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A B S T R A C T

Landslides pose a serious risk to life and property in the mountainous regions around the globe. Understanding
the interplay of landslide conditioning and triggering factors is essential for lessening the impacts caused by the
hazard. Cox's Bazar — a coastal mountainous district in Bangladesh is recurrently affected by rainfall-triggered
landslides. Based on analysis of 14 experiential landslides and combination of gauged and satellite rainfall esti-
mates for the period from 2003 to 2019, the present study determines three landslide-triggering rainfall
thresholds for the Cox's Bazar District (CBD): 1. Intensity-Duration (ID) threshold derived in this study revealed
that any rainfall event with an intensity of �4.04 mm/h if prolonging for �12h can cause slope failures; 2. Event-
Duration (ED) threshold suggested that a normalized cumulative event rainfall (EMAP) of 0.15 for one day is
expected to trigger landslides; and 3. threshold calculated using randomly chosen antecedent rainfall expressed
best distinction on 30-day rainfall and the equation of the threshold came out as Rth ¼ 64–0.02 Ra30. The
recurrence probability of the derived antecedent rainfall threshold and likely landslides was determined through
the Poisson distribution. Moreover, we assess the landslide susceptibility of the district with a coupled use of
Frequency Ratio (FR) statistical measure and Geographic Information System (GIS). Considering the combined
role of selected conditioning factors, the landslide susceptibility status of the CBD was quantified and classified
into probability intervals. The accuracy of the susceptibility maps was assessed through the Relative Landslide
Density Index (R-Index) that used a field landslide inventory, comprising well distributed 891 events. Moreover,
gridded population data was superimposed on the derived susceptibility maps to understand the risk levels of
people. The derivation of landslide-triggering rainfall thresholds and spatial susceptibility assessment has been
useful to propose a low-cost Landslide Early Warning System (LEWS) which can contribute in alleviating the
adverse effects of landslide hazard in the CBD.
1. Introduction

Landslide is an inclusive term for a range of downslope movements of
rock and soil material under the influence of gravity. Based on the type of
movement and the material involved, landslides are classified into
different types (e.g., Varnes, 1978). Variety of factors such as slope, li-
thology, soil, land cover, rainfall and human interventions contribute to
the occurrence of landslides (Alexander, 1992; Baeza and Corominas,
2001). Landslides are most common natural hazard in mountainous en-
vironments, causing immense loss of human life and infrastructure each
year. The hazard is also a common cause of disruption to land trans-
portation and utility services. In the recent past, there has been a
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multifold increase in the impacts from the landslides owing to continuous
increase in the population and development activities, particularly in the
mountainous areas (VanWesten et al., 2012; Bogaard and Roberto, 2018;
Shah et al., 2022). The hazard accounted for 4.89% of the total disasters
that occurred worldwide during the years 1990–2005 (www.em-dat.ne
t). Globally 2620 nonseismically triggered landslides caused a total of
32,322 fatalities between the period from 2004 to 2010 (Petley, 2012).
From 1995 to 2014, landslides (3876 events) caused 163,658 deaths and
11,689 injuries globally with more than half of the events in areas
receiving high rainfall (Haque et al., 2019). About 54% of the landslide
events between 1990 and 2015 occurred in Asia (Guha-Sapir et al., 2018)
and the continent bears most of the human losses particularly along the
versity of Kashmir, Srinagar, 190006, India.
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Fig. 1. Location of the study area. (a) Bangladesh, (b) Cox's Bazar District (CBD), (c) Rohingya Refugee Camps.

Fig. 2. Pattern of mean monthly precipitation and landslide occurrence in the CBD.
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Himalayan mountain region (Petley, 2012). The economic loss and the
causalities caused by the landslides are substantially more than what is
normally recognized (Schuster and Highland, 2001; Ali et al., 2022).

Landslides are recurrent hazard in the hilly districts [Khagrachari,
Rangamati, Chittagong, Cox's Bazar, and Bandarban] of Bangladesh
(Ahmed 2015; Ahmed, 2017; Ahmed et al., 2020). Historical record of
landslide events (2000–2018) reveals that on an average 19 landslides
occur annually in the country with an increase of 4% each year (Sultana,
2020). A single rainfall event triggered 100 landslides on the 11th of June
2007 resulting in death of 127–135 people (Sarwar, 2008). Other deadly
landslide events in the country are that of 15 June 2010, 27 June 2012,
and 13 June 2017 with a death toll of 57, 96, and 164 respectively
(Sultana, 2020). Besides being susceptible to landslide hazard,
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socioeconomic factors such as poverty, demographic composition and
land utilization patterns (e.g., rampant hill cutting) and human settle-
ment expansion have been important factors exacerbating landslide risk
of the people (Ahmed and Dewan, 2017; Alam et al., 2019; Ahmed et al.,
2020).

While rainfall remains the most common cause of landslides across
the continents, the intensity of the rainfall events is likely to increase or
double in the wake of changing climate which in turn enhances the
probability of landslide occurrence and associated losses (Wu et al.,
2015; Gariano and Guzzetti, 2016; Park et al., 2019; Dunbar, 2019;
Ahsan et al., 2021, 2023). Correlating the precipitation and landslide
trends in the future (2061–2100), a recent report (NASA Earth Obser-
vatory, 2020) projected an increase of 30–70% in the landslide events



Fig. 3. TRMM precipitation estimates of the Cox's Bazar District (CBD) and neighbouring areas. (a) rainfall estimate [L3 1 month 0.25� � 0.25� V7] for the months
that witnessed landslides and (b) mean annual precipitation.
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over the Himalayan region. In view of the anticipated scenarios, deriving
landslide-triggering rainfall thresholds, assessing landslide susceptibil-
ities and developing reliable Landslide Early Warning Systems (LEWS) at
various spatial scales is of immense importance for reducing the losses
from the hazard.

Multivariate analysis is widely used for landslide susceptibility
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analysis in which a landslide is considered as function of the relationship
between multiple environmental factors that vary in space and time
(Baeza and Corominas, 2001). A range of statistical andmachine learning
models such as Logistic Regression (LR), Frequency Ratio (FR), Analytic
Hierarchy Process (AHP), Fuzzy Logic, and Artificial Neural Networks
(ANN) have long been used in combination with Geographic Information



Table 1
Rainfall sequence of the experienced landslides (2003–2019).

Date Event Duration [Days] Cumulative Rainfall [mm] EMAP

16 June 2003 12 474 0.18
29 July 2003 11 330 0.12
03 July 2008 7 688 0.26
06 July 2008 10 981 0.37
07 April 2010 – No data –

15 June 2010 6 523 0.19
26 June 2015 4 978 0.37
28 June 2015 5 674 0.25
27 July 2015 6 682 0.25
13 June 2017 1 300 0.11
25 July 2017 6 677 0.25
11 June 2018 4 459 0.17
12 June 2018 – No data –

25 July 2018 1 228 0.08
10 September 2019 1 422 0.16
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System (GIS) for landslide susceptibility analysis (e.g., Ayalew and
Yamagishi, 2005; Lee, 2005; Yesilnacar and Topal, 2005; Brenning,
2008; Yilmaz, 2009; Chauhan et al., 2010; Park et al., 2013; Wang et al.,
2013; Lin et al., 2017; Lombardo and Mai, 2018; Rahman et al., 2020).
The relative weight estimation of each contributing factor through these
statistical models and overlay capability of GIS allows integration of
factor layers in different ways to develop susceptibility maps (Baeza and
Corominas, 2001; Huabin et al., 2005).

The present work aims to derive multiple landslide-triggering rainfall
thresholds and assess the landslide susceptibility based on range of
conditioning factors in the Cox's Bazar District (CBD). The analysis has
been carried out through a series of sequential steps that include: eval-
uation of relationship between rainfall characteristics and landslide
occurrence, estimation of three different rainfall thresholds that can
trigger landslides, selection of factors that contribute to landslide sus-
ceptibility, development of respective GIS layers, determining the rela-
tive importance of each layer through the statistical measure (FR),
development and validation of the susceptibility maps, and integration of
population data with susceptibility maps for simulating the risk scenario.
Finally, based on the obtained results, a LEWS is proposed for the study
area. On the whole the output of this investigation can be useful in un-
derstanding the various dimensions of landslide hazard and minimizing
the associated losses in the CBD.

2. Study area

Cox's Bazar district (CBD) forms the southern part of Chittagong Di-
vision of Bangladesh consisting of eight administrative units (Fig. 1). The
district is spread over 2200 square kilometers with an elevation ranging
from 0 to 263 m above mean sea level. The average annual rainfall in the
CBD varies from 2400 to 2800 mm in the north to 3001–3500 mm in the
Table 2
Accumulated rainfall prior to landslide events; maximum intensity [mm/h] represen

Date ID 12h 24h 72h

16 June 2003 L1 8.2 10.7 31.3
29 July 2003 L2 14.3 14.3 21.5
03 July 2008 L3 30.7 53.2 178.3
06 July 2008 L4 45.4 81.2 157.6
15 June 2010 L5 146.2 218.1 406.8
26 June 2015 L6 95.4 135.1 561.3
28 June 2015 L7 0.6 15.9 241.9
27 July 2015 L8 18.3 78.2 337.7
13 June 2017 L9 38.2 88.4 215.2
25 July 2017 L10 46.9 134.2 280
11 June 2018 L11 65.8 121.7 233
12 June 2018 L12 83.2 105.1 317.5
25 July 2018 L13 50 81.9 141.2
10 September 2019 L14 37 46.7 118.7
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south. A gradual increase is noticeable in the rainfall totals over the last
50 years in Bangladesh. The CBD is experiencing high landslide activity,
causing human casualties and economic losses. Although factors related
to land use pattern and poormanagement practices play a substantial role
in enhancing landslide susceptibility, the landslide are mostly associated
with the extreme rainfall events in the CBD particularly during the
monsoon season (Fig. 2). Nearly 80% of the landslides occur during the
summer months with most (30%) in the month of June (Khan et al.,
2012). The lithology of the area consists of beach and dune sand (Coastal
sediments), valley alluvium and colluvium, Dihing and Dupi Tila For-
mation, Dihing Formation (Pleistocene and Pliocene), Tipam Sandstone
(Neogene), Boka Bil Formation (Neogene) and Bhuban Formation
(Miocene) (GSB, 1990). In addition to native population, the CBD is
home to about 0.8 million Rohingya refugees (Fig. 1). The influx of
Rohingya refugees and building of camps resulted in removal of exten-
sive vegetation cover and increased the probability of landslide occur-
rence especially during rainfall events (Dunbar, 2019).

3. Materials and methods

3.1. Derivation of rainfall thresholds

Empirical rainfall thresholds are broadly categorized into three types:
(i) event based that use records of a particular rain event (ii) antecedent
rainfall based and (iii) alternate thresholds that include hydrological
thresholds (Guzzetti et al., 2007; Baum et al., 2018). In this analysis we
derived three landslide inducing rainfall thresholds: 1.
Intensity-Duration (I-D) and 2. Event-Duration (E-D) and 3. Antecedent
Precipitation thresholds using satellite rainfall [JAXA Global Rainfall
Watch (GSMaP), Tropical Rainfall Measuring Mission (TRMM)] and
gauge rainfall data from the Bangladesh Meteorological Department
(BMD). Record of 14 landslides with known date of occurrence experi-
enced in the study area for the period between 2003 and 2019 and
corresponding rainfall estimates were used for the analysis (Fig. 3,
Table 1).

3.1.1. Intensity-duration (I-D)
I-D thresholds are preferred and most widely proposed type of the

thresholds (Robbins, 2016). They are generally expressed by a power law
(Eq. (1)):

I ¼ cþ α� Dβ (1)

where I is rainfall intensity,D is rainfall duration, and c, α and β are fitting
parameters (Martinovi�c et al., 2018). Rainfall intensity implies the
amount of precipitation accumulated in a period, or the rate of precipi-
tation in a period, most commonly measured in millimeters (or inches)
per hour (Guzzetti et al., 2007).
ts highest value recorded within 30 days before a landslide.

1w 2w 1m Maximum Intensity

468.7 898.4 991.7 26.47
46.3 75.7 152.8 5.27
345.5 416 626 6.48
370.5 512 749.9 7.83
431.9 486.6 929.6 18.74
731.8 797.5 1014 37.32
832.7 881.3 1122.6 37.32
414.5 542.2 752.1 15.23
317.2 354.9 522.1 8.03
439.7 484 742.8 10.93
249.5 324 451.9 15.91
348.9 420.7 512.4 15.91
151 184 342.1 6.50
140.8 236.5 440.7 5.83



Fig. 4. Factors selected for the landslide susceptibility and risk assessment. Details of lithology, ava: Valley alluvium and colluvium, csd: Beach and dune sand, Ppc:
Marsh clay and pea, QTdd: Dihing and Dupi Tila Formation Undivided, QTdi: Dihing Formation (Pleistocene and Pliocene) QTdt: Dupi Tila Formation (Pleistocene and
Pliocene), QTg: Girujan Clay (Pleistocene and Neogene), Tb: Bhuban Formation (Miocene), Tbb: Boka Bil Formation (Neogene), Tt: Tipam Sandstone (Neogene).
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3.1.2. Event-Duration (E-D)
The E-D threshold adopted here considers normalized cumulative

event rainfall (EMAP), a unit less parameter expressed as Eq. (2).

EMAP ¼E=MAP (2)

Where E is the cumulative event rainfall and MAP is the mean annual
precipitation (Sengupta et al., 2010).

3.1.3. Antecedent rainfall
Antecedent precipitation effects the ground water, soil moisture

conditions and landslide occurrence. The rainfall estimates preceding a
landslide event are made using Eq. (3).

APx ¼R1 þ R2 þ…þ Rn (3)

where APx is cumulative antecedent rainfall for day x; R1 is the rainfall
amount for the day before x; Rn is the daily rainfall amount for the nth
day before day x. Table 2 shows the details of antecedent rainfall of the
selected landslide events.

3.2. Susceptibility mapping

This study used range of landslide influencing factors that include
land use and land cover, lithology, soil, slope, aspect, distance to streams,
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distance to faults, topographic position index (TPI), and rainfall for
landslide susceptibility analysis of the CBD (Fig. 4). The selected data
layers have been identified as the fundamental requirements for the
landslide susceptibility in different studies (e.g., Lee, 2005; Yilmaz, 2009;
Park et al., 2013; Wang et al., 2013; Lin et al., 2017; UNISDR, 2017;
Huang et al., 2018; Lombardo and Mai, 2018). Relative weight of the
selected factors was determined through Frequency Ratio (FR)model and
subsequently used in GIS for overlay analysis and developing the sus-
ceptibility map. Moreover, the present analysis makes use of compre-
hensive field based landslide inventory. Generated using handheld
Global Positioning System (GPS), the inventory has been of great value to
assess the accuracy of the generated landslide susceptibility map.
Moreover, data about the population density has also been used to
project the likely impacts on the inhabited parts of the CBD. The char-
acteristics and sources of the datasets used in the present study are given
in Table 3.

3.2.1. Frequency ratio model
Frequency ratio (FR) statistical analysis is based on the observed re-

lationships between distribution of landslides and the factors influencing
the landslide occurrence (Lee and Pradhan, 2007). The FR is a ratio of the
area where landslides have occurred to the total area; a value greater
than 1 implies higher correlation, and value lower than 1 is suggestive of
lower correlation. The frequency (FR) ratio of each landslide factor class



Table 3
Characteristics of the selected data layers. LULC: Land use and Land cover, OLI:
Operational Land Imager (2020), SRTM: Shuttle Radar Topography Mission,
DEM: Digital Elevation Model, TRMM: Tropical Rainfall Measuring Mission.

Factor Scale and
Pixel size

Data product used Source

LULC 30m Landsat-8 OLI image https://glovis.usgs.
gov/

Lithology 1:50,000/
30m

Surface Geology
Map

https://pubs.usgs.
gov/

Soil 1:50,000/
30m

Soil Map http://www.srd
i.gov.bd/

Slope (degrees) 30m SRTM DEM https://eart
hexplorer.usgs.gov/

Aspect
(Orientation)

30m SRTM DEM https://eart
hexplorer.usgs.gov/

Distance to
streams (m)

30m SRTM DEM https://eart
hexplorer.usgs.gov/

Distance to
faults (km)

30m Surface Geology
Map

https://pubs.usgs.
gov/

TPI (-77–102) 30m SRTM DEM https://eart
hexplorer.usgs.gov/

Rainfall (mm) 4000m TRMM https://mirador.gsfc.
nasa.gov/

Population
(density)

90m Number of people
per grid cell or 100
m)

https://www.wo
rldpop.org/geodata/
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was calculated using Eq. (4).

FR¼ Npix ðSiÞ=
P

Npix ðSiÞ
Npix ðNiÞ=

P
Npix ðNiÞ (4)

where Npix (Si) is the number of pixels with landslides in factor class i, Ʃ
Npix (Si) is the total number of pixels with landslides, Npix (Ni) is the
total number of pixels in factor class i, Ʃ Npix (Ni) is the total number of
pixels in entire area of interest. The landslide susceptibility of an area is
finally derived from the summation of the frequency ratios of all the
selected landslide causing factors (e.g., Huang et al., 2018; Javier and
Kumar, 2019); see Eq. (5).

LSI¼FR1 þ FR2 þ FR3 þ… þFRn (5)

3.3. Probability of landslide occurrence

In order to project the future occurrence of the landslides Poisson
probability model expressed as Eq. (6) was used with two assumptions:
(i) landslide occurrence is a function of rainfall exceeding the threshold,
and (ii) there is no possibility or limited probability of landslide occur-
rence when rainfall amount is less than the threshold (e.g., Crovelli,
2000; Das et al., 2011; Bui et al., 2013; Dikshit et al., 2020).
Fig. 5. Intensity-Duration threshold for the Cox's Bazar District (CBD).
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PðNðtÞ¼ nÞ¼ e�λt ð�λtÞn
n!

; n¼ 1; 2; 3;… (6)
where, N is the total number of landslides that occur during a time t; and
λ is the rate of occurrence of landslides.

Probability of one or more landslides occurring during time t, which is
the exceedance probability, can be estimated through Eq. (7).

PðNðtÞ� 1Þ¼ 1� Exp ð�t = μÞ (7)

where μ is the future mean recurrence interval (μ ¼ t�1Þ; t is the future
time period for which the exceedance probability is calculated. The
future mean recurrence interval is estimated using the historical mean
recurrence interval with the assumption that the future occurrence of
landslides will remain the same as it was in the past (Crovelli, 2000; Bui
et al., 2013). The frequency of the derived antecedent rainfall threshold
observed in the past was used to simulate the return period and proba-
bility of the future landslides in the CBD.

4. Results

4.1. Intensity-duration (I-D)

The intensity-duration pattern of all the selected rainfall events was
plotted at range of time intervals prior to a landslide event. The process
involved two normalizations; in the first one, intensities were obtained
by way of dividing accumulated rainfall by the time period and second
one involved averaging of normalized values of each landslide event.
Thus, the intensity values used do not represent the actual intensities,
rather the values are average of the respective intervals. This way of
using normalized intensities often underestimates the peak intensity
values; however, it is may be beneficial for filtering out the anomalous
minimum thresholds where actual triggering factor may be associated
with a rare in-situ conditioning factor; a condition not representative of a
wider area and a likely cause for generating the false alarm. Here we
observe that any rainfall episode that continues for 12h with an intensity
of �4.04 mm/h is likely to activate landslides in the Cox's Bazar District
(Fig. 5). As the rainfall duration increases, the landslides are expected to
be triggered by the low rainfall intensities. The threshold derived in this
analysis was observed to be very close to the I-D threshold (4 mm/h for
12 h) calculated for the Garhwal Himalaya (Mathew et al., 2014).

4.2. Event-Duration (E-D)

The E-D sequence includes events of 1-day to 12-day duration with
rainfall ranging from 228 mm to 981 mm (Table 1) having insignificant
relationship between landslide occurrence and event duration. Consid-
ering Eq. (2) where value of E is normalized by dividing it by the MAP
(2630) of the area, the EMAP threshold was found to be 0.12. Thus, it is
inferred that any rainfall event with the EMAP value of 0.12 having
duration of 1 day is likely to trigger landslides in the CBD. Using TRMM
rainfall estimates, EMAP threshold has also been developed with better
spatial resolution for different parts of the district (Fig. 6). The scenario
was derived by classifying the CBD into five zones with variable average
annual rainfall patterns. Considering the average annual rainfall of each
zone i.e., 1924 mm, 2401 mm, 2703 mm, 3013 mm and 3419 mm and
the lower limit of the differentiating rainfall (330 mm) required to
initiate the landslide in each rainfall zone of the district, the EMAP for the
zones has been found to be 0.20, 0.16, 0.14, 0.13 and 0.11 respectively
(Fig. 6).

4.3. Antecedent rainfall

In general, antecedent rainfall thresholds are determined by corre-
lating the daily and antecedent rainfall of the past landslide events; and
the lower envelope of the interval revealing best separation between the

https://glovis.usgs.gov/
https://glovis.usgs.gov/
https://pubs.usgs.gov/
https://pubs.usgs.gov/
http://www.srdi.gov.bd/
http://www.srdi.gov.bd/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://pubs.usgs.gov/
https://pubs.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://mirador.gsfc.nasa.gov/
https://mirador.gsfc.nasa.gov/
https://www.worldpop.org/geodata/
https://www.worldpop.org/geodata/


Fig. 6. Event-Duration rainfall threshold for the Cox's Bazar district. The spatial pattern of the EMAP (left) has been developed on the basis of TRMM precipitation
estimates; the scatter plot (right) shows the threshold value for the whole district.
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two is chosen as a threshold (Chleborad 2003; Bui et al., 2013; Dikshit
et al., 2020). However, main complexity in using antecedent precipita-
tion for predicting landslides is to determine the accumulation period or
the number of days (Guzzetti et al., 2007). Usually, a time period ranging
from few days to few weeks is considered. In this study, the rainfall
threshold was developed on the basis of daily rainfall and cumulative
antecedent rainfall of the landslide events experienced in the CBD from
2003 to 2019. This way of threshold determination evaluates two com-
ponents i.e., pre-existing water within the slope and triggering rain
received on the day of landslide occurrence (Glade et al., 2000). Ante-
cedent rainfall at four time intervals [3, 7, 14, and 30 days] corre-
sponding to each landslide recorded before the event was used; see
Table 2. Comparison of the maximum yearly rainfall in one day without
landslides and antecedent rainfall estimates on a single axis revealed
clear distinction at 30-day antecedent rainfall conditions (Fig. 7).
Therefore, for deriving the threshold (Rth), daily rainfall with landslides
and corresponding 30-day antecedent rainfall was correlated on a scatter
plot; the mathematical equation of the lower limit of the curve came out
to be Rth ¼ 64–0.02 Ra30; where, Rth is the rainfall threshold and Ra30 is
the 30-day antecedent rainfall (Fig. 8). Based on the derived antecedent
rainfall threshold, the probability and the return period of future land-
slides is derived as shown in Fig. 9.
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4.4. Landslide susceptibility

The spatial patterns of landslide susceptibility have been illustrated
through the generation of susceptibility map. The map is primarily
composed of 30 � 30 m pixel matrix with a qualitative scale of landslide
occurrence probability. The results of the statistical analysis i.e., the
frequency ratios and the weightage of each factor is presented in Table 4.
The levels of the susceptibility range from low to very high (Fig. 10). The
percentage of area under different susceptibility classes has been 13.67%
(low) 52.94% (moderate), 30.4% (high) and 2.99% (very high) respec-
tively. The landslide susceptibility scenario created is fundamentally
based on two assumptions: (i) the landslide occurrence is a function of
the selected conditioning factors and (ii) the occurrence of future land-
slides would be governed by the same factors. The analysis provides an
understanding of spatial distribution of future landslide occurrence; the
identified ‘very high’ and ‘high’ landslide susceptibility areas are likely to
experience enhanced landslide activity than the areas exhibiting ‘mod-
erate’ and ‘low’ susceptibility. There is no consistent spatial pattern in
the landslide susceptibility levels of the CBD, the scenario on the whole is
sporadic in nature. However, the mountainous areas from the south of
CBD (Teknaf) and steep slopes along the coast especially that of Ramu
and Cox's Bazar-S sub-districts revealed ‘very high’ probability of



Fig. 7. 30-day accumulated rainfall and rainfall on the selected landslide days in the Cox's Bazar District (CBD) between 2003 and 2019; (Source: JAXA GSMaP).
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landslides. The scattered flat areas of Chakaria, Maheshkhali, Cox's
Bazar-S, Ramu and Ukhia, exhibited ‘low’ susceptibility levels (Fig. 10).

4.5. Validation of the susceptibility map

The accuracy of the landslide susceptibility simulations using various
statistical models such as Frequency Ratio (FR), Logistic Regression (LR),
Artificial Neural Networks (ANN), and Analytic Hierarchy Process (AHP)
has not been observed to be consistent. For example, the accuracy of FR
has been reported to be relative better than LR (e.g., Lee and Sambath
2006; Solaimani et al., 2013) and ANN (e.g., Poudyal et al., 2010) in
some studies, whereas the same model (FR) has been found demon-
strating almost similar accuracy compared to the LR, ANN and AHP (e.g.,
Park et al., 2013). The variability in the accuracy is usually associated
with the selection of the landslide influencing factors, quality of the data
used, and user bias. Here in the present analysis we assess the quality of
the susceptibility map using relative landslide density index (R) Eq. (8)
(e.g., Baeza and Corominas, 2001; Shahabi and Hashim, 2015).
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R¼ ni
Ni

X ni
Ni

� 100 (8)

� �� � �

where ni the number of landslides occurred in the susceptibility class i
and Ni the number of pixels in the same susceptibility class i. The index is
used to understand the correlation between the landslide susceptibility
classes and landslide inventory. The results expressed a reasonable
agreement with the observed landslides. (Fig. 11). The ratio of area under
landslide susceptibility class and number of observed landslides has been
convincingly consistent with each other. The ‘very high’ susceptibility
class comprising only 2.99% of the total area accounted for 20.52% of the
observed landslides; for other susceptibility classes (high:30.4%, mod-
erate:52.94%, and low:13.67%), the ratio has been 38.42, 36.44, 4.6
respectively (Fig. 11).
4.6. Landslide risk to population

Landslide risk can be better understood by overlaying population and
built environment layers on landslide susceptibility map (UNISDR,



Fig. 8. Antecedent rainfall threshold for the Cox's Bazar district; Rth is the rainfall threshold and Ra30 is the 30-day antecedent rainfall.

Fig. 9. Return period and probability of the future landslides in the Cox's
Bazar District.
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2017). The overlay analysis of the population data i.e., estimated total
number of people per grid-cell (approximately 100m) and FR based
landslide susceptibility scenario helped to map the landslide risk in the
CBD. The landslide risk was identified as low (16.67%), moderate
(53.89%), high (26.97%) and very high (2.45%) for the different parts of
CBD, see Fig. 12. The results are based on the assumption that the areas
with relatively high landslide susceptibility levels and high population
density are at higher risk and vice versa. The use of gridded population
data substantially reduces the distortion of in-situ information and
generalization effects that usually occur due to administrative boundary
based population data. The restriction of the risk analysis to populated
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areas also makes the prioritization for mitigation strategies easy and
applicable. Few Upazilas of the CBD particularly Cox's Bazar-S, Chakaria,
Pekua with high population size and density have the high concentration
of the ‘landslide risk’ pixels. Pertinently, Kutubdia and western part of
Maheshkhali have not been considered in this analysis. In addition, the
Rohingya Refugee population, who are living a miserable life in tempo-
rary bamboo and tarpaulin shelters spread over the multiple clusters in
the Ukhia and Teknaf Upazilas of the CBD has not been considered in the
risk assessment process. The risk levels derived here are predominantly
governed by the population density and areas even with gentle slope
have some degree of landslide risk. Hence, while initiating the mitigation
measures for reducing the landslide risk in the CBD based on the results
of this study, the priority is to be given to the areas with ‘very high’ and
‘high’ risk levels.

4.7. Rainfall threshold based landslide early warning system (LEWS)

Based on derived landslide-triggering rainfall thresholds and the
simulated susceptibility scenarios, this study proposes a cost-effective
and convenient LEWS for the CBD (Fig. 13). The system uses informa-
tion on amount of rainfall, time duration, and degree of susceptibility for
projecting the likelihood of landslide occurrence. The probability of
landslide occurrence remains ‘negligible’ in a scenario of ‘very insignif-
icant’ (0–20%) rainfall within a ‘very low’ susceptible area and ‘very
high’ if rainfall reaches the threshold (>90%) in a ‘very high’ susceptible
area; the intermediate levels of the LEWS are described in Fig. 13. The
information of rainfall thresholds and susceptibility can be combined and
used to issue different levels of warning. The LEWS proposed here has a
potential to help in minimizing the landslide impacts in the CBD and
elsewhere.

5. Discussion

Owing to inherently complex nature of the landslides, forecasting
their occurrence has never been an easy task. Two modeling approaches
are generally adopted for the forecasting of landslides i.e., physically
based and empirically based. Both the methods function at multiple



Table 4
Frequency ratio statistics.

Factor Class Frequency of pixels
(%)

Frequency of landslides
pixels (%)

FR

LULC Built-up 10.02 14.70 1.46
Waterbody 02.95 00.00 0.00
Vegetation 56.47 43.65 0.77
Bare land 03.79 16.94 4.46
Cropland 26.75 24.79 0.92

Lithology
ava 07.76 07.10 0.91
csd 19.09 05.83 0.30
H2o 05.19 02.41 0.46
Ppc 01.99 00.00 0.00
QTdd 20.45 01.01 0.04
QTdi 02.30 06.34 2.75
QTdt 09.08 11.29 1.24
QTg 08.48 05.71 0.67
Tb 00.72 00.00 0.00
Tbb 09.57 25.88 2.70
Tt 15.32 34.39 2.24

Soil
Clay 26.97 11.96 0.44
Loam 53.09 60.27 1.13
Sand 02.18 02.93 1.34
Sandy loam 13.42 08.91 0.66
Silty loam 04.35 07.44 1.71
Silty clay 04.29 07.22 1.68
Silty clay
loam

00.84 01.24 1.46

Slope
00–03.0 46.95 10.99 0.23
03.5–06.5 32.55 36.92 1.13
06.5–11.5 14.60 28.73 1.96
11.5–20.5 05.08 10.43 2.05
20.5–66.5 00.79 12.90 16.1

Aspect
Flat 07.24 12.00 1.65
North 12.20 10.32 0.84
Northeast 12.50 11.56 0.92
East 10.30 11.44 1.11
Southeast 12.77 09.76 0.76
South 13.16 11.78 0.89
Southwest 12.33 10.33 0.84
West 09.65 11.44 1.18
Northwest 09.80 11.22 1.14

Distance to streams (m)
0–500 57.41 37.59 0.65
500–1000 29.00 20.08 0.69
1000–1500 06.45 20.31 3.13
1500–2000 07.11 21.99 3.09

Distance to faults (km)
0–8 25.39 23.45 0.92
8–16 29.33 19.97 0.68
16–24 28.04 19.86 0.70
24–32 13.52 17.84 1.31
32–40 03.69 18.85 5.09

Topographic Position Index (TPI)
TPI-1 01.83 13.46 7.35
TPI-2 20.51 17.17 0.83
TPI-3 64.25 34.68 0.53
TPI-4 12.48 29.06 2.32
TPI-5 00.91 05.61 6.14

Rainfall (mm)
1581–2268 08.97 0.61
2668–2535 16.61 0.74
2535–2868 19.97 0.89
2868–3158 28.05 1.06
3158–3680 26.37 1.80
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spatial scales and use global, regional and local scales as units of analysis
(Guzzetti et al., 2007). In the physically based approach, the triggering
mechanism is simulated using maximum possible inputs, taking into
consideration all the factors and each physical process that plays a role in
landslide occurrence (Ascanio et al., 2012). The comprehensiveness of
the physically based models though necessitates diverse spatial data
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inputs that control initiation of the landslides (Brunetti et al., 2010).
Since the physically based models take into account dominant mechan-
ical processes of landslides such as cohesion and friction angle, they have
advantage of predicting the timing and location of the landslides (Wu
et al., 2015). However, data required for the physically based models is
generally unable or difficult to attain which often discourages their use.
On the other hand, empirical models e.g., rainfall threshold calculations
use statistical procedures for analysis that demand relatively less input
data. For that reason, empirical models have been preferred tools for the
prediction of rainfall induced slope failures and development of landslide
early warning systems in different regions (Segoni et al., 2015; Robbins,
2016; Melillo et al., 2018). The analysis of this kind aims at under-
standing the relationship between the amount of the rainfall and land-
slides occurrence independent of landslide typology and scale.

Landslide inventories with spatiotemporal attributes and associated
precipitation records form the foundation to derive landslide inducing
rainfall thresholds for a particular region and for developing landslide
early warning systems (Fell et al., 2008; Kirschbaum et al., 2009; Rob-
bins, 2016; Fayne et al., 2019). The works of Campbell (1975) and Caine
(1980) have been pioneering to establish such relationships between
rainfall thresholds and landslide occurrence. A minimum threshold
connotes the lowest amount of rainfall below which a landslide does not
take place and the maximum threshold represents the amount above
which a landslide always occurs (Guzzetti et al., 2007). However, not all
of the rainfall values between the two thresholds trigger landslides; it is
only when values approach the maximum threshold the probability of
landslide occurrence increases (Glade et al., 2000). Comparison of the
rainfall events that initiated landslides with the rainfall episodes without
landslides are used to capture the thresholds (Valenzuela et al., 2019). In
general, the thresholds are obtained by plotting rainfall amounts that
resulted in landslides and identifying the lowest rainfall amount in the
sequence.

The process of rainfall threshold determination makes use of infor-
mation on observed landslides and respective rainfall in the area-of-
interest to establish a relationship. The thresholds may not provide
reliable estimates if the database on landslides is inadequate; longer time
period covering maximum number of landslides including exact infor-
mation related to their location and timing are essential for deriving
empirically based rainfall thresholds. In other words, if the historical
record of the landslides is not complete or not documented in the form of
a reliable report for the selected time period, the derived thresholds can
be misleading. One of the major drawbacks of the rainfall thresholds is
that they are unable tell us about the exact location where a landslide is
likely to occur. The vagueness in the location information of the expected
landslides results in limited practical application of rainfall thresholds.
Moreover, altered geomorphic conditions or human intervention such as
slope destabilization from excavation, hill cutting for residential housing
development, road construction or any other development projects may
cause establishing minimum threshold not applicable for entire area even
with homogenous topographic and lithological characteristics. In addi-
tion, most of the remote areas are ungauged and lack record of measured
rainfall; under such circumstances rainfall data is extrapolated form the
nearby areas or satellite based estimates are used. This situation can in-
fluence the accuracy of the rainfall thresholds. Despite issues associated
with the process, the rainfall thresholds offer cost effective option for
developing an operational LEWS.

Since rainfall based empirical threshold estimations consider the
landslide occurrence entirely a function of precipitation, the spatial
variability of factors like geology, slope, soil, vegetation, and stages of
weathering are not considered. In order to add the dimension of landslide
conditioning factors we carried out the landslide susceptibility analysis
which can be used in combination with rainfall threshold estimates for
reducing landslide impacts in the study area. The susceptibility analysis
provides both quantitative and qualitative description of the possibility
of occurrence and location of the landslides on the basis of various
environmental conditions (Guzzetti et al., 2005). The process of landslide



Fig. 10. Frequency Ratio (FR) based landslide susceptibility of the Cox's Bazar District.

Fig. 11. Relative landslide density index depicting the ratio of susceptibility
classes and number of landslides.
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susceptibility analysis is dependent on complex data of slope movements
and selection of the controlling factors, scale and adopted methodology
(Ayalew and Yamagishi, 2005). Landslides susceptibility is usually
simulated in space and time using empirical or physical models; and an
area of interest is divided into different zones ranked according to varied
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probabilities of landslide occurrence (Guzzetti et al., 1999). The proba-
bilities are established either on the basis of spatial components or
derivation of return periods through the historical data based frequency
analysis or comprehensively by combining the both (Glade, 2001). The
factors that contribute to the landslide hazard are generally grouped into
two types i.e., intrinsic and extrinsic elements; the intrinsic elements
primarily include the inherent terrain properties such as geology and
slope whereas extrinsic elements largely comprise rainfall and human
interventions (Huabin et al., 2005). Probabilistic methods that use
landslide inventory as an input may be considered as more reliable in
quantitative risk assessment (Van Westen et al., 2006).

Landslide risk assessment (LRA) is an important dimension of land-
slide studies (Kanungo et al., 2008). Risk assessment is usually performed
to identify the spots that are likely to experience relatively enhanced
impacts from the future extreme events. The pre-event risk assessment
offers an opportunity to understand the probability of loss in a given area
and initiate the preparation measures and reduce the anticipated losses
(Alam et al., 2019). Landslide risk assessment is essential for prevention
and mitigation of landslide disasters (Anbalagan and Singh, 1996; Dai
et al., 2002; Liu and Miao, 2018). In this investigation, instead of pro-
jecting the risk for the whole area which is not entirely inhibited we
focused on the populated areas only to improve the applicability of the



Fig. 12. Simulated landslide risk scenario of human settlement areas in the CBD.
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Fig. 13. Rainfall threshold based Landslide Early Warning System (LEWS) that can be adopted for the CDB.
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results in context of landslide hazard mitigation. Geographic Information
System (GIS) in combination with varied statistical techniques provides
an effective environment for the assessment of risks related to various
natural hazards including landslides. With a robust spatial data man-
agement structure, GIS exhibits exceptional capabilities to evaluate and
integrate different elements of the risk (Alam et al., 2019, 2020; Taloor
et al., 2023). For that reason, GIS has long been an integral part of hazard
and risk assessment studies (Van Westen et al., 2006; Bhat et al., 2018,
2019).

6. Conclusions

The mountainous regions of South Asian countries characterize a
global hotspot of landslide activity. One of such regions is the Cox's Bazar
District (CBD), where frequently occurring landslides cause colossal loss
of life and property almost every year. Incessant rainfall particularly
during the monsoon season is the most common triggering factor of
landslides in the district. Thus, evaluating the relationship between the
observed landslides and rainfall patterns is useful for predicting the
occurrence of future landslides and minimizing the associated impacts in
the area. Considering the available information on fourteen landslide
events and corresponding rainfall experienced during the period from
2003 to 2019, this study derived three different landslide-activating
rainfall thresholds for the CBD. The recurrence interval of the land-
slides and their probabilities of occurrence were also assessed using
antecedent rainfall threshold in the Poisson probability distribution,
assuming landslide occurrence exclusively a function of rainfall. The
study also encompassed landslide susceptibility analysis of the CBD
considering ten spatially distributed conditioning factors. Frequency
Ratio (FR) model was used for deriving the relative weight of the selected
factors. The consistency check using relative landslide density index
revealed that the FR model performed satisfactorily in projecting land-
slide susceptibility. The susceptibility map was subsequently integrated
with population data to project the landslide risk scenario. The results of
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this analysis can be used in combination for issuing the warnings and
reducing landslide impacts in the CBD. Moreover, the approach can be
extended to other similar settings for mitigating the landslide hazard.
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