starts with dataset pre-proces940

and labeling to obtain labeled data samples. Feature extraction techniques are applied on the941

cessed samples. The extracted features are then fed into an ml model for training. The trai942

model assesses or predicts the quality issues in the analyzed source code.943

Dataset preparation: Heo et al. [193] generated data to train an ml model in pursuit to bala944

soundness and relevance in static analysis by selectively allowing unsoundness only when945

likely to reduce false alarms. Similarly, Alikhashashneh et al. [20] used the Understand tool to946

tect variousmetrics, and employed themon the Juliet test suite for C++. Reddivari and Raman [4947

extracted a subset of data belonging to open source projects such as Ant, Tomcat, and Jedit to948

dict reliability and maintainability using ml techniques. Malhotra1 and Chug [321] also prepar949

custom dataset using two proprietary software systems as their subjects to predict maintainab950

of a class.951

Feature extraction: Heo et al. [193] extracted 37 low-level code features for loop (such as num952

of Null, array accesses, and number of exits) and library call constructs (such as parameter co953

and whether the call is within a loop). Some studies [20, 402, 321] used source code metric954

features.955

MLmodel training: Alikhashashneh et al. [20] employed Random Forest, Support Vector Machin956

Nearest Neighbors, and Decision Tree to classify static code analysis tool warnings as true posit957

false positives, or false negatives. Reddivari and Raman [402] predicted reliability andmaintain958

ity using the similar set of ml techniques. Anomaly-detection techniques such as One-class Sup959

Vector Machine have been used by Heo et al. [193]. They applied their method on taint analysis960

buffer overflow detection to improve the recall of static analysis. Whereas, some other studies961

aimed to rank and classify static analysis warnings.962

3.5 Code completion963

Code auto-completion is a state-of-the-art integral feature of modern source-code editors964

ides [69]. The latest generation of auto-completion methods uses nlp and advanced ml mod965

trained on publicly available software repositories, to suggest source-code completions, given966

current context of the software-projects under examination.967

Dataset preparation: The majority of the studies mined a large number of repositories to968

struct their own datasets. Specifically, Gopalakrishnan et al. [158] examined 116,000 open-sou969

systems to identify correlations between the latent topics in source code and the usage o970

chitectural developer tactics (such as authentication and load-balancing). Han et al. [185],971

et al. [186] trained and tested their system by sampling 4,919 source code lines from open-sou972

projects. Raychev et al. [401] used large codebases from GitHub to make predictions for JavaSc973
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and Python code completion. Svyatkovskiy et al. [473] used 2,700 Python open-source softw974

GitHub repositories for the evaluation of their novel approach, Pythia.975

The rest of the approaches employed existing benchmarks and datasets. Rahman et al. [3976

trained their proposedmodel using the data extracted fromAizuOnline Judge (aoj) system. Liu977

[289], Liu et al. [288] performed experiments on three real-world datasets to evaluate the effec978

ness of their model when compared with the state-of-the-art approaches. Li et al. [264] condu979

experiments on two datasets to demonstrate the effectiveness of their approach consisting o980

attention mechanism and a pointer mixture network on code completion tasks. Schuster e981

[426] used a public archive of GitHub from 2020 [1].982

Feature extraction: Studies in this category extract source code information in variety of fo983

Gopalakrishnan et al. [158] extracted relationships between topical concepts in the source c984

and the use of specific architectural developer tactics in that code. Liu et al. [289], Liu et al. [2985

introduced a self-attentional neural architecture for code completion with multi-task learning986

achieve this, they extracted the hierarchical source code structural information from the progr987

considered. Also, they captured the long-term dependency in the input programs, and der988

knowledge sharing between related tasks. Li et al. [264] used locally repeated terms in prog989

source code to predict out-of-vocabulary (OoV) words that restrict the code completion. Chen990

Wan [92] proposed a tree-to-sequence (Tree2Seq) model that captures the structure informa991

of source code to generate comments for source code. Raychev et al. [401] used asts and992

formed prediction of a program element on a dynamically computed context. Svyatkovskiy e993

[473] introduced a novel approach for code completion called Pythia, which exploits state-of994

art large-scale dl models trained on code contexts extracted from asts.995

ML model training: The studies can be classified based on the used ml technique for code c996

pletion.997

Recurrent Neural Networks: For code completion, researchers mainly try to predict the next to998

Therefore, most approaches use rnns. In particular, Terada and Watanobe [479] used lstm999

code completion to facilitate programming education. Rahman et al. [398] also used lstm. W1000

et al. [519] used an lstm-based neural network combined with several techniques such as W1001

Embedding models and Multi-head Attention Mechanism to complete programming code. Zh1002

et al. [575] applied several dl techniques, including lstm, Attention Mechanism (AM), and Sp1003

Point Network (spn) for JavaScript code suggestions.1004

Apart from lstm, researchers have used rnn with different approaches to perform code sug1005

tions. Li et al. [264] applied neural language models, which involve attention mechanism for1006

by learning from large codebases to facilitate effective code completion for dynamically-typed1007

gramming languages. Hussain et al. [202] presented CodeGRU that uses gru for capturing sou1008

codes contextual, syntactical, and structural dependencies. Yang et al. [545] presented rep to1009

prove language modeling for code completion. Their approach uses learning of general token1010

etition of source code with optimized memory, and it outperforms lstm. Schumacher et al. [41011

combined neural and classical ml including rnns, to improve code recommendations.1012

Probabilistic Models: Earlier approaches for code completion used statistical learning for rec1013

mending code elements. In particular, Gopalakrishnan et al. [158] developed a recommender1014

tem using prediction models including neural networks for latent topics. Han et al. [185], Han e1015

[186] applied Hidden Markov Models to improve the efficiency of code-writing by supporting c1016

completion of multiple keywords based on non-predefined abbreviated input. Proksch et al. [31017

used Bayesian Networks for intelligent code completion. Raychev et al. [401] utilized a probabil1018

model for code in any programming languagewithDecision Tree. Svyatkovskiy et al. [473] propo1019

Pythia that employs a Markov Chain language model. Their approach can generate ranked list1020

methods and api recommendations, which can be used by developers while writing programs1021

Other techniques: Recently, new approaches have been developed for code completion based1022
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multi-task learning, code representations, and nmt. For instance, Liu et al. [289], Liu et al. [2881023

plied Multi-Task Learning (mtl) for suggesting code elements. Lee et al. [256] developed Merge1024

ging, a dlbased merged network that uses code representations for automated logging decisi1025

Chen and Wan [92] applied Tree2Seq model with nmt techniques for code comment generatio1026

3.6 Program Comprehension1027

Program comprehension techniques attempt to understand the theory of comprehension pro1028

of developers as well as the tools, techniques, and processes that influence the comprehen1029

activity [463]. We summarized, in the rest of the section, program comprehension studies1030

four sub-categories i.e., code summarization, program classification, change analysis, and en1031

identification/recommendation.1032

3.6.1 Code summarization1033

Code summarization techniques attempt to provide a consolidated summary of the source c1034

entity (typically a method). A variety of attempts has been made in this direction. The majorit1035

the studies [94, 252, 285, 9, 443, 548, 198, 260, 516, 253, 549, 523, 565, 204, 268, 580, 188, 51036

produces a summary for a small block (such as a method). This category also includes studies1037

summarize small code fragments [347], code folding within ides [510], commit message gen1038

tion [212, 295, 214, 213, 96, 526], and title generation for online posts from code [151].1039

Dataset preparation: The majority of the studies [26, 94, 252, 285, 9, 198, 95, 260, 516, 511,1040

96, 581] in this category prepares pairs of code snippets and their corresponding natural langu1041

description. Specifically, Chen and Zhou [94] used more than 66 thousand pairs of C# code1042

natural language description where source code is tokenized using amodified version of the a1043

parser. Ahmad et al. [9] conducted their experiments on a dataset containing Java and Pyt1044

snippets; sequences of both the code and summary tokens are represented by a sequenc1045

vectors. Hu et al. [198] and Li et al. [260] prepared a large dataset from 9,714 GitHub proj1046

Similarly, Wang et al. [516] mined code snippets and corresponding javadoc comments for t1047

experiment. Chen et al. [95] created their dataset from 12 popular open-source Java libraries1048

more than 10 thousand stars. They considered method bodies as their inputs and method na1049

along with method comments as prediction targets. Psarras et al. [392] prepared their datase1050

using Weka, SystemML, DL4J, Mahout, Neuroph, and Spark as their subject systems. The auth1051

retained names and types of methods, and local and class variables. Choi et al. [104] colle1052

and refined more than 114 thousand pairs of methods and corresponding code annotations f1053

100 open-source Java projects. Iyer et al. [204] mined StackOverflow and extracted title and c1054

snippet from posts that contain exactly one code snippet. Similarly, Gao et al. [151] used a du1055

of StackOverflow dataset. They tokenized code snippets with respect to each programming1056

guage for pre-processing. The common steps in preprocessing identifiers include making th1057

lower case, splitting the camel-cased and underline identifiers into sub-tokens, and normali1058

the code with special tokens such as "VAR" and "NUMBER". Nazar et al. [347] used human a1059

tators to summarize 127 code fragments retrieved from Eclipse and NetBeans official freque1060

asked questions. Yang et al. [546] built a dataset with over 300K pairs of method and comm1061

to evaluate their approach. Chen et al. [96] used dataset provided by Hu et al. [198] and m1062

ually categorized comments into six intention categories for 20,000 code-comment pairs. W1063

et al. [526] created a Python dataset that contains 128 thousand code-comment pairs. Zhou e1064

[579] crawled over 6700 Java projects from Github to extract their methods and the correspond1065

Javadoc comments to create their dataset.1066

Jiang [213] used 18 popular Java projects from GitHub to prepare a dataset with approxima1067

50 thousand commits to generate commit messages automatically. Liu et al. [292] processed1068

popular open-source projects and selected approximately 160K commits after filtering out th1069

relevant commits. Liu et al. [296] used RepoRepears to identify Java repositories to process. T1070
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collected pull-request meta data by using GitHub APIs. After preprocessing the collected infor1071

tion, they trained a model to generate pull request description automatically. Wang et al. [51072

prepared a dataset of 107K commits by mining 10K open-source repositories to generate con1073

aware commit messages.1074

Apart fromsource code, someof the studies used additional information generated fromso1075

code. For example, LeClair et al. [252] used ast alongwith code and their corresponding summa1076

belonging to more than 2 million Java methods. Likewise, Shido et al. [443] and Zhang et al. [51077

also generated asts of the collected code samples. Liu et al. [285] utilized call dependencies a1078

with source code and corresponding comments from more than a thousand GitHub reposito1079

LeClair et al. [253] employed ast along with adjacency matrix of ast edges.1080

Some of the studies used existing datasets such as StaQC [547] and the dataset created by J1081

et al. [212]. Specifically, Liu et al. [295], Jiang and McMillan [214] utilized a dataset of com1082

provided by Jiang et al. [212] that contains two million commits from one thousand popular1083

projects. Yao et al. [548] and Ye et al. [549] used StaQC dataset [547]; it contains more than1084

thousand pairs of question title and code snippet related to sql mined from StackOverflow.1085

et al. [536] utilized two existing datasets—one each for Java [251] and Python [53]. Bansal et al.1086

evaluated their code summarization technique using a Java dataset of 2.1M Javamethods from1087

projects created by LeClair and McMillan [251]. Li et al. [268] also used the Java dataset of 21088

methods LeClair and McMillan [251] to predict the inconsistent names from the implementa1089

of the methods. Simiarly, Haque et al. [188], LeClair et al. [254], Haque et al. [189] relied on1090

Java dataset by LeClair and McMillan [251] for summarizing methods. Zhou et al. [580] combi1091

multiple datasets for their experiment. The first dataset [198] contains over 87 thousand1092

methods. The other datasets contained 2.1M Java methods [251] and 500 thousand Java meth1093

respectively.1094

Efforts in the direction of automatic code folding also utilize techniques similar to code sum1095

rization. Viuginov and Filchenkov [510] collected projects developed using IntelliJ platform. T1096

identified the foldable and FoldingDescription elements from workspace.xml belonging to1097

JavaScript and 304 Python repositories.1098

Feature extraction: Studies investigated different techniques for code and feature represe1099

tions. In the simplest form, Jiang et al. [212] tokenized their code and text. Jiang and McM1100

[214] extracted commit messages starting from ``verb + object'' and computed TFIDF for e1101

word. Haque et al. [189] extracted top-40 most-common action words from the dataset of 21102

Java methods provided by LeClair and McMillan [251]. Psarras et al. [392] used comments as1103

as source code elements such as method name, variables, and method definition to prepare1104

of-words representation for each class. Liu et al. [285] represented the extracted call depende1105

features as a sequence of tokens.1106

Some of the studies extracted explicit features from code or ast. For example, Viuginov1107

Filchenkov [510] used 17 languages as independent and 8 languages as dependent features. Th1108

features include ast features such as depth of code blocks' root node, number of ast nodes,1109

number of lines in the block. Hu et al. [198] and Li et al. [260] transformed ast into Structure-Ba1110

Traversal (sbt). Yang et al. [546] developed a dl approach, MMTrans, for code summarization1111

learns the representation of source code from the two heterogeneous modalities of the ast1112

sbt sequences and graphs. Zhou et al. [580] extracted ast and prepared tokenized code sequen1113

and tokenized ast to feed to semantic and structural encoders respectively. Zhou et al. [581, 51114

tokenized source code and parse them into ast. Lin et al. [277] proposed block-wise ast split1115

method; they split the code of a method based on the blocks in the dominator tree of the Con1116

Flow Graph, and generated a split ast for each block. Liu et al. [292] worked with ast diff betw1117

commits as input to generate a commit summary. Lu et al. [301] used Eclipse JDT to parse c1118

snippets at method-level into ast and extracted API sequences and corresponding comment1119

generate comments for API-based snippets. Huang et al. [201] proposed a statement-based1120
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traversal algorithm to generate the code token sequence preserving the semantic, syntactic1121

structural information in the code snippet.1122

Themost commonway of representing features in this category is to encode the features in1123

form of embeddings or feature vectors. Specifically, LeClair et al. [252] used embeddings laye1124

code, text, as well as for ast. Similarly, Choi et al. [104] transformed each of the tokenized sou1125

code into a vector of fixed length through an embedding layer. Wang et al. [516] extracted1126

functional keyword from the code and perform positional encoding. Yao et al. [548] used a c1127

retrieval pre-trained model with natural language query and code snippet and annotated e1128

code snippet with the help of a trained model. Ye et al. [549] utilized two separate embedd1129

layers to convert input sequences, belonging to both text and code, into high-dimensional vec1130

Furthermore, some authors encode source code models using various techniques. For insta1131

Chen et al. [95] represented every input code snippet as a series of ast paths where each pa1132

seen as a sequence of embedding vectors associated with all the path nodes. LeClair et al. [21133

used a single embedding layer for both the source code and ast node inputs to exploit a large o1134

lap in vocabulary. Wang et al. [523] prepared a large-scale corpus of training data where each c1135

sample is represented by three sequences—code (in text form), ast, and cfg. These sequences1136

encoded into vector forms using work2vec. Studies also explored other mechanisms to enc1137

features. For example, Liu et al. [295] extracted commit diffs and represented them as ba1138

words. The corresponding model ignores grammar and word order, but keeps term frequen1139

The vector obtained from the model is referred to as diff vector. Zhang et al. [565] parsed c1140

snippets into asts and calculated their similarity using asts. Allamanis et al. [26] and Ahmad e1141

[9] employed attention-based mechanism to encode tokens. Li et al. [268] used GloVe, a word1142

bedding technique, to obtain the vector representation of the context; the study included met1143

callers and callee as well as other methods in the enclosing class as the context for a method.1144

ilarly, Li et al. [262] calculated edit vectors based on the lexical and semantic differences betw1145

input code and the similar code.1146

MLmodel training: The ml techniques used by the studies in this category can be divided into1147

following four categories.1148

Encoder-decoder models: Themajority of the studies used attention-based Encoder-Decodermo1149

to generate code summaries for code snippets. We further classify the studies in three catego1150

based on their ml implementation.1151

A large portion of the studies use sequence-to-sequence based approaches. For instance, Gao1152

[151] proposed an end-to-end sequence-to-sequence system enhanced with an attention me1153

nism to perform better content selection. A code snippet is transformed by a source-code enco1154

into a vector representation; the decoder reads the code embeddings to generate the target q1155

tion titles. Jiang et al. [212] trained an ntm algorithm to ``translate'' from diffs to commitmessa1156

Iyer et al. [204] used an attention-based neural network to model the conditional distribution1157

natural language summary. Their approach uses an lstm model guided by attention on the sou1158

code snippet to generate a summary of one word at a time. Choi et al. [104] transformed in1159

source code into a context vector by detecting local structural features with cnns. Also, atten1160

mechanism is used with encoder cnns to identify interesting locations within the source code.1161

ilarly, Jiang [213], Haque et al. [188], Liu et al. [296], Lu et al. [301], Takahashi et al. [478] emplo1162

lstm-based Encoder-Decoder model to generate summaries. Their last module decoder gener1163

source code summary. Ahmad et al. [9] proposed to use Transformer to generate a natural1164

guage summary given a piece of source code. For both encoder and decoder, the Transfor1165

consists of stacked multi-head attention and parameterized linear transformation layers. LeC1166

et al. [252] used attention mechanism to not only attend words in the output summary to wo1167

in the code word representation but also to attend the summary words to parts of the ast.1168

concatenated context vector is used to predict the summary of one word at a time. Xie et al. [51169

designed a novel multi-task learning (mlt) approach for code summarization through mining1170

ma et al. 2023 | A Survey on Machine Learning Techniques Applied to Source Code | 31 o



Journal Pre-proof

sed

cur-

tion.

gru-

tion.

nal

es-

an

ulti-

[51]

t al.

s in

ode

re-

cos

s. It

the

eve-

ech-

ap-

ma-

ncy

der

ap-

ens

The

uen-

sed

nce.

ast.
t al.

heir

with

ers

ons.

e ra-

ber

two

rsar-

e its

ned

arn-

task

and,

the

Shar f 98
Jo
ur

na
l P

re
-p

ro
of

relationship between method-code summaries and method names. Li et al. [268] used rnn-ba1171

encoder-decodermodel to generate a code representation of amethod and checkwhether the1172

rent method name is inconsistent with the predicted name based on the semantic representa1173

Haque et al. [189] compared five seq2seq-like approaches (attendgru, ast-attendgru, ast-attend1174

fc, graph2seq, and code2seq) to explore the role of actionword identification in code summariza1175

Wang et al. [515] proposed a new approach, named CoRec, to translate git diffs, using attentio1176

Encoder-Decoder model, that include both code changes and non-code changes into commit m1177

sages. Zhou et al. [578] presented ContextCC that uses a Seq2Seq Neural Network model with1178

attention mechanism to generate comments for Java methods.1179

Other studies relied on tree-based approaches. For example, Yang et al. [546] developed am1180

modal transformer-based code summarization approach for smart contracts. Bansal et al.1181

introduced a project-level encoder dl model for code summarization. Chen et al. [95], Hu e1182

[198] employed lstm-based Encoder-Decoder model to generate summaries.1183

Rest of the studies employed retrieval-based techniques. Zhang et al. [565] proposed Renco1184

which they first trained an attentional Encoder-Decoder model to obtain an encoder for all c1185

samples and a decoder for generating natural language summaries. Second, the approach1186

trieves the most similar code snippets from the training set for each input code snippet. Ren1187

uses the trained model to encode the input and retrieves two code snippets as context vector1188

then decodes them simultaneously to adjust the conditional probability of the next word using1189

similarity values from the retrieved two code snippets. Li et al. [262] implemented their retri1190

and-edit approach by using lstm-based models.1191

Extended encoder-decoder models: Many studies extended the traditional Encoder-Decoder m1192

anism in a variety of ways. Among them, sequence-to-sequence based approaches include an1193

proach proposed by Liu et al. [285]; they introduced CallNN that utilizes call dependency infor1194

tion. They employed two encoders, one for the source code and another for the call depende1195

sequence. The generated output from the two encoders are integrated and used in a deco1196

for the target natural language summarization. Wang et al. [516] implemented a three step1197

proach. In the first step, functional reinforcer extracts the most critical function-indicated tok1198

from source code which are fed into the secondmodule code encoder along with source code.1199

output of the code encoder is given to a decoder that generates the target sequence by seq1200

tially predicting the probability of words one by one. LeClair et al. [253] proposed to use gnn-ba1201

encoder to encode ast of eachmethod and rnn-based encoder tomodel themethod as a seque1202

They used an attention mechanism to learn important tokens in the code and corresponding1203

Finally, the decoder generates a sequence of tokens based on the encoder output. Zhou e1204

[580] used two encoders, semantic and structural, to generate summaries for Java methods. T1205

method combined text features with structure information of code snippets to train encoders1206

multiple graph attention layers.1207

Li et al. [260] presented a tree-based approachHybrid-DeepConmodel containing two encod1208

for code and ast along with a decoder to generate sequences of natural language annotati1209

Shido et al. [443] extended Tree-lstm and proposed Multi-way Tree-lstm as their encoder. Th1210

tional behind the extension is that the proposed approach not only can handle an arbitrary num1211

of ordered children, but also factor-in interactions among children. Zhou et al. [581] trained1212

separate Encoder-Decoder models, one for source code sequence and another for ast via adve1213

ial training, where eachmodel is guided by a well-designed discriminator that learns to evaluat1214

outputs. Lin et al. [277] used a transformer to generate high-quality code summaries. The lear1215

syntax encoding is combined with code encoding, and fed into the transformer.1216

Rest of the approaches adopted retrieval-based approaches. Ye et al. [549] employed dual le1217

ingmechanismby usingBi-lstm. In one direction, themodel is trained for code summarization1218

that takes code sequence as input and summarized into a sequence of text. On the other h1219

the code generation task takes the text sequence and generate code sequence. They reused1220
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outcome of both tasks to improve performance of the other task. Liu et al. [292] proposed a1221

approach ATOM that uses the diff between commits as input. The approach used BiLSTMmod1222

to generate a new message by using diff-diff to retrieve the most relevant commit message.1223

Reinforcement learning models: Some of the studies exploited reinforcement learning techniq1224

for code summary generation. In particular, Yao et al. [548] proposed code annotation for c1225

retrieval method that generates an natural language annotation for a code snippet so that1226

generated annotation can be used for code retrieval. They used Advanced Actor-Critic mode1227

annotation mechanism and lstm based model for code retrieval. Wan et al. [511] and Wang e1228

[523] used deep reinforcement learning model for training using annotated code samples.1229

trained model is an Actor network that generates comments for input code snippets. The C1230

module evaluates whether the generated word is a good fit or not. Wang et al. [526] used a hie1231

chical attention network for comment generation. The study incorporated multiple code featu1232

including type-augmented abstract syntax trees and program control flows, along with plain c1233

sequences. The extracted features are injected into an actor-critic network. Huang et al. [201]1234

posed a composite learning model, which combines the actor-critic algorithm of reinforcem1235

learning with the encoder-decoder algorithm, to generate block comments.1236

Other techniques: Jiang and McMillan [214] used Naive Bayes to classify the diff files into the v1237

groups. For automated code folding, Viuginov and Filchenkov [510] used Random Forest and1238

sion Tree to classify whether a code block needs to be folded. Similarly, Nazar et al. [347] used1239

port Vector Machine and Naive Bayes classifiers to generate summaries from the extracted featu1240

Chen et al. [96] compared six ml techniques to demonstrate that comment category predic1241

can boost code summarization to reach better results. Etemadi and Monperrus [138] compa1242

NNGen, SimpleNNGen, and EXC-NNGen to explore the origin of nearest diffs selected by the ne1243

network.1244

3.6.2 Program classification1245

Studies targeting this category classify software artifacts based on programming language [51246

application domain [504], and type of commits (such as buggy and adaptive) [207, 334]. We s1247

marize these efforts below from dataset preparation, feature extraction, and ml model train1248

perspective.1249

Dataset preparation: Ma et al. [308] identified more than 91 thousand open-source reposito1250

from GitHub as subject systems. They created an oracle by manually classifying software artif1251

from 383 sample projects. Shimonaka et al. [445] conducted experiments on source code ge1252

ated by four kinds of code generators to evaluate their technique that identify auto-generated c1253

automatically by using ml techniques. Ji et al. [207] and Meqdadi et al. [334] analyzed the Git1254

commit history. Ugurel et al. [504] relied on C and C++ projects from Ibiblio and the Sourcefo1255

archives. Levin and Yehudai [258] used eleven popular open-source projects and annotated 11256

commits manually to train a model that can classify commits into maintenance activities. Simil1257

Mariano et al. [325] and Mariano et al. [324] classify commits by maintenance activities; they i1258

tify a large number of open-source GitHub repositories. Along the similar lines, Meng et al. [31259

classified commits messages into categories such as bug fix and feature addition and Li et al. [21260

predicted the impact of single commit on the program. They used popular a small set (specific1261

5 and 10 respectively) of Java projects as their dataset. Furthermore, Sabetta and Bezzi [411]1262

posed an approach to classify security-related commits. To achieve the goal, they used 660 s1263

commits from 152 open-source Java projects that are used in SAP software. Gharbi et al. [11264

created a dataset containing 29K commits from 12 open source projects. Abdalkareem et al1265

built a dataset to improve the detection CI skip commits i.e., commits where `[ci skip]' or `[1266

ci]' is used to skip continuous integration pipeline to execute on the pushed commit. To build1267

dataset, the authors used BigQuery GitHub dataset to identify repositories where at least 10%1268

commits skipped the CI pipeline. Altarawy et al. [35] used three labeled data sets including1269
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that was created with 103 applications implemented in 19 different languages to find similar a1270

cations.1271

Feature extraction: Features in this category of studies belong to either source code features1272

egory or repository features. A subset of studies [445, 308, 504] relies on features extracted f1273

source code token including language specific keywords and other syntactic information. O1274

studies [207, 334] collect repository metrics (such as number of changed statements, meth1275

hunks, and files) to classify commits. Ben-Nun et al. [57] leveraged both the underlying data-1276

control-flow of a program to learn code semantics performance prediction. Gharbi et al. [11277

used tf-idf to weight the tokens extracted from change messages. Ghadhab et al. [152] cura1278

a set of 768 BERT-generated features, a set of 70 code change-based features and a set o1279

keyword-based features for training a model to classify commits. Similarly, Mariano et al. [31280

and Mariano et al. [324] extracted a 71 features majorly belonging to source code changes1281

keyword occurrences categories. Meng et al. [333] and Li et al. [261] computed change me1282

(such as number lines added and removed) as well as natural language metrics extracted f1283

commit messages. Abdalkareem et al. [3] employed 23 commit-level repository metrics. Sab1284

and Bezzi [411] analyzed changes in source code associated with each commit and extracted1285

terms that the developer used to name entities in the source code (e.g., names of classes). S1286

larly, LASCAD Altarawy et al. [35] extracted terms from the source code and preprocessed te1287

by removing English stop words and programming language keywords.1288

ML model training: A variety of ml approaches have been applied. Specifically, Ma et al. [31289

used Support Vector Machine, Decision Tree, and Bayes Network for artifact classification. Meqd1290

et al. [334] employed Naive Bayes, Ripper, as well as Decision Tree and Ugurel et al. [504] used1291

port Vector Machine to classify specific commits. Ben-Nun et al. [57] proposed an approach ba1292

on an rnn architecture and fixed inst2vec embeddings for code analysis tasks. Levin and Yehu1293

[258], Mariano et al. [325, 324] used Decision Tree and Random Forest for commits classification1294

maintenance activities. Gharbi et al. [154] applied Logistic Regressionmodel to determine the c1295

mit classes for each new commitmessage. Ghadhab et al. [152] trained a dnn classifier to fine-t1296

the BERT model on the task of commit classification. Meng et al. [333] used a cnn-based mode1297

classify code commits. Sabetta and Bezzi [411] trained Random Forest, Naive Bayes, and Sup1298

Vector Machine to identify security-relevant commits. Altarawy et al. [35] developed LASCAD1299

ing Latent Dirichlet Allocation and hierarchical clustering to establish similarities among softw1300

projects.1301

3.6.3 Change analysis1302

Researchers have explored applications ofml techniques to identify or predict relevant code cha1303

489]. We briefly describe the efforts in this domain w.r.t. three major steps—dataset prepara1304

feature extraction, and ml model training.1305

Dataset preparation: Tollin et al. [484] performed their study on two industrial projects. Tuf1306

et al. [489] extracted 236K pairs of code snippets identified before and after the implementa1307

of the changes provided in the pull requests. Kumar et al. [241] used eBay web-services as t1308

subject systems. Uchôa et al. [503] used the data provided by the Code Review Open Platf1309

(CROP), an open-source dataset that links code review data to software changes, to predict imp1310

ful changes in code review. Malhotra and Khanna [319] considered three open-source project1311

investigate the relationship between code quality metrics and change proneness.1312

Feature extraction: Tollin et al. [484] extracted features related to the code quality from th1313

sues of two industrial projects. Tufano et al. [489] used features from pull requests to investi1314

the ability of a nmt modes. Abbas et al. [2] and Malhotra and Khanna [319] computed well-kn1315

C&K metrics to investigate the relationship between change proneness and object-oriented1316

rics. Similarly, Kumar et al. [241] computed 21 code quality metrics to predict change-prone w1317
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services. Uchôa et al. [503] combinesmetrics fromdifferent sources—21 features related to sou1318

code, modification history of the files, and the textual description of the change, 20 features1319

characterize the developer’s experience, and 27 code smells detected by DesigniteJava[432].1320

ML model training: Tollin et al. [484] employed Decision Tree, Random Forest, and Naive B1321

ml algorithms for their prediction task. Tufano et al. [489] used Encoder-Decoder architecture1322

typical nmt model to learn the changes introduced in pull requests. Malhotra and Khanna [31323

experimented with  �, Multilayer Perceptron, and Random Forest to observe relationship betw1324

code metrics and change proneness. Abbas et al. [2] compared ten ml models including Ran1325

Forest, Decision Tree, Multilayer Perceptron, and Bayes Network. Similarly, Kumar et al. [241] u1326

Support Vector Machine to the predict change proneness in web-services. Uchôa et al. [503] used1327

ml models such as Support Vector Machine, Decision Tree, and Random Forest to investigate whe1328

predicted impactful changes are helpful for code reviewers.1329

3.6.4 Entity identification/recommendation1330

This category represents studies that recommend source code entities (such as method and c1331

names) [24, 322, 539, 210, 192] or identify entities such as design patterns [150] in code u1332

ml [502, 17, 559, 133, 87]. Specifically, Linstead et al. [284] proposed a method to identify f1333

tional components in source code and to understand code evolution to analyze emergenc1334

functional topics with time. Huang et al. [200] found commenting position in code using ml t1335

niques. Uchiyama et al. [502] identified design patterns and Abuhamad et al. [5] recommen1336

code authorship. Similar approaches include recommendingmethod name [24, 210, 539], met1337

signature [322], class name [24], and type inference [192]. We summarize these efforts class1338

in three steps of applying ml techniques below.1339

Dataset preparation: Themajority of the studies employed GitHub projects for their experime1340

Specifically, Linstead et al. [284] used two large, open source Java projects, Eclipse and ArgoUM1341

their experiments to apply unsupervised statistical topicmodels. Similarly, Hellendoorn et al. [11342

downloaded 1,000 open-source TypeScript projects and extracted identifiers with correspond1343

type information. Abuhamad et al. [5] evaluated their approach over the entire Google Code1344

(gcj) dataset (from 2008 to 2016) and over real-world code samples (from 1987) extracted f1345

public repositories on GitHub. Allamanis et al. [24] mined 20 software projects from GitHu1346

predictmethod and class names. Jiang et al. [210] used theCode2Seqdataset containing 3.8mi1347

methods as their experimental data. Ali et al. [18] applied information retrieval technique1348

automatically create traceability links in three subject systems.1349

A subset of studies focused on identifying design patterns using ml techniques. Uchiyama e1350

[502] performed experimental evaluations with five programs to evaluate their approach on1351

dicting design patterns. Alhusain et al. [17] applied a set of design patterns detection tools1352

400 open source repositories; they selected all identified instances where at least two tool1353

port a design pattern instance. Zanoni et al. [559] manually identified 2,794 design pattern1354

stances from ten open-source repositories. Dwivedi et al. [133] analyzed JHotDraw and ident1355

59 instances of abstract factory and 160 instances of adapter pattern for their experiment. S1356

larly, Gopalakrishnan et al. [159] applied their approach to discover latent topics in source cod1357

116, 000 open-source projects. They recommended architectural tactics based on the discove1358

topics. Furthermore, Mahmoud and Bradshaw [312] chose ten open-source projects to valid1359

their topic modeling approach designed for source code.1360

Feature extraction: Several studies generated embeddings from their feature set. Specific1361

Huang et al. [200] used embeddings generated fromWord2vec capturing code semantics. Simil1362

Jiang et al. [210] employed Code2vec embeddings and Allamanis et al. [24] used embeddings1363

contain semantic information about sub-tokens of a method name to identify similar embedd1364

utilized in similar contexts. Zhang et al. [567] utilized knowledge graph embeddings to ext1365

interrelations of code for bug localization.1366
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Other studies used source code or code metadata as features. Abuhamad et al. [5] extra1367

code authorship attributes from samples of code. Malik et al. [322] used function names, for1368

parameters, and corresponding comments as features. Ali et al. [18] extracted source code1369

tity names, such as class, method, and variable names. Bavota et al. [56] retrieved 618 featu1370

from six open-source Java systems to apply Latent Dirichlet Allocation-based feature location t1371

nique. Similarly, De Lucia et al. [119] extracted class name, signature of methods, and attrib1372

names from Java source code. They applied Latent Dirichlet Allocation to label source code1373

facts. Gopalakrishnan et al. [159] processed tactics in the form of a set of textual descriptions1374

produced a set of weighted indicator terms. Mahmoud and Bradshaw [312] extracted code t1375

co-occurrence, pair-wise term similarity, and clusters of terms features and applied their appor1376

Semantic Topic Models (STM) on them.1377

In addition, Uchiyama et al. [502], Chaturvedi et al. [87], Dwivedi et al. [133], Alhusain et al.1378

used several source-code metrics as features to detect design patterns in software programs.1379

MLmodel training: Themajority of studies in this category use rnn-based dlmodels. In partic1380

Huang et al. [200] and Hellendoorn et al. [192] used bidirectional rnnmodels. Similarly, Abuham1381

et al. [5] and Malik et al. [322] also employed rnn models to identify code authorship and func1382

signatures respectively. Zhang et al. [567] created a bug-localization tool, KGBugLocator utili1383

knowledge graph embeddings and bi-directional attention models. Xu et al. [539] employed1384

gru-based Encoder-Decoder model for method name prediction. Uchiyama et al. [502] used a1385

archical neural network as their classifier. Allamanis et al. [24] utilized neural language models1386

predicting method and class names.1387

Other studies used traditional ml techniques. Specifically, Chaturvedi et al. [87] compared1388

ml techniques (Linear Regression, Polynomial Regression, support vector regression, and neural1389

work). Dwivedi et al. [133] used Decision Tree and Zanoni et al. [559] trained Naive Bayes, Deci1390

Tree, Random Forest, and Support Vector Machine to detect design patterns using ml. Ali et al.1391

employed Latent Dirichlet Allocation to distinguish domain-level terms from implementation-l1392

terms. Gopalakrishnan et al. [159] discovered latent topics using Latent Dirichlet Allocation in1393

large-scale corpus. The study used Decision Tree, Random Forest, and Linear Regression as classifi1394

to compute the likelihood that a given source file is associated with a given tactic.1395

3.7 Code review1396

Code Review is the process of systematically check the code written by a developer performe1397

one or more different developers. A very small set of studies explore the role of ml in the pro1398

of code review that we present in this section.1399

Dataset preparation: Lal and Pahwa [245] labeled check-in code samples as clean and buggy1400

code samples, they carried out extensive pre-processing such as normalization and label encod1401

Aiming to automate code review process, Tufano et al. [493] trained two dl architectures one1402

both contributor and for reviewer. They mined Gerrit and GitHub to prepare their dataset f1403

8, 904 projects. Furthermore, Thongtanunam et al. [482] proposed AutoTransform to better han1404

new tokens using Byte-Pair Encoding (BPE) approach. They leveraged the dataset proposed1405

Tufano et al. [493] consisting 630,858 changed methods to train a Transformer-based NMT mo1406

Feature extraction: Lal and Pahwa [245] used tf-idf to convert the code samples into vectors a1407

applying extensive pre-processing. Tufano et al. [493] used n-grams extracted from each com1408

to train their classifiers.1409

ML model training: Lal and Pahwa [245] used a Naive Bayesmodel to classify samples into bu1410

or clean. Tufano et al. [493] trained two dl architectures one for both contributor and for revie1411

The authors use n-grams extracted from each commit and implement their classifiers using1412

sion Tree,Naive Bayes, and Random Forest. In their revisedwork [494], the authors used Text-To-1413

Transfer Transformer (T5) model and shown significant improvements in dl code review mod1414
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3.8 Code search1415

Code search is an activity of searching a code snippet based on individual's need typically in Q1416

sites such as StackOverflow [413, 450, 512]. The studies in this category define the following coa1417

grained steps. In the first step, the techniques prepare a training set by collecting source code1418

often corresponding description or query. A feature extraction step then identifies and extr1419

relevant features from the input code and text. Next, these features are fed into ml models1420

training which is later used to execute test queries.1421

Dataset preparation: Shuai et al. [450] utilized commented code as input. Wan et al. [512] u1422

source code in the the form of tokens, ast, and cfg. Sachdev et al. [413] employed a simple1423

enizer to extract all tokens from source code by removing non–alphanumeric tokens. Ling e1424

[282] mined software projects from GitHub for the training of their approach. Jiang et al. [21425

used existing McGill corpus and Android corpus.1426

Feature extraction: Code search studies typically use embeddings representing the input c1427

Shuai et al. [450] performed embeddings on code, where source code elements (method na1428

api sequence, and tokens) are processed separately. They generated embeddings for code c1429

ments independently. Wan et al. [512] employed a multi-modal code representation, where1430

learnt the representation of eachmodality via lstm, Tree-lstm and ggnn, respectively. Sachdev1431

[413] identified words from source code and transformed the extracted tokens into a natural1432

guage documents. Similarly, Ling et al. [282] used an unsupervised word embedding techni1433

to construct a matching matrix to represent lexical similarities in software projects and used1434

rnn model to capture latent syntactic patterns for adaptive code search. Jiang et al. [208] use1435

fragment parser to parse a tutorial fragment in four steps (API discovery, pronoun and vari1436

resolution, sentence identification, and sentence type identification).1437

ML model training: Shuai et al. [450] used a cnn-based ml model named carlcs-cnn. The1438

responding model learns interdependent representations for embedded code and query b1439

co-attention mechanism. Based on the embedded code and query, the co-attention mechan1440

learns a correlation matrix and leverages row/column-wise max-pooling on the matrix. Wan e1441

[512] employed a multi-modal attention fusion. The model learns representations of diffe1442

modality and assigns weights using an attention layer. Next, the attention vectors are fused1443

a single vector. Sachdev et al. [413] utilized word and documentation embeddings and perform1444

code search using the learned embeddings. Similarly, Ling et al. [282] used an autoencoder netw1445

and a metric (believability) to measure the degree to which a sentence is approved or disappro1446

within a discussion in a issue-tracking system. Jiang et al. [208] used Latent Dirichlet Allocatio1447

segregate all tutorial fragments into relevant clusters and identify relevant tutorial for an API.1448

Once an ml model is trained, code search can be initiated using a query and a code snip1449

Shuai et al. [450] used the given query and code sample to measure the semantic similarity u1450

cosine similarity. Wan et al. [512] ranked all the code snippets by their similarities with the in1451

query. Similarly, Sachdev et al. [413] were able to answer almost 43% of the collected StackO1452

flow questions directly from code.1453

3.9 Refactoring1454

Refactoring transformations are intended to improve code quality (specifically maintainabi1455

while preserving the program behavior (functional requirements) from users' perspective [41456

This section summarizes the studies that identify refactoring candidates or predict refactoring c1457

mits by analyzing source code and by applying ml techniques on code. A process pipeline typi1458

adopted by the studies in this category can be viewed as a three step process. In the first step1459

source code of the projects is used to prepare a dataset for training. Then, individual samples1460

either a method, class, or a file) is processed to extract relevant features. The extracted featu1461

are then fed to an ml model for training. Once trained, the model is used to predict whethe1462
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input sample is a candidate for refactoring or not.1463

Dataset preparation: The first set of studies created their own dataset for model training. Fo1464

stance, Rodriguez et al. [407] and Amal et al. [37] created datasets where each sample is revie1465

by a human to identify an applicable refactoring operation; the identified operation is carried1466

by automated means. Kosker et al. [234] employed four versions of the same repository, c1467

puted their complexity metrics, and classified their classes as refactored if their complexity me1468

values are reduced from the previous version. Nyamawe et al. [354] analyzed 43 open-sou1469

repositories with 13.5 thousand commits to prepare their dataset. Similarly, Aniche et al. [40]1470

ated a dataset comprising over twomillion refactorings frommore than 11 thousand open-sou1471

repositories. Sagar et al. [414] identified 5004 commits randomly selected from all the com1472

obtained from 800 open-source repositories where RefactoringMiner [486] identified at least1473

refactoring. Along the similar lines, Li et al. [268] used RefactoringMiner and RefDiff tools to i1474

tify refactoring operations in the selected commits. Xu et al. [538], Krasniqi and Cleland-Hu1475

[236] used manual analysis and tagging for identifying refactoring operations. Bavota et al.1476

obtained 2, 329 classes from nine subject systems and applied topic modeling to identify latent1477

ics and move them to an appropriate package. Similarly, Bavota et al. [56] identified all cla1478

from six software systems and applied their proposed technique namely Methodbook to iden1479

move method refactoring candidates using relational topic models. Finally, Kurbatova et al. [21480

generated synthetic data by moving methods to other classes to prepare a dataset for fea1481

envy smell. The rest of the studies in this category [239, 242, 43], used the tera-promise dat1482

containing various metrics for open-source projects where the classes that need refactoring1483

tagged.1484

Feature extraction: A variety of features, belonging to product as well as process metrics,1485

been employed by the studies in this category. Some of the studies rely on code quality1486

rics. Specifically, Kosker et al. [234] computed cyclomatic complexity along with 25 other c1487

quality metrics. Similarly, Kumar et al. [242] computed 25 different code quality metrics using1488

SourceMeter tool; these metrics include cyclomatic complexity, class class and clone comple1489

loc, outgoing method invocations, and so on. Some of the studies [239, 43, 451, 524] calcula1490

a large number of metrics. Specifically, Kumar and Sureka [239] computed 102 metrics and t1491

applied pca to reduce the number of features to 31, while Aribandi et al. [43] used 125 met1492

Sidhu et al. [451] used metrics capturing design characteristics of a model including inherita1493

coupling and modularity, and size. Wang and Godfrey [524] computed a wide range of me1494

related to clones such as number of clone fragements in a class, clone type (type1, type2, or typ1495

and lines of code in the cloned method.1496

Some other studies did not limit themselves to only code quality metrics. Particularly,1497

et al. [558] collected 34 features belonging to code, evolution history, diff between commits,1498

co-change. Similarly, Aniche et al. [40] extracted code quality metrics, process metrics, and c1499

ownership metrics.1500

In addition, Nyamawe et al. [354], Nyamawe et al. [355] carried out standard nlp preproces1501

and generated tf-idf embeddings for each sample. Along the similar lines, Kurbatova et al. [21502

used code2vec to generate embeddings for each method. Sagar et al. [414] extracted keywo1503

from commit messages and used GloVe to obtain the corresponding embedding. Krasniqi1504

Cleland-Huang [236] tagged each commit message with their parts-of-speech and prepared a1505

guage model dependency tree to detect refactoring operations from commit messages. Ba1506

et al. [55] and Bavota et al. [56] extracted identifiers, comments, and string literals from sou1507

code. Bavota et al. [55] prepared structural coupling matrix and package decomposition matr1508

identifymove class candidates. Bavota et al. [56] applied relational topicmodels to derive sema1509

relationships between methods and define a probability distribution of topics (topic distribu1510

model) among methods to refactor feature envy code smell.1511
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MLmodel training: Majority of the studies in this category utilized traditional ml techniques1512

driguez et al. [407] proposed amethod to identifyweb-service groups for refactoring using K-me1513

cobweb, and expectation maximization. Kosker et al. [234] trained a Naive Bayes-based classifie1514

identify classes that need refactoring. Kumar and Sureka [239] used Least Square-Support Ve1515

Machine (ls-svm) along with smote as classifier. They found that ls-svm with Radial Basis Func1516

(rbf) kernel gives the best results. Nyamawe et al. [354] recommended refactorings based on1517

history of requested features and applied refactorings. Their approach involves two classifica1518

tasks; first, a binary classification that suggests whether refactoring is needed or not and sec1519

a multi-label classification that suggests the type of refactoring. The authors used Linear Re1520

sion,Multinomial Naive Bayes (mnb), Support Vector Machine, and Random Forest classifiers. Yue e1521

[558] presented crec—a learning-based approach that automatically extracts refactored and1522

refactored clones groups from software repositories, and trains an AdaBoostmodel to recomm1523

clones for refactoring. Kumar et al. [242] employed a set of ml models such as Linear Regres1524

Naive Bayes, Bayes Network, Random Forest, AdaBoost, and Logit Boost to develop a recomme1525

tion system to suggest the need of refactoring for a method. Amal et al. [37] proposed the us1526

ann to generate a sequence of refactoring. Aribandi et al. [43] predicted the classes that are li1527

to be refactored in the future iterations. To achieve their aim, the authors used various vari1528

of ann, Support Vector Machine, as well as Best-in-training based Ensemble (bte) and Majority Vo1529

Ensemble (mve) as ensemble techniques. Kurbatova et al. [244] proposed an approach to rec1530

mend move method refactoring based on a path-based presentation of code using Support Ve1531

Machine. Similarly, Aniche et al. [40] used Linear Regression, Naive Bayes, Support Vector Machine1532

cision Tree, Random Forest, and Neural Network to predict applicable refactoring operations. Si1533

et al. [451], Xu et al. [538], Wang and Godfrey [524] used dnn, gradient boosting, and Decision1534

respectively to identify refactoring candidate. Sagar et al. [414], Nyamawe et al. [355] emplo1535

various classifiers such as Support Vector Machine, Linear Regression, and Random Forest to pre1536

commits with refactoring operations.1537

Bavota et al. [55] and Bavota et al. [56] applied Latent Dirichlet Allocation to identify move c1538

and move method refactoring candidates respectively. They model the documents in a given1539

pus as a probabilistic mixture of latent topics and model the links between document pairs1540

binary variable.1541

3.10 Vulnerability analysis1542

The studies in this domain analyze source code to identify potential security vulnerabilities. In1543

section, we point out the state-of-the-art in software vulnerability detection using ml techniq1544

First, the studies prepare a dataset or identify an existing dataset for ml training. Next, the stu1545

extract relevant features from the identified subject systems. Then, the features are fed into1546

model for training. The trained model is then used to predict vulnerabilities in the source cod1547

Dataset preparation: Authors used existing labeled datasets as well as created their own data1548

to train ml models. Specifically, a set of studies [378, 337, 397, 412, 231, 61, 461, 280, 555, 467,1549

370, 6, 556, 509, 228, 232, 570, 327, 130, 448, 131, 541, 54, 346, 527, 100, 269, 403, 48] used a1550

able labeled datasets for php, Java, C, C++, and Android applications to train vulnerability detec1551

models. In other cases, Russell et al. [409] extended an existing dataset with millions of C and1552

functions and then labeled it based on the output of three static analyzers (i.e., Clang, CppCh1553

and Flawfinder).1554

Many studies [309, 19, 112, 349, 135, 331, 146, 383, 238, 369, 36, 172, 107, 102, 338, 196,1555

543, 573, 379, 430, 216, 280, 278] created their own datasets. Ma et al. [309], Ali Alatwi et al. [19]1556

et al. [112], and Gupta et al. [172] created datasets to train vulnerability detectors for Android a1557

cations. In particular, Ma et al. [309] decompiled and generated cfgs of approximately 10 thous1558

both benign and vulnerable, Android applications from AndroZoo and Android Malware datas1559

Ali Alatwi et al. [19] collected 5,063 Android applications where 1,000 of them were marked as1560
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nign and the remaining as malware; Cui et al. [112] selected an open-source dataset comprise1561

1,179 Android applications that have 4,416 different version (of the 1,179 applications) and lab1562

the selected dataset by using the Androrisk tool; and Gupta et al. [172] used two Android app1563

tions (Android-universal-image-loader and JHotDraw) which they have manually labeled based1564

the projects pmd reports (true if a vulnerability was reported in a pmd file and false otherwise)1565

create datasets of php projects, Medeiros et al. [331] collected 35 open-source php projects an1566

tentionally injected 76 vulnerabilities in their dataset. Shar et al. [430] used phpminer to extrac1567

datasets that include sql injections, cross-site scripting, remote code execution, and file inclu1568

vulnerabilities, and labeled only 20% of their dataset to point out the precision of their appro1569

Ndichu et al. [349] collected 5,024 JavaScript code snippets from d3m, jsunpack, and 100 top w1570

sites where the half of the code snippets were benign and the other half malicious. In other ca1571

authors [543, 397, 379] collected large number of commit messages and mapped them to kn1572

vulnerabilities by using Google's Play Store, National Vulnerability Database (nvd), Synx, Node S1573

rity Project, and so on, while in limited cases authors [383] manually label their dataset. Hou e1574

[196], Moskovitch et al. [338] and Santos et al. [422] created their datasets by collecting web-p1575

samples from StopBadWare and VxHeavens. Lin et al. [280] constructed a dataset and manu1576

labeled 1,471 vulnerable functions and 1,320 vulnerable files from nine open-source applicati1577

named Asterisk, FFmpag, httpd, LibPNG, LibTIFF, OpenSSL, Pidgin, vlc Player, and Xen. Lin e1578

[278] have used more then 30,000 non-vulnerable functions and manually labeled 475 vulner1579

functions for their experiments.1580

Feature extraction: Authors used static source code metrics, cfgs, asts, source code tokens,1581

word embeddings as features.1582

Source code metrics: A set of studies [331, 146, 36, 172, 107, 397, 112, 383, 403, 130, 232, 332, 6,1583

467] used more than 20 static source code metrics (such as cyclomatic complexity,maximum d1584

of class in inheritance tree, number of statements, and number of blank lines).1585

Data/control flow and ast: Ma et al. [307], Kim et al. [231], Bilgin et al. [61], Kronjee et al. [21586

Wang et al. [527], Du et al. [131], Medeiros et al. [332] used cfgs, asts, or data flow analysi1587

features. More specifically, Ma et al. [309] extracted the api calls from the cfgs of their dataset1588

collected information such as the usage of apis (which apis the application uses), the api frequen1589

(how many times the application uses apis) and api sequence (the order the application uses a1590

Kim et al. [231] extracted asts and gfcs which they tokenized and fed into ml models, while B1591

et al. [61] extracted asts and translated their representation of source code into a one-dimensio1592

numerical array to fed them to a model. Kronjee et al. [238] used data-flow analysis to ext1593

features, while Spreitzenbarth et al. [461] used static, dynamic analysis, and information colle1594

from ltrace to collect features and train a linear vulnerability detection model. Lin et al. [21595

created asts and from there they extracted code semantics as features.1596

Repository and file metrics: Perl et al. [379] collected GitHub repository meta-data (i.e., programm1597

language, star count, fork count, and number of commits) in addition to source code metrics. O1598

authors [378, 135] used file meta-data such as files' creation and modification time, machine type1599

size, and linker version.1600

Code and Text tokens: Chernis and Verma [102] used simple token features (character count, c1601

acter diversity, entropy, maximum nesting depth, arrow count, ``if'' count, ``if'' complexity, ``w1602

count, and ``for'' count) and complex features (character n-grams, word n-grams, and suffix tr1603

Hou et al. [196] collected 10 features such as length of the document, average length of word, w1604

count, word count in a line, and number of NULL characters. The remaining studies [409, 369,1605

422, 543, 412, 573, 430, 100, 346, 409, 327, 143, 570, 370, 48, 555, 280] tokenized parts of the sou1606

code or text-based information with various techniques such as the most frequent occurrence1607

operational codes, capture the meaning of critical tokens, or applied techniques to reduce the1608

cabulary size in order to retrieve the most important tokens. In some other cases, authors [21609
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used statistical techniques to reduce the feature space to reduce the number of code tokens.1610

Other features: Ali Alatwi et al. [19], Ndichu et al. [349] andMilosevic et al. [337] extractedpermis1611

related features. In other cases, authors [541] combined softwaremetrics andN-grams as featu1612

to train models and others [448] created text-based images to extract features. Likewise, Sult1613

[466] extracted traceable patterns such as CompoundBox, Immutable, Implementor, Overr1614

Sink, Stateless, FunctionObject, and LimitSel and used Understand tool to extract various softw1615

metrics. Wei et al. [531] extracted system calls and function call-related information to us1616

features, while Vishnu and Jevitha [509] extracted url-based features like number of chars, d1617

cated characters, special characters, script tags, cookies, and re-directions. Padmanabhuni1618

Tan [362] extracted buffer usage patterns and defensive mechanisms statements construct1619

analyzing files.1620

Model training: To train models, the selected studies used a variety of traditional ml and dl a1621

rithms.1622

Traditional ML techniques: One set of studies [19, 349, 378, 409, 369, 338, 379, 430, 555, 467,1623

247, 6, 556, 466, 509, 531, 130, 143, 332, 131, 346, 527, 100, 403] used traditional ml algorit1624

such as Naive Bayes, Decision Tree, Support Vector Machine, Linear Regression, Decision Tree, and1625

dom Forest to train their models. Specifically, Ali Alatwi et al. [19], Russell et al. [409], Perl et al. [31626

selected Support Vector Machine because it is not affected by over-fitting when having very hig1627

mensional variable spaces. Along the similar lines, Ndichu et al. [349] used Support Vector Mac1628

to train their model with linear kernel. Pereira et al. [378] used Decision Tree, Linear Regres1629

and Lasso to train their models, while [6] found that Random Forest is the best model for predic1630

cross-project vulnerabilities. Compared to the above studies, Shar et al. [430] used both superv1631

(i.e., Linear Regression and Random Forest) and semi-supervised (i.e., Co-trained Random Fores1632

gorithms to train their models since most of that datasets were not labeled. Yosifova et al. [51633

used text-based features to train Naive Bayes, Support Vector Machine, and Random Forest mo1634

Du et al. [130] created the leopard framework that does not require prior knowledge about kn1635

vulnerabilities and used Random Forest, Naive Bayes, Support Vector Machine, and Decision Tre1636

point them out.1637

Other studies [331, 146, 383, 238, 36, 172, 107, 337, 102, 196, 422, 397, 112] used up to1638

different ml algorithms to train models and compared their performance. Specifically, Mede1639

et al. [331] experimented with multiple variants of Decision Tree, Random Forest, Naive Baye1640

Nearest Neighbors, Linear Regression, Multilayer Perceptron, and Support Vector Machinemodels1641

identified Support Vector Machine as the best performing classifier for their experiment. Likew1642

Milosevic et al. [337] and Rahman et al. [397] employed multiple ml algorithms, respectively,1643

found that Support Vector Machine offers the highest accuracy rate for training vulnerability de1644

tors. In contrast to the above studies, Ferenc et al. [146] showed that K Nearest Neighbors off1645

the best performance for their dataset after experimenting with dnn, K Nearest Neighbors, Sup1646

Vector Machine, Linear Regression, Decision Tree, Random Forest, and Naive Bayes. In order to1647

out which is the best model for the swan tool, Piskachev et al. [383] evaluated the Support Ve1648

Machine, Naive Bayes, Bayes Network, Decision Tree, Stump, and Ripper. Their results pointed out1649

Support Vector Machine as the best performing model to detect vulnerabilities. Similarly, Kro1650

et al. [238], Cui et al. [112], and Gupta et al. [172] compared different ml algorithms and fo1651

Decision Tree and Random Forest as the best performing algorithms.1652

DL techniques: A large number of studies [543, 412, 231, 280, 48, 232, 327, 278, 448, 54] use1653

methods such as cnn, rnn, and ann to train models. In more details, Yang et al. [543] utilized th1654

ann algorithm to train vulnerability detectors. For the project Achilles, Saccente et al. [412] use1655

array of lstmmodels to train on data containing Java code snippets for a specific set of vulnerab1656

types. In another study, Kim et al. [231] suggested a dl framework that makes use of rnn mo1657

to train vulnerability detectors. Specifically, the authors framework first feeds the code em1658
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dings into a bi-lstm model to capture the feature semantics, then an attention layer is used to1659

the vector weights, and, finally, passed into a dense layer to output if a code is safe or vulnera1660

Compared to the studies that examined traditional ml or dl algorithms, Zheng et al. [573] ex1661

ined both of them. They used Random Forest, K Nearest Neighbors, Support Vector Machine, Li1662

Regression among the traditional ml algorithms along with bi-lstm, gru, and cnn. There results1663

cate bi-lstm as the best performing model. Lin et al. [280] developed a benchmarking framew1664

that can use bi-lstm, lstm, bi-gru, gru, dnn and Text-cnn, but can be extended to use more d1665

learning models. Kim et al. [232] generating graphical semantics that reflect on code semantic1666

tures and use them for Graph Convolutional Network to automatically identify and learn sema1667

and extract features for vulnerability detection, while Shiqi et al. [448] created textual images1668

fed them to Deep Belief Networks to classify malware.1669

3.11 Summary1670

In this section, we briefly summarize the usage ofml in a software engineering task involving sou1671

code analysis. Figure 7 presents an overview of the pipeline that is typically used in a softw1672

engineering task that uses ml.1673

Features

Trained ML 
model

Dataset 
preparation

ML model 
training

Feature 
extraction

Le
g

en
d

Training phase

Inference phase

Both phases

Software 
repositories

Dataset (annotated 
samples, source 

code model, pairs of 
bugs-fixes, etc.)

Downstream task outcome (code 
embedding, identified smell, bugs, or

vulnerability, text summary, etc.)

Input sample (typically, 
source code)

Figure 7. Overview of the software engineering task implementation pipeline using ML

Dataset preparation: Preparing a dataset is the first major activity in the pipeline. The act1674

starts with identifying the source of required data, typically source code repositories. The a1675

ity involves selecting and downloading the required repositories, collecting supplementary d1676

(such as GitHub issues), create individual samples sometimes by combining information, and1677

notate samples. Depending upon the specific software engineering task at hand, these steps1678

customized and extended.1679

The outcome of this activity is a dataset. Depending upon the context, the dataset may con1680

information such as annotated code samples, source code model (e.g., ast), and pairs of bu1681

code and fixed code.1682

Feature extraction: Performance of a ml model depends significantly on the provided kind1683

quality of features. Various techniques are applied on the prepared dataset to extract the requ1684

features that help the ml model perform well for the given task. Features may take variety of f1685

and format; for source code analysis applications, typical features include source code met1686

source code tokens, their properties, and representation, changes in the code (code diff ), ve1687

representation of code and text, dependency graph, and vector representation of ast, cfg, or1688

diff. Obviously, selection of the specific features depends on the downstream task.1689

ML model training: Selecting a ml model for a given task depends on many factors such as1690

nature of the problem, the properties of training and input samples, and the expected ou1691
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Below, we provide an analysis of employed ml models based on these factors.1692

• One of the factors that influence the choice of ml models is the chosen features and t1693

properties. Studies in the quality assessment category majorly relied on token-based featu1694

and code quality metrics. Such features allowed studies in this categories to use traditio1695

ml models. Some authors applied dl models such as dnn when higher-granularity constr1696

such as cfg and dfg are used as features.1697

• Similarly, the majority of the studies in testing category relied on code quality metrics. Th1698

fore, they have fixed size, fixed meaning (for each column) vectors to feed to a ml mo1699

With such inputs, traditional ml approaches, such as Random Forest and Support Vector1700

chine, work well. Other studies used a variation of ast or ast of the changes to generate1701

embeddings. dl models including dnn and rnn-based models are used to first train a mo1702

for embeddings. A typical ml classifier use the embeddings to classify samples in bugg1703

benign.1704

• Typical output of a code representation study is embeddings representing code in the1705

tor form. The semantics of the produced embeddings significantly depend on the sele1706

features. Studies in this domain identify this aspect and, hence, they are swiftly focuse1707

extract features that capture the relevant semantics; for example, path-based features1708

code the order among the tokens. The chosen ml model plays another important rol1709

generate effective embeddings. Given the success of rnn with text processing tasks, du1710

its capability to identify a sequence or pattern, rnn-based models dominate this categor1711

• Program repair is typically a sequence to sequence transformation i.e., a sequence of bu1712

code is the input and a sequence of fixed code is the output. Given the nature of the prob1713

it is not surprising to observe that the majority of the studies in this category used Enco1714

Decoder-based models. rnn are considered a popular choice to realize Encoder-Deco1715

models due to its capability to remember long sequences.1716

4. Datasets and Tools1717

For RO3, this section provides a consolidated summary of available datasets and tools that1718

used by the studies considered in the survey. We carefully examined each selected study1719

noted the resources (i.e., datasets and tools). We define the following criteria to include a resou1720

in our catalog.1721

• The referenced resource must have been used by at least one primary study.1722

• The referenced resource must be publicly available at the time of writing this article (1723

2022).1724

• The resource provides bare-minimum usage instructions to build and execute (whereve1725

plicable) and to use the artifact.1726

• The resource is useful either by providing an implementation of a ml technique, helping1727

user to generate information/data which is further used by a ml technique, or by providi1728

processed dataset that can be directly employed in a ml study.1729

Table 6 lists all the tools that we found in this exploration. Each resource is listed with1730

category, name and link to access the resource, number of citations (as of Dec 2022), and the t1731

when it was first introduced along with the time when the resource was last updated. We colle1732

the metadata about the resources manually by searching the digital libraries, repositories,1733

authors' websites. The cases where we could not find the required information, are marke1734

``–''. We also provide a short description of the resource.1735

Table 6. A list of tools useful for applying machine learning to source code
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Category Name #Cita-

tion

Introd. Up-

dated

Description

Code
Representation

ncc [57] 234 Dec

2018

Aug

2021

Learns representatio

of code semantics

Code2vec [32] 487 Jan

2019

Feb

2022

Generates distribut

representation of cod

Code2seq [31] 536 May

2019

Jul 2022 Generates sequenc

from structured rep

sentation of code

Vector represen-

tation for coding

style [235]

3 Sep

2020

Jul 2022 Implements vector re

resentation of individu

coding style

CC2Vec [194] 69 Oct

2020

– Implements distribut

representation of co

changes

Autoen-

CODE [490]

75 – – Encodes source co

fragments into vect

representations

Graph-based

code model-

ing [28]

544 May

2018

May

2021

Generates code mod

ing with graphs

Vocabulary learn-

ing on code [115]

34 Jan

2019

– Generates an au

mented ast from Ja

source code

User2code2vec [44] 29 Mar

2019

May

2019

Generates embeddin

for developers based

distributed represen

tion of code

Code Search

Deep Code

Search [168]

472 May

2018

May

2022

Searches code by usi

code embeddings

FRAPT[208] 43 Jul 2017 – Searches relevant tu

rial fragments for APIs

Obfuscated-

code2vec [108]

23 Oct

2022

– Embeds Java Class

with Code2vec

DeepTyper [192] 87 Oct

2018

Feb

2020

Annotates types f

JavaScript and Typ

Script

CallNN [285] 9 Oct

2019

– Implements a code su

marization approach

using call dependencie

Neural-

CodeSum [9]

277 May

2020

Oct

2021

Implements a code su

marization method

using transformers

Summariza-

tion_tf [443]

30 Jul 2019 – Summarizes code w

Extended Tree-lstm
CoaCor [548] 36 Jul 2019 May

2020

Explores the role of ri

annotation for code

trieval

1736
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DeepCom [260] 102 Nov

2020

May

2021

Generates code co

ments

Rencos [565] 79 Oct

2020

– Generates code su

mary by using bo

neural and retriev

based techniques

codes [371] 121 Jul 2012 Jul 2016 Extractsmethoddescr

tion from StackOverflo

discussions

cfs – – – Summarizes code fra

ments using svm and n

Program Com-

prehension

tassal – – – Summarizes code usi

autofolding

Change-

Scribe [109]

180 Dec

2014

Dec

2015

Generates commit m

sages

CodeInsight [399] 59 Nov

2015

May

2019

Recommends insight

comments for sour

code

CodeNN [204] 681 Aug

2016

May

2017

Summarizes code usi

neural attention mode

Code2Que [151] 25 Jul 2020 Aug

2021

Suggests improvemen

in question titles fro

mined code in Sta

Overflow

bi-tbcnn [72] 34 Mar

2019

May

2019

Implements a bi-tbc
model to classify alg

rithms

DeepSim [571] 139 Oct

2018

– Implements a dl a

proach to measure co

functional similarity

FCDetector [142] 48 Jul 2020 – Proposes a fine-grain

granularity of sour

code for functional

identification

LASCAD [35] 12 Aug

2018

– Categorizes softwa

into relevant categorie

FunCom[252] 46 May

2019

– Summarizes code

Quality

Assessment

SonarQube – – – Analyzes code quality

svf [464] 317 Mar

2016

Jul 2022 Enables int

procedural dependen

analysis for llvm-bas
languages

Designite [436] 101 Mar

2016

Jul 2023 Detects code smells an

computes quality m

rics in Java and C# cod

1737
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CloneCogni-

tion [339]

10 Nov

2018

May

2019

Proposes a ml fram

work to validate co

clones

smad [52] 25 Mar

2020

Feb

2021

Implements smell det

tion (God class and Fe

ture envy) using ml
Checkstyle – – – Checks for coding co

vention in Java code

FindBugs – – – Implements a static an

ysis tool for Java

pmd – – – Finds common progra

ming flaws in Java an

six other languages

py-ccflex [356] 12 Mar

2017

Oct

2020

Mimics code metrics

using ml
Deep learning

smells [437]

27 Jul 2021 Nov

2020

Implements dl (cnn, rn
and autoencoder-bas

models) to identify fo

smells

crec [558] 26 Nov

2018

– Recommends clones f

refactoring

ml for software

refactoring [40]

31 Sep

2020

– Recommends refact

ing by using ml
dtldp [90] 28 Aug

2019

– Implements a de

transfer learning fram

work

BugDetec-

tion [266]

66 Oct

2019

May

2021

Trains models for defe

prediction

DeepBugs [387] 210 Nov

2018

May

2021

Implements a fram

work for learning nam

based bug detectors

Program

Synthesis

CoCoNuT [305] 97 Jul 2020 Sep

2021

Repairs Java programs

DeepFix [177] 498 Feb

2017

Dec

2017

Fixes common C error

tranx [552] 187 Oct

2018

– Translates natural la

guage text to form

meaning represen

tions

TreeGen 83 Nov

2019

– Generates code

Testing

AppFlow [197] 47 Oct

2018

– Automates ui tests ge

eration

DeepFuzz [293] 72 Jul 2019 Mar

2020

Grammar fuzzer th

generates C programs

Agilika [505] 7 Aug

2020

Mar

2022

Generates tests from e

ecution traces

1738
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TestDescriber – – – Implements test ca

summary generator an

evaluator

Randoop – – Jul 2022 Generates tests au

matic for Java code

Vulnerability

Analysis

wap [330] 9 Oct

2013

Nov

2015

Detects and corrects

put validation vulnerab

ities

swan[383] 8 Oct

2019

May

2022

Identifies vulnerabilitie

vccfinder [379] 174 Oct

2015

May

2017

Finds potentially dang

ous code in repositori

General

bert [123] 76,767 Oct

2018

Mar

2020

nlp pre-trained model

bc3 Annotation

Framework

– – – Annotates emails/co

versations easily

JGibLDA – – – Implements Late

Dirichlet Allocation

Stanford NLP

Parser

– – – A statistical NLP parse

srcML – – May

2022

Generates xml represe
tation of sourcecode

CallGraph – Oct

2017

Oct

2018

Generates static and d

namic call graphs f

Java code

ML for program-

ming

– – – Offers various too

such as JSNice, Nice2P

dict, and debin

1739

The list of datasets found in our exploration is presented in Table 7. Similar to the Tools' ta1740

Table 7 lists each resource with its category, name and link to access the resource, numbe1741

citations (as of July 2022), the time when it was first introduced along with the time when1742

resource was last updated, and a short description of the resource.1743

Table 7. A list of datasets useful for applying machine learning to source code

Category Name #Cita-

tion

Introd. Up-

dated

Description

Code
Representation

Code2seq [32] 418 Jan

2019

Feb

2022

Sequences genera

from structured rep

sentation of code

GHTorrent [163] 728 Oct

2013

Sep

2020

Meta-data from GitH
repositories

Code
Completion

Neural Code Com-

pletion

148 Nov

2017

Sep

2019

Dataset and code

code completion w

neural attention a

pointer networks
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Program

Synthesis

CoNaLa cor-

pus [553]

201 Dec

2018

Oct

2021

Python snippets and

responding natural

guage description

IntroClass [250] 299 Jul 2015 Feb

2016

Program repair data

of C programs

Code contest[270] 84 Dec

2022

– Code generat

dataset for AlphaCod

Program

Comprehension

Program com-

prehension

dataset [462]

61 May

2018

Aug

2021

Contains code for a p

gram comprehens

user survey

CommitGen [212] 116 – – Commit messages a

the diffs from 1,006 J

projects

StaQC [547] 80 Nov

2019

Aug

2021

148K Python and 12

sql question-code pa

from StackOverflow

TL-CodeSum [199] 241 Feb

2019

Sep

2020

Dataset for code su

marization

DeepCom [198] – May

2018

– Dataset for code co

pletion

Quality

Assessment

src-d datasets – – – Various labeled datas

(commit messages,

plicates, DockerH

and Nuget)

Big-

CloneBench [472]

272 Dec

2014

Mar

2021

Known clones in the

Dataset source rep

tory

Multi-label

smells [169]

28 May

2020

– A dataset of 445

stances of two co

smells and 82 metric

Deep learning

smells [437]

27 Jul 2021 Nov

2020

A dataset of four sm

in tokenized form fr

1,072 C# and 100 J

repositories

ml for software

refactoring [40]

31 Nov

2019

– Dataset for applying

to recommend refac

ing

QScored [431] 11 Aug

2021

– Code smell and m

rics dataset for m

than 86 thousand op

source repositories

Landfill [363] 34 May

2015

– Code smell dataset w

public evaluation

KeepItSimple [139] 16 Jul 2018 – A dataset of lingui

antipatterns of 1,753

stances of source co

elements

1745
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Code smell

dataset [110]

8 Sept

2018

– A dataset of four co

smells

Defects4J [218] 858 Jul 2014 Jul 2022 Java reproducible bug

promise [424] 434 – Jan

2021

Various datasets inc

ing defect predict

and cost estimation

BugDetection [266] 59 Oct

2019

May

2021

A bug prediction data

containing 4.97

methods belonging

92 different Java pro

versions

DeepBugs [387] 155 Oct

2018

Apr

2021

A JavaScript code corp

with 150K code snipp

dtldp [90] 28 Oct

2020

– Dataset for deep tra

fer learning for def

prediction

Testing
damt [345] 15 Aug

2019

Dec

2019

Metamorphic test

dataset

Vulnerability

Analysis

wpscan – – – a php dataset for Wo

Press plugin vulnera

ties

Genome [577] 2,898 Jul 2012 Dec

2015

1,200 malware samp

covering the majority

existing malware fa

lies

Juliet [63] 147 – – 81K synthetic C/

and Java programs w

known flaws

AndroZoo [29] – – – 15.7M apks fr

Google's Play Store

trl [279] 108 Apr

2018

Jan

2019

Vulnerabilities in six

programs

Draper vdisc [410] 479 Jul 2018 Nov

2018

1.27 million functio

mined from c and

applications

samate [62] – – – A set of known secu

flaws from nist for c, c
and Java programs

jsVulner [146] 3 – – JavaScript Vulnerab

Analysis dataset

swan [383] 8 Jul 2019 Jul 2022 A Vulnerability Analy

collection of 12 Java

plications

Project-KB [384] 49 Aug

2019

– A Manually-Cura

dataset of fixes

vulnerabilities of op

source software

1746
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GitHub Java Cor-

pus [22]

411 – – A large collection of J

repositories

150k Python

dataset [401]

89 – – Contains parsed ast
150K Python files

uci source code

dataset [298]

38 Apr

2010

Nov

2013

Various large sc

source code analy

datasets

1747

5. Challenges and Perceived Deficiencies1748

The aim of this section is to focus on RO4 of the study by consolidating the perceived defic1749

cies, challenges, and opportunities in applying ml techniques to source code observed from1750

selected studies. We document challenges or deficiencies mentioned in the considered stu1751

while studying and summarizing them. After the summarization phase was over, we consolida1752

all the documented notes and prepared a summary that we present below.1753

• Standard datasets: ml is by nature data hungry; specifically, supervised learning meth1754

need a considerably large, cleaned, and annotated dataset. Though the size of available o1755

software engineering artifacts is increasing day by day, the lack of high-quality datasets1756

clean and reliably annotated) is one of the biggest challenges in the domain [153, 501,1757

243, 132, 90, 52, 34, 487, 459, 483, 474, 160, 419, 290, 513, 440, 216]. Therefore, there1758

need for defining standardized datasets. Authors have cited low performance, poor ge1759

alizability, and over-fitting due to poor dataset quality as the results of the lack of stand1760

validated high-quality datasets.1761

Mitigation: Although available datasets have increased, given a wide number of software e1762

neering tasks and variations in these tasks as well as the need of application-specific data1763

the community still looks for application-specific, large, and high-quality datasets. To1764

gate the issue, the community has focused on developing new datasets and making th1765

publicly available by organizing a dedicated track, for example, the msr data showcase tr1766

Dataset search engines such as the Google dataset search6, Zenodo7, and Kaggle datas1767

could be used to search available datasets. Researchers may also propose generic data1768

that can serve multiple application domains or at least different variations of a softw1769

engineering task. In addition, recent advancements in ml techniques such as active le1770

ing [389, 428, 405] may reduce the need of large datasets. Besides, the way the data is u1771

for model validation must be improved. For example, Jimenez et al. [216] showed that1772

vious studies on vulnerability prediction trained predictive models by using perfect labe1773

information (i.e., including future labels, as yet undiscovered vulnerabilities) and showed1774

such an unrealistic labelling assumption can profoundly affect the scientific conclusions1775

study as the prediction performance worsen dramatically when one fully accounts for1776

istically available labelling. Such issues can be avoided by proposing standards for data1777

laying out the minimum expectations from any public dataset.1778

• Reproducibility and replicability: Reproducibility and replicability of any ml implementa1779

can be compromised by the factors discussed below.1780

– Insufficient information: Aspects such as the ml model, their hyper-parameters, data1781

and ratio (of benign and faulty samples, for instance) are required to understand1782

replicate the study. During our exploration, we found numerous studies that do1783

present even the bare-minimum pieces of information to replicate and reproduce t1784

results. Likewise, Di Nucci et al. [127] carried out a detailed replication study and1785

6https://datasetsearch.research.google.com/
7https://zenodo.org/
8https://www.kaggle.com/datasets
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ported that the replicated results were lower by up to 90% compared to what wa1786

ported in the original study.1787

– Handling of data imbalance: It is very common to have imbalanced datasets in softw1788

engineering applications. Authors use techniques such as under-sampling and o1789

sampling to overcome the challenge for training. However, test datasets must re1790

the original sample ratio as found in the real world [127]; carrying out a performa1791

evaluation based on a balanced dataset is flawed. Obviously, the model will perf1792

significantly inferior when it is put at work in a real-world context. We noted many s1793

ies [8, 360, 169, 149, 148, 481, 114] that used balanced samples and often did not pro1794

the size and ratio of the training and testing dataset. Such improper handling of d1795

imbalance contributes to poor reproducibility.1796

Mitigation: The importance of reproducibility and replicability has been emphasized and1797

derstood by the software engineering community [286]. It has lead to a concrete art1798

evaluation mechanism adopted by leading software engineering conferences. For exam1799

fse artifact evaluation divides artifacts into five categories—functional, reusable, available1800

sults reproduced, and results replicated.9 Such thorough evaluation encouraging software1801

gineering authors to produce high-quality documentation along with easily replicate ex1802

ment results using their developed artifacts. In addition, efforts (such as model enginee1803

process [50]) are being made to support ml research reproducible and replicable. Fin1804

identifying practices (such as assumptions related to hardware or dependencies) that1805

hinder reproducibility improve reproducibility.1806

• Maturity in ml development: Development of ml systems are inherently different from1807

ditional software development [513]. Phases of ml development are very exploratory in1808

ture and highly domain and problem dependent [513]. Identifying the most appropriat1809

model, their appropriate parameters, and configuration is largely driven by trial and e1810

manner [513, 45, 440]. Such an ad hoc and immature software development environm1811

poses a huge challenge to the community.1812

A related challenge is lack of tools and techniques for various phases and tasks involved i1813

software development. It includes effective tools for testing ml programs, ensuring that1814

dataset are pre-processed adequately, debugging, and effective data management [513,1815

155]. In addition, quality aspects such as explainability and trust-worthiness are new des1816

quality aspects especially applicable for ml code where current practices and knowledg1817

inadequate [155].1818

Mitigation: The ad-hoc trial and error ml development can be addressed by improved t1819

and techniques. Even though the variety of ml development environments including m1820

aged services such as aws Sagemaker and Google Notebooks attempt to make ml deve1821

ment easier, they essentially do not offer much help in reducing the ad-hoc nature of1822

development. A significant research push from the community would make ml developm1823

relatively systematic and organized.1824

Recent advancements in the form of available tools not only help a developer to compreh1825

the process but also let them effectively manage code, data, and experimental results. Ex1826

ples of such tools and methods include darviz [420] for dl model visualization, MLFlow10
1827

managing the ml lifecycle, and DeepFault [136] for identifying faults in dl programs. S1828

efforts are expected to address the challenge.1829

Software Engineering for Machine Learning (SE4ML) brings another perspective to this is1830

by bringing best practices from software engineering to ml development. Efforts in thi1831

rection not only can make ml specific code maintainable and reliable but also can contrib1832

back to reproducibility and replicability.1833

9https://2021.esec-fse.org/track/fse-2021-artifacts
10https://mlflow.org/
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• Data privacy and bias: Data hungry ml models are considered as good as the data they1834

consuming. Data collection and preparation without data diversity leads to bias and un1835

ness. Although we are witnessing more efforts to understand these sensitive aspects [1836

70], the present set ofmethods and practices lack the support to deal with data privacy iss1837

at large as well as data diversity and fairness [70, 155].1838

Mitigation: Data standards and best practices focusing on data privacy could be conside1839

as an evaluation criterion to mitigate issues concerning data privacy and bias. In addi1840

mitigation of the issue is also linked with appropriate data pre-processing. Adoption of e1841

tive anonymization techniques and data quality assurance practices will further help us1842

with the concern.1843

• Effective feature engineering: Features represent the problem-specific knowledge in pie1844

extracted from the data; the effectiveness of anymlmodel depends on the features fed in1845

Many studies identified the importance of effective feature engineering and the challenge1846

gathering the same [487, 440, 373, 513, 203]. Specifically, software engineering research1847

have notified that identifying and extracting relevant features beyond code quality metri1848

non-trivial. For example, Ivers et al. [203] discusses that identifying features that establish1849

relationship among different code elements is a significant challenge for ml implementat1850

applied on source code analysis. Sharma et al. [437] have shown in their study that s1851

detection using ml techniques perform poorly especially for design smells where mult1852

code elements and their properties has to be observed.1853

Mitigation: Recent advancements in the field of large languagemodels (LLMs) trained on h1854

corpus of code and text have significantly eased the task for researchers. For example, ta1855

such as generating code embeddings and fine-tuning are supported natively by the LL1856

However, encoding code features specific to downstream tasks is required often andma1857

the task easier requires a significant push from the research community.1858

• Skill gap: Wan et al. [513] identified that ml software development requires an extended1859

of skills beyond software development including ml techniques, statistics, and mathema1860

apart from the application domain. Similarly, Hall and Bowes [181] also reports a serious1861

of ml expertise in academic software engineering efforts. Other authors [373] have em1862

sized the importance of domain knowledge to design effective ml models.1863

Mitigation: Raising awareness and training sessions customized for the audience is con1864

ered the mitigation strategy for skill gap. Software engineering conferences organize tu1865

als that typically helps new researchers in the field. Availability of various hands-on cou1866

and lecture series from known universities also help bringing the gap.1867

• Hardware resources: Given the need of large training datasets andmany hidden layers, o1868

ml training requires high-end processing units (such as gpus and memory) [513, 155]. A u1869

survey study [513] highlights the need to special hardware forml training. Such requirem1870

poses a challenge to researchers constrained with limited hardware resources.1871

Mitigation: ml development is resource hungry. Certain dl models (such as models ba1872

on rnn) consume excessive hardware resources. The need for a large-scale hardware in1873

tructure is increasing with the increase in size of the captured features and the training s1874

ples. To address the challenge, infrastructure at institution and country level are maintai1875

in some countries; however, a generic and widely-applicable solution is needed for m1876

globally-inclusive research. Additionally, efforts in the direction of proposed pretrained m1877

els, various data pruning techniques, and effective preprocessing techniques are expecte1878

reduce the need of large infrastructure requirements.1879

The first internal threats to validity relates to the concern of covering all the relevant article1880

the selected domain. It is prohibitively time consuming to search eachmachine learning techni1881

during the literature search. Tomitigate the concern, we defined our scope i.e., studies that us1882

techniques to solve a software engineering problem by analyzing source code. We also care1883
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defined inclusion and exclusion criteria for selecting relevant studies. We carry out an exten1884

manual search process on commonly used digital libraries with the help of a comprehensive1885

of search terms. Furthermore, we identified a set of frequently occurring keywords in the art1886

obtained initially for each category individually and carried out another round of literature sea1887

with the help of newly identified keywords to enrich the search results.1888

Another threat to validity is the validity of data extraction and their interpretation applicab1889

the generated summary andmetadata for each selected study. Wemitigated this threat by divid1890

the task of summarization to all the authors and cross verifying the generated information. Du1891

the manual summarization phase, metadata of each paper was reviewed by, at least, two auth1892

External validity concerns the generalizability and reproducibility of the produced results1893

observations. We provide a spreadsheet [438] containing all the metadata for all the article1894

lected in each of the phases of article selection. In addition, inspired by previous surveys [27, 11895

we have developed a website11 as a living documentation and literature survey to facilitate easy n1896

gation, exploration, and extension. The website can be easily extended as the new studies eme1897

in the domain; we have made the repository12 open-source to allow the community to extend1898

living literature survey.1899

6. Conclusions1900

With the increasing presence of ml techniques in software engineering research, it has beco1901

challenging to have a comprehensive overview of its advancements. This survey aims to pro1902

a detailed overview of the studies at the intersection of source code analysis and ml. We have1903

lected 494 studies spanning since 2011 covering 12 software engineering categories. We prese1904

comprehensive summary of the selected studies arranged in categories, subcategories, and t1905

corresponding involved steps. Also, the survey consolidates useful resources (datasets and to1906

that could ease the task for future studies. Finally, we present perceived challenges and oppor1907

ties in the field. The presented opportunities invite practitioners as well as researchers to prop1908

new methods, tools, and techniques to make the integration of ml techniques for software e1909

neering applications easy, flexible, and maintainable.1910

Looking ahead: In the recent past, we have witnessed game-changing advancements and1911

around adoption of Large language models (llms) [572]. llms such as GPTx [68, 396] and B1912

[123] learn generic language representation. They helpmlmodels performbetterwith limited t1913

ing (i.e., fine-tuning) for a targeted downstream task. Universal contextual representation lear1914

from huge corpora (such as all available textbooks and publicly available articles on the inter1915

makes them suitable for various natural language tasks.1916

Similarly, languagemodels for code, such as CodeBERT [145], CodeT5 [529], CodeGraphBER1917

and Llama 2 [485] are gaining popularity rapidly among software engineering researchers. S1918

pre-trained models are trained with generic objectives with large corpora of code and natural1919

guage. The models learn the syntax, semantics, and fundamental relationships among the1920

cepts and entities that make fine-tuning the model for a specific software engineering task ea1921

(in terms of training time). These models are not only extensively used in software engineerin1922

search [300, 89, 294, 205, 381] already but also will be shaping the software engineering resea1923

for the years to come.1924
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Highlights 

● The use of ML techniques is constantly increasing for source code analysis 

● A wide range SE tasks involving source code analysis use ML 

● The study identifies challenges in the field and potential mitigations 

● We identify commonly used datasets and tools used in the field 
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