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Abstract: Motor impairment has a profound impact on a significant number of individuals, leading
to a substantial demand for rehabilitation services. Through brain–computer interfaces (BCIs),
people with severe motor disabilities could have improved communication with others and control
appropriately designed robotic prosthetics, so as to (at least partially) restore their motor abilities. BCI
plays a pivotal role in promoting smoother communication and interactions between individuals with
motor impairments and others. Moreover, they enable the direct control of assistive devices through
brain signals. In particular, their most significant potential lies in the realm of motor rehabilitation,
where BCIs can offer real-time feedback to assist users in their training and continuously monitor the
brain’s state throughout the entire rehabilitation process. Hybridization of different brain-sensing
modalities, especially functional near-infrared spectroscopy (fNIRS) and electroencephalography
(EEG), has shown great potential in the creation of BCIs for rehabilitating the motor-impaired
populations. EEG, as a well-established methodology, can be combined with fNIRS to compensate
for the inherent disadvantages and achieve higher temporal and spatial resolution. This paper
reviews the recent works in hybrid fNIRS-EEG BCIs for motor rehabilitation, emphasizing the
methodologies that utilized motor imagery. An overview of the BCI system and its key components
was introduced, followed by an introduction to various devices, strengths and weaknesses of different
signal processing techniques, and applications in neuroscience and clinical contexts. The review
concludes by discussing the possible challenges and opportunities for future development.

Keywords: motor rehabilitation; brain–computer interface; functional near-infrared spectroscopy;
electroencephalography; multimodal; motor imagery

1. Introduction

Motor disability, also known as motor impairment, refers to a reduction or complete
loss of function in one or more body parts [1]. Motor disability can lead to decreased
mobility and manual dexterity, motor coordination difficulties, or even paralysis. A variety
of medical conditions can cause motor disability, including (but not limited to) stroke,
spinal cord injury, multiple sclerosis, brain injury, Parkinson’s disease, neuromuscular
diseases, major orthopedic injury, cerebral palsy, and aging [2]. Rehabilitation training is
one of the most important ways to treat motor disability and improve the quality of life
of patients [3]. It is estimated that at least one-third of the world’s population requires
rehabilitation at some point in their life due to illness, injury, or trauma [2].
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Active motor training is the principal approach used to drive motor recovery in
patients, which enhances the activity of the primary motor cortex via physical and oc-
cupational therapy [4] and pharmacological interventions [5]. Patients usually receive
professional rehabilitation training at rehabilitation centers as well as extended training
treatments (i.e., outside of the rehabilitation center) in daily life [6,7]. However, individuals
with severe motor impairments, such as those who are paraplegic or quadriplegic, may
face difficulties in performing therapeutic movements, making it challenging to observe
external improvement and monitor the recovery process. Additionally, using physical
assistance equipment (e.g., functional electrical stimulation (FES), robotic devices, and
exoskeletons) may be limited due to cost, bulkiness, or a narrow focus on specific rehabili-
tation areas [8]. Furthermore, even those with moderate symptoms may not have access
to rehabilitation training devices due to economic disparities or the unequal distribution
of medical resources. Therefore, new strategies are necessary to supplement physical aids
and accelerate motor recovery during rehabilitation therapy.

Brain–computer interface (BCI) technology offers an alternative avenue for motor
rehabilitation. BCI is a direct communication pathway that measures, decodes, and trans-
lates electric, magnetic, or metabolic brain activity into commands for controlling external
devices. In motor rehabilitation, patients often mentally rehearse physical movements
through a process known as motor imagery (MI), which can physically alter neuronal con-
nections within the brain to adapt to the sensory input, a process called neuroplasticity [8].
BCI can provide meaningful feedback to the central nervous during the motor rehabilitation
system to help direct plasticity by measuring the change in cortical activity in response to a
stimulus or when rehearsing a voluntary movement, thus helping the patient to access the
motor system and facilitate rehabilitation across all stages of motor recovery [9]. Several
studies have already shown that BCI is a promising way for the motor recovery of patients
suffering from motor impairment [10–12].

Both functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG)
can be used to measure relevant brain activities for BCI applications. fNIRS measures the
intensity changes of near-infrared light that has travelled through the scalp and brain to
monitor the brain’s hemodynamic activities [13]. EEG records the electrical signals indi-
cating the activity of populations of neurons over a short period using multiple electrodes
placed on the scalp. At present, both fNIRS and EEG technologies are commonly used in
BCIs, due to their fine non-invasiveness, cost-effectiveness, portability, and potential capac-
ity for long-term monitoring within and outside of laboratory settings [14–17]. However,
fNIRS and EEG both possess inherent advantages and disadvantages. EEG offers high
temporal resolution, but it has low spatial resolution and holds clear vulnerability to motion
artifacts [18]. On the other hand, fNIRS can provide spatially specific signals and could
be potentially more tolerant of motions compared to EEG recording [19]. Additionally,
the use of diffuse optical tomography (DOT) has the ability to provide 3D imaging of
cortical hemodynamic changes. The temporal resolution of fNIRS in BCIs is limited to
about 1 s, due to its sensitivity to the vascular responses to increased neuronal demand [20].
Therefore, combining fNIRS with EEG is becoming a promising approach to overcome
the inherent limitations of each technology and achieve complementary measurements of
cerebral activity in BCIs [21].

The idea of integrating multiple signals or modalities in BCIs is called multimodality.
A multimodal BCI facilitates the integration of information from multiple sources, enabling
the improved measurement and decoding of users’ brain activity. Specifically, the fNIRS-
EEG BCI can simultaneously measure electrical and hemodynamic activities in the brain.
Several studies have shown that this integration can improve the classification accuracy of
the command translated from the brain activity [21–24] and enhance the understanding
of the neurovascular relationship, aiding patients with motor disabilities in neurorehabil-
itation [23]. However, some challenges remain to be solved to achieve a fully integrated
fNIRS-EEG BCI suitable for motor rehabilitation [14], including the device wearability,
signal processing method, and multimodal system integration.
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In this review, our primary focus is on the advancements and potential of fNIRS
BCI systems, with a special emphasis on how their integration with EEG can lead to
significant improvements in wearable BCI technologies. We aim to explore the synergistic
effects of this combination, particularly in the context of motor rehabilitation, highlighting
how the fusion of fNIRS and EEG can enhance the efficacy and applicability of BCIs for
individuals with motor impairments. The combination of fNIRS and EEG systems has made
extraordinary progress, covering areas of instrumentation, brain–computer interfaces, brain
function, and gait rehabilitation. Detailed reviews are available in [25–28]. While previous
reviews have primarily focused on the general applications of multimodal BCIs, we provide
an analysis of fNIRS-EEG BCIs specifically aimed at motor rehabilitation, including the
development, limitations, necessary improvements, and current translational applications.
The remainder of this paper is structured as follows: Section 2 describes the methodology
of our literature review and the criteria for identifying and categorizing published works.
Section 3 illustrates the principle of fNIRS-EEG BCIs and the commonly used devices.
Section 4 reviews the current methods utilized in (pre)signal processing, feature extraction,
and classification. Section 5 summarizes the current translational applications of fNIRS-
EEG BCIs in motor rehabilitation. Finally, we summarize the key point of our review and
discuss the areas of future advancement in Section 6.

2. Identified Publications

Google Scholar and Web of Science search engines were used for keyword searches: For
fNIRS BCI: [Brain Computer Interface (BCI)] AND [Motor imagery (MI)] AND [Functional
Near-Infrared Spectroscopy (fNIRS)] OR Electroencephalograph (EEG) OR fNIRS-EEG]
AND [Stroke OR Motor-rehabilitation OR Motor-recovery OR Gait disorders OR reha-
bilitation]; For fNIRS-EEG BCI: [Brain Computer Interface (BCI)] AND [Motor imagery
(MI)] AND [[Functional Near-Infrared Spectroscopy (fNIRS) AND Electroencephalograph
(EEG)] OR [fNIRS-EEG]] AND [Stroke OR Motor-rehabilitation OR Motor-recovery OR
Gait disorders OR rehabilitation]. Following the keyword searches, we retrieved a pool
of articles from both search engines. These articles were then subjected to a meticulous
manual screening process. During this assessment, we specifically selected articles that de-
scribed either fNIRS-based BCIs or fNIRS-EEG-based BCI technologies and had discussions
or clear potential clinical implications for motor rehabilitation. Conversely, we excluded
articles that were limited to studies on healthy subjects without a rehabilitation context or
those that did not provide clear evidence of the use of fNIRS in BCIs. This search strategy
resulted in 23 key publications summarized in Tables 1 and 2. More details can be found in
Tables S1 and S2.

Table 1. Signal processing methods in reviewed fNIRS-based BCI studies. (F stands for clinical
application).

Ref.
(FFF Clinical)

Feature Extraction (FE)/Channel
Selection (CS) Features Classifier

F [29] - Median of HbO, HbR ANOVA

[30] FE: GLM HbO, HbR SVM

[31] FE: Linear-combination-based HbO, HbR HMM

[32] FE: PR algorithm HbO SVM, ANN

F [33] CS: Individual-based T-map Mean of HbT LDA

F [34] - HbO, HbD LDA, SVM

[35] FE: Convolutional filters HbO, HbR SVM, ANN, CNN

F [36] -
HbO, HbR

(mean, peak, variance, slope,
kurtosis, skewness)

k-NN, QDA, LDA,
Naïve Bayes, SVM
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Table 1. Cont.

Ref.
(FFF Clinical)

Feature Extraction (FE)/Channel
Selection (CS) Features Classifier

F [37] CS: CNR HbO, HbR
(mean, slope) LDA

[38] - HbO, HbR, HbT, HbD
(mean, peak, variance)

ML: SVM, MLPNN,
PBL-McRBFN

DL: CNN

F [39] -
HbO, HbR

(mean, peak, variance, kurtosis,
skewness)

ML: k-NN, SVM, LDA
DL: CNN, LSTM, Bi-LSTM

Table 2. Signal processing methods in reviewed fNIRS-EEG-based BCI studies. (F stands for clinical
application).

Ref.
(FFF Clinical)

Feature Extraction
(FE)/Channel Selection (CS) fNIRS Features EEG Features Classifier

[23] - HbO, HbR µ, β-band LDA

[24] - HbO, HbR α, β-band LDA

F [40] - HbO, HbR α, β-band (peak) SVM

[41] - HbO and HbR (mean) β-band
(mean, peak) LDA

[42] - HbO δ, θ, α, β-band SVM

[43] FE: JMI HbR, HbO, HbT, HbD
µ, β-band

(time-phase-frequency
features)

ELM

[44] FE: CSP HbO, HbR (mean, slope) µ, β-band LDA

[45] CS: GLM
FE: PCA (fNIRS), DWT(EEG) HbO, HbR, initial dip DWT (approximation

coefficients) SVM

[46] - HbO, HbR µ, β-band SVM, LDA, DNN

F [47] FE: CSP
HbO, HbR

(peak, peak latency,
integral area)

α, β-band ANOVA, SVM

[48] - HbO, HbR α, β-band CNN-LSTM

[49] - HbO, HbR (mean) δ, θ, α, β-band
(mean)

DNN, CNN,
CNN-LSTM,
MCFHNet

While the methods and applications described in these works vary significantly, we
have attempted to group all the systems into two categories based on their modality. There
are 11 fNIRS-BCI studies (including combination with eye trackers) and 12 fNIRS-EEG BCI
studies. Regarding signal classification methods, there are twenty-two involving conven-
tional machine learning (ML) algorithms and six utilizing deep learning (DL) methods. In
the context of motor rehabilitation, based on the target limb, we divided these publications
into upper and lower limb, which are ten and four studies, respectively, discussed in
Section 5.

3. BCI Systems

In this section, we first provide a more detailed description of the components of
a multimodal BCI system, then focus on different devices for brain signal acquisition,
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including fNIRS, EEG, and the combined modality. As the initial step involved in building
a BCI system, the choice of adequate devices to acquire signals is of great importance.

3.1. Typical BCI Structures

A typical multimodal BCI system consists of five stages [25]: signal acquisition, signal
pre-processing, feature extraction, classification, and the application interface. Figure 1
depicts a schematic of a hybrid fNIRS-EEG BCI. The brain activity signals are first collected
and amplified by the fNIRS and EEG devices, before going through signal filtering and
pre-processing. After the pre-processing, distinct features of the signals are extracted.
Some commonly used fNIRS and EEG features are signal peak, slope, mean, kurtosis,
skewness, and power spectrum density [50]. These features are fed into a classifier in
the next stage. At the final stage, the classified signals are transmitted to a computer or
other devices to generate the control commands for the hardware (exoskeleton, prosthesis,
wheelchair, neuro-interface for attention control, etc.). In the feedback loop, the form of
presentation can be abstract (such as a moving bar on a screen), embodied (such as a
real-time display of controlled activity based on virtual reality (VR)), or somatosensory
representations delivered through haptic, robotic, or neuromuscular electrical stimulation
(NMES) systems [1].
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motor rhythm; ERPs—event-related potentials; LDA—linear discriminant analysis; SVM—support
vector machines; ANN—artificial neural network).

Speed, accuracy, ease of use, and length of training period are some of the key criteria
for assessing BCI systems for MI. The MI-based BCIs can form an information channel for
motor-impaired people, as it can be visualized and provide feedback to both the patient
and the therapist. Furthermore, patients without mobility can gain control of external
devices by utilizing MI in BCI systems. Common MI tasks include imagining actions such
as squeezing a soft ball, finger tapping, foot tapping, and hand grasping.

3.2. BCI Hardware
3.2.1. fNIRS Devices (Fiber/Fiberless)

The quantity of research related to fNIRS has experienced a significant surge over the
past two decades, concomitant with the increasing accessibility of commercially available
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fNIRS systems [51]. The benchtop fNIRS devices, such as NIRScout (NIRx GmbH, Berlin,
Germany) in Figure 2(A1) [24,44,48,52], DYNOT (NIRx Medical Technologies, New York,
NY, USA) [36,39,40], NirScan (Danyang Huichuang Medical Equipment Co., Ltd., Danyang,
Jiangsu, China) [47,53], and the LABNIRS system (Shimadzu Corporation, Kyoto, Japan) in
Figure 2(A2) [37], are usually developed with bulky control electronics and cumbersome
fiber bundles.

Wearable fNIRS devices can be achieved by fiberless design and lightweight electronics,
such as Nirsmart series (Nirsmart, Danyang Huichuang Medical Equipment Co., Ltd.,
Danyang, Jiangsu, China) in Figure 2(A3) [54]. The wearability of the device provides
the patients with more flexibility and comfort during motor rehabilitation. More recently,
Gowerlabs Ltd. (London, UK) have developed a series of high-density fNIRS/diffuse
optical tomography (DOT) system [55] with high sampling density across the entire scalp
called LUMO [55,56]. As a fiberless, truly wearable, and user-friendly system, LUMO
introduces a modular design consisting of individual hexagonal sensor tiles (Figure 2(A3)
Right), that can be effortlessly connected into a cap at various locations. The versatility and
scalability of LUMO’s design can make it a valuable tool for high-quality 3D neuroimaging
and high-density BCIs.
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This figure is taken with permission from [58]. (A3) LUMO (Gowerlabs Ltd., London, UK).This figure
is taken with permission from [56]. (B) Examples of some fNIRS-EEG designs. (B1) An NIRScout cap
completely mounted (with EEG electrodes, fNIRS sources, and detectors). This figure is taken with
permission from [44]. (B2) A NIRx fNIRS/EEG cap using collocated passive EEG electrodes with
a fNIRS probe. This figure is taken with permission from [59]. (B3) g.GAMMAcap fNIRS system:
designed to mount g.SENSOR fNIRS together with g.SCARABEO electrodes or g.SAHARA hybrid
electrodes (g.Tec medical engineering GmbH, Austria). This figure is taken with permission from [60].
(B4) Wearable Sensing’s wireless DSI-EEG + fNIRS system: a total of 8 sensor pods on the system, and
each pod has 1 dry EEG electrode in the middle, 4 emitters, and 4 detectors surrounding. (Wearable
Sensing, San Diego, CA, USA). This figure is taken with permission from [61].

3.2.2. fNIRS-EEG Devices

An ideal BCI system should be able to effectively gather real-time information about
brain activity, with a quick setup time and long-term stability [27]. As the diversity of
commercial devices increases, numerous fNIRS-EEG studies have used a cap that cov-
ers the entire head with a cohesive configuration that includes both optodes and elec-
trodes [44] (Figure 3A) or applied different modalities to separate positions on the scalp [40]
(Figure 3B).

Some researchers have designed their own cap to better accommodate a target brain
area or a specific task. For example, Koo et al. designed a unique sensor frame with each
part holding three electrodes, one detector, and four sources on one hemisphere of the
scalp [42]. They combined Imagent (ISSInc., Champaign, IL, USA) [42,46] and g.MOBIlab+
(g.Tec medical engineering, Schiedelberg, Austria) [40,42] to concurrently record fNIRS and
EEG. Another common solution for fNIRS-EEG BCIs is to combine commercially available
individual systems on a single headcap to collect fNIRS and EEG signals. For example,
NIRScout can be integrated with other EEG devices such as Brain Products [24,48,52] and
microEEG (BioSignalGroup, Brooklyn, NY, USA) [44]. Specifically, the sensor placement
for EEG can be performed in two distinct ways: adjacent positioning (Figure 2(B1)) or
co-located measures (Figure 2(B2)). While adjacent positioning allows for experiments with
any type of EEG electrode and reduces setup time, co-located measures are restricted to
ring electrodes and necessitate transparent gel.

To our knowledge, there is no fully integrated fNIRS-EEG device available to be
applied in motor rehabilitation [14]. However, there have been a few attempts made in
this direction. Some companies have adopted an add-on modular approach to facilitate
the construction of multimodal systems. For example, g.Tec has developed the g.SENSOR
fNIRS device (g.Tec medical engineering GmbH, Schiedlberg, Austria), which consists of
eight channels and can be used in conjunction with g.Tec’s EEG amplifiers, such as the
g.USBamp, allowing for simultaneous recording of both EEG and fNIRS signals. It can be
mounted with a magnet holder onto the g.GAMMAcap fNIRS system (Figure 2(B3)), which
includes one set of optode holders located on the frontal cortex and another set situated over
the sensorimotor cortex. The device is equipped with low-power optodes for the frontal
cortex and high-power optodes for the sensorimotor cortex. The wireless DSI-EEG + fNIRS
system (Figure 2(B4)) developed by Wearable Sensing (San Diego, CA, USA) represents a
significant advancement, as it is the first truly hybrid system capable of simultaneously
recording dry EEG and fNIRS signals from the same location. Of note, besides the two
solutions mentioned above, some BCIs utilize EEG signals for decoding brain activities
while using the fNIRS device to monitor cortex activations (Figure 3C) [53,54].
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Figure 3. Examples of some fNIRS-EEG configurations in BCI studies. (A) A cohesive configuration
of optodes and electrodes. This figure is taken with permission from [44]. (B) Electrode and optode
placement of EEG (for visual frequency change) and NIRS (for left and right motor imageries).
Numbers indicates fNIRS channels. This figure is taken with permission from [40]. (C) Illustration of
a BCI–robot system. The subfigure on the left illustrates 16 EEG electrodes used in experiments. The
subfigure on the right illustrates a fNIRS configuration with 12 channels. The probes are located over
the prefrontal cortex (bilateral cortex near FPZ), the primary motor cortex (M1) (bilateral). This figure
is taken with permission from [53].

4. Signal Processing in fNIRS and fNIRS-EEG-Based BCIs

Following an overview of the hardware, this section focuses on the signal processing
methods and study outcomes in both fNIRS-based BCIs (Section 4.1) and fNIRS-EEG-
based BCIs (Section 4.2) to evaluate the improvement in performance that results from the
hybridization of these two modalities. In each subsection, we cover the topics of signal
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acquisition and pre-processing, channel selection and feature extraction, and classification,
which are all essential elements in a BCI system. An overview of signal processing methods
for fNIRS-BCIs and fNIRS-EEG BCIs on motor-related tasks are presented in Tables 1 and 2,
respectively, with chronological order.

4.1. fNIRS-Based BCIs
4.1.1. Data Pre-Processing

The acquired fNIRS signals usually contain various noises, including instrumental
noise, experimental noise, and physiological noise [20,25]. These noises can obscure func-
tional brain activity and should be eliminated before converting the raw optical densities
into concentration changes of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR).

A variety of methods can be implemented to eliminate noise in fNIRS-BCI systems.
These include band-pass, adaptive, Kalman, Wiener, Gaussian, and hemodynamic response
filters (hrf), along with finite impulse response techniques [36]. Additionally, advanced
analytical methods like principal component analysis (PCA) and independent component
analysis (ICA) are employed [25]. Temporal filters are also in use, such as the moving
average convergence/divergence (MACD) filter for real-time band-pass filtering. This
method, which calculates the difference between two exponential moving averages (EMA),
has been successfully tested in several studies [37]. The MACD filter was notably utilized in
an fNIRS-BCI system for stroke recovery, aiming to remove global trends and physiological
noise from respiration and cardiac movements.

Furthermore, wavelet transform (WT)-based methods offer an alternative for noise re-
duction [20,35,38]. Continuous wavelet transforms (CWT), applied with a soft thresholding
rule [62], capture significant fNIRS signal features by localizing the time-frequency char-
acteristics of non-stationary signals. Discrete wavelet transforms (DWT) analyze wavelet
coefficients (WCs) and their temporal variations for each channel. One application involved
developing a detrending algorithm using the wavelet minimum description length (MDL)
algorithm in an fNIRS-BCI study for lower limb movement preparation in chronic stroke
patients [33]. This pre-processing stage decomposes the signal into components of global
trends, hemodynamic signals, and noise, thereby mitigating the occurrence of false or
extraneous components.

Building upon these noise reduction strategies, it is presumed that recorded fNIRS data
comprise both task-evoked and task-independent components, which can be effectively
separated [63]. In this context, data-driven methods such as ICA, PCA, or task-related
component analysis play a crucial role in isolating real functional activity. Notably, PCA has
been specifically utilized to correct sections identified as motion artifacts [64]. Moreover,
motion detection in these studies can be conducted manually or through the integration
of motion sensors or tracking systems. An illustrative example of this is seen in a study
focusing on movement intention for gait rehabilitation. In this research, electromyography
(EMG) was employed to differentiate between voluntary and involuntary activities, thereby
aiding in pinpointing the initiation of movement [33].

4.1.2. Channel Selection and Features Extraction
Channel Selection

Before extracting features, selecting the appropriate channels is essential to simplify
the analysis and ensure reliable data. A study involving six neurologically intact partic-
ipants found a positive correlation between the number of channels used (up to nine)
and classification accuracy [34]. However, it was observed that the optimal classification
outcomes were achieved with a smaller quantity of channels, also emphasizing the signifi-
cance of the quality for the selected channels. Channels with a high coefficient of variation
(standard deviation divided by the mean) are typically considered unsuitable and excluded
from the analysis [64].
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However, the effectiveness of channel selection may be contingent upon the scale of
measurement, specifically, the number of channels produced. In a follow-up study to [34],
ref. [37] explored a wireless brain–computer interface (BCI) with a robotic hand orthosis
aiding motor-impaired patients. They used fNIRS to observe the motor cortex and an LDA
classifier to predict hand postures based on mean and slope features. The study evaluated
how feature window length and feature vector types (‘preserving’ vs. ‘averaging’ channels,
and ‘all’ vs. ‘criterion-selected’ channels) influenced the fNIRS-BCI’s accuracy and response
time. Channels were selected based on the contrast-to-noise ratio (CNR), favoring channels
with positive CNR for HbO and negative for HbR. The optimal results were with HbO
+ HbR signals and ‘preserving channels’, achieving 71.54% accuracy and 2.9 s latency.
However, using criterion-selected channels did not outperform using all channels. The
findings suggest the need for more selection criteria and indicate that channel reduction
might reduce computational resources without compromising performance.

Features Extraction

Although feature selection also depends on different tasks, the mean and slope values
of HbO, HbR, and total hemoglobin (HbT) concentrations are commonly used as features
in fNIRS-based BCI studies [33,37]. In the early detection of a task, the slope feature
seems significant [44]. It has been shown that HbO performs more robustly than HbR
and HbT for assessing task-related cortical activation [25], and may yield higher accuracy
for MI tasks [24]. To account for the temporal changes in the hemodynamic response, a
fifth-order polynomial regression (PR) algorithm was utilized to analyze the changes in
the concentration of HbO responding to hand-tapping tasks, with the coefficients of the
regression curve serving as features [32]. This approach offers the advantage of numerical
analysis and visualization through graphical representations.

4.1.3. Classification

In some cases [34,43], researchers have also utilized the HbD signal (the difference
between HbO and HbR, also known as cerebral oxygen exchange (COD)). For instance, in
an fNIRS-based robotic hand rehabilitation system, the HbD signal was used together with
HbO [34]. Since HbO signals have a broader dynamic range than HbD, and this range can
vary between channels, data standardization and scaling are necessary. Standardization was
performed by subtracting the mean value from each signal and dividing it by the standard
deviation to remove outliers, such as large peaks in the HbO signal. Each standardized
signal was then scaled to a range between 0 and 1. Some other common time domain
features besides signal mean and slope are signal skewness, kurtosis, signal variance,
and signal peak [12,36,65,66]. They are usually combined with mean or slope, and their
performance varies for different tasks and applications. Several studies in fNIRS also
proposed using filter coefficients as classification features, such as Kalman filtering, WT,
and recursive least-square estimation [12,25,65,66]. The aim of classification is to accurately
classify the brain state based on the extracted features, and it is a fundamental step in the
processing of BCIs. Some frequently used methods include linear discriminant analysis
(LDA), support vector machine (SVM), hidden Markov model (HMM), k-nearest neighbor
(k-NN), Naïve Bayes, and quadratic discriminant analysis (QDA) [31,36].

Khan et al. presented an fNIRS-BCI framework for the control of prosthetic legs,
which compared the performance of different combinations of filters, features extracted,
and classifiers [36]. Six different filters (Kalman, Wiener, Gaussian, hrf, band-pass, finite
impulse response) were evaluated and six different features extracted from HbO were
used for classification (signal mean, signal slope, signal variance, slope kurtosis, signal
peak, and signal skewness). Five different classifiers (k-NN, QDA, LDA, naïve Bayes,
SVM) were also tested. The results showed that the combination of SVM and hrf-processed
signals achieved the highest classification accuracy. However, the combination of LDA and
six features was adopted for online BCI due to its low computational cost and execution
delay. Another study also demonstrated that LDA outperformed SVM in real-time data
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processing [34]. Although SVM had a slightly higher average classification accuracy
because of its generalization capability to new data, its high computational cost was a
concern. In this particular case, as the system was designed for the online application
of robotic hand rehabilitation, LDA was selected for its mathematical simplicity and low
computational load, allowing for faster implementation. However, SVM remains one of the
most resource-efficient ML methods for classification purposes [27].

The development of artificial neural networks (ANN) also brings new inspiration to
the classification of brain activities. In 2013, a study compared the performance of SVM
and a three-layer ANN in classifying left-hand and right-hand-tapping tasks [32]. The
small sample size of only three subjects makes it difficult to determine which method
outperforms the other, although SVM was found to be faster in terms of recognition time.
These findings suggest that shallow neural networks may not have a clear advantage over
ML algorithms like SVM. Therefore, researchers are also exploring the feasibility of using
deep neural networks (DNN) in fNIRS-BCIs.

Deep Learning

Based on the previous discussions, it is evident that the process of classifying fNIRS
signals using conventional ML methods involves a number of steps, such as noise removal,
channel selection, local and global feature extraction, dimensionality reduction, and feature
space combination. However, these steps can result in biases and overfitting of the data, and
a considerable amount of time is required for data mining and pre-processing to address
these limitations [39]. As illustrated in Figure 4A, DL methodologies can extract features
automatically and perform classification seamlessly in a single step.

In 2017, a study utilized convolutional neural networks (CNN) to classify fNIRS
signals during right-hand and left-hand motor execution (ME), as well as the rest state,
achieving a higher accuracy of 92.68% compared to SVM and ANN which achieved 86.19%
and 89.35%, respectively [35]. The convolutional filters in the CNN model also produced
better-discriminated features compared to conventional features and hemodynamic re-
sponse signals. However, the CNN model required a longer computational time during
training and testing compared to the ANN and SVM models, indicating the need for
further improvements.

A 2020 study compared the performance of a CNN with conventional ML algorithms,
such as SVM, multilayer perceptron (MLP) neural network, and projection-based learning
in a meta-cognitive radial basis function network (PBL-McRBFN), for classifying different
motor tasks, including right-fist clenching, left-fist clenching, right- and left-foot tapping,
and rest using fNIRS signals [38]. The CNN outperformed the other algorithms with an
average classification accuracy of 72.35 ± 4.4%. This study demonstrates the potential
of DL approaches, specifically using the spectrogram representation of fNIRS signals, for
developing BCI applications. CNN-based time-series classification (TSC) methods were
evaluated and compared to conventional ML methods, such as SVM, for their ability to
classify fNIRS-BCI signals [67]. The CNN-based methods outperformed the ML meth-
ods in terms of classification accuracy, particularly for left-handed and right-handed MI
tasks, achieving up to 98.6% accuracy. These findings indicate that utilizing CNN-based
TSC methods can notably enhance BCI performance while also establishing the basis for
downsizing and increasing the portability of training rehabilitation devices.

A recent study presented a BCI framework for gait rehabilitation using both DL and
ML techniques [39]. The DL algorithms used in the study were CNNs, long short-term
memory (LSTM), and bidirectional LSTM (Bi-LSTM), which achieved an average classifi-
cation accuracy of 88.50%, 84.24%, and 85.13%, respectively. These results outperformed
conventional ML algorithms (SVM, k-NN, LDA) by at least 10%. The classifiers’ control
commands can initiate and terminate the gait cycle of the lower limb exoskeleton, providing
effective assistance in gait training for the elderly and disabled.
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4.2. fNIRS-EEG-Based BCIs

In the context of online BCI systems utilized for rehabilitation purposes, it is important
to prioritize not only high accuracy but also the ability to quickly translate correct brain
activity, so as to provide timely feedback. The integration of fNIRS and EEG in monitoring
brain activity in BCIs has yielded promising improvements, including better performance
in classification accuracy [24], an increased number of control commands [41,65], and a
faster response time [45]. In this subsection, we present different approaches for data
pre-processing and classification when integrating multimodality and demonstrate the
capability of these improvements to contribute to motor rehabilitation BCI systems.
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4.2.1. Pre-Processing and Improved Reliability of Hybrid Signals

EEG features are extracted from frequency bands that are associated with specific
brain activities, including delta (<4 Hz), theta (4–7 Hz), alpha (7–12 Hz), mu (8–13 Hz),
beta (12–30 Hz), and gamma (>30 Hz) [68], with the mu and beta bands commonly referred
to as sensorimotor rhythms (SMR). During the execution or imagination of a motor task,
the mu–beta activity is suppressed in related brain regions, resulting in a proportional
decrease in power; this process is event-related desynchronization (ERD). In the context of
motor rehabilitation BCIs, the alpha–beta band is of primary interest, and various filtering
techniques can be applied to eliminate frequencies that are not within our interest.

Alongside frequency and temporal filters, which eliminate undesirable frequency
components and reduce noise through signal averaging or weighting over time, spatial
filters are also utilized, particularly in conjunction with EEG-fNIRS fusion approaches, to
obtain more comprehensive spatial information. In previous studies [24,42,44], the common
spatial patterns (CSP) method was used to apply spatial filters to separate neural signals
originating from distinct brain regions. In [42], the spatial filters were tailored for decoding
left and right MI events separately. Two-dimensional signals were extracted from each EEG
segment by applying spatial filters. Subsequently, log-scaled variance and power spectral
densities of different frequency bands were computed from each signal. In [44], CSP for
EEG was regularized with information from all participants and optimized using genetic
algorithms to classify right–left and arm–hand. The CPS approach also has the potential to
attenuate signals originating from brain areas that are influenced by noise or artifacts.

In hybrid BCI systems, channel selection is equally critical as in fNIRS standalone
systems. One study in 2017 employed the general linear model (GLM, a popular method
that fits the expected hemodynamic response to the measured fNIRS signal) [45] to use the
spatial information from fNIRS to identify the single fNIRS channel and EEG channel on
each hemisphere which yielded the most significant contrast between the two classes of
motor tasks. The benefit of this procedure is the enhancement of classification accuracy
with the minimization of the number of channels, thereby enhancing the efficiency of data
processing and accelerating the response time of the BCI.

Features and Selection Methods

The power spectral density method, which assesses the signal strength as a function
of frequency, is widely utilized in fNIRS-EEG studies for feature classification [50]. Some
other studies employed EEG processing features, including logarithmic band power [12]
and wavelet approximation coefficients [45]. The logarithmic band power is estimated by
taking the logarithms of the power of various frequency bands of EEG data. The discrete
wavelet transform (DWT) technique in EEG, similar to the wavelet transform used in fNIRS,
can decompose the time-series data of each channel into multiple layers. A study by [45]
suggests that the wavelet approximation coefficients derived from the final layer of the
DWT process capture the predominant power of event-related oscillations in brain activity,
which is left- and right-hand movements in this particular case.

For hybrid BCIs, a combination of the signal peak and mean fNIRS signals and the
highest band powers of EEG signals could be desirable [12]. Other studies also used the
time-frequency phase feature (including power, instantaneous amplitude (IA), instanta-
neous phase (IP), and instantaneous frequency (IF)) extracted from EEG to combine with
HbD for hybridization [43]. It is worth noting that optimal classification may require
different features depending on the specific tasks being performed, as demonstrated in [24].
In comparison to EEG signals alone, the average classification accuracy of MI tasks using
EEG and HbO features increased from 78.2% to 83.2%. In contrast, higher accuracy was
achieved for ME tasks using EEG and HbR features, improving from 90.8% to 93.2%.

A growing hemodynamic feature of interest is the initial dip, a metabolically linked
phenomenon noticed early in 1990, where the HbR concentration starts to increase in 2 s
upon the activity, followed by a later and more pronounced decrease [45]. This method
can overcome the inherent delay for the hemodynamic response hindering the efficiency
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of a real-time fNIRS-based BCI application because of its rapid evolution in the face of
stimuli. In 2016, Zafar et al. used vector-based phase analysis to show that detecting and
classifying the initial dips is feasible in fNIRS despite the relatively low amplitude [69].
R. Li et al. also used initial dip information with PCA performed before feature extraction
to further remove artifacts in the classification of left- and right-hand movements [45]. This
study holds great significance in extending the motor recovery applications of BCI systems
since it is the first to utilize fNIRS spatial information for channel selection and integrate
early temporal information from both fNIRS and EEG to improve the system’s transfer rate
while maintaining decent performance. By providing instant feedback, this approach offers
the potential to enhance the user’s experience and recovery outcomes.

Last but not least, heuristic methods, including genetic algorithms, are widely used in
addressing optimization problems, which can also be employed for signal processing in
BCI. The implementation of genetic algorithms comprises selecting features using LDA as
a fitness function [70], or it can be combined with SVM to determine the optimal feature
combinations [71].

Sequential Data Processing

An alternative approach to combining fNIRS and EEG, besides a joint feature space,
is to delay the decision-making process by incorporating fNIRS into the framework of
an EEG-based BCI. In practical BCI applications, false positive classifications can pose a
potentially dangerous risk, making it crucial to eliminate such errors.

Koo et al. employed a combination of the NIRS and EEG systems for a self-paced BCI
system on online MI [42]. As shown in Figure 4B, a threshold in the NIRS system regarding
the temporal MI region was used to detect the occurrence of a motor intention. Then, the
EEG signals in that region were employed to differentiate the type of MI with a linear-SVM
classifier. In the context of shared control for BCIs, this approach is also referred to as
contextual gating [72]. Within the framework of gating, an initial command can be either
accepted or rejected based on internal or external contextual factors. The parameters for
the threshold and classifier were estimated from the preceding training sessions and later
applied in the online session. This approach may be more advantageous when there is a
need to perform challenging motor rehabilitation movements or a heightened emphasis on
training safety. A study by Buccino et al. also implemented a similar approach, where the
initial classification stage distinguishes between the resting and movement states of the
user in an asynchronous paradigm [44]. Subsequently, the second stage of classification
is triggered only upon detection of movement and classifies the specific task as either
right–left or arm–hand. The aforementioned paradigm has the potential to enable real-
time communication between the user and the system and expand the number of classes
beyond two.

4.2.2. Classification for Hybrid fNIRS-EEG
Conventional Machine Learning Classification Algorithms

In MI tasks, the EEG signal exhibits less vulnerability to contamination from EMG sig-
nals when compared to ME tasks. This particular characteristic of EEG offers an advantage
in capturing rapid and dynamic information, thereby contributing to enhanced temporal
precision in classification. Conversely, changes in hemoglobin levels, as detected by fNIRS
or DOT, typically exhibit a slower onset and longer duration compared to the electrical
signals captured by EEG. Consequently, fNIRS or DOT can provide supplementary bene-
fits in terms of spatial localization and improved overall robustness of the classification.
However, the issue of signal delay in fNIRS should be carefully addressed in real-time BCI
systems, and further improvements are necessary before enabling online applications for
motor rehabilitation.

Classical ML techniques, such as LDA and SVM, are characterized by simplicity in
training and a higher potential to achieve a robust model [27]. LDA is the most commonly
used classification method in fNIRS and hybrid fNIRS-EEG studies [12], which is highly
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suitable for online BCI systems. For example, in [24], LDA was used as a meta-classifier,
whose weights are re-estimated within each cross-validation step to avoid bias in the
generalization error estimation. However, linear decision boundaries may not effectively
separate non-linearly separable classes. Additionally, in cases where the number of obser-
vations exceeds the number of features, LDA might perform differently than desired. SVM
is another widely adopted pattern recognition technique for brain signal classification. It
has been used in various fNIRS-EEG studies [40,42] and has demonstrated comparable or
even superior performance compared to the LDA in some instances [46].

Deep Learning Classification Algorithms

Nevertheless, the aforementioned ML methods will increase linearly in computational
cost as the size of the data set expands, making them suitable for relatively small data sets
with moderate standard deviations [27]. The use of DNNs in the classification of cognitive
events based on fNIRS and EEG signals can result in significant improvements compared to
ML methods such as LDA and SVM. This is because DNNs can perform complex, non-linear
transformations and classifications, leading to unprecedented outcomes when applied to
signals [46]. The classification of cognitive events presents a high-dimensional pattern
classification problem with a relatively limited number of training patterns. Conventional
classification methods require prior feature selection before training a model, while DNNs
and CNNs can be trained directly, bypassing the need for feature selection and making
them well-suited for learning from raw data [73].

In 2018, a DL algorithm for BCI classifications in a combined fNIRS-EEG framework
was first implemented for a guided left- and right-hand MI task [46]. Two factors were
considered: recording modality (EEG, fNIRS, EEG + fNIRS) and classification algorithm
(LDA, SVM, DNNs). The utilization of fNIRS in conjunction with EEG demonstrates a
notable improvement in average accuracy compared to the individual modalities, with
an increase in accuracy from approximately 70% to 83.28%. For hybrid classifiers, DNN
showed a significant increase in accuracy compared to SVM and LDA, of 5.28% ± 1.42%
(paired t-test, t = 3.71, df = 14, p < 0.05, Bonferroni corrected) and 11.79% ± 2.00% (paired
t-test, t = 5.89, df = 14, p < 0.05, Bonferroni corrected), respectively. The potential influence
of different head coverage of electrodes and optodes was also considered in the experiment.
The results obtained using only 16 electrodes around the motor cortex were comparable
to those obtained using the entire EEG headset, with less than 1% variability. The same
conclusion was drawn from the results of fNIRS, which demonstrated the ability of DNNs
to select relevant electrodes/optodes of interest. Chiarelli et al. also attempted to implement
CNN in their study, but the performance was not as strong as the fully connected feed-
forward DNN. Possible explanations for this outcome were provided, including a low
number of optodes and limited training data.

In 2020, CNNs were utilized for classifying workload memory tasks [73]. In the
work of M. Saadati et al., the most favorable outcome was obtained with a three-second
window and the exponential linear unit (ELU) activation function. For this configuration,
CNNs yielded an 89% correct classification accuracy, outperforming SVMs by 7%. That
same year, Ghonchi et al. employed a combination of CNNs (to extract spatial features)
and recurrent neural networks (to extract temporal features) to classify both MI and MA
tasks [48]. The proposed recurrent convolutional neural network (RCNN) model achieved
an accuracy of over 99% by transforming sequences of chain-like signals into hierarchical
three-rank tensors. These findings demonstrate the feasibility of utilizing CNN and RCNN
methodologies to investigate mental workload and motor training, thereby highlighting
their potential for application in rehabilitation settings.

In another recent study by Chen et al., a multi-channel fusion (MCF) approach was
proposed as a means to simplify the network design in DL-based techniques for combined
fNIRS-EEG classification [49]. The multi-channel fusion hybrid network (MCFHNet),
which was developed based on this MCF approach, integrates depth-wise convolutional
layers, a channel attention mechanism, and bidirectional long short-term memory (Bi-
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LSTM) layers, demonstrating exceptional performance with a mean accuracy of 99.641%
in a 5-fold cross-validation of an intra-subject experiment. This study presented a novel
approach for multimodal MI decoding and its potential applications in the field of upper
limb rehabilitation through the implementation of MCFHNet, which exhibited strong
capabilities in extracting spatiotemporal features. However, this study was based on an
open fNIRS-EEG dataset [74], and further investigation is needed to assess the performance
of DL algorithms in real-time BCI systems.

All these recent works demonstrate the future potential of DNNs owing to their
capability of simultaneously learning features and performing classification from raw data.
Although several feasibility studies have demonstrated improved accuracy with DL in
the classification of fNIRS and EEG signals, there have been limited investigations into its
application in the context of online motor rehabilitation BCIs in a combined fNIRS-EEG
framework, making it a worthwhile area for future research.

5. Neuroscience and Clinical Applications

High-quality signal acquisition and advanced data processing techniques enable
BCI systems to achieve satisfactory performance in imaging, assisting, augmenting, and
rehabilitating human cognitive and sensorimotor functions. Specifically, BCIs can be used
to help restore motor function in the following ways [4,50]: (i) real-time feedback, such
as the representation of a performed action in VR; (ii) control of training devices causing
actual movement with haptic, FES, or robotics feedback to develop a hybrid system during
rehabilitation to gain correct movement posture [75]; (iii) control of external devices, such
as wheelchair or prosthesis [76,77].

The application of fNIRS for motor recovery involves the recovery of upper and lower
limb functions, balance control, and motor learning [78]. This section primarily focuses
on the utilization of fNIRS-BCI and fNIRS-EEG BCI methodologies in the rehabilitation
of upper and lower limb functions. These BCI approaches are commonly integrated with
assistive devices to provide feedback that stimulates the pertinent muscles and brain
regions, thereby facilitating the adaptation of locomotion to the training objectives.

5.1. Upper Limb Applications

A substantial amount of research has been devoted to the investigation of upper limb
function, with a particular emphasis on hand and arm movements. It is noteworthy that
the motor cortex regions responsible for controlling the left and right hands are located
in separate hemispheres, thereby enabling the deciphering of commands through BCI
methodologies. In 2013, a study was published which served as an initial investigation for
using an EEG-fNIRS SMR-based brain switch for patients with tetraplegia and examined
the difference in performance between MI and motor attempt with a task of tapping the
fingers and thumb continuously [79]. Combined fNIRS-EEG modalities were proven to
have significant potential especially for users who had difficulty controlling current EEG-
based brain switches. The average classification performance in the patient group for ME
was higher than for MI, with the highest classification of 87% accuracy found by using
EEG + HbR.

Different but relevant to BCIs, a multimodal neuroimaging approach exhibits pre-
liminary potential for monitoring and predicting post-stroke motor recovery. A novel
fNIRS-informed EEG source imaging technique was devised to assess cortical activity and
functional connectivity during a hand-clenching task [52]. Graph theory analysis was
subsequently conducted to identify biomarkers relevant to motor function recovery and to
document cortical reorganization that occurs over the course of a four-week intervention
post-stroke. The aforementioned studies have demonstrated that the combination of fNIRS
and EEG for the investigation of upper limb recovery has the potential to not only enhance
the accuracy of task classification, but also improve the quality of neuroimaging results.

Extra rehabilitation/assistive devices can be utilized in conjunction with the BCI
to facilitate motor rehabilitation. In 2020, M.A Khan et al. provided a review on MI-
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based BCI systems for upper limb post-stroke neurorehabilitation, which comprehensively
covered different MI-BCI based strategies including FES, robotics assistance, and hybrid
VR-based models [4]. The authors compared these methods in terms of their characteristics,
configuration, potency, and prospects for the rehabilitation of stroke patients with upper
limb impairments [4]. However, most FES-BCI systems in this review employed EEG only.
In 2012, a study demonstrated that fNIRS signals generated by MI can be distinguished
offline from signals induced by FES with an accuracy exceeding 70% [30]. This was the
first demonstration that it is technically feasible to implement a contingent haptic-feedback
fNIRS-BCI with FES.

FES utilizes electrical currents to stimulate nerves that innervate extremities affected
by paralysis. A typical process involves the subject attempting to perform MI, followed
by signal acquisition. Upon detection of the required MI events, a trigger command is
then sent to a microcontroller-based hardware unit (e.g., Arduino-based) to activate the
FES device. A study in 2019 investigated and compared the cortical activations during
different motor training conditions (MI-BCI-FES, MI-FES, MI, and FES) measured by fNIRS
and EEG [47], as shown in Figure 5A. There were significant increases in ERD patterns and
cerebral hemodynamic responses for MI-BCI-FES relative to the other conditions, which
also yields a relatively higher online classification performance difference.
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Figure 5. Examples of combining fNIRS and EEG measurements in BCI systems for upper limb
rehabilitation. (A) Configuration of fNIRS-EEG with FES. The standard FES electrodes were about
10 cm apart placed at the right wrist and middle position of the forearm. Reprinted/adapted with
permission from Ref. [47]. 2023, IEEE. (B) Ball-catching task as shown in the VR video: subjects
passively watched a VR video which displayed a right hand repeatedly grasping an incoming ball
(13 actions, approx. 0.86 Hz, 20 s). This figure is taken and modified with permission from [29].
(C) Photographs of a motor imagery brain–computer interface (MI-BCI) upper limb rehabilitation
training system. The subfigures illustrate the process of using the EEG-BCI system for rehabilitation
training (left) and using fNIRS to evaluate the training performance of the EEG-BCI system (right).
This figure is taken with permission from [54].
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The potential of VR-based therapy in facilitating motor learning, as well as its ability
to transfer and generalize to tasks in the physical environment, has been discussed [80].
Moreover, several clinical studies have been conducted on patients to evaluate its effective-
ness in rehabilitation [81]. Moreover, attempts to use wireless fNIRS with VR have also
been made to study if the action-observation system was activated [29]; a series of tasks that
involved imagery, observation, and imitation of hand actions were conducted [29]. Both
imagery and observation tasks have been found to elicit consistently lower oxygenation
changes than imitations. As in Figure 5B, participants were separated into two groups by
contralateral/bilateral recording and were instructed to imagine the movement depicted in
VR as their own movement. The virtual reality presented from a first-person view resulted
in stronger activations in the sensorimotor network, which highlighted the potential of the
VR-fNIRS instrument in neurofeedback applications. This work demonstrated the potential
to control movements in the VR environment based on the brain activity recorded by the
BCI system, thereby providing real-time neurofeedback.

There are commercial rehabilitation systems already on the market (recoveriX, g.tec
medical engineering GmbH, Schiedlberg, Austria) incorporating motor imagery and feed-
back mechanisms such as utilizing functional electrical stimulation and virtual reality
avatars driven by EEG signals, catering to both upper and lower limb rehabilitation needs.
A study conducted with thirty-six stroke patients experiencing hemiparesis in the upper
extremities utilized this system and demonstrated that the implementation of quantitative
EEG tools can provide valuable insights into stroke pathophysiology and the dynamic
alterations occurring within the brain during the course of rehabilitation therapy [82].
Despite these advancements, the developments of clinical rehabilitation programs for MI-
based BCI systems have been partially hindered by the lack of scientifically established
and standardized guidelines. The determination of the impact of frequency, intensity,
and duration on neuroplasticity and clinical function is crucial for the advancement of
the MI-based rehabilitation system [54]. A pilot study in 2022 [54] provided an essential
reference for the formulation of clinical programs for MI-BCI training in the improvement
of upper limb dysfunction. EEG data were collected during training, providing feedback
with a robotic arm for motion performing (Figure 5C Left), while the fNIRS signal was
recorded during the hand-grasping task for performance evaluation (Figure 5C Right). As
expected, the results indicated greater cortical activation and improved BCI performance
in the high-frequency group. Additionally, the within-group results revealed that after five
sessions of BCI training, greater cortical activation was observed and better BCI perfor-
mance was achieved in the high-frequency group, while no such effects were observed
in the low-frequency group. These findings emphasize the significance of both long-term
training and adequate frequency in MI-BCI rehabilitation.

An ongoing study [53] also utilized fNIRS to measure neuroplastic changes following
EEG-BCI-based reward-driven hand robot practice in a single-blind, parallel-group trial
involving subacute or chronic post-stroke patients with severe hemiparesis beyond 90 days
after onset. However, these two studies did not integrate fNIRS and EEG signals, but rather
separately used them for different purposes, i.e., using fNIRS to monitor brain activity and
EEG to command the BCI.

5.2. Lower Limb Applications

Research about motor rehabilitation was previously limited to the upper limb [8];
however, in recent decades, more studies targeting the lower limb and gait rehabilitation
have emerged. Recent technological developments indicate that fNIRS-BCI can be exploited
for the rehabilitation of lower limb movement due to its great usability and reduced
sensitivity to head motion artifacts [33]. Furthermore, several studies suggest that there
may be a shared mechanism that influences upper and lower limb recovery simultaneously,
regardless of which limb is selected for rehabilitation therapy [8,50].
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One of the pilot studies of fNIRS-BCI gait rehabilitation was conducted by Rea et al. [33].
During the preparation of hip movement, fNIRS signals (corresponding brain area in
Figure 6(A2,A3)) were acquired with EMG activity recorded to ensure only tonic activity
existed instead of actual movements (Figure 6(A1)). The authors noted that the conventional
method of determining the coefficients of the linear relationship between HbR and HbO,
based on the assumption of temporal stability, may not be appropriate for patients with
neurovascular alterations, as it may result in contaminated data. A classifier based on LDA
was employed and the best performance came from HbT signal changes in the posterior
parietal cortex (PPC) and premotor cortex (PMC). The results highlighted the critical
role of PMC and PPC which was in line with previous findings and demonstrated the
feasibility of fNIRS for assessing and monitoring gait status for both healthy participants
and patients with stroke. Presently, BCI development has played a vital role in investigating
brain dysfunction disorders and musculoskeletal gaits [50]. Regarding robot-assisted gait
training (RAGT), fused EEG-fNIRS provides a detailed insight into how locomotor control
and gait recovery are characterized by brain signals. Khan et al. presented an fNIRS-based
BCI framework for the control of prosthetic legs which is intended for the rehabilitation
of patients suffering from locomotive disorders in 2018 [4]. The gait cycle was initiated
and stopped with fNIRS signals indicating walking and resting intentions, while a non-
linear proportional derivative computed torque controller (PD-CTC) with compensation for
gravity was employed to control the torques of the hip and knee joints in order to minimize
positional error.

A recent study conducted in 2022 explored the correlation between cortical activa-
tion and effort expended during exoskeleton-mediated gait at varying levels of physical
assistance in healthy individuals (Figure 6B) [64]. The results, as indicated by the levels
of HbO and HbR, with a smaller number of significant channels for HbR, showed only
a minimal difference in cortical activation between the assisted conditions and the rest
state. On the other hand, widespread and bilateral cortical activation was observed during
the two unassisted conditions, providing support for the hypothesis that there exists a
relationship between cortical activation and effort level during gait.

All these discoveries and implementations have the potential to optimize neurological
rehabilitation techniques that induce neuroplasticity. The effectiveness of rehabilitation
can be measured based on the level of precision with which the patients can imitate the
movements of a healthy individual [36], and this frequently relies on the utilization of
standardized assessments, such as the timed up and go (TUG) test [82]. In conclusion, while
significant progress has been made in translational applications by various research groups,
the ultimate challenge lies in transforming these complex protocols into user-friendly, cost-
effective, and integrated systems that can be utilized in a home environment [4]. To achieve
this goal, it is necessary to consider improving selection techniques for the most crucial
brain regions to monitor, while ensuring accuracy through the utilization of minimal data,
leading to faster response times. Additionally, determining the optimal configuration of
brain activity, specifically the design of the training task that generates reliable control
commands, remains a challenge [12]. Finally, establishing a more intuitive connection
between the detected signals and machine commands can improve the ergonomics of the
process and enhance the efficiency of the training.
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(A) The pilot study of fNIRS-BCI gait rehabilitation conducted by Rea et al. Experimental setup.
(A1) Mechanical pedals used to execute active hip movements while sitting on an armchair. EMG
electrodes were positioned along muscle fibers of the femoris quadriceps and sartorius muscles of
both legs. (A2,A3) Representation of optodes’ location and the corresponding anatomical location
of each channel. These figures are taken with permission from [33]. (B) The implementation (left)
and the mechanical design (right) of the Atalante®exoskeleton (Wandercraft company, Paris, France).
This figure is taken and modified with permission from [64].
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6. Discussion
6.1. Challenges and Opportunities of Hybrid fNIRS-EEG BCIs in Motor Rehabilitation

fNIRS has demonstrated high potential as a neurorehabilitation tool for monitoring
the progress of patients with regards to motor and cognitive functioning over time [63].
One limitation from fNIRS is the inherent delay in the hemodynamic response, which could
result in untimely feedback for the user so as to bias the efficiency of MI or ME training.
This disadvantage can potentially be remedied by integration with EEG. Additionally,
while challenging, using the detection of the initial dip of the functional hemodynamic
response as a supplementary feature as well as the larger and slower peak hemodynamic
response may facilitate faster functional hemodynamic responses than standard fNIRS
signal processing procedures [21]. The use of hybrid fNIRS-EEG BCI systems was found to
be superior to the use of a single modality, due to: reducing motion artifacts and improving
the reliability and robustness of signal interpretation [28]; enhancing classification accuracy
of distinct conditions such as rest and task [23,24]; applying one modality as a switch for
the other [42]; and utilizing the data acquired from one modality to detect motion artifacts
and remove them in another, especially in MI-task-based BCIs. [24,25,40,42].

However, clearly, there is still some room for the improvement of fNIRS-EEG BCIs
in motor rehabilitation. First, a fully integrated fNIRS-EEG BCI hardware with strong
wearability, high tolerance of motion artifacts, stable signal quality, elegant ergonomic
design, and real-time long-term sampling capability are demanded, which could enable
motor rehabilitation outside of laboratory/hospital environments. Moreover, the correla-
tion of fNIRS and EEG is not yet fully understood from a data processing prospective, and
the challenges of the combined approach arise. Particularly, electrical and hemodynamic
signals are not necessarily coupled: on the one hand, physiological processes (e.g., neuro-
transmitter synthesis) can result in hemodynamic alterations without any accompanying
electrophysiological activity; on the other hand, changes in metabolic activity may not
be observable if the corresponding EEG activity is short-lived and transitory [28]. The
parallel processing and timing synchronization is another concern due to different intrinsic
response times of fNIRS and EEG. New features selection and classification algorithms for
the immediate detection of hemodynamic changes [12,44] could potentially be a solution,
and additional dimensionality reductions may need to be performed so as to balance the
information retrieval and computational cost.

In addition, the absence of a standardized experimental protocol has hindered direct
comparisons across different signal processing and analysis methods. In the process of
composing this review, the authors have noted that it is highly challenging to furnish a
performance comparison of key parameters such as accuracy and response time. This
limitation was not attributed to the absence of pertinent information in the studies but
rather to the dissimilarities in research methodologies, such as differences in tasks, control
groups, and real-time/offline processing. To address this issue, it is advised to provide a
comprehensive account of all technical aspects of the experiment, including hardware and
software specifications whenever possible.

6.2. Future Prospects—BCI + ‘X’ for Motor Rehabilitation

MI-BCI assistive devices, such as FES, could couple the activities between the brain
and muscle, thereby enhancing brain activity patterns by reconstructing the functional
pathway for the affected limb and even restoring the patient’s motor ability [3]. The efficacy
of the desired movement relies on the design of the system and the training sessions
provided to the patients on the use of the BCI-FES system.

Additionally, VR simulation environments can be employed to provide more realistic
feedback for users [80]. The combination of VR and BCI offers new possibilities for enhanc-
ing user experiences, enabling more natural and intuitive interactions, and exploring novel
paradigms in the field of motor rehabilitation.

Another potential avenue for rehabilitation involves incorporating feedback from
cortical activation patterns, as measured by the fusion of fNIRS and EEG, to identify areas
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of hypo- or hyperactivity, and thus guide non-invasive brain stimulation protocols [28],
such as transcranial electrical stimulation (tES), which applies a weak current through the
scalp to alter brain excitability and network dynamics.

7. Conclusions

The integration of fNIRS and EEG remains a complex challenge, despite the technical
advancements made in the areas of signal processing and data synchronization. Never-
theless, recent advancements in fNIRS/EEG devices and novel DL algorithms have shed
light on the potential for using hybrid fNIRS-EEG BCIs in motor rehabilitation in a safer
and more effective manner. The ultimate goal of a direct BCI is to help patients with
severe motor disabilities to effectively interact with their surroundings through external
devices, such as computers, text-to-speech convertors, assistive appliances, and neural
prostheses, as well as helping them restore their own motor ability with rehabilitation
training in almost any environment. With the recent advancements in wearable tech-
nologies, AI-enabled processing, product design, and user interface, along with the high
demands and drives from rehabilitation specialists and patients, it is expected that next-
generation AI-empowered, multimodal BCIs will become readily available within the next
few years, which could make motor rehabilitation more effective and practical, and could
then dramatically accelerate the growth of at-home rehabilitation, personalized healthcare,
and beyond.
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CNN convolutional neural networks
CNR contrast-to-noise ratio
COD cerebral oxygen exchange
CSP common spatial patterns
CWT continuous wavelet transforms
DL deep learning
DNN deep neural networks
DOT diffuse optical tomography
DWT discrete wavelet transforms
EEG electroencephalograph
ELM extreme learning machines
ELU exponential linear unit
EMA exponential moving averages
EMG electromyography
ERD event-related desynchronization
ERPs event-related potentials
FES functional electrical stimulation
FIR finite impulse response
fNIRS functional near-infrared spectroscopy
FWHM full-width-half-maximum
GLM general linear model
HbO oxyhemoglobin
HbR deoxyhemoglobin
HMM hidden Markov model
hrf hemodynamic response filter
IA instantaneous amplitude
ICA independent component analysis
IF instantaneous frequency
IP instantaneous phase
JMI joint mutual information
k-NN k-nearest neighbor
LDA linear discriminant analysis
LSTM long short-term memory
MACD moving average convergence/divergence
MCF multi-channel fusion
MCFHNet multi-channel fusion hybrid network
MDL minimum description length
ME motor execution
MI motor imagery
ML machine learning
MLP multilayer perceptron
MLPNN multilayer perceptron neural network
NMES neuromuscular electrical stimulation
PBL-McRBFN projection-based learning in a meta-cognitive radial basis function network
PCA principal component analysis
PD-CTC proportional derivative computed torque controller
PMC premotor cortex
PPC posterior parietal cortex
PR polynomial regression
QDA quadratic discriminant analysis
RAGT robot-assisted gait training
RCNN recurrent convolutional neural network
SDS source-detector separation
SMR sensory motor rhythm
SVM support vector machines
tES transcranial electrical stimulation
TSC time-series classification
WCs wavelet coefficients
WT wavelet transform
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