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Abstract: Chronic low-grade vascular inflammation and endothelial dysfunction significantly con-
tribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or
pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted
by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed
flow and laminar flow with low magnitude is pro-inflammatory. Endothelial mechanosensors are
the key upstream signaling proteins in SS-induced pro- and anti-inflammatory responses. Being
transmembrane proteins, mechanosensors, not only experience fluid SS but also become regulated by
the biomechanical properties of the lipid bilayer and the cytoskeleton. We review the apparent effects
of pro-inflammatory factors (hypoxia, oxidative stress, hypercholesterolemia, and cytokines) on the
biomechanics of the lipid bilayer and the cytoskeleton. An analysis of the available data suggests
that the formation of a vicious circle may occur, in which pro-inflammatory cytokines enhance and
attenuate SS-induced pro-inflammatory and anti-inflammatory signaling, respectively.

Keywords: shear stress; inflammation; endothelial cell; lipid bilayer; cytoskeleton; mechanosensor;
atherosclerosis; oxidative stress

1. Introduction
1.1. Blood Flow Patterns and the Pro-Inflammatory Response of Endothelial Cells

Inflammation is a key mechanism affecting endothelial cells (ECs) and leading to
atherosclerosis [1–4]. ECs are subjected to three main hemodynamic forces: hydrostatic
pressure, cyclic stretch, and shear stress (SS). Fluid SS is a frictional force, produced by
blood flow, acting tangentially to the surface of the ECs. Depending on the patterns of
fluid SS acting on ECs, either anti- or pro-inflammatory mechanisms can be triggered in
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ECs. High laminar SS induces an anti-inflammatory response [2,5,6], while low laminar SS
and disturbed patterns of SS, on the other hand, activate pro-inflammatory mechanisms in
ECs [2,3]. The key transcription factors responsible for the low flow-induced inflammatory
response of ECs are activator protein 1 (AP-1), nuclear factor κB (NF-κB) [3], and yes-
associated protein/transcriptional coactivators with a PDZ-binding motif (YAP/TAZ) [7].
The transcription factors Krüppel-like factor 2 (KLF2), myocyte enhancer factor 2 (MEF2)
and nuclear factor erythroid 2-related factor 2 (NRF2) are known to activate an anti-
inflammatory response [3,6].

The molecular pathways leading to inflammation in ECs begin at the endothelial
mechanosensors, one of which is the platelet endothelial cell adhesion molecule-1 (PECAM-
1), which forms a mechanosensory complex with vascular endothelial cadherin (VE-
cadherin) and vascular endothelial growth factor receptor 2 (VEGFR2). The PECAM-
1/VE-cadherin/VEGFR2 complex triggers the activation of the nuclear factor κB (NF-κB)
transcription factor [8,9]. In this complex, PECAM-1 transmits the mechanical signal,
VE-cadherin is an adaptor protein, and VEGFR2 activates phosphatidylinositol-3-OH
kinase (PI3K) [8]. The activation of the PECAM-1/VE-cadherin/VEGFR2 complex by
SS (12 dyn/cm2) occurs within 15 s, leading to the activation of integrin and integrin-
dependent EC alignment in the direction of flow, and the transient activation of NF-κB [8].
It should be noted that the signaling triggered by VEGF via its receptors can exhibit both
pro-inflammatory and vasculo-protective anti-inflammatory actions. For example, VEGF
participates in angiotensin II (Ang II)-induced vascular inflammation [10], while the local
application of recombinant VEGF or the local VEGF gene transfer to arterial wall ECs in the
hind-limb ischemia model enhanced vascularization and collateral circulation [11,12]. In
mouse aortic ECs (MAECs) and bovine aortic ECs (BAECs), high laminar SS (24 dyn/cm2)
activates integrins and NF-κB [9]. The seemingly paradoxical nature of that high laminar
SS-activated pro-inflammatory NF-κB can be explained via transient NF-κB activation
(in the case of high laminar SS) versus sustained NF-κB activation (in the case of oscilla-
tory or disturbed SS) [9]. In human aortic ECs (HAECs), the activation of αvβ3 integrins
by oscillatory flow promotes NF-κB activation and atherogenesis [13]. Activated NF-κB
induces the expression of pro-inflammatory cytokines, chemokines, and cell adhesion
molecules [14,15]. Likewise, atheroprotective laminar SS induces the inactivation of pro-
inflammatory YAP/TAZ via their phosphorylation-mediated cytoplasmic retention in
ECs [7]. On the other hand, oscillatory SS results in the hyperactivation of YAP/TAZ via
RhoA/Rock-dependent actin stress fiber formation, leading to the enhanced expression
of inflammatory ICAM1 and VCAM1 [7,16]. The endothelial specific over-expression of
YAP exacerbates, while CRISPR-mediated YAP-knockdown retards, plaque formation in
ApoE−/− mice [16,17].

These links between blood flow patterns, the mechanosensitivity of ECs, and inflam-
mation evoked deep interest in the study of endothelial mechanosensors [18–27], which
include primary cilia, glycocalyx, integrins, caveolae, ion channels, heterotrimeric G pro-
teins, G protein-coupled receptors (GPCRs), PECAM-1, VE-cadherin, VEGFR2, and the
Tie family of receptor tyrosine kinases [20]. Moreover, Notch1 and guidance receptor
plexin D1 can also function as endothelial mechanosensors [28,29]. Likewise, in human
pulmonary aortic ECs (HPAECs), mitochondria respond to fluid SS with increased oxida-
tive phosphorylation and elevated ATP production [30,31], suggesting their possible role
as mechanosensors.

1.2. Forces and Plasma Membrane Mechanosensors

Two models have been proposed for the mechanical force-induced activation of
mechanosensitive ion channels (Figure 1): “force-from-lipids” and “force-from-filament” [32].
The “force-from-lipid” model suggests the gating of mechanosensitive ion channels with
inputs from the lipid bilayer, while the “force-from-filament” model suggests primary
roles of the extracellular matrix and intracellular cytoskeleton (CSK) in the mechanical
activation of ion channels [32]. Great efforts have been devoted to deciphering the multi-
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ple effects exerted by membrane lipids on the structure and function of transmembrane
proteins [33–44].
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Two major types of physical effects, integral membrane proteins or ion channels, are
expected to draw from the hosting lipid bilayer due to its profiles of electrical charges
and mechanical properties [43]. The former one arises due to the consideration that the
distribution of the charges of the lipids on either monolayer may or may not show any net
charges, but due to their coupling with the integral membrane proteins (MPs) or channel
proteins, the charges on both lipids and proteins become redistributed or polarized. As
a result, any MP-lipid coupling appears with a distinctive type of physical phenomenon,
many charges interactions, as explained using screened Coulomb interactions (SCIs) in
ref. [43]. Considering the mechanical properties (bilayer elasticity and lipid intrinsic
curvature) of lipid layers, only the bilayer regulation of the integral membrane protein
function has long been addressed (see refs. [45–52]). However, in refs. [43,44], it is clearly
shown that the SCI model that considers the charge-based interactions among integral MPs
and hosting bilayer lipids can correctly address the bilayer regulation of MP or channel
functions, and that the charge-based interactions appear to be primary regulators of channel
functions. The bilayer mechanical property-based regulation of MP functions also appears
in SCI treatment, but only to produce a secondary effect on MP functions. In the elastic
bilayer model, the primary effect due to charge-based interactions was totally ignored [45–52].
The charge-based effects have later been consistently found to be appearing as primary
molecular mechanisms, especially when using molecular dynamics (MD) simulations, on
varieties of membrane-adsorbed peptides and drugs cases (see refs. [53,54]).

Recently, the plasma membrane of immune cells was suggested to integrate multiple
biophysical and biochemical stimuli (such as cholesterol content, negatively charged lipids,
electrical potential) in order to regulate immune receptor function [55].

Both the composition of the lipid bilayer [22] and the NMMII-generated basal tension
of EC [56] can be altered by pro-inflammatory stimuli. Endothelial mechanosensors,
which are embedded in the plasma membrane, not only influence the blood flow, but
also regulate the mechanical properties of the lipid bilayer and CSK. Here, we discuss
if and how pro-inflammatory factors may change the mechanical properties of the lipid
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bilayer and CSK. The rigidification of the lipid bilayer and the increase in the cytoskeletal
NMMII-generated tension can increase the energy barrier for the activation of endothelial
mechanosensors by SS. As a result, high SS can be perceived by ECs as low SS. Since
low SS induces the release of pro-inflammatory mediators [2,4] the vicious circle can be
formed. It keeps up the low-grade vascular inflammation and promotes the development
of endothelial dysfunction and atherosclerosis. Recently, the primary cilia on ECs were
suggested to amplify low unidirectional SS signaling, resulting in the activation of NRF2
and the protection of ECs from oxidative damage [6]. We discuss the data suggesting that,
under inflammatory conditions, the lipid bilayer and the NMMII-generated tension could
dampen high laminar SS.

2. What Are the Intracellular Forces Acting on Any Single Transmembrane Endothelial
Mechanosensor?
2.1. From Stiffness of the Whole EC to the Mapping of Intracellular Forces Acting on Single
Transmembrane Mechanosensor: From Cell- to Protein-Scale Studies

Blood flow exerts extracellular forces, such as hydrodynamic pressure, cyclic stretch,
and fluid SS. In addition to these forces, the substrate stiffness is also sensed by ECs [57,58].
The dependence of the mechanical properties of the cortical CSK in HAECs and human
umbilical vein ECs (HUVECs) on laminar SS strength was investigated using acoustic force
spectroscopy [59]. The exposure of HAECs and HUVECs to laminar SS (6 dyn/cm2 for up
to 48 h) was found to evoke an increase in the membrane cortex stiffness [59].

The stiffness of the whole EC, or its plasma membrane with the underlying submem-
brane actin-based CSK (smACSK), is an integral parameter, evaluating the behavior of the
whole cell. At the cellular level, the stiffness of bovine pulmonary arterial ECs (BPAECs)
depends on the basal isometric tension, which is determined by NMMII contractility [56].
Thrombin induces a rapid increase in basal isometric tension in BPAECs via the MLCK-
and RhoA-mediated activation of NMMII [56]. Further studies on the biomechanics of
whole ECs should lead to an analysis of the spectrum of intracellularly generated forces
that converge on any single transmembrane mechanosensor [60]. Evidence is accumulating
that forces generated within the cell regulate mechanical tension across the transmembrane,
cytoskeletal, and scaffolding proteins [61–63].

Endothelial mechanosensors are subjected to forces generated within the cell, in par-
ticular within the lipid bilayer of the plasma membrane, and forces arising from smACSK
(Figure 2). Energy inputs from the lipid bilayer and the smACSK are likely to increase, or
decrease, the activation energy required for the stimulation of mechanosensors by fluid
SS (Figure 2). Earlier, we proposed that the gradients in hydrostatic pressures across the
plasma membrane induced by changes in cell volume are actively probed by cells via the
pulling activity of non-muscle myosin II (NMMII) and the pushing activity of smACSK [64].
Considering the forces arising from the lipid bilayer (see Section 1.2), and the forces gen-
erated by smACSK, the energy input (E(intracellular)) that is received—in addition to
extracellular mechanical forces—by any single mechanosensory can be presented as the
sum of the following energies:

E(intracellular) = E(lipid bilayer) + E(NMMII) + E(protrusion) + E(resistance) + E(smACSK spring) (1)

where E(lipid bilayer) is an energy from the lipid bilayer, E(NMMII) is an energy of NMMII-
generated pulling (directed into the cell) force, E(protrusion) is an energy of pushing
(directed out of the cell) force due to the actin-based assembly of lamellipodia and filopodia,
E(resistance) is an energy generated by the lipid bilayer together with smACSK, and
E(smACSK spring) is an energy stored by smACSK during its mechanical deformation.
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Figure 2. Scheme illustrating the actions of intracellular forces on any single endothelial mechanosen-
sor. The transmembrane domain(s) of the mechanosensor is sensing the lipid bilayer lateral pressure.
A pulling force from NMMII-generated tension and a pushing force from an actin-based protrusion
are also sensed by the mechanosensor, meaning that the energy required for mechanosensor activa-
tion can be increased; in this case, the high LSS can be perceived as low LSS, or decreased, in which
case the low LSS can be perceived as high LSS. Thus, the interplay of intracellular forces can shift
LSS-induced signaling to be either pro-atherogenic or anti-atherogenic. Abbreviations: LSS, laminar
shear stress; NMMII, non-muscle myosin II; smACSK, submembrane actin-based cytoskeleton.

Thus, the energies received from within the cell would also influence the activation of
an endothelial mechanosensor:

E(activation of endothelial mechanosensor) = E(extracellular) + E(intracellular) (2)

In this paper, we only pay attention to three intracellular forces: the biomechanics of
the lipid bilayer, the pulling force of NMMII, and the pushing force of the lamellipodia.
NMMII and smACSK are controlled by many intracellular signaling mechanisms; however,
we only consider two functionally antagonistic signaling proteins, RhoA and Rac1. The
convergence of several pro-inflammatory stimuli on the two functionally antagonistic small
GTPases RhoA and Rac1 is discussed in Section 3.

2.2. Biomechanics of the Lipid Bilayer and the Activation Energy of Mechanosensors

There are two mechanisms for the regulation of transmembrane proteins by lipids: a
ligand-like mechanism, when the direct high-affinity binding of lipids to proteins occurs,
and a solvent-like mechanism, when the addition or removal of a lipid changes the biome-
chanics of the lipid bilayer [65,66]. For example, many transmembrane proteins contain
specific motifs for cholesterol binding: a cholesterol recognition/interaction amino acid
consensus (CRAC, R/K-X5-Y-X5-L/V), a reversed CRAC motif named CARC (L/V-X5-Y-
X5-R/K), and a cholesterol consensus motif (CCM) [65–69]. In this paper, we mainly pay
attention to the solvent-like scenario, which deals with alterations in plasma membrane
biomechanics.

There is convincing evidence that the lipid composition, which determines the lipid
bilayer’s fluidity, influences both basal and SS-induced GTPase activities of Gαq and Gαi3
subunits of heterotrimeric G proteins in phospholipid vesicles [70]. The incorporation
of lysophosphatidylcholine into liposomes increases the fluidity of the lipid bilayer and



Membranes 2022, 12, 205 6 of 19

elevates the basal activity of Gαq and Gαi3 proteins from 0.47 to 1.35 pmol/min per µg of
protein [70]. The incorporation of benzyl alcohol, another fluidizing agent, increases the
basal activity of G proteins from 0.47 to 2.37 pmol/min per µg of proteins. On the other
hand, the incorporation of cholesterol, which decreases bilayer fluidity, diminishes the
basal activity of Gαq and Gαi3 proteins from 0.47 to 0.113 pmol/min per µg of protein and
reduces the activation of G proteins by SS [70].

In HUVECs, fluid SS (from 0.7 to 33 dyn/cm2) induces an increase in membrane
fluidity [71]. The addition of benzyl alcohol also increases the membrane fluidity [71]. The
exposure of BAECs to fluid SS increases the plasma membrane fluidity [72]. Additionally,
BAECs’ membrane fluidity is increased and decreased by benzyl alcohol (a fluidizing
agent) and cholesterol (a rigidifying agent), respectively [72]. In HPAECs, fluid SS increases
membrane fluidity [30,31]. Furthermore, the plasma membranes in HPAECs discriminate
between cyclic stretch and fluid SS, in that cyclic stretch increases the lipid bilayer order and
decreases fluidity, while fluid SS decreases the lipid bilayer order and increases fluidity [73].

Due to all the changes in the membrane composition, which have been explained
above, a membrane’s two major physical properties, namely, the charge profiles and
mechanical properties, may especially become altered. Consequently, as explained earlier,
the membrane regulation of integral MP functions also changes [43,45–52]. However, the
exact energy (generally refereed as the ‘free energy of bilayer–integral protein coupling’)
that plays important roles in such membrane regulation of integral protein functions has been
correctly calculated using the SCI models that consider charge-based interactions [43,53,54].
The SCI model explains all the parameters behind calculating the free energy of bilayer–
integral protein coupling, and that this energy consists of both components drawn from the
charge properties and mechanical properties of the bilayer and MPs. Thus, it appears to be
a universal mechanism which also raises some universal probability functions related to
any bilayer-MP coupling energetics (see details in ref. [54]). MD simulations on lipid–drug
pair interactions in the bilayer environment have especially demonstrated these universal
probability functions to be primarily relying on two major types of charge-based lipid–drug
interactions, namely the electrostatic and van der Waals interactions.

2.3. Mechanosensors and Force Generated by NMMII
2.3.1. Control of NMMII Contractility

NMMII is an actin-based heterohexameric molecular motor consisting of two heavy
chains (HCs), two essential light chains (ELCs), and two regulatory light chains (RLCs) [74–78].
There are three isoforms of NMMII depending on HC paralog: NMMIIA, NMMIIB, and
NMMIIC [74–77], which apparently have partially distinctive roles [79]. In ECs, mainly
NMMIIA and NMMIIB are expressed [80,81].

The phosphorylation of the Ser19/Thr18 of RLC by Ca2+/calmodulin-dependent
myosin light chain kinase (MLCK) activates NMMII contractility (Figure 3) [82], whereas
the dephosphorylation of this site by myosin light chain phosphatase (MLCP) inhibits
NMMII [83,84]. MLCK can itself be activated by Ca2+/calmodulin, protein tyrosine ki-
nases (PTKs), which phosphorylate Tyr464 and Tyr471, and protein kinase C (PKC), while
phosphorylation by protein kinase A (PKA) inhibits MLCK [85,86].

The small GTPases Rho, Rac, and Cdc42, govern the formation of actin stress fibers,
lamellipodia, and filopodia, respectively [87]. In humans, there are 20 members in the
Rho family which are subdivided into subfamilies: Rho, Rac, Cdc42, RhoU/V, RhoD/F,
Rnd, RhoH, and RhoBTB [88]. The Rho subfamily consists of RhoA, RhoB, and RhoC,
while the Rac subfamily includes Rac1, Rac2, Rac3, and RhoG [88]. In the vasculature,
the small GTPases Rho, Rac, and Cdc42, control a number of functions, including the
maintenance of the endothelial barrier, the response to SS, the regulation of endothelial
nitric oxide synthase, migration, and apoptosis [89]. There is reciprocal regulation of RhoA
and Rac1. For example, in BAECs, the activation of integrins by laminar SS (12 dynes/cm2)
transiently inhibits Rho, but activates Rac1 [90,91]. The small GTPases, RhoA and Rac1, are
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particularly well-studied as regulators of the endothelial barrier function, where RhoA and
Rac1 activation leads to barrier disruption and stabilization, respectively [85,92–95].
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Figure 3. Scheme illustrating the regulation of NMMII contractility. MLCK and Rho–ROCK pathways
lead to the phosphorylation of the RLCs of NMMII and NMMII contraction. MLCP and Rac1–PAK
pathways lead to NMMII relaxation. MLCK itself is stimulated by upstream Ca2+/calmodulin, PTKs,
and PKC, while PKA inhibits MLCK. Abbreviations: MLCK, myosin light chain kinase; MLCP,
myosin light chain phosphatase; NMMII, non-muscle myosin II; PAK, p21-activated kinase; PKA,
protein kinase A; PKC, protein kinase C; PTKs, protein tyrosine kinases; RLCs, regulatory light chains;
ROCK, Rho-associated coiled-coil-containing kinase.

The small GTPase, RhoA, and its effector, Rho-associated coiled-coil-containing kinase
(ROCK), activate NMMII, both via the phosphorylation of RLC at Ser19/Thr18 [96] and
the phosphorylation and inhibition of MLCP [97]. ROCK, the main downstream effector
of RhoA, has two isoforms: ROCK1 and ROCK2 [98]. Rac1 and its effector, p21-activated
kinase (PAK), inhibit NMMII via the phosphorylation of MLCK by PAK [99]. Rac1 itself
can be regulated by cell-generated tension: in rat aortic smooth muscle cells, the inhibition
of myosin contractility via the inhibition of Rho-kinase with Y-27632 or MLCK with ML-7
increased Rac1 activity [61].

Seemingly, the RhoA-dependent activation of NMMII and the generation of the cen-
tripetal force, as well as Rac1-dependent protrusive actin polymerization, would affect
the endothelial mechanosensors. As pro-inflammatory agents, via the activation of RhoA
and/or Rac1, they not only regulate the endothelial permeability, but also may tune
mechanosensors because of the inducing pulling (RhoA-mediated NMMII contractility) or
pushing (Rac1-mediated actin-based protrusions) of intracellular forces.

2.3.2. Opposing Actions of RhoA and Rac1 on NMMII-Generated Pulling Force Acting on
VE-Cadherin

Transmembrane proteins experience an NMMII-generated force. Föster resonance
energy transfer (FRET)-based molecular tension sensors allow measuring the pico-Newton
(pN) forces acting on cellular proteins [62,100] (Table 1). In static BAECs, vinculin was
shown to be under an NMMII-generated tensile force of about 2.5 pN (0.25 µdyn) [62]. In
Madin-Darby canine kidney (MDCK) epithelial cells, epithelial cadherin (E-cadherin) was
under a constitutive 1–2 pN (0.1–0.2 µdyn) of tensile force generated by NMMII [100]. In
static BAECs and those experiencing SS, VE-cadherin was under a tension of 2.4 and 1.8 nN
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(0.24 and 0.18 mdyn)/molecule, respectively [63]. The tension across PECAM-1 in static
BAECs was negligible, but increased under SS tension to 2.0 pN (0.2 µdyn)/molecule in a
vimentin-dependent manner [63].

Table 1. Transmembrane and membrane-associated proteins under NMMII-generated tension.

Protein Tension across Protein NMMII Involvement Cell Type Reference

E-cadherin 1 1–2 pN + MDCK epithelial cells [100]
PECAM-1 in static cells negligible BAECs [63]
PECAM-1 in cells under SS 2.0 pN/molecule Vimentin is involved BAECs [63]
VE-cadherin in static cells 2.4 nN/molecule + BAECs [63]
VE-cadherin in cells under SS 1.8 nN/molecule + BAECs [63]
Vinculin ~2.5 + BAECs [62]

1 Abbreviations: BAECs, bovine aortic endothelial cells; E-cadherin, epithelial cadherin; MDCK, Madin-Darby
canine kidney; nN, nano-Newton; PECAM-1, platelet endothelial cell adhesion molecule 1; pN, pico-Newton;
VE-cadherin, vascular endothelial cadherin.

Generally, RhoA and Rac1 increase and attenuate the NMMII contractile force acting
on VE-cadherin, respectively (Figure 4). For example, in human dermal microvascular ECs
(HMECs) and human pulmonary arterial ECs (HPAECs), the counterbalance between Rho
and Rac1 determines the force pulling the VE-cadherin into the cell interior [101]. RhoA
activation increases the NMMII-generated tension on VE-cadherin, while Rac1 decreases
it [101].
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Figure 4. Scheme illustrating the regulation of NMMII-generated force acting on VE-cadherin. MLCK
and RhoA lead to NMMII contraction. Rac1 leads to NMMII relaxation. Thus, the NMMII-generated
force acting on VE-cadherin is controlled by counterbalance between MLCK, RhoA, and Rac1.

2.3.3. Rac1 in the Regulation of Actin Polymerization Pushing Force in Lamellipodia

ECs are known to form lamellipodia, which are protrusive actin-based structures [102].
Lamellipodia assembly is mainly governed by Rac1 [87,88]. Lamellipodia push the plasma
membrane out from the cell interior, and this pressure can increase or decrease the en-
ergy required for the activation of any endothelial mechanosensory by SS. For example,
VE-cadherin, an element of the mechanosensory PECAM-1/VE-cadherin/VEGFR2 com-
plex [8], is a component in lamellipodia in HUVECs [102]. There is an interesting interplay
between pushing, which is generated by protrusive actin polymerization, and NMMII-
dependent pulling forces in the formation of VE-cadherin mediated adherens junctions in
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HUVECs [102]. It should be noted that NMMII contractility is required for lamellipodia
formation [102,103].

3. Effects of Pro-Inflammatory Stimuli on the Biomechanics of the Lipid Bilayer and
Submembrane Cytoskeleton; Focus on Counterbalance between RhoA and Rac1
3.1. Pro-Inflammatory Stimuli and the Lipid Bilayer Biomechanics

Hypoxia itself can be a mechanical signal for ECs, as a decrease in the number of
dioxygen molecules dissolved in the lipid bilayer of the plasma membrane is a mechani-
cal stimulus that can influence the mechanosensitive transmembrane proteins and, thus,
participate in the hypoxia response [104].

However, hypoxia can also lead to the increased production of reactive oxygen species
(ROS) [105], which may increase membrane lipid peroxidation, with effects on the mechan-
ical properties of the lipid bilayer. Oxysterols, products of cholesterol oxidation, promote
the development of atherosclerosis [106]. Connections between dyslipidemia and the me-
chanical properties of ECs were reviewed elsewhere [22]. Hypercholesterolemia leads to
the accumulation of cholesterol in ECs, and promotes the development of inflammation
and atherosclerosis [22,107,108]. An increase in low-density lipoprotein (LDL) cholesterol
levels and a decrease in high-density lipoprotein (HDL) cholesterol levels in blood plasma
are among the key risk factors for atherogenesis [107,109].

Oxidative stress leads to an accumulation of oxidized phospholipids in the EC plasma
membrane [110]. The peroxidation of membrane lipids decreases the lipid bilayer thick-
ness [111,112]. On the other hand, long-chain polyunsaturated fatty acids (PUFAs)—such as
eicosapentaenoic acid (EPA, C20:5, n-3), docosahexaenoic acid (DHA, C22:6, n-3), and docos-
apentaenoic acid (DPA, C22:5, n-3)—trigger anti-inflammatory anti-atherogenic responses
in ECs, as can be exemplified with docosahexaenoic acid (DHA) (22:6ω-3) [113–115].

3.2. Pro-Inflammatory Stimuli in RhoA and Rac1 Regulation in ECs
3.2.1. Hypoxia and Oxidative Stress in the Regulation of RhoA and Rac1 in ECs

In cultured porcine aortic ECs (PAECs), hypoxia induces the activation of RhoA and
the inhibition of Rac1 [93] (Table 2). In piglet PAECs, hypoxia activates RhoA and inhibits
Rac1 [116]. In rat PAECs, hypoxia activates RhoA [117]. In rat PAECs, oxidative stress
(H2O2) activates RhoA [117]. In BAECs, H2O2 induces the activation of Rac1 [118].

Table 2. Hypoxia and oxidative stress in RhoA and Rac1 regulation in ECs. ↑—activation, ↓—
inhibition.

Stress Factor Effect on RhoA or Rac1 EC Type Reference

Hypoxia

↑ RhoA Porcine AECs 1 [93]
↑ RhoA Piglet PAEC [116]
↑ RhoA Rat PAECs [117]
↓ Rac1 Porcine -AECs [93]
↓ Rac1 Piglet PAECs [116]

Oxidative stress
↑ RhoA Rat PAECs [117]
↑ Rac1 BAECs [118]

1 Abbreviations: AECs, aortic endothelial cells; BAECs, bovine aortic endothelial cells; PAECs, pulmonary artery
endothelial cells.

3.2.2. Pro-Inflammatory Cytokines in RhoA and Rac1 Regulation in ECs

As discussed above, RhoA-ROCK activation via the induction of actomyosin contrac-
tility may increase the tension experienced by EC mechanosensors, leading to an increase in
the pro-inflammatory response in ECs. Pro-inflammatory mediators unbalance RhoA–Rac1
activities and homeostasis, resulting in changes to the intracellularly generated tension and
mechanosensors’ activation threshold.

Ang II can induce vascular inflammation and remodeling [10]. Ang II acts via two
types of Ang receptors, type 1 (AT1R) and type 2 receptor (AT2R), which significantly differ



Membranes 2022, 12, 205 10 of 19

in their physiological effects [119]. Signaling through AT1R leads to vasoconstriction, oxida-
tive stress, and inflammation, while signaling through AT2R mediates anti-inflammatory
effects [120,121] and prevents the development of hypertension in animal models of hy-
pertension [119]. In BAECs, the stimulation of AT1R leads to the sequential activation of
Gα12/13 and RhoA [122]. In BAECs, Ang II acting via AT1R activates Rac1, and elevates
focal adhesion complexes and actin fiber formation [118]. In contrast, the activation of
AT2R has been linked with the negative regulation of RhoA activity in vascular smooth
muscle cells [123]. In BAECs, C-reactive protein (CRP) activates the RhoA–ROCK pathway
to induce the expression of plasminogen activator inhibitor-1 [124].

Sphingosine 1-phosphate (S1P) may exert both anti-inflammatory anti-atherogenic
effects, when acting through S1P receptor type 1 (S1P1 receptor), and pro-inflammatory
pro-atherogenic effects, when acting through S1P2 and S1P3 receptors [125–127]. The
stimulation of S1P1 receptor signaling activates Gαi and Rac1, leading to the suppression of
the pro-inflammatory response [126]. Both S1P2 and S1P3 receptors are coupled to Gαi/o,
Gαq, and Gα12/13 and their stimulation activates the RhoA–ROCK axis and destabilizes
endothelial barrier [125–127].

Thrombin, an important regulator of acute and chronic vascular inflammation, acts
via protease-activated receptors (PARs), of which there are four isoforms (PAR-1, -2, -3,
and -4) [128]. In HUVECs, thrombin activates RhoA, suppresses Rac1 activity, and induces
actomyosin contractility [129,130]. Intermedin, a member of the calcitonin gene-related
peptide family, and acting via calcitonin receptor-like receptors, antagonizes thrombin-
induced endothelial hyperpermeability via the activation of Rac1 [129].

4. Some Mechanosensors Are Located in the Plasma Membrane of the EC; Their
Sensitivity to the Lipid Bilayer and the CSK Biomechanics
4.1. Piezo1

Piezo1 is a transmembrane cation channel [131–133] that is gated by membrane tension
and SS [134,135]. Full-length Piezo1 was cloned from the mouse neuroblastoma N2A
cell line and expressed in several other cell lines [136]. Piezo1 exhibits activation by
stretching [136,137]. Fluorescent Piezo1 constructs were expressed in HEK293 cells [134].
Blebs formed in these transfected cells were deficient in the cytoskeletal proteins, and the
basal Piezo1 activity in the bleb-attached patches was higher than in whole-cell-attached
patches, suggesting that the membrane tension is a main driver of mechanosensitive gating
of Piezo1, whereas the CSK has a mechanoprotective role [134].

Piezo1 performs multiple roles in the cardiovascular system, and links mechanical
stimuli to the triggering of both pro- and anti-atherogenic responses in ECs [138]. Piezo1 is
expressed in many cell types participating in the development of atherosclerosis, including
ECs, vascular smooth muscles cells, T and B cells, and monocytes, which undergo sequential
transition into macrophages and lipid-engorged foam cells [138]. The endothelial-specific
deletion of Piezo1 in mice impairs SS-mediated vascular development [131], sprouting an-
giogenesis, and vascular lumen formation [139]. Moreover, EC Piezo1 can sense disturbed
blood flow and is linked to inflammatory signaling [140]. In human umbilical arterial ECs
(HUAECs), the fluid SS-induced activation of Piezo1 leads to ATP release and autocrine
stimulation of the purinergic P2Y2 receptor and its downstream effectors, Gαq and Gα11,
which triggers the activation of eNOS, NO release, and vasodilatation [141]. Depending
on blood flow patterns, Piezo1 activation, together with the activation of purinergic P2Y2
receptor and Gαq/11, may lead to atheroprotective signaling or atherogenic signaling in
response to laminar SS or disturbed SS, respectively [140]. In the case of disturbed flow,
the induction of atherogenic signaling proceeds via the activation of integrin by SS sensors
Piezo1 and P2Y2–Gαq/11 [140].

4.2. Mechanosensory PECAM-1/VE-Cadherin/VEGFR2 Complex

VE-cadherin is both a key player in the regulation of the endothelial barrier func-
tion [94,95] and an element in the PECAM-1/VE-cadherin/VEGFR2 mechanosensory
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complex [8]. Interestingly, a direct association between PECAM-1 and Gαq/11 was reported
in HUVECs [142,143]. In HUVECs, the dissociation of Gαq/11 from PECAM-1 is dependent
on Gαq/11 activation by fluid SS, and on the patterns of fluid SS. Here, impulse and oscil-
latory, but not ramped-transient flow induced Gαq/11 dissociation from PECAM-1 [142].
VEGFR2 is localized in lipid rafts, and interference in the lipid raft structure may impair
its activation by SS [144]. The transmembrane domains of VE-cadherin and VEGFR2 and
VEGFR3 can interact with each other, and this interaction is important for SS signal trans-
duction onto and the activation of VEGFR2/3 [145]. The linking of VE-cadherin to the
actin CSK seems to be mediated by β- and α-catenins, as it takes place in epithelial cells
containing epithelial (E)-cadherin [146]. E-cadherin binds to β-catenin, β-catenin interacts
with α-catenin, and α-catenin binds to actin filaments [146].

The SS response of ECs includes re-arrangement in the EC cytoskeleton and the redis-
tribution of the intracellular forces acting on PECAM-1 and VE-cadherin [63]. The onset of
the flow elicited an increase in the tension on PECAM-1 and a decrease in the tension on
VE-cadherin [63]. Vimentin, an intermediate filament, appears to transmit NMMII tension
onto PECAM-1 [63]. In our hypothesis, RhoA- and Rac1-dependent intracellular forces can
tune the mechanosensitivity of the PECAM-1/VE-cadherin/VEGFR2 complex (Figure 5).
Indeed, in HUVECs, the VE-cadherin located in the lamellipodia undergoes exhibits both
pushing and pulling forces [102]. S1P, via the S1P1 receptor, activates Rac1 and suppresses
pro-inflammatory elevation in endothelial permeability [126,127] (Figure 5). Rac1 inhibits
the RhoA–ROCK pathway that reduces NMMII-generated tension on VE-cadherin, result-
ing in the stabilization of VE-cadherin [101]. On the other hand, NMMII contractility also
contributes to lamellipodia formation [102,103].
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4.3. Heterotrimeric G Proteins and GPCRs

There is experimental evidence for the activation of GPCRs and heterotrimeric G
proteins by fluid SS in the absence of GPCR agonists. The exposure of HUVECs to fluid
SS (10 dyne/cm2) induces the rapid (within 1 s) activation of Gαq and Gαi3 [147]. The
reconstitution of purified Gαq and Gαi3 in phospholipid liposomes reveals that the lipid
composition significantly influences the activation of G proteins in response to fluid SS
(0–30 dynes/cm2) [70]. In human coronary artery ECs (HCAECs), Gαq/11 proteins are
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activated by fluid SS independently of upstream GPCRs [148]. In addition, in HCAECs, the
stimulation of Gαq/11 proteins by fluid SS is independent of the Piezo1 channel [143].

The human bradykinin type 2 receptor (B2R), with an inserted yellow fluorescent
protein and fused to a cyan fluorescent protein, was expressed in BAECs [149]. The recom-
binant B2R was activated by fluid SS, hypotonic stress, and benzyl alcohol in the absence
of a B2R agonist [149]. Several long-chain polyunsaturated fatty acids (eicosapentaenoic
acid, docosahexaenoic acid, docosadienoic acid, and dihomo-γ-linoleic acid) activated
B2R in BAECs and in B2R-transfected HEK293 cells in a ligand-independent manner [150].
The search for a structural motif(s) responsible for the mechanosensitivity of the human
histamine type 1 (H1) receptor in HUVECs revealed that helix 8, located in the cytoplasmic
C-terminus of the H1 receptor, is essential [151]. Whether intracellular forces, such as
NMMII-dependent contractions, influence the activities of heterotrimeric G proteins and
GPCRs remains poorly understood.

4.4. Integrins

Integrins, heterodimeric adhesion proteins linking extracellular matrix proteins to
the cytoskeleton, comprise 18 α- and 8 β-subunits, which form 24 heterodimers [152].
Integrins sense various mechanical stresses and convert a mechanical force into biochemical
signaling within the cell [58]. The multiple roles of integrins—expressed on ECs, leukocytes,
monocytes/macrophages, vascular smooth muscle cells, and platelets—in the pathogenesis
of atherosclerosis are reviewed in depth elsewhere [153,154].

Integrins are sensitive to the lipid bilayer ordering and thickness [155–158]. Moreover,
in PAECs and mouse embryonic fibroblasts, integrins themselves seem to increase the
lipid bilayer order [155]. The exposure of HUVECs to pro-inflammatory oscillatory SS
(0.5± 4 dyn/cm2) or anti-inflammatory pulsatile SS (12± 4 dyn/cm2) induced the opposite
effects on α5β1 integrin localization in lipid rafts [156]. Oscillatory SS and pulsatile SS
increase or decrease the levels of α5β1 integrins in lipid raft regions, respectively [156].
The exposure of HAECs to three non-lipid amphiphiles (vitamin E, Triton X-100, and
benzyl alcohol) was used for the study of β1 integrin dependence on lipid bilayer order and
domain thickness [157]. Only benzyl alcohol partitioned into the liquid-disordered domains
and thinned these domains, enhancing β1 integrin affinity and valency, and inducing β1
integrin clustering [157]. Lietha and Izard suggested that mechanical stress-induced β
integrin activation is mediated by membrane thinning [158].

Integrins are linked to the actin-based cytoskeleton via numerous scaffolding pro-
teins, such as talin, vinculin, filamin A, and zyxin [58,152]. Integrins themselves regulate
NMMII [153]. NMMII-generated contractility is required for the maintenance of integrin
adhesion complexes [159]. In the stationary membranes of BAECs, the tension across
vinculin was generated by NMMII and its upstream regulator RhoA, and was about 2.5 pN
(0.25 µdyn) [62].

5. Conclusions

The experimental data considered here suggest that internal cellular forces—mainly NM-
MII contractility and actin-based lamellipodial protrusions, together with pro-inflammatory
cholesterol- and oxidative stress-induced changes in the biomechanics of the lipid bilayer—
tune the mechanosensitivity of the endothelial mechanosensors. Since RhoA and Rac1, key
regulators of NMMII contractility and actin filaments assembly, are themselves critically
regulated by pro-inflammatory agents, the biomechanics of the plasma membrane of ECs
can be softened or stiffened upon inflammation, with subsequent alteration in ECs response
to fluid SS. Fluid SS, depending on its patterns, is among the main controllers of endothelial
inflammation. We propose that the altered—by first exposure of ECs to pro-inflammatory
agents—mechanosensitivity of mechanosensors leads to their aberrant activation, and to
the formation of a vicious cycle where pro-inflammatory signaling is sustained. Low-grade
vascular inflammation then promotes atherogenesis.
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