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Relaxation of experimental parameters in a quantum-gravity-induced entanglement of masses
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To test the quantum nature of gravity in a laboratory requires witnessing the entanglement between the two
test masses (nanocrystals) solely due to the gravitational interaction kept at a distance in a spatial superposition.
The protocol is known as the quantum-gravity-induced entanglement of masses (QGEM). One of the main
backgrounds in the QGEM experiment is electromagnetic (EM) -induced entanglement and decoherence. The
EM interactions can entangle the two neutral masses via dipole-dipole vacuum-induced interactions, such as the
Casimir-Polder interaction. To mitigate the EM-induced interactions between the two nanocrystals, we enclose
the two interferometers in a Faraday cage and separate them by a conducting plate. However, any imperfection
on the surface of a nanocrystal, such as a permanent dipole moment, will also create an EM background inter-
acting with the conducting plate in the experimental box. These interactions will further generate EM-induced
dephasing, which we wish to mitigate. In this paper, we will consider a parallel configuration of the QGEM
experiment, where we will estimate the EM-induced dephasing rate and run-by-run systematic errors which will
induce dephasing, and also provide constraints on the size of the superposition in a model-independent way of
creating the spatial superposition.
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I. INTRODUCTION

Quantum spatial superposition and entanglement [1] are
the two key tools to test the quantum nature of gravity in a lab-
oratory [2]; see also [3].1 Both tools are inherently quantum
in nature, and there are no classical counterparts to them. In
[2] it was pointed out that two masses of order m ∼ 10−14 kg
if kept in a spatial superposition of order 100 µm separated at
a distance of 450 µm for a time τ ∼ 1–2 s will entangle them
gravitationally sufficiently to be detectable via entanglement
witness [1], if gravity is inherently a quantum entity where
the gravitational interactions are treated locally and the pillars
of relativistic quantum field theory are maintained [5–12].2

The protocol introduced in [2] is known as quantum-gravity-
induced entanglement of masses (QGEM).

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

1The results of [2] were first reported in a conference talk [4].
2One can introduce nonlocal gravitational interaction and can com-

pute entanglement witness (see [5,7]), but the nonlocal interaction
is introduced at the level of Lagrangian in very specific nonlocal,
infinite derivative theories of gravity [13,14], and such nonlocality
can be perceived arising from string theory (see, e.g., [15]) or string
field theory [16].

This simple but potent observation made in [2] also sup-
ports the principle of local operation and classical communi-
cation (LOCC) [17], which states that if two quantum systems
are pure, classical communication would not entangle them at
all. One would require a quantum communication/mediator
to entangle the two quantum systems [2,5,6]. We refer to
Refs. [5,6,9,11,12,17] for an extensive discussion of the
argument that only quantum interactions can generate en-
tanglement in an initially unentangled state. In brief, these
references show that interaction via a virtual quantum state
is needed for the generation of entanglement in the case of
gravity. Virtual states are one of the most bona fide quan-
tum states one can get—a superposition of all the energy
eigenstates. A classical interaction will give only the on-shell
states (which are not quantum superposed, they are in a spe-
cific state) and can therefore not generate entanglement; see
Refs. [2,5,6].

By classical communication, we mean that there is a clas-
sical probability associated with the local operations, e.g.,
unitary operations, but no Hilbert state associated with clas-
sical operators. Therefore, irrespective of formal aspects of
quantum gravity or its ultraviolet challenges, i.e., whichever
way we may quantize gravity if gravity is a quantum entity it
would entangle the two spatially superposed masses even at
the lowest order in the potential. In fact, Newtonian potential
has no h̄ and despite this witnessing entanglement between the
two superposed masses holds the key to unveiling the quantum
nature of gravitational interaction.
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This has been shown via covariant quantization of pertur-
bative quantum gravity in Refs. [5,6,9] and the path integral
approach [12], and by axiomatic approach to perturbative
quantum gravity; see Ref. [11]. The only assumptions in all
these papers are locality and causality, and a relativistic quan-
tum field theory of gravity is applicable around a well-defined
Minkowski’s background.

This observation is similar in spirit to Bell’s test of quan-
tum nonlocality that even if h̄ → 0 the quantum correlation
does not vanish [18], first observed in the case of large spins
violating Bell’s inequality; see Refs. [19,20]. The QGEM pro-
tocol is precisely based on witnessing this correlation via spin
entanglement. The idea is to embed spins into the quantum
system, such as a nitrogen-vacancy (NV) spin in the diamond-
type crystal [2], and use the spin to create a macroscopic
quantum superposition such as in the Stern-Gerlach (SG)
apparatus [21–28] and close the one-loop interferometer to
measure the interference between the two paths, and hence
build spin-spin correlations, e.g., entanglement witness, be-
tween the two adjacent interferometers.

The creation of spatial superpositions is experimentally
challenging. The system needs to be prepared initially in a
pure state [29,30], and the dephasing factors need to be con-
trolled (as discussed in this paper).3

Naturally, witnessing the entanglement will be extremely
challenging; there are many sources of noise, and one
particular noise is indeed induced by the electromagnetic
(EM) interactions in the neighborhood of the nanocrystals
[37], decoherence due to heating of the crystal, blackbody
emission/absorption, and scattering of the ambient quanta
[2,38–41] motivated from [42–45]. There are also external
jitters due to gas molecules, gravity-induced noise such as
gravity gradient noise, and relative acceleration noise [46–48],
and dephasing due to heavy massive objects near the experi-
ment, e.g., cryogenics and vacuum pumps [49].

In this paper, we will focus on the EM-induced noise.
In particular, we will discuss the situation as first pro-
posed in Ref. [37] where a conducting plate is placed
between the two test masses to shield the test masses from

3Self-gravity effects suggested by Penrose and Diosi [31–33] and
investigated in a Stern-Gerlach setup in Ref. [34] may addition-
ally decohere the superposition. However, Penrose’s collapse of the
wave function demands a violation of the superposition principle in
quantum mechanics due to the potential singularity in the theory of
general relativity. However, there are theories of gravity motivated
from string theory where the gravitational interaction becomes weak
at short distances and small timescales that can avoid Penrose’s
conjecture [13,14]. In such a class of theories the wave function
does not collapse even in Diosi’s model [35]. Further note that the
gravitational binding energy in our case without assuming any mod-
ification to the Einstein gravity is given by U = 3Gm2/5r. For the
experimental parameters used in this paper, this is extremely small,
e.g., U ∼ 10−33 J. Thus, U � 1, which is why we can trust the use of
an effective quantum field theory to derive the quantum gravitational
interaction; see [36]. Also, for the mass and magnetic field gradient
used in this paper this hypothetical self-gravitational interaction is
not expected to be relevant within the chosen experimental time
(based on [34]).

FIG. 1. Schematic representation of the anticipated setup and the
QGEM protocol. Two nanocrystals with internal spins (red arrows)
are initially kept and cooled in two 3D traps separated by a thin
membrane. With standard radio-frequency techniques, a spin super-
position of each nanocrystal is created 1√

2
(|0〉 + |1〉) (double-sided

arrows). Upon switching off the traps, the spheres fall through a
strong B-field gradient region. The two spin states are accelerated
in different directions creating spatial superposition states. While
falling gravity can entangle the superposition states of the spheres
(blue wavy line). Upon passing through an inverted magnetic field
the spatial superpositions states are compressed again and the final
spin state is detected. This sequence is repeated until enough statis-
tics are gathered to witness gravity-induced entanglement.

interacting vacuum-induced dipole-dipole interaction, e.g.,
Casimir-Polder potential [50,51]. However, we consider a dif-
ferent geometrical configuration of test masses, namely, that
the test masses are in the “parallel” rather than the “linear”
configuration. The reason for selecting such a configuration
is to maximize the entanglement phase and hence the entan-
glement witness; see [39–41,52]. Here we will also consider
a wider range of relevant effects, especially focusing on the
induced-electric dipole moment, and the dipole moment on
the surface of the crystal [53,54]. Besides these, there are
also common mode fluctuations between the two halves of the
interferometers. Here also, we will assume that the two halves
of the experiment, the two interferometers, are separated by
a conducting plate to minimize the EM-induced interactions
between the nanocrystals, as illustrated in Fig. 1. We will
analyze various sources of dephasing, namely, the fluctuation
in the paths of the interferometer, run-to-run fluctuations in
releasing the nanocrystal’s position, fluctuations in the mag-
netic field, or fluctuations in the conducting plate. All these
fluctuations will manifest in some decoherence, in the sense
that they will affect the global phase of the density matrix of
the two interferometers, which we wish to optimize for the
QGEM experiment.

In Sec. II we explain why the parallel configuration and the
introduction of a conducting plate could be beneficial in terms
of witnessing the entanglement. Then we add a conducting
plate to the setup (Sec. III) and discuss the change in the
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FIG. 2. Two test masses of mass m, labeled 1 and 2, in the par-
allel configuration. The superposition width is �x, and the distance
between the |0〉-states is d .

free-fall trajectories of the test masses due to the Casimir
and dipole interaction between the test masses and the plate
(Secs. III A and III B, respectively). Due to the test masses’
trajectories and therefore the accumulated phase being de-
pendent on the initial separation of the test masses with the
plate, small fluctuations in the creation of the initial state
(such as the distances to the plate, the magnetic gradient,
and the dipole orientation) will result in phase fluctuations
at the measurement stage. This is discussed in Sec. IV. Fur-
thermore, an initial setup that is not perfectly symmetric can
cause a deflection in the conducting plate and consequently
cause dephasing in the superpositions due to the plate. An
estimation of the coherence time due to dephasing from the
deflection of the plate, and thermal fluctuations of the plate,
is given in Sec. V. Figure 1 shows a schematic of the new
setup proposed in this paper, we conclude by showing that this
setup relaxes the experimental parameters needed to witness
the entanglement.

II. PARALLEL AND LINEAR SETUPS

We will consider a nanocrystal with a spin; in fact, our
discussion is very generic and can be applied to many dopants.
As an example, we may consider a diamond-like system with
one NV center, and we will assume that the crystal is a
sphere and the NV is at the center; for a review of NV-center
diamond, see [55,56]. We will also assume that the crystal is
charged neutral, but we will take up the case when there are
surface dipoles separately [53,54]. We will initiate the spin
in a superposition state (see below) and let the crystal pass
through an inhomogeneous magnetic field of the SG setup,
and the spin superposition allows for the creation of a spatial
superposition; see [21–25,57]. There are many schemes to
create the spatial superposition, but here we will consider a
simple setup where we will take into account of three steps:
(1) acceleration of the crystal, τa, (2) intermediate phase when
the crystal is not experiencing any SG force, and (3) the last
phase of recombining the trajectories of spin-up and -down.
We distinguish the following two setups that correspond to
two different configurations:

(1) Parallel setup: The direction in which this superposi-
tion is created is such that the two superpositions are parallel,
as depicted in Fig. 2. It was first considered in [41] and further
studied in [40] including the effects of decoherence.

(2) Linear setup: The superpositions are kept adjacent to
each other; see Fig. 3. In this paper we will focus on the
parallel setup; the aim of this section is to show that the
parallel setup results in a larger effective entanglement phase
within the first ∼5 s of the experiment.

FIG. 3. Two test masses of mass m, labeled 1 and 2, in the
linear configuration. The superposition width is �x, and the distance
between the |0〉-states is d = dmin + �x.

We briefly review the QGEM protocol for the parallel setup
first, and a similar analysis on the linear setup has been done
earlier; see [2,37]. We will assume that the initial state of the
combined system of the two crystals (labeled system 1 and
system 2) is that of a pure state and is represented by a spatial
superposition of 0 (spin down) and 1 (spin up):

|�0〉 = 1

2

2⊗
i=1

(|0〉i + |1〉i ). (1)

After creating a spatial superposition, holding it for a time τ ,
and then recombining the superposition states, the final state
is entangled via the quantum nature of gravity, and the final
state is given by

|�(t = τ )〉 = eiφ

2
(|0 0〉 + ei�φ |0 1〉 + ei�φ |1 0〉 + |1 1〉),

(2)

with4

φ = Gm2

d

τ

h̄
, �φ = Gm2√

d2 + (�x)2

τ

h̄
− φ, (3)

where m is the mass of the test masses, d and �x are as defined
in Fig. 2, G is Newton’s gravitational constant, and h̄ is the
reduced Planck’s constant. As long as 2�φ �= 2πk (k ∈ Z),
the state is nonseparable (from Plücker’s relation [58] or can
be seen explicitly in the context of a perturbation theory in
quantum mechanics [6]), which means the test masses are
entangled, with the maximum entanglement at �φ = π/2.
We define therefore the effective entanglement phase as5

�eff = 2�φ.

Requiring a minimal effective phase, say, �eff ∼ O(1), de-
termines the experimental parameters such as the mass m
and the distance d . Minimizing the separation would increase
the effective phase, but there is a minimal distance dmin be-
tween any two superposition instances required such that the
Casimir-Polder-induced entanglement phase is subdominant
compared to the gravitationally induced entanglement phase.

4Actually, since �x is time-dependent this should be integrated
over time. However, for the purpose of this section, we can consider
only the entanglement phase generated in a time τ while �x is
constant.

5In the linear configuration, this effective entanglement phase is

�eff = Gm2

d + �x

τ

h̄
+ Gm2

d − �x

τ

h̄
− 2φ. (4)
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FIG. 4. Effective phase of the linear (dashed lines) and par-
allel (solid lines) configurations as a function of the mass m,
for τ = 1 s and dmin = 157 µm, and for superposition sizes �x =
100 µm, 250 µm (colored blue and red, respectively).

The Casimir-Polder potential between the two neutral di-
electric masses is [24,37,50,51]

VCP = −23h̄c

4π

R6

d7

(
ε − 1

ε + 2

)2

, (5)

with ε the dielectric constant of the test mass, r the separation
of the two states, and R the radius of the test mass. Comparing
the gravitational and Casimir-Polder interactions which go
as ∼1/r and ∼1/r7, respectively, the Casimir-Polder interac-
tion dominates at short separations. From the condition that
the gravitational potential is at least one order of magnitude
larger than the Casimir-Polder potential, we find a minimal
distance (assuming that the test masses are perfect spheres,
ρ = 3m/4πR3) [37]:

d �
[

230

4π

h̄c

G

(
3

4πρ

ε − 1

ε + 2

)2
]1/6

≡ dmin ≈ 157 µm, (6)

where ρ = 3.5 g/cm3 (the density of diamond), ε = 5.1 (the
dielectric constant of diamond), and c the speed of light. For
this minimal distance, we compare the effective entanglement
phase for the parallel setup [Eq. (3)], with the effective phase
from the linear setup [Eq. (4)], which was discussed in [2,37].
The comparison is given in Fig. 4. The figure shows that for
this minimal distance (which is determined by the material
properties), the parallel configuration typically generates a
larger effective phase within 1 s of interaction, independent
of mass [39,40].

Besides the generated entanglement, dephasing via the
Casimir interaction also plays a role. For example, if there
is a different Casimir interaction for the two superposition
instances between the particles and the conducting plate that
will be introduced in the next section. This specific type of
dephasing will be discussed in Sec. IV C. The dephasing due
to a general effect can be characterized by the dephasing rate
γd . The final wave function presented in Eq. (2) including

dephasing is6

|�(t = τ )〉 = eiφ̃

2
(|0 0〉 + ei�φ−iγd τ |0 1〉

+ ei�φ |1 0〉 + e−iγd τ |1 1〉). (7)

III. CONDUCTING PLATE

The previous section shows a parallel orientation of the
superposition resulting in a larger entanglement signal com-
pared to a linear configuration, within the first few seconds of
the experiment. However, Ref. [37] suggested the placement
of a conducting plate between the two superpositions, which
shields the Casimir-Polder interaction and electric field be-
tween the two superpositions and allows for a smaller minimal
distance (resulting in a higher entanglement within 1 s of the
total experimental time). This relaxes the allowed experimen-
tal parameters needed to achieve �eff ∼ O(1). Based on Fig. 4
we expect that introducing a conducting plate in the parallel
configuration will further aid the parameters.

To analyze the parallel configuration, we introduce a per-
fectly conducting and reflective plate of thickness W at a
distance z from both test masses; see Fig. 5. The plate is
assumed to be grounded and is clamped in the x direction
with the experimental capsule. We furthermore assume that
the Faraday cage which encloses the experiment is free falling
and that the plate and test masses are also in free fall. The
conducting plate will screen the electromagnetic interactions
(such as the Casimir-Polder or dipole-dipole interaction) be-
tween the two test masses, allowing the minimal distance dmin

to be smaller than in the absence of this plate. However, the
conducting plate will interact with the two test masses individ-
ually, and hence the resulting force will alter the trajectory of
the superposition states by accelerating them toward the plate.
This will modify the distance to the plate, z(t ), over time. We
consider here the Casimir-Polder and the dipole interaction
between a dielectric sphere and a conducting plate and show
the required initial separation z(0) = d and accumulated ef-
fective entanglement phase �acc during the experimental time.

Due to the acceleration a = F/m induced by the
Casimir/dipole force between the crystal and the conducting
plate, within an infinitesimal time period δt , the change in
position of the superposition is modified by a small amount.
Assuming that the acceleration a is constant during an in-
finitesimal time δt , the position at z(t + δt ) is

z(t + δt ) = z(t ) − 1
2 a(t )(δt )2 − v0(t )δt, (8)

with v0(t + δt ) = v0(t ) + a(t )δt the velocity, with initial con-
ditions v0(0) = 0, z(0) = d .

The effective phase accumulated during an infinitesimal
time period δt is given by

�eff(δt ) = 2Gm2δt

h̄

[
1√

[2z(t + δt ) + W ]2 + (�x)2

− 1

2z(t + δt ) + W

]
. (9)

6Assuming some symmetries in the setup, the equation is derived
in more detail in Sec. IV C.
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FIG. 5. Parallel setup with a conducting plate of size L and width
W . At t = 0 there is a spin superposition. By applying a protocol a
spatial superposition of size �x is created in τa seconds. After an
evolution of τ seconds, the spatial superpositions are recombined
into spin superpositions. The figure shows the maximal superposition
width �x and the distance to the plate z(t ), which is time-dependent
due to EM interactions with the plate. The dotted line illustrates the
attraction towards the plate, showing that z(t ) decreases over time.
We define z(0) = d . Note that the figure is not to scale and that this
setup is placed in a Faraday cage of size L × L × L.

The total accumulated effective phase can be found by inte-
grating the infinitesimal effective phase over time:

�acc =
∫ τ

0
dt

δ�eff

δt
. (10)

Rather than solving this integral analytically, we find the to-
tal accumulated phase numerically, by adding the values of
Eq. (9) over time and updating the position at every time step
using Eq. (8) [59]. So far we have considered only the time
period when we can neglect the SG force on the crystal, but
we should also include the accumulated phase and the dis-
placement during the creation and recombination of the spatial
superpositions. The superpositions are created by applying a
magnetic gradient ∂zB, resulting in the acceleration:

am = gμB∂zB, (11)

with the electronic g factor of the NV center g ∼ 2 and μB

the Bohr magneton. The recombination of the spatial super-
positions is achieved by simply reversing the direction of the
magnetic gradient. The direction of the magnetic accelera-
tion am is in the x direction and thus perpendicular to the
acceleration towards the plate. In the parallel configuration,

the Casimir and the dipole interactions will not influence the
superposition width. The spin-dependent force will be acting
along the x direction only. The displacement due to the SG
force, e.g., ∂B, is related to the superposition width, and after
a time τa will be given by

�x = gμB∂zB

2m
τ 2

a . (12)

Of course, we are considering a very simple model for cre-
ating the superposition, and this analysis will give us some
idea of how and when the actual experimental setup will
be conceived. A more comprehensive protocol for creating a
large superposition size within a short time period is discussed
in [23,25–28].

The displacement and the infinitesimal phase during the
creation and recombination of the spatial superpositions can
be found also in Eqs. (8) and (9), respectively, but with �x
time-dependent and given by Eq. (12). We first analyze the
Casimir-Polder interaction between the conducting plate and
the nanocrystal and then study the surface dipole.

A. Casimir force

The Casimir force will act between a diamond-like crystal
and the conducting plate. The force between a static plate and
a free dielectric sphere is given by [60]7

Fc = −3h̄c

2π

(
ε − 1

ε + 2

)
3m

4πρ

1

z5
, (14)

where z(t ) is the distance between the plate and the superpo-
sition at a given instance of time. We have assumed the crystal
to be perfectly spherical, with ρ as the density of the spherical
masses ( 4π

3 R3ρ = m). From Eq. (8), we can find the position
of the dielectric sphere due to the Casimir force-induced dis-
placement via numerical integration. Several methods could
be used; we have provided our code on GitHub.

Figure 6 shows the trajectory z(t ) of a single superposition
as a function of time, for different initial values of z(0) = d .
Note that this is plot is mass-independent because the mass
cancels out in the acceleration. The closer the initial separa-
tion to the plate, the larger the deflection of the trajectory. At
a separation of around z(t ) ∼ 15 µm the trajectory is approxi-
mately constant.

7The potential between a dielectric sphere and a perfectly reflective
plate was derived by Casimir and Polder in [51]. In the limit where
the separation z is much larger than the wavelength of the electro-
magnetic field [60]:

VCP = −3h̄cα

8πz4
. (13)

Note that this differs from Eq. (5) which is the potential between
two dielectric spheres rather than the potential between one dielectric
sphere and a perfectly reflective plate of Eq. (13). The force due
to this interaction was found in [24,37,60] and can be seen to be
FCP = −∂zVCP. We take the complex polarizability of the dielectric
sphere, α = R3(ε − 1)/(ε + 2). Here we have assumed that the di-
electric properties of the test masses are independent of the frequency
of the electric field and that its imaginary part is negligible at low
temperatures (see experimental findings in [61–63]).
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B. Dipole force

Either due to an external electric field or due to the im-
purities on the surface of the diamond, the test masses can
have some induced or internal dipole moment, respectively,
[53,54]. Using the image method we can find the electric field
from the dipole at the surface of the conducting plate. The
resulting potential is given by

VD = −�p1 · �E2 = −�p1

(
3( �p2 · �r)�r

r5
− �p2

r3

)
1

4πε0
, (15)

with �p1 ( �p2) the dipole moment of the test mass (image test
mass) and �r the radius vector between the two (image) dipoles.
�E2 is the electric field due to the image dipole �p2 [64,65]. The
force between the plate and the test mass is then [66]

FD = 1

4πε0

3p2

16z4
[1 + cos2(θ )], (16)

where x is the separation to the plate, θ is the angle between
the direction of the separation and the dipole moment vector,
and p is the dipole moment magnitude. The dipole moment is
given by the sum of the induced and internal dipole moments
(pe and pi, respectively), p = pi + pe. The induced dipole due
to some external electric field E0 in the dielectric test masses
is [67,68]

pe = 4πε0

(
ε − 1

ε + 2
R3

)
E0. (17)

Considering an external electric field of E0 ∼ 2 ×
105 mkg/ s3 A−1 8, the externally induced dipole moment
is of the order pe ∼ 6 × 10−4 e cm for m = 10−15 kg. The
internal dipole moment in the diamond-type crystal is
estimated experimentally to be pi = 10−2e cm (with e the
electric charge) for spheres of R ∼ 5 µm [53,54]. A diamond
sphere of mass 10−16 − 10−14 kg would correspond to
R ≈ 0.2–0.9 µm. The internal dipole moment of diamond
spheres is not exactly known, therefore we take it to be
constant at pi = 10−2e cm, which may be an overestimation.
Since the internal dipole moment for microspheres is two
orders of magnitude larger, we continue with just considering
a total dipole moment of p = 10−2e cm (at least for the range
of masses considered here).

For an attractive dipole force between the plate and the
test mass, given in Eq. (16), the position of the test mass
[from Eq. (8)] can be found using numerical integration. The
trajectories z(t ) of a single superposition instance for different
z(0) = d are shown in Fig. 7.

The displacement due to the dipole interaction is dominant
over the displacement resulting from the Casimir interaction9

as one can see in comparing Figs. 6 and 7. Combining both ef-
fects, the initial distance allowed in order for the test mass not

8As mentioned in Sec. I, large superpositions can be created us-
ing a wire. The ampacity for copper nanotubes is found to be
J = 1013 A m−12

[69]. With a thermal conductivity of σ = 4.6 ×
107 Sm−1 at room temperature [69], the electric field found from
Ohm’s law is E = J/σ ∼ 2 × 105 mkg/ s3 A−1.

9This is the worst-case scenario where the dipoles are aligned such
that cos(θ ) = 1, and for the estimated pi mentioned previously.

FIG. 6. Separation z(t ) between one free dielectric sphere and
the boundary of the conducting plate changes as a function of time
due to Casimir interaction. With the initial separation z(0) = d . The
smallest distance z(t = 1 s) is 20 µm, 12 µm, and 5 µm for the initial
separations of 20 µm, 13 µm, and 10 µm, respectively.

to collide with the plate is smaller than the minimal distance
required in the absence of the plate.

C. Accumulated phase

The time-dependent accumulated phase is given in Eq. (10)
and plotted in Fig. 8 for the displacement due to the dipole
and Casimir interaction. The dipole is taken to be maximum
[θ = 0 in Eq. (16)]. Even after the recombination of the spatial
superposition has begun, the phase still grows a lot, which we
attribute to the distance between the superpositions decreasing
over time, also during this stage of the experiment. A mea-
surable phase can be achieved by experimentally realizing a
superposition width of at least ∼30 µm and closing to within

FIG. 7. Separation z(t ) between one free dielectric sphere and
the boundary of the conducting plate changes as a function of time
due to dipole interaction. With the initial separation z(0) = d and for
m = 10−14 kg. The smallest distance x(t = 1 s) is 100 µm, 42 µm,
and 16 µm for the initial separations of 100 µm, 50 µm, and 41 µm,
respectively.
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FIG. 8. Effective phase accumulated during 1 s of experimental
time. For masses m = 10−16, 10−15, 10−14 kg with corresponding
∂B = 5 × 103, 5 × 104, 5 × 105 T m−1 such that the superposition
width �x is approximately constant at 30 µm. With W = 1 µm, p =
10−2e cm, τa = 0.25 s, and τ = 0.5 s. The initial distance d depends
on the mass and is chosen to be 101 µm, 64 µm, and 41 µm for the
different masses, respectively. The subplot shows the time-dependent
phase accumulation during the one second for m = 10−14 kg without
the logarithmic y axis that is used in the main plot. The closest
approach to the plate is approximately 10 µm.

1 s for a mass of 10−14 kg. A mass that is one order of
magnitude smaller, although allowing a smaller separation to
the plate due to the smaller attractive force towards the plate,
also couples less gravitationally and results in an accumulated
effective entanglement phase approximately two orders of
magnitude smaller for the same superposition size.

IV. ENTANGLEMENT PHASE FLUCTUATIONS FROM
REPEATED EXPERIMENTS

The entanglement is witnessed by performing repeated
measurements on the spin states of the spin embedded in
the NV center of the diamond. During this process, the test
masses need to be prepared repeatedly in the same initial
state. A small derivation in the initial state results in a change
in the final state and therefore yields a different effective
entanglement phase. We consider here imbalances in the dis-
tance to the plate (Sec. IV B), the imbalance in the magnetic
field gradient (Sec. IV D) resulting in an imbalance in the
superposition size, and an imbalance in the dipole orientation
θ (Sec. IV E). These imbalances are illustrated in Fig. 9.
However, first, we give an estimate of the minimally effec-
tive entanglement phase necessary for entanglement to be
detectable in the presence of noise from imbalances in the
initial conditions, in order to fix our experimental parameters.

A. Minimal entanglement phase

The detection of entanglement is done via a witness, which
is constructed by repeated measurements on the spin states of
the test masses. Appendix A shows the derivation of the partial
positive transpose witness [1], which was found to be best for
the two-qubit QGEM setup [38]. Its expectation value can be

FIG. 9. Parallel setup with a conducting plate of size L and width
W as illustrated in Fig. 5. The imbalances discussed in Sec. IV
are illustrated. Note that z(0) = d is the initial position, and both
d1, d2 are imbalances in this position due to the distance plate-test
mass being different for the test masses, and the distance plate to
superposition instances being different between two superposition
instances leading to an angle θ , respectively. The imbalance δ�x is
caused by an imbalance in the magnetic field. The red arrow indicates
the dipole moment direction, which is assumed to have θ = 0 with
respect to the direction towards the plate (±ẑ-direction), but which
has a fluctuation δθ around this axis.

estimated as

Tr(Wρ) ≈ γ t − 1
2�eff (18)

at short timescales, where γ is the decoherence rate and
γd the dephasing rate. A negative expectation value of the
witness is a measure of an entangled state. In order to find
the minimal experimental conditions necessary for detecting
entanglement, we consider now what phase �φ is necessary
for the detection of entanglement.
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1. Shot-noise limited phase

Fluctuations in the initial conditions of the experiment
cause a run-to-run difference in the measurement of the
entanglement phase. We give a rough estimate of the mini-
mally detectable entanglement phase given a fixed number of
measurements. Assuming that the variation in the initial con-
ditions follows a Normal distribution, we use the shot-noise
limited phase uncertainty,

�φSN =
√

1

N
, (19)

where N is the number of trials. We consider the effective
entanglement phase to be detectable if it is more than five
times (5σ rule) larger than the phase uncertainty

�eff � 5�φSN . (20)

We choose an experimentally realistic number of trials of N =
10 000.10 This corresponds to roughly two weeks of measure-
ment if the time span of one trial is 1 min. This is realistic
for both the Einstein-elevator type of free-fall experiments as
well as the particle-launching type of experiments. Therefore,
the assumed phase uncertainty is �φSN = 0.01 rad and the
minimally detectable phase difference �det � 0.05 rad. We
note that in principle, free-fall experiments can be repeated
almost as fast as the falling time is (a few seconds) and often
fully automatically hundreds of thousands of times, which
would significantly improve the success chances of the pro-
posed experiments.

For sources of technical noise relevant to anticipated ex-
periments like magnetic field gradient fluctuations, the initial
position fluctuation (see Secs. IV B–IV D), we assume the
different quantities do not correlate and vary with a normal
distribution N (μ, σ ) around their nominal position μ with a
(conservatively) chosen experimentally based standard devia-
tion σ . The final effect of these fluctuations on the determined
phase difference is reduced by the same factor of 1/

√
N .

We are fully aware of the fact that the desired effect
of gravity-induced entanglement does not have to be larger
or even of the same order as “parasitic” effects as long as
those effects can be corrected for by measuring their different
dependence on, for instance, the distance between the mi-
crospheres. Low statistical uncertainty allows one to “trade
statistics for systematics” and detect even minute effects. Still,
we stick to our conservative approach and consider the effect
of interest to be differentiable from other effects if its phase
exceeds the other effects by the minimal detectable phase �eff

in Eq. (20).

2. Decoherence and dephasing

As can be seen from Eq. (18), when witnessing the en-
tanglement, the entanglement phase is counteracted by the
decoherence rate. As was studied intensively in [40,41] the
decoherence rate also increases the number of measurements.
Similarly, dephasing effects and environmental noise sources

10Note that this number of measurements is an estimate based on
the shot noise of the actual number of measurements that one needs
to witness entanglement, which is witness-dependent.

will make the entanglement harder to measure, and increase
the necessary number of measurements.

From the scattering with air molecules and blackbody pho-
tons we would expect a decoherence rate of at least 0.05 Hz
[38–41]. Therefore γ τ ∼ 0.025 (since most decoherence hap-
pens for large �x only the interaction time τ is taken). In
order to get an estimate of the required entanglement phase
also including decoherence we require that the witness value
with decoherence is still −0.05, as it was without decoherence
based on the shot-noise limited phase. Thus we would require
an effective entanglement phase �eff ∼ 0.10 rad. This would
correspond to a superposition width of �x ≈ 29 µm for an
initial distance d = 41 µm. Since the shot noise is taken to
be 0.01 rad, and we consider imbalances in the four initial
condition, we consider the fluctuation in the phase due to an
imbalance to be at most 12.5%, which we use to determine
the necessary precision of our initial conditions.

From Eq. (7) and Appendix A we see that the dephasing
decreases the effective phase and increases the expectation
value of the witness, respectively. This will also lead to an
increase in the number of measurements necessary for detect-
ing entanglement. The effect of the dephasing is discussed in
more detail in Secs. IV C and V.

In the remainder of this paper, we consider the test mass
to be a diamond NV center with m = 10−14 kg and p =
10−2e cm, a plate with W = 1 µm, an experimental time of
1 s, a superposition width of �x ≈ 29 µm, and an initial sep-
aration between the particles of 2d + W = 83 µm.

B. Fluctuation in the entanglement phase due to an
imbalance in d

If the test masses are not placed every time exactly at a
distance d from the plate, but within a range d ± δd1, with d1

a small fluctuation, then the phase will fluctuate �eff + δ�eff

run to run. For the starting condition z(0) = d ± δd1, the
phase and its fluctuation are plotted as a function of d1 in
Fig. 10 in red. From the plot, we see that in order to have
a fluctuation δ�eff at most 12% of the original phase, for an
initial distance of z(0) = 41 ± δd1 µm, the uncertainty in d is
restricted to be d1 < 0.48 µm:11

|δ�eff|
�eff

� 0.12 ⇒ δd

d
≈ 0.01, for d = 41µm. (21)

If d > 41 µm, then larger fluctuations are allowed. For
example, if d = 51 µm, the allowed fluctuation such that
|δ�eff|/�eff < 0.12 is δd1 < 1.54 µm. However, due to the
larger distances, the phase is more than two times smaller.
When placing the masses as close as possible, the room for
error in initial conditions is smaller because the distances are
smaller and the acceleration towards the plate goes with 1/z4

or 1/z5, but the accumulated phase is larger exactly because
of this reason. This dependence of the phase on the distance
is also the reason for the asymmetry of the red lines in Fig. 10
around �eff = 0.105.

11The point of closest approximation is also dependent on d and
found to be 20 µm for z(0) = 41.48 µm, 16 µm for z(0) = 41 µm,
and 7 µm for z(0) = 40.52 µm.
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FIG. 10. Effective phase accumulated during 1 s of experimental
time as a function of the variation in the distance δdi (i = 1, 2)
in micrometers. The red-shaded region bounded by the solid red
lines is the range in effective phase values corresponding to the
maximal fluctuation δd1 in the distance between the two test masses
with respect to the plate. The blue-shaded region bounded by the
dash-dotted blue lines is the range in effective phase values cor-
responding to the maximal fluctuation δd2 in the distance between
two superposition instances of a single test mass with respect to the
plate. The horizontal gray dotted lines indicate the 10% deviation
from the δdi = 0 value, and the vertical black dotted lines show the
corresponding values of δdi. With m = 10−14 kg and �x = 29 µm.

C. Fluctuation in the entanglement phase due
to tilted superposition

Similarly, if the creation of the spatial superposition is not
perfectly parallel with respect to the plate but slightly tilted,12

this results in a different effective entanglement phase run
to run. A tilt resulting in the superposition instances being
within a range d ± δd2 away from the plate is considered,
and the tilt could also be expressed in terms of an angle
θ . For the starting condition z(0) = 41 µm ± δd2, the phase
and its fluctuation are plotted as a function of δd2 in Fig. 10
in blue. Again, we consider the a maximal phase fluctua-
tion of 12%, and the figure shows the needed precision is
δd2 < 0.46 µm, which slightly tightens the precision required
previously δd1 < 0.48 µm.13

12The superpositions can be tilted in two ways, in a symmetric way
that keeps them parallel (�1 = �2), and in an asymmetric way such
that they are no longer parallel (�1 = −�2). Both types of tilt were
considered here, and it was found that the asymmetric tilt provides
the upper blue bound line in Fig. 10, while the symmetric tilt provides
the lower bound blue line. The reason for this difference can be
found by looking at the effective phase [Eq. (3)]. Using a simple
geometry argument the asymmetric tilt approximately reduces the
second term in the expression for the phase (increasing the effective
phase), while the symmetric tilt reduces the first term (reducing the
effective phase).

13Since there is a difference in attraction towards the plate between
the superposition instances, there will be a small enlargement of �x.
This is not taken into account here since the result δd2 < 0.49 µm
suggests the allowed difference in position is so small that this effect
is negligible.

The asymmetry of the shaded regions in Fig. 10 can be
explained as follows. The shaded regions are asymmetric
around the line δdi = 0 (�eff = 0.105) because a larger d
has a smaller initial attraction force towards the plate and
has a larger separation at the end of the experimental time,
t = 2τa + τ . This 1/z4 or 1/z5 dependence of the force results
in an asymmetry in the plot.

The difference in the variations δd1 and δd2 can be ex-
plained from the expression of the effective phase. While δd1

influences both terms in the effective phase [Eq. (3)] approxi-
mately in the same way, δd2 influences only the second or first
term in Eq. (3). Therefore the variation δd1 has less influence
on the total effective phase (which is the difference between
the first and second terms) compared to δd2.

There is an additional constraint on δd2 due to the de-
phasing of the superposition which arises due to the two
superposition states having different Casimir and dipole in-
teractions with the plate and therefore picking up a relative
phase. The interaction of a single superposition with the de-
flected plate can imprint path information on the plate and
dephase the test masses. This source of dephasing is not
relevant to the other imbalances because the other imbalances
preserve the equidistance of the superposition instances to the
plate, which results in a global phase. If there is some δd2 > 0
there is a nonglobal phase as well, which we denote as the
dephasing phase φd :

|ψ (τ )〉 ∝ 1√
2

[eiφd |0〉 + |1〉] . (22)

The phase φd is given by the Casimir and dipole interaction
with the plate, φd ∼ (VC + VD)t/h̄ [see Eqs. (13) and (15)].
The dephasing due to interaction with the point of the plate at
the closest approach is14

φd = (
γC

d + γ D
d

)
t, (23)

γC
d = 3cR3

8π

(
ε − 1

ε + 2

)(
1

z4
0

− 1

z4
1

)
, (24)

γ D
d = p2

16πε0 h̄

(
1

z3
0

− 1

z3
1

)
, (25)

with γC,D
d the dephasing rate due to the Casimir (C), dipole

(D) interaction. Note that this rate is time-dependent due to
the time dependence in z, and with z0 and z1 the distance to
the plate for the |0〉 and |1〉 state, respectively. Similarly to
Eq. (10) the total dephasing is found numerically and plotted
as a function of δd2 in Fig. 11.

In Eq. (A7) we give the witness in terms of the de-
phasing rate φd . From this expression, we find that for an
effective phase of �eff = 0.1 rad and a decoherence rate of
γ = 0.05 Hz for a time τ , a dephasing of φd = 0.2 rad would
increase the witness by approximately a factor two. In [40]

14The expression of the nonglobal phase is dependent on which way
the superposition is tilted. Here we assume that the superposition
is tilted such that the |0〉 state is closest to the plate. Although the
expressions (22) and (23) would be different if the state |1〉 were
closest to the plate, the total effect would be the same due to the
symmetry of the setup.
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FIG. 11. Dephasing accumulated during 1 s of experimental time
as a function of the variation in the distance δd2 in micrometers. With
m = 10−14 kg and �x = 29 µm. The solid lines indicate dephasing
due to the Casimir interaction; the dash-dotted lines indicate dephas-
ing from the dipole-dipole interaction. The blue lines are for an initial
separation to the plate of 41 µm, and the red lines are for 50 µm.

this order of increase in the expectation value of the witness
led to an increase in the number of measurements of at least a
factor of two. For a dephasing of φd = 0.1 rad the expectation
value of the witness stays approximately the same.

From Fig. 11 we see that if we require a maximum de-
phasing of φd = 0.1, the restriction put on the fluctuation
δd2 is δd2 < 2.8 fm from the Casimir interaction and δd2 <

10−2 fm from the dipole interaction. The dominant dipole
interaction causes a lot of dephasing, and if the conducting
plate setup is to be realized the dipole dephasing has to be
mitigated. Also, the Casimir interaction with the plate which
cannot be mitigated puts strict restraints on the precision of
the initial conditions, on the order of femtometers. One can
relax these constraints by, for example, increasing the number
of measurements. If we allow φd = 0.2, which will increase
the number of measurements noticeably, we would require
δd2 < 5.6 fm. Alternatively, we could also increase the mass
of the test masses, since �eff scales with m2, while φd scales
with m, this would increase the effective entanglement phase
more relative to the dephasing. Increasing the separation to
the plate also decreases the dephasing, as shown in Fig. 11;
however, this also decreases the effective entangling phase.

D. Entanglement phase fluctuation due to imbalance in ∂B

Another initial condition that can experience fluctuations
run to run is the strength of the magnetic field gradient used to
create the superposition, ∂B = ∂B + δ(∂B). Any foreseeable
systematic fluctuation in the magnetic field gradient can influ-
ence the phase in each run of the experiment. For the starting
condition ∂B = 5 × 105 ± δ(∂B), the phase and its fluctuation
are plotted in Fig. 12.

From this plot we can see that fluctuations of approxi-
mately δ∂ (∂B) = 3.43 × 104 T m−1, giving the ratio

δ(∂B)

∂B
∼ 0.07, for B = 5 × 105 T m−1. (26)

FIG. 12. The solid red line shows the effective entanglement
phase accumulated during 1 s of experimental time as a function
of the variation in the magnetic field gradient [δ(∂B)]. The (red)
left vertical axis shows the effective phase values, with the dotted
lines indicating a 12% difference from the δ(∂B) = 0 value. The
red-shaded region indicates the phase corresponding to maximal
fluctuations given on the horizontal axis. The blue dash-dotted lines
give the superposition size shown on the (blue) right vertical axis
that corresponds to the magnetic gradient on the x axis. The dot-
ted line indicates the value of �x that corresponds to the 12%
phase fluctuations. With m = 10−14 kg, ∂B = 5 × 106 T m−1 (which
is �x = 30 µm).

Similarly to the fluctuation in d , a larger ∂B allows larger fluc-
tuations. Figure 12 is symmetric around the zero-fluctuation
value since there is a linear dependence of �x on ∂B [see
Eq. (12)], and for small fluctuations in the superposition size
the effective phase �eff can be approximated as

�φ = Gm2√
d2 + (�x)2

τ

h̄

[
1 + δ(�x)

�x

]
− φ. (27)

The dependence on �x and thus ∂B is approximately linear
for small variations.

Using Eq. (12), we find the allowed fluctuation in �x.
Reading the right vertical axis in Fig. 12, we find that a 12%
phase �e f f variation corresponds to �x = 29 ± 2.0 µm. If the
magnetic gradient is caused by the presence of a wire, then its
fluctuation is thus caused by a fluctuation in the current of that
wire; see [26,57,70]. The fluctuation in the superposition size
δ(�x) is therefore related to the fluctuation in the current I
[70]:

0.07 = δ(�x)

�x
∼ δI

I
. (28)

Typically, a current density of J = 1013 A m−12
, which is the

ampacity for the copper nanotubes mentioned in footnote 8,
matches a current of I = 7 A [69].15 Therefore, given the
allowed fluctuation in the superposition size in Eq. (28), we

15In [69] the area of the test material in which the ampacity was
measured was 7.2 × 10−13 m2 ; this would correspond to a wire with
radius 478 nm.
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FIG. 13. The effective phase accumulated during 1 s of experi-
mental time as a function of the variation in the orientation of the
dipole moment (δθ ). The red-shaded region bounded by the solid
red lines is the range in effective phase values corresponding to the
maximal fluctuation δθ on the horizontal axis. The horizontal dotted
line indicates a 12% difference from the phase at δθ = 0, and the
corresponding δθ value is indicated by the vertical dotted line. With
m = 10−14 kg, �x = 29 µm, and d = 41 µm.

can estimate that the fluctuation in the current can at most be
δI = 0.48 A. Furthermore, we can also study the fluctuations
in the current due to thermal effects in the wire (the Johnson-
Nyquist noise) which are approximated to be δI ∼ 10−12 A at
room temperature; see [70]. Hence, Johnson-Nyquist noise is
well within our estimate on the current fluctuations that satisfy
|δ�eff|/�eff � 0.12.

It should be noted that the effective phase is dependent
on the protocol for creating the superposition. In this paper
we use a very general protocol [Eq. (12)]. There are more
complicated protocols that can reach the same superposition
size using magnetic fields that are experimentally easier to
realize; see [25–28].

E. Entanglement phase fluctuation due to imbalance
in the dipole moment

Another initial condition that influences the trajectory of
the diamonds and therefore the accumulated effective phase is
the orientation of the dipole moments. So far we have taken
θ = 0 in Eq. (16), which gives the “worst-case scenario” in
the sense that attraction due to the dipole moment is maximal
(and therefore the separation is maximal). Note that the angle
θ is with respect to the vector going from the test mass towards
the plate and is thus aligned with the −ẑ direction for the test
mass labeled 2 and the +ẑ direction for the test mass labeled
1 (see Fig. 9). We introduce small fluctuations around θ = 0
by imagining that the dipoles of the test masses have the same
angle ±δθ . We assume for simplicity that the fluctuation on
both test masses is the same. Figure 13 shows the range of
fluctuations in the effective phase for δθ ∈ [0, π/2]. Since the
exerted dipole force goes with cos2(δθ ), the change in phase is
the same for ±δθ . For θ > 0 (but smaller than π/2) the dipole
force decreases, and for the starting position d = 41 µm, the
final distance to the plate increases, hence the accumulated

entanglement phase decreases. This can also be seen in
Fig. 13. The decrease again is nonlinear because the dipole
force goes with 1/z4. The bound on the dipole moment orien-
tation is given by

|δ�eff|
�eff

� 0.12 ⇒ δθ ≈ 0.17π, (29)

which can be read off from Fig. 13 (0.17π ≈ π/6).
We have not considered fluctuations in the magnitude of

the electric moment, p, because we have assumed that the
magnitude of the electric moment is due to the internal dipole
p = pi, which is constant if the same test mass is used over
repeated runs. But a similar analysis can be performed by
varying p.

V. COHERENCE LOSS DUE
TO THE CONDUCTING PLATE

In Sec. IV C the dephasing due to the plate was found. Due
to an imbalance in the initial conditions between the two test
masses, there can be a net force acting on the plate. We find
the deflection due to fluctuations δd1 and δθ . Additionally, we
estimate dephasing due to thermal fluctuations in the plate.

A. Deflection of the conducting plate

A small uncertainty in the initial placement of the test
masses relative to the plate, or in their dipole orientation, will
lead to a net force acting on the plate that originates from
the difference in the distance-dependent Casimir and dipole
interactions. The net force causes a deflection in the plate,
which is clamped at both ends in the x direction. We analyze
the additional dephasing with respect to Sec. IV C due to
the imbalances discussed previously: δd1 and δθ . Note that
δ(∂B) is independent of the z(t ) and does not cause any plate
deflection.

In the linear setup in Fig. 3 the net force could be consid-
ered a point force acting on the middle of the plate due to the
alignment of the superposition with respect to the plate [37].
In the parallel setup, the superposition is aligned in a direction
parallel to the plate. However, we also use the point-source
approximation because we consider the length of the sides
of the plate (of the order L � 1 mm) to exceed the super-
position width of the test masses (of the order �x ∼ 30 µm)
such that �x/L ∼ 0.03. Compared to the size of the plate we
approximate the superposition to be pointlike. Additionally,
z(t ) > �x(t ) for any t , so although the deflection of the plate
is actually in a superposition, we approximate it with a point-
source approximation deflection. Recall that the test masses
and plate are in free fall; furthermore, we assume that the test
masses are setup up around the midpoint of the plate. The
maximal deflection δz at a distance a away from the midpoint
of the plate, due to the maximal net point force F at the center
of the plate, is [71]

δzmax = Fmax(L − 2a)2

192 E I
(L + 4a) (30)

= Fmax(L − 2a)2

16W 3E

(
1 + 4a

L

)
, (31)
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FIG. 14. Deflection δzmax in femtometers due to the maximal
point force at the time of closest approach τ + 2τa = 1 s. For m =
10−14 kg, W = 1 µm, L = 1 mm, and E = 270 GPa (values for sili-
con nitride). The imbalance in the initial distance to the gold-coated
silicon-nitride plate is given by d = 41 ± 0.48 µm and plotted with
the blue solid line. The imbalance in the dipole moment angle is
given by θ = 0, 0.17π and plotted with the dash-dotted red line. The
distance from the midpoint of the plate, a, is given on the horizontal
axis in millimeters. The shaded region is the deflection due to an
imbalance smaller than the maximum imbalance.

with E is Young’s modulus of elasticity of the plate, L the
length of the plate, and W the thickness of the plate. Equa-
tion (31) holds for any conducting plate, but we specifically
consider a silicon-nitride plate that is coated with a very thin
layer of gold and has a thickness of 1 µm, and sides of length
L = 1 mm. We assume that due to the gold layer being very
thin, we can take the material properties of the plate to be
those of silicon nitride. Silicon nitride has a Young’s modulus
of 270 GPa and a density of 3.1 gcm−13 [72]. The area mo-
ment of inertia in the plane of the plate is substituted to get
the final result in Eq. (31),

I =
∫ L/2

−L/2

∫ W/2

−W/2
z2dz dx = 1

12
W 3L. (32)

The force Fmax is given at the point of closest approach
to the center, at the time τ + 2τa. Note that at this time the
superpositions have been recombined and the point-force ap-
proximation holds true; however, there is no Casimir/dipole
dephasing since �x = 0. If there is some maximal imbalance
±δd1 in the initial placement of the test masses, then the
maximum force at a distance a from the center is

Fmax = FC(zmin(d + δd1)) − FC(zmin(d − δd1))

+ FD(zmin(d + δd1)) − FD(zmin(d − δd1)), (33)

with FC and FD given in Eqs. (14) and (16), respectively.
The blue line in Fig. 14 shows the magnitude of the deflec-

tion due to a maximal uncertainty δd1 = 0.48 µm in the initial
placement of the test masses, as a function of the distance
from the midpoint of the plate, a. The maximal deflection is
at the midpoint, δzmax(a = 0) = 0.012 fm (note that the x axis
is in millimeters while the y axis is in femtometers, which is
10−15 m).

Similarly, a net force can act on the plate due to a dif-
ference between the dipole moments. The net dipole force
at τ + 2τa due to a maximal difference δθ = 0.17π (mean-
ing θ1 = 0, θ2 = 0.17π ) causes a deflection of the plate. The
magnitude of this deflection is plotted in Fig. 14 in red, as a
function of the distance a away from the midpoint of the plate.
The maximal deflection is 0.002 fm. Note that the imbalance
δd2 at the time τ + 2τa does not cause any deflection.

Using Eq. (23) with the new distances due to the deflection
of the plate, we find the additional dephasing (compared to
Fig. 11). For δd2 = 2.8 fm the additional contribution from
the plate fluctuation is given as

�φC
d ≈ 0.0001, (34)

which is negligible compared to the phase found in Fig. 11
even though this was an overestimation by taking the maximal
deflection constant over time.

B. Dephasing due to thermal fluctuations in the plate

Thermoelastic noise, often referred to as just the thermal
noise of a membrane, is caused by inevitable local temperature
fluctuations around the equilibrium. Temperature variations
across the surface of the membrane cause tension and thus
vibration [73,74]. According to the fluctuation-dissipation
theorem, there is a corresponding damping process, which is
referred to as thermoelastic damping [75]. The thermal motion
of the membrane will cause the distance between the spheres
and the plate, as well as across the spatial superposition state,
to vary. The effect on the trajectory can be neglected as
the root-mean-squared (RMS) amplitude is many orders of
magnitude smaller than the distance between the spheres and
the plate. However, since the phase of the spatial superpo-
sition state is much more sensitive to potential variations, it
might be affected. We assume that the spheres are centered
with respect to the membrane. Since the extent of the spatial
superposition (�x ≈ 30 µm) is small compared to the size
of the membrane (L = 1 mm), the slopes of even modes at
the center will vanish when δd2 = 0,16 and their effect will
be of at least second order in �x

L � 1. The first two modes
are illustrated in Fig. 15. Furthermore, during one complete
oscillation period of the membrane, the two components of
the spatial superposition state will experience the same overall
phase shift, thus reducing the effective interaction time of this
dephasing mechanism by at least a factor of 2π/ωnmτ [with
τ the experimental time, and ωnm the natural frequency of the
plate for the mode (m, n)]. Further, in thermal equilibrium, the
modes will be exponentially populated, and thus the effect of
higher modes decreases. We therefore consider only the first
odd mode ω12.

To estimate the root mean squared (RMS) magnitude of the
plate deflection, δzth, due to thermal noise at the temperature

16When δd2 = 2.8 fm, as found in Sec. IV C, the even mode plate
deflections (see Fig. 15) will be maximally of the order 300 fm.
The additional dephasing found in the same way as in Sec. V A is
of the order �φC

d ∼ 2, which effectively (limiting to effectively one
oscillation period as will be discussed later on in this section) has a
negligible effect of �φC ∼ 10−5.
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FIG. 15. The first two modes of a clamped square plate are drawn
schematically together with a spatial superposition state. The spatial
superposition state is centered. While the slope of even modes van-
ishes at the center, odd modes exhibit the necessary asymmetry for a
linear effect in �x

L � 1. The modes are shown several times during
one oscillation period 1/ωnm to show that the difference in distance to
the membrane changes symmetrically during one whole oscillation
period, and thus the effective interaction time is reduced by at least a
factor of 2π/ωnmτ .

T = 1 K, we use the partition theorem, equate the thermal
energy to the potential energy of the plate kBT = Mω2

1,2δz2
th

and solve for δzth:

δzth �
√

kBT

Mω2
nm

, (35)

where kB is the Boltzmann constant, T is the temperature of
the membrane, and M = ρW L2 is the mass of the membrane.
The natural frequencies of a membrane in a vacuum are given
by [76,77]

ωnm = 1

2

√
σ

ρ

[( n

L

)2
+

(m

L

)2
]
. (36)

Here σ is the biaxial tensile stress, ρ is the density of the
material, L is the side length, and n, m are the mode numbers.
In particular, in the stress-governed regime (membrane), the
resonance frequency is independent of thickness. The reso-
nance frequencies of a clamped square plate are given by
[77,78]

ωnm = Knm

L2

√
EW 2

12(1 − μ2)ρ
. (37)

Here Knm is a mode coefficient (K12 = 74.296; see [78]), E =
270 GPa the Young’s modulus [79] and ρ = 3.1 gcm−13 the
density of silicon nitride, W = 1 µm and L = 1 mm the width
and side length of the membrane, and μ = 0.2 the Poisson ra-
tio [72]. Finally, we obtain ω12 = 2π × 35.6 kHz. In [80] the
frequency of a 1 mm × 1 mm silicon nitride membrane from
Norcada has been measured to be ω12 = 2π × 211613 Hz.
To be more conservative and allow for flexibility in material
choice and sample-to-sample difference of membranes, we

TABLE I. Experimental parameters required to get the desired
entanglement phase for two test masses in free fall separated by a
superconducting plate. The initial distance (2d + W ) is taken such
that the test masses within 1 s experimental time do not collide with
the plate and such that a fluctuation of at least 0.5 µm is allowed. For
p = 10−2e cm (θ = 0) and a plate with W = 1 µm. The final distance
to the plate at the end of the free fall, z(τ + 2τa), is 16, 11, 9 µm for
masses 10−14, 10−13, 10−12 kg for the initial distance given in the
table.

Mass (kg) 2d + W (µm) �eff �x (µm)

10−14 83 0.10 29
10−13 53 0.10 1.4
10−12 35 0.10 0.08

stick to the previously used model of a clamped square plate
in Eq. (37), which gives ω12 = 2π × 35.6 kHz.

For the RMS distance fluctuation at T = 1 K Eq. (35)
gives δzth = 298 fm. We include the geometric reduction of
order �x/L ≈ 0.03 (�x = 30 µm, L = 1 mm). The effective
differential distance to the surface (analogous to δd2) is ap-
proximately 9 fm. Also including the fact that the interaction
time for the asymmetric part of the interaction is limited to
effectively one oscillation period 2π/ω12 of the membrane,
the effect on the random phases is further suppressed by a
factor of 3.6 × 104, corresponding to only an effective δd2 of
2.5 × 10−19 m. Thus the effect can be neglected (see Fig. 11).

We note that the silicon nitride membranes must be coated
with a conductor, for example, gold, to effectively act as a
Casimir screen, but the coating can be made much thinner
than the silicon nitride layer, and we assume the mechanical
properties to change only slightly.

VI. CONCLUSION AND DISCUSSION

The experimental protocol considered in this paper is that
of two free-falling test masses that are separated by a conduct-
ing plate and which are free to move towards the plate due
to the Casimir-and dipole interaction. This would mean that
we have to prepare at least two traps for the experiments, one
for releasing the nanodiamond, and the other for capturing.
The conducting plate prohibits quantum electromagnetic in-
teraction between the test masses, due to which the condition
for the minimal distances can be removed to some extent.
The minimal distance was first introduced in order to keep
the Casimir force subdominant compared to the gravitational
force between the test masses. However, in free fall there
is still some (mass-dependent) initial separation required in
order for the test masses to not fall into the plate within
1 s of experimental time. The minimal distance for different
masses such that the particle (with 0.48 µm fluctuation) does
not hit the plate, and the superposition size needed to find an
entanglement phase of 0.10 is given in Table I for different
masses. Compared to the absence of the conducting plate, we
are able to bring the test masses closer and as a result allow
smaller values of �x.

For a diamond test mass with an embedded NV center of
m = 10−14 kg, instead of a minimal distance between the test
masses of ≈147 µm in the absence of the conducting plate,
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TABLE II. Imbalance δd1 in the distance between the test masses
and the plate, the imbalance in the distance between two superposi-
tion instances δd2 caused by the superpositions being not perfectly
parallel to the plate, the imbalance δ(�x) in the superposition size
caused by an imbalance δ(∂B) in the magnetic gradient, and an im-
balance δθ in the orientation of the dipole moment are illustrated in
Fig. 9. For a diamond NV center with m = 10−14 kg, p = 10−2e cm
and a plate with W = 1 µm.

Parameter value Fluctuation value

d = 41 µm
δd1 = 0.48 µm
δd2 = 2.8 fm

∂B = 5 × 105 T m−1 δ(∂B) = 3.4 × 104 T m−1

�x = 29 µm δ(�x) = 1.6 µm
θ = 0 δθ = 0.17π

we now initialize the system with d = 83 µm, and after 1 s of
experimental time during which the test masses are attracted
towards the conducting plate due to the Casimir and dipole
force, the smallest separation of the test masses is approxi-
mately 33 µm. This setup allows for a smaller separation and
thus a larger quantum gravitational interaction. The entan-
glement phase is enhanced, and the experimental parameters
can be somewhat relaxed compared to the setup without the
plate. For a mass of 10−14 kg a superposition size of 29 µm is
enough for an entanglement phase of O10−1. In the absence
of the conducting plate the same order can be reached for a
superposition size of ∼100 µm (see Fig. 4).

Since the witnessing of entanglement requires repeating
the experiment and performing the measurements many times,
we also considered several types of imbalances in the initial
conditions of the setup. In Appendix A we found that the en-
tanglement can be witnessed if �eff > 2γ t . For a decoherence
rate γ < 0.05 Hz, the results for the maximum deviation in
the initial conditions that is allowed in order for the entan-
glement to be witnessable are summarized in Table II. We
have also considered the dephasing due to the net force that
the imbalances can exert on the plate and found that it was
negligible (Sec. V).

In order for the experimental protocol proposed here to be
realized one needs to very precisely know the initial positions.
Furthermore, as a worst-case scenario, we have considered
here the dipole moment orientation to be towards the plate ±
some fluctuation around this axis. An opposite dipole moment
orientation would result in a repulsive force between the plate
and test mass and would thus require an initial positioning of
the test mass close to the plate such that the total trajectory
is approximately opposite compared to what is illustrated in
Fig. 7. Therefore most important in this setup and in deter-
mining the best initial separation is controlling the dipole
moment direction and mitigating the dephasing due to the
dipole, which dominates any other phase.

In conclusion, adding the conducting plate in a parallel
configuration enhances the entanglement signal, but one needs
to control the dipole in order for this setup to yield better
results. In this paper we have estimated the strength of the
dipole moments based on previous measurements with sil-
ica microspheres. Fabrication and engineering of custom test
masses with reduced permanent dipole moments could be
a promising approach towards mitigating these background
effects.
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APPENDIX A: WITNESSING ENTANGLEMENT

To experimentally witness the entanglement, we will con-
struct a witness W . From the separability condition of the
nonentangled states, one can construct the positive partial
transpose (PPT) witness [1,19]. This witness was found to
be more optimal for this type of experiment compared to for
example a CHSH-type witness [38,40,81].

The PPT witness gives a criterion for the separable states,
which results in the condition that a state is separable if its
partial transpose has no negative eigenvalues (also called the
Peres-Horodecki criterion). Therefore, constructing the PPT
witness is given by

W = (|λ−〉〈λ−|)Ti , (A1)

where |λ−〉 is the eigenvector corresponding to the minimal
eigenvalue of ρTi (the partial transpose of ρ), provides a way
to test if a state is nonseparable. Because all separable states
satisfy

Tr(Wρ) = Tr(|λ−〉〈λ−|ρTi ) = Tr(〈λ−|ρTi |λ−〉) = λ− � 0.

(A2)

Hence, by using the cyclic property and the invariance under
the partial transpose of the trace, we obtain

If Tr(Wρ) < 0 then ρ is nonseparable. (A3)

This is a necessary and sufficient condition for the entangle-
ment criterion for the qubit-qubit system considered here in
the context of the QGEM experimental protocol.

By including the decoherence rate, γ , in the same way as
was done in [40,82,83], and including the dephasing rate to be
γd as given in Sec. V, we will have to define the density matrix
in terms of the final spin states, given in Eq. (2). Equation (2)
gives us the density matrix, ρ = |�(t )〉〈�(t )|, for the parallel
case without taking into account the decoherence. However,
now by taking the effect of decoherence, we get
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ρ = 1

4

⎛
⎜⎜⎜⎜⎝

1 e−i�φ+i�φd −γ t e−i�φ−γ t ei�φd −2γ t

ei�φ−i�φd −γ t 1 e−i�φd −2γ t ei�φ−γ t

ei�φ−γ t ei�φd −2γ t 1 ei�φ+i�φd −γ t

e−i�φd −2γ t e−i�φ−γ t e−i�φ−i�φd −γ t 1

⎞
⎟⎟⎟⎟⎠. (A4)

Here �φ is the entanglement phase given in Eq. (3), �φd is the dephasing described in Sec. V, and γ is the decoherence rate.
We present a simplified witness based on the PPT criterion, based on the eigenvectors corresponding to the minimal eigenvalue

of the partial transpose of the density matrix. Reference [38] showed the expansion of the witness given in Eq. (A1) for the linear
setup.

Reference [84] showed the same expansion for the parallel setup. The decomposition of this witness in a Pauli basis for the
parallel setup was found to be

W = (1 ⊗ 1 − X ⊗ X + Z ⊗ Y + Y ⊗ Z ), (A5)

where I, X,Y, Z correspond to the identity matrix and the Pauli matrices, respectively.
By using that the trace is a linear map, the expectation value of the witness, Tr(Wρ), can then be simplified for the parallel

and the linear setups, respectively (see [38] for the linear setup):

Tr(Wρ) = Tr(ρ) ∓ 2Im(ρ12) ∓ 2Im(ρ13) − 2Re(ρ14) − 2Re(ρ23) ± 2Im(ρ24) ± 2Im(ρ34). (A6)

Using this identity, and performing the expansion for a small-time expansion appropriate for the experimental protocol, gives
the result for the parallel setup:

Tr(Wρ) = 1 − e−γ t {− sin(�φ)[1 + cos(�φd )] + cos(�φd )e−γ t )} (A7)

≈ 1 − (1 − γ t )[−2�φ + (1 − γ t )] + �φ2
d

2
(1 − γ t )[�φ − (1 − γ t )] ≈ γ t + �φ + Ot2, (A8)

where the approximation is obtained by expanding the expres-
sion around the time, t = 0, and keeping the first-order terms
in the expansion.

Note that for the parallel setup, the witness is given by
γ t + �φ but always �φ < 0, so it is equivalent to taking
γ t − |�φ|, which was found in Ref. [38], for the linear setup.

The expectation value of the witness is negative, and
therefore, the entanglement can be measured if |ω| > γ ,
where ωt = �φ. A small dephasing rate is negligible in this

description. The condition for the entanglement can be rewrit-
ten in terms of the effective phase:

�eff > 2γ t . (A9)

For simplicity, we may neglect here the sign difference be-
tween the parallel and the linear case, and in this work, the
absolute value of |ω| is implied.
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