
1. Introduction
Relativistic electron flux in the outer radiation belt is highly variable, changing on timescales from seconds to 
years (e.g., Abel & Thorne, 1998; Mann & Ozeke, 2016; Nakamura et al., 2000). These changes are controlled 
by a variety of acceleration and loss mechanisms acting independently or in tandem (Friedel et al., 2002; Reeves 
et al., 2003; Ripoll et al., 2020). One of the fastest and most dramatic changes to electron flux is radiation belt 
flux dropouts, when trapped electron populations are observed to suddenly decrease by a factor of 50 or more 
at a wide range of L-shells, energies, and pitch angles (Pierrard et al., 2020; Turner, Morley, et al., 2012; Turner 
& Ukhorskiy, 2020; Xiang et al., 2018). Losses are either produced by wave-particle interactions which scatter 
electrons into the atmospheric loss cone (Horne & Thorne, 1998; Kennel & Petschek, 1966; Miyoshi et al., 2008; 
Thorne & Kennel, 1971), or through the magnetopause into interplanetary space, termed “magnetopause shadow-
ing” (Green et al., 2004; X. Li et al., 1997; Morley et al., 2010; Shprits et al., 2006). The extent to which magne-
topause shadowing and atmospheric precipitation each contribute to a radiation belt dropout has been a topic of 
continuing debate (e.g., Bortnik et al., 2006; Morley et al., 2010; Shprits et al., 2017; Staples et al., 2022; Turner, 
Shprits, et al., 2012; Turner et al., 2014; Xiang et al., 2017; Zhang et al., 2016).

Abstract We analyzed the contribution of electromagnetic ion cyclotron (EMIC) wave driven electron 
loss to a flux dropout event in September 2017. The evolution of electron phase space density (PSD) 
through the dropout showed the formation of a radially peaked PSD profile as electrons were lost at high L*, 
resembling distributions created by magnetopause shadowing. By comparing 2D Fokker Planck simulations 
of pitch angle diffusion to the observed change in PSD, we found that the μ and K of electron loss aligned 
with maximum scattering rates at dropout onset. We conclude that, during this dropout event, EMIC waves 
produced substantial electron loss. Because pitch angle diffusion occurred on closed drift paths near the last 
closed drift shell, no radial PSD minimum was observed. Therefore, the radial PSD gradients resembled solely 
magnetopause shadowing loss, even though the local pitch angle scattering produced electron losses of several 
orders of magnitude of the PSD.

Plain Language Summary Extremely energetic charged particles become trapped by Earth's 
geomagnetic field, forming the Van Allen radiation belts. The total amount of radiation trapped within these 
belts varies depending on the solar wind conditions, which can disturb the geomagnetic field to produce 
geomagnetic storms. At the beginning of a geomagnetic storm, there is a relative calm in the radiation belt, 
produced by the rapid drainage of electrons from the geomagnetic field. It is not fully understood if these 
electrons are primarily lost into the solar wind, or if they are lost into Earth's atmosphere. In this study, we 
analyze the remaining trapped electrons to reconstruct the mechanisms of electron escape at the beginning 
of a geomagnetic storm in September 2017. While previous work found that electrons were primarily lost 
into the solar wind, we found that loss into the atmosphere also played an important role. Furthermore, we 
showed that drainage of electrons into the atmosphere can be mistaken for loss into the solar wind if the energy 
and  trajectory of lost electrons are not carefully considered.
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A useful tool to distinguish loss mechanisms is phase space density (PSD) analysis of electron dynamics in 
adiabatic invariant coordinates (μ, K, L*), which reveal non-adiabatic changes to electron populations (e.g., 
Degeling et al., 2008; Green & Kivelson, 2004; Selesnick & Blake, 2000). Magnetopause shadowing is typically 
characterized by PSD loss outside of the last closed drift shell (LCDS), where electron drift paths intersect the 
magnetopause, followed by diffusive transport across radial gradients in L* toward the magnetopause (Loto'aniu 
et al., 2010; Shprits et al., 2006; Turner, Shprits, et al., 2012). This process creates a localized peak in radial PSD 
profiles during flux dropouts (illustrated by Turner, Shprits, et al., 2012). Precipitation to the atmosphere is char-
acterized by PSD loss at a localized L*, which may create a minimum in radial PSD profiles (Aseev et al., 2017; 
Blum et al., 2020; Capannolo et al., 2018; Shprits et al., 2017, 2018). A local minimum in PSD must be observed 
to deepen over time to interpret with certainty that precipitation produces PSD loss, rather than magnetopause 
shadowing followed by inward radial diffusion. Hence, satellite observations over multiple orbits are usually 
required to attribute loss observations to localized precipitation. Xiang et al. (2017) discussed how observations 
of PSD at a wide range of μ and K, for a given L*, provide credible clues to the dominant mechanism of electron 
loss. For example, EMIC wave scattering of electrons into the loss cone results in depletions at μ and K values 
associated with electron energies resonant with EMIC waves (Drozdov et al., 2022; X. Ma et al., 2020; Xiang 
et al., 2018).

In this work, we investigated the dependence of PSD loss over a wide range of μ and K during an electron 
flux dropout which took place in September 2017, following an extreme magnetospheric compression. Staples 
et al. (2022) previously identified that magnetopause shadowing was the dominant mechanism of electron loss 
during this dropout, based upon the evolution of PSD characteristics as a function of L*. However, such extreme 
magnetospheric compressions are also known drivers of EMIC wave generation (Anderson & Hamilton, 1993; 
Engebretson et  al., 2002; Usanova et  al.,  2008; Xue et  al.,  2021). This paper aims to understand if localized 
precipitation into the atmosphere was appreciable during the dropout by analyzing PSD loss at a wide range of 
μ and K values.

2. Data and Methodology
2.1. Phase Space Density Data Set

PSD observations between 7 and 9 September 2017 were taken from 32 individual satellites which are part of 
five different scientific missions and hosted payloads. This data set achieves the highest temporal and spatial 
resolution of existing combined PSD observations of the radiation belt:

•  Van Allen Probe Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron-Proton Telescope 
(REPT) instruments (Baker et al., 2014; Blake et al., 2014). 2 probes.

•  GOES 13, 15 (Geostationary Operational Environmental Satellite) Magnetospheric Electron Detector 
(MAGED) Energetic Proton, Electron, and Alpha Detector (EPEAD) (Rodriguez, 2014a, 2014b; Sillanpää 
et al., 2017). 2 probes.

•  GPS (Global Positioning System) Navstar Combined X-ray Dosimeter (CXD) (Tuszewski et al., 2004). 21 
probes.

•  THEMIS (Time History of Events and Macroscale Interactions during Substorms) Electrostatic Analyzer 
(ESA) and Solid State Telescope (SST) (Angelopoulos,  2008; Angelopoulos et  al.,  2008; McFadden 
et al., 2008). 3 Probes.

•  MMS (Magnetospheric Multiscale) Fly's Eye Electron Proton Spectrometer (FEEPS) (Blake et  al.,  2016; 
Burch et al., 2016). 4 probes.

Intercalibrations between satellites were completed following Staples et al. (2022). All spacecraft data is calibrated 
to Van Allen Probe B and bias corrected GOES 15 data, which are chosen as “gold standard.” In this work GPS 
pitch angle distributions were assumed using the Zhao et al. (2018) model. For each spacecraft instrument, the 
adiabatic invariants μ, K, and L* were computed using a either a realistic magnetospheric field model, represented 
by the International Geomagnetic Reference Field model (IGRF; Thébault et al., 2015) and Tsyganenko (1989) 
external magnetic field model (T89), or a dipolar field configuration.

2.2. 2D Fokker Planck Diffusion Simulation

We used the Full Diffusion Code at University of California, Los Angeles, to calculate the electron diffusion 
coefficients due to EMIC waves (Q. Ma et al., 2019). The magnetic power spectra of EMIC waves were measured 
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by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS; Kletzing et al., 2013) 
instrument on Van Allen Probe B. Diffusion coefficients were calculated for six separate EMIC wave obser-
vations, each selected based upon EMIC wave power spectrogram over 30-min windows through the dropout 
interval, 00–03 UT on 8 September 2017 (see Figure 2), summarized in Table S1 in Supporting Information S1. 
The EMIC wave normal angle distribution was assumed to change from quasi-field aligned at the equator to 
more oblique at higher latitudes, according to the latitudinally-varying model in Ni et al. (2015). The latitude of 
the wave power was assumed to span from the equator to 40°, and below the latitude where the wave frequency 
equals the crossover frequency. We considered three ion species with composition ratios of 70% H +, 20% He +, 
and 10% O + (Meredith et al., 2003), and multiple harmonic resonances (up to 5 orders) and Landau resonance 
between electrons and EMIC waves. Electron scattering by hiss waves was incorporated into diffusion coeffi-
cients by using the statistical hiss wave frequency spectrum (W. Li et al., 2015). The diffusion coefficients due to 
hiss waves were much smaller than those due to EMIC waves at energies above 1 MeV, except for the high pitch 
angles close to 90°.

After the bounce-averaged diffusion coefficients were computed, we performed 2D Fokker Planck simulations of 
the electron PSD evolution due to the resonant interaction with EMIC waves. The 2D Fokker Planck equation was 
numerically solved using the Alternative Direction Implicit method (Q. Ma et al., 2012). The initial conditions and 
boundary conditions used in the simulation are detailed in Text S1 in Supporting Information S1. The simulation 
was performed for 4-hr using the observed EMIC wave amplitudes. The electron PSD at each energy decreased 
exponentially with time shortly after the simulation starts. The time scale of the exponential decay corresponds to 
the electron lifetime, which is energy dependent. The simulated electron PSD evolution was not directly compared 
with observed dropouts because the MLT coverage of EMIC waves is uncertain. As will be shown in the following 
analysis, we compared the simulated μ and K dependences of electron PSD decay with the observation, after trans-
forming the pitch angle and energy dependence into the adiabatic invariant coordinates for a dipolar magnetic field.

3. Event Analysis
The compound geomagnetic storm between 7–9 September 2017 was driven by a sequence of interacting coronal 
mass ejecta (CME) and interplanetary shocks traveling through the solar wind (Scolini et al., 2020; Shen et al., 2018; 
Werner et al., 2019). Figure 1 summarizes the radiation belt response to the solar wind and the subsequent geomag-
netic conditions. At 23 UT on 7 September, an interplanetary shock arrived at the magnetosphere, indicated by the 
sudden increase in IMF field strength to 33 nT with a decrease of the Bz component to −31 nT (Figure 1a), and 
solar wind speed increases to 830 km s −1 (Figure 1b). As a result, the magnetopause was compressed within geosta-
tionary orbit (purple crosses, Figure 1c) and the Sym-H index suddenly decreased to −142 nT, indicating storm 
onset followed by the main phase. Through the main phase of the storm (23 UT 7 September–01 UT 8 September), 
electron PSD decreased suddenly by up to three orders of magnitude (for μ = 1,000 MeV/G and K = 0.1 G 0.5RE, 
Figure 1e). Through the recovery phase of the storm the PSD remained low compared to pre-storm PSD, until 12 
UT on 8 September when PSD increased substantially through localized electron acceleration (Staples et al., 2022).

Figures 1i–1iv show radial PSD profiles during the dropout between 23 UT on 7 September–03 UT on 8 Septem-
ber for μ = 1,000 MeV/G and K = 0.1 G 0.5RE. Each panel compares the hourly averaged PSD to the average 
pre-storm PSD between 17 and 21 UT on 7 September (gray profiles). Immediately prior to the dropout, between 
23 and 24 UT on 7 September, the PSD at L* < 4 was, on average, slightly greater than the pre-storm PSD. 
At the onset of the dropout during the following hour (Figure 1ii), PSD measurements at L* > 3.7 were up to 
three orders of magnitude less than pre-storm PSD, with greater losses at higher L*. Between 01 and 02 UT on 
8 September (Figure 1iii) loss continued to occur at L* > 3.7; the maximum PSD loss was measured to be over 
three orders of magnitude compared to pre-storm PSD at L* = 4.4. The final interval 02–03 UT on 8 September 
(Figure 1iv) showed the PSD was approximately the same as the pre-storm PSD at L* < 3.6, whereas PSD had 
decreased by over two orders of magnitude compared the pre-storm PSD at L* > 3.6, with greatest loss occurring 
at high L* = 4.4. PSD at L* > 4 increased substantially between 02 and 03 UT on 8 September (interval iv) 
compared to the previous hour (interval iii).

Figures 1i–1iv shows the formation of a radial PSD peak at L* ∼ 3.7 following an incursion of the LCDS, with 
greatest electron losses observed at L* > 3.7. These characteristics appear consistent with electron loss to the 
compressed magnetopause, and outward radial diffusion, as concluded by Staples et al. (2022).
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Figure 1. Panels (a)–(e) summarize the solar wind, geomagnetic, and radiation belt conditions between 12 UT 7 September and 00 UT 9 September 2017: (a) 
interplanetary magnetic field strength (blue) and Bz component (black); (b) solar wind speed; (c) subsolar magnetopause (black line, Shue et al., 1998) and radial 
distance to GOES magnetopause crossings (purple crosses); (d) Sym-H index; (e) PSD of electrons at μ = 1,000 MeV/G and K = 0.1 G 0.5RE. Panels (i–iv) show radial 
PSD profiles. The gray profile on all panels references the average pre-storm PSD, the colored profiles show hourly PSD through the dropout, the beginning time of 
each hour is indicated by correspondingly colored vertical lines in panel (e). The location of the LCDS is indicated by the black line in panel (e) and vertical dashed 
lines in panels (i–iv).
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Figure 2. Van Allen Probe B observation of EMIC waves and the bounce-averaged diffusion coefficients. (i) Total electron density; (ii) magnetic wave power 
spectrogram, where the white solid and dashed lines are equatorial ion gyrofrequencies fcp and fcHe, respectively; (iii) H + band and He + band EMIC wave amplitudes. 
Green shaded boxes over (i)–(iii) indicate the times of EMIC wave samples (a–f). Pitch angle diffusion coefficients, Dαα, computed from statistical hiss and sampled 
EMIC waves are displayed as a function of energy and pitch angle in panels (a–f). White lines in panels (a–f) indicate minimum resonant energies between electrons 
and EMIC waves.
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To analyze whether localized precipitation to the atmosphere contributed to electron loss during the dropout, we 
searched for EMIC wave signatures using EMFISIS observations of the magnetic power spectra. Strong EMIC 
waves were identified during the flux dropout, between 00 and 03 UT on 8 September, observed by Van Allen 
Probe B on an outbound orbit toward apogee at noon, summarized in Figure 2. Figure 2i shows that the total elec-
tron density was between 10 and 100 cm −3, and significant power spectral density was observed below the equa-
torial H + and He + gyrofrequencies (Figure 2ii), indicating the presence of H + band and He + band EMIC waves. 
The integrated wave amplitude of the H + and He + frequency wave bands (Figure 2iii) show that He + band waves 
were higher in amplitude throughout the interval, with the largest amplitude waves observed between 01:300 and 
02:30 UT 8 September, reaching a maximum amplitude of >2 nT in the He + band and >1 nT in the H + band.

Figures 2a–2f show bounce averaged electron pitch angle diffusion coefficients, Dαα, computed using the aver-
aged EMIC wave spectra of the observed wave bursts (labeled on panels i–iii) and statistical hiss wave spectra. 
Figures 2a–2f show that EMIC waves could interact with electrons at very low energies in the ∼100 s of keV 
range for equatorial electrons with pitch angles <70° and ∼MeV range for electrons with equatorial pitch angles 
>70°. The high EMIC wave power in the He + band between 01:30 and 02:30 UT resulted in extremely high 
pitch angle diffusion coefficients of >0.001 s −1 for electron energies >400 keV and pitch angles <70°. While 
diffusion timescales of electrons varied greatly upon energy and pitch angles, Figure 2 nonetheless demonstrates 
that EMIC wave-particle interactions could produce rapid diffusion of electrons toward the loss cone during the 
dropout.

Figure 3 compares the simulated change in electron PSD during the dropout (Figures 3a–3f, left column) to the 
observed change in PSD (Figures 3g–3l, right column) as a function of μ and K. Each row shows the simulated 
and observed df for the case of each 30-min window during the dropout period, where df is described by Equa-
tion 1. Because simulations of df were conducted in a dipolar magnetic field, PSD observations presented in 
Figure 3 were also converted into adiabatic coordinates using a dipolar magnetic field to allow for comparison.

𝑑𝑑𝑑𝑑 = log10

(

Dropout PSD

Pre − storm PSD

)

 (1)

For the case of both simulated and observed df, “Pre-storm PSD” was set to average Van Allen Probe B observa-
tion between 17 and 21 UT on 7 September (gray shaded area Figure 1e). For simulated df, the “Dropout PSD” 
for each 30-min window was determined by a 2D Fokker-Plank simulation of electron diffusion which used 
diffusion coefficients calculated from sampled EMIC wave spectra (see Figure 2) and statistical hiss wave spectra 
(described in Section 2.2). The initial condition of this simulation was equal to the “Pre-storm PSD.” The final 
simulated PSD values were determined when the 2 MeV electron PSD matched the average PSD sampled by Van 
Allen Probe B during the 30-min window. For the case of observed df, “Dropout PSD” was the PSD averaged 
over 30-min windows between 00 and 03 UT on 8 September (between purple-orange lines Figure 1e). Note that 
the observed L range overlapped between windows because a wide sample of electron pitch angles is considered 
as the probe follows an outbound orbit.

Figure 3 shows that PSD decreased (df < 0) compared to the pre-storm interval at nearly all μ and K values across 
the phase space, and PSD decrease exemplified pitch angle scattering loss instead of magnetopause shadowing 
effects: Throughout the dropout the magnitude of PSD loss was observed to be highly dependent on μ and K, 
with maximum PSD loss (white dots) showed a non-linear relationship between μ and K, corresponding to the 
energy and pitch angle dependent loss mechanism. At the onset of the dropout, between 00 and 01 UT (Figures 3a 
and 3b), the μ and K values of maximum observed PSD loss aligned with the maximum simulated PSD loss for 
EMIC wave scattering. This serves as compelling evidence that PSD loss was produced by EMIC wave scattering 
between 4.46 < L < 5.42.

Observations between 01 and 02 UT showed the greatest PSD decrease through the orbit of Van Allen Probe B 
(Figures 3i and 3j), with df < 3 for μ ∼ 600 MeV/G and K ∼ 0.2 G 0.5RE. While the maximum PSD loss after 01 
UT followed a similar relationship between μ and K as earlier in the dropout, the maximum observed df did not 
coincide with simulated df through EMIC wave scattering. The simulated df estimated that maximum PSD loss 
would occur at very high μ (multi-MeV), corresponding to energy channels where electron flux was measured at 
the instrument noise floor (above dashed white line). Nonetheless, simulated PSD loss showed that EMIC waves 
were capable of scattering electrons at μ and K below the noise floor by similar orders of magnitude as Van Allen 
Probe B observations. There could be several reasons why the maximum observed PSD loss after 01 UT did not 
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Figure 3.
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align in μ and K with the maximum simulated PSD loss, such as inaccuracies in the assumptions made when 
calculating simulation diffusion coefficients. For example, the EMIC waves with a different frequency spectrum 
from that observed by Van Allen Probe B in Figure 2ii could occur at other MLT sectors or times which were not 
sampled by the satellite. Furthermore, an assumed ion composition ratio was used, which could alter the energy 
and pitch angle dependence of pitch angle diffusion (Kang et al., 2015).

Observations between 02 and 03 UT (Figures  3k and  3l) show that |df| was smaller than the previous hour 
(Figures 3i and 3j) at all μ and K. This shows that acceleration processes acted to produce a net-increase in PSD 
after ∼02 UT compared to the previous hour, which is supported by high resolution multi-mission PSD observa-
tions presented in Figure 1iii–1iv. Because acceleration also produced changes to observed df during this hour, 
we cannot differentiate the effects of EMIC wave scattering across all μ and K.

4. Conclusion
This study examined the characteristics of electron loss induced by EMIC wave-particle interactions by consid-
ering changes to electron PSD as a function of the first and second adiabatic invariants. In the event analyzed 
in September 2017, an electron flux dropout was produced following a strong magnetospheric compression and 
geomagnetic storm. Previous work identified magnetopause shadowing as the dominant loss mechanism through 
analysis of radial PSD profiles across L* (Staples et al., 2022). In our analysis, we also found that the evolution 
of radial PSD profiles through the dropout interval showed characteristics of magnetopause shadowing; a radial 
PSD peak was formed following an incursion of the LCDS, and no PSD minima were observed to deepen over 
time (Figures 1i–1iv). However, observations from Van Allen Probe B showed significant wave power in both H + 
and He + EMIC wave bands between 0 and 3 UT on 8 September. Simultaneously, Van Allen Probe B observed 
concurrent electron PSD loss by up to three orders of magnitude compared to the pre-storm interval (Figure 3). 
We found that observed PSD loss was closely reproduced by a 2D Fokker-Plank simulation which modeled 
diffusion by sampled EMIC wave observations, and statistical hiss waves, at the onset of the dropout 00–01 UT 
8 September (Figures 3a–3b, 3g–3h). PSD loss observed during the latter part of the dropout was found to be 
more difficult to analyze through simulation because the electron fluxes were reduced to the instrument noise 
floor, limiting PSD observations at high energies. Nonetheless, the observations of PSD loss at dropout onset 
provided compelling evidence that EMIC wave driven electron scattering contributed to electron loss for elec-
trons at L* > 4.

We argue that during this flux dropout event, EMIC wave-particle interactions produced electron loss on closed 
drift paths, whereas magnetopause shadowing produced electron loss on open drift paths beyond the LCDS. 
Figure  4 provides an illustration of PSD evolution for this scenario: At time t0 the PSD profile represents 
a pre-storm distribution which is radially peaked at L*  =  5. Time t1 represents a period of strong magneto-
spheric compression which causes the LCDS to decrease to low L*, and EMIC waves are generated in the outer 

Figure 3. Left Column (a–f) shows simulated change in PSD, df, based upon EMIC wave observations sampled over 30-min windows during the PSD dropout 
between 00 UT 8 September and 03 UT 8 September. Right column (g–l) shows corresponding Van Allen Probe B observations of average PSD change, df, over each 
window. Observed and simulated df are shown by color as a function of μ and K, approximated in a dipolar magnetic field. Solid white lines/dots show the values of 
maximum simulated/observed PSD loss (minimum df) as a function of μ. The dashed white line indicates the maximum measurable μ after taking the noise floor into 
consideration.

Figure 4. Diagram of PSD evolution over four time periods t0 – t3 (left to right) as a function of L* for a scenario where 
magnetopause shadowing produces electron loss on open drift paths, and EMIC wave-particle interactions produce fast 
precipitation to the atmosphere inside of the LCDS. Vertical dashed lines represent the LCDS. The blue dotted line in panel t1 
illustrates PSD profile if local precipitation acted alone to produce a localized PSD loss.
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magnetosphere, near the LCDS. As a result, electrons on open drift paths beyond the LCDS are lost across the 
magnetopause, and on closed drift paths EMIC waves drive rapid pitch angle diffusion and subsequent loss to 
the atmosphere. The location of the LCDS relative to EMIC wave activity obscures any radial PSD minimum 
created by local precipitation. Time t2 represents a relaxation of the magnetosphere, and the LCDS increases to 
higher L*. Combined losses to the magnetopause and atmosphere at high L* result in a localized peak in PSD and 
steep radial PSD gradients. Time t3 represents how ULF wave driven radial diffusion could act to smooth radial 
gradients produced by losses. This scenario demonstrates that simultaneous loss processes at high L* result in a 
PSD evolution which was previously interpreted as magnetopause loss only. Only when analyzing PSD loss as a 
function of μ and K do EMIC wave-particle interaction characteristics come to light.

It is an unexpected finding that local wave-particle interactions could be an effective loss mechanism near the 
LCDS for two reasons: First, EMIC wave interactions typically produce scattering of ∼MeV electrons (Usanova 
et  al.,  2014), but the observed loss was across a wide range of radiation belt energies >100  s keV. Second, 
efficient electron scattering by EMIC waves usually occurs in the overlapped region of the ring current and the 
high-density plasmasphere, where the minimum resonance energy is reduced (Meredith et al., 2003; Summers 
et al., 2007). In the September 2017, the drainage of electrons into the outer magnetosphere during the main phase 
of the geomagnetic storm (Figure 2i) provided higher than usual plasma density in the outer magnetosphere, 
allowing EMIC waves to interact with lower energy electrons (100 s of keV). In addition, the magnetosphere was 
extremely compressed (Figure 1c), so the LCDS was located at low L* relative to localized EMIC wave-particle 
interactions. This is an important finding because the conclusion is contrary to the previous understanding that a 
negative gradient in PSD toward the LCDS is indicative of magnetopause shadowing loss.

Data Availability Statement
Multi-mission phase space density observations presented in this study are publicly available via https://doi.
org/10.5281/zenodo.7293955. Spacecraft data from GOES and the Van Allen Probes are publicly available via 
the NASA/GSFC CDAWeb service (https://cdaweb.gsfc.nasa.gov/index.html/). Solar Wind data and geomag-
netic indices are publicly available through the NASA/GSFC Space Physics Data Facility OMNIWeb service 
(https://omniweb.gsfc.nasa.gov/).
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