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Sensing behavior change in chronic pain: a scoping
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Abstract
Technology offers possibilities for quantification of behaviors and physiological changes of relevance to chronic pain, using wearable
sensors and devices suitable for data collection in daily life contexts.We conducted a scoping review ofwearable and passive sensor
technologies that sample data of psychological interest in chronic pain, including in social situations. Sixty articles met our criteria
from the 2783 citations retrieved from searching. Three-quarters of recruited people werewith chronic pain, mostlymusculoskeletal,
and the remainder with acute or episodic pain; those with chronic pain had a mean age of 43 (few studies sampled adolescents or
children) and 60%were women. Thirty-seven studies were performed in laboratory or clinical settings and the remainder in daily life
settings. Most used only 1 type of technology, with 76 sensor types overall. The commonest was accelerometry (mainly used in daily
life contexts), followed by motion capture (mainly in laboratory settings), with a smaller number collecting autonomic activity, vocal
signals, or brain activity. Subjective self-report provided “ground truth” for pain, mood, and other variables, but often at a different
timescale from the automatically collected data, and many studies reported weak relationships between technological data and
relevant psychological constructs, for instance, between fear of movement and muscle activity. There was relatively little discussion
of practical issues: frequency of sampling, missing data for human or technological reasons, and the users’ experience, particularly
when users did not receive data in any form. We conclude the review with some suggestions for content and process of future
studies in this field.
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1. Introduction

Pain functions to alarm for harm, enabling avoidance, escape, or
withdrawal for recovery. Biological and psychological responses
to pain or fear of pain can bemeasured at multiple levels, from the
molecular to the behavioral. Capturing these changes requires
multiple methodologies, and sensor-based digital technologies
can provide information on, and analysis of, responses to pain.
These technologies are continually improving in ease of use,
methods of capture, and analysis, moving from the laboratory or

clinic to the naturalistic environments that characterise daily life.

Data capture in daily life, especially for sampling physiology,

behavior, or self-report, is commonplace, and as technologies

and their uses improve, they can be deployed passively without

interference from participant awareness of measurement.
Existing reviews have quantified the benefits of technology to

support exercise programmes,53,92 improve broader outcomes of

treatment,55,92 or investigate use and preferences.10 Some have

addressed specific uses, such as sensor data to complement self-

report by people in pain, summarized in 7 reviews for

adults13,53,55,75,92,93,98 and 110 in e-health interventions for children

and young people. Three of these described the current state of

wearable sensors in pain,75,93,98 but only 1 used systematic search

methods. Most reviews nominated pain intensity as the outcome of

interest, overlooking other psychological and social aspects of pain

experience, such as interference in daily life and social interactions.

A few reviews mention emotions associated with pain experience,

but only in passing,55 or as contextual information for understanding

pain intensity data.75 Given the burgeoning use of technology in

mental health research,78 we were interested in the use of

technology to investigate integral psychosocial aspects of pain.

This scoping review addresses this gap by including relevant

psychological and social constructs in our search, highlighting them

in our results, and critically considering the implications of their use

within our discussion.
This scoping review addresses the historical use of measurement

technology assessing a broad range of pain-relevant psychological
and social variables in dynamic real-world environments. In contrast
topreviously published reviews,weare also explicitly concernedwith
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studiesoutside the laboratory,whereeverydaypeoplewithpain face
decisions and challenges without healthcare staff support. We are
also concerned with the potential for data capture and analysis for
use in determining states of chronic pain and transitions between
those states.22 We recognize that the impact of chronic pain is
dynamic (fluctuating) and contextual22; measurement in the context
where pain occurs, daily life, is an important extension of our inquiry.
In fact, although some technologies are particularly suitable for
application in both laboratory and community settings without
degrading or voiding the experimental procedures, other technol-
ogies may present methodological and technical challenges
preventing their application in daily life contexts.

2. Methods

The protocol was developed using the scoping review framework
by Joanna Briggs Institute,73 preregistered and available at the
Open Science Framework (OSF), doi: 10.17605/OSF.IO/
3CBDG.

2.1. Research questions

For sensorswith potential application in daily life contexts and that
sampled psychological and social data of interest in chronic pain,
we aimed to
(1) map sensors by type;
(2) describe relationships between sensor data and psychological

and social variables, clarifying assumptions linking measure-
ment of an event or state to the sensor data (“ground truth”);

(3) document practical limitations and strengths of the sensors or
devices in relation to the measurement tasks and their
contexts;

(4) document the research designs in which sensors or devices
were applied; and

(5) identify sensor applications that are promising but under-
studied in pain.

2.2 Data sources and search strategy

2.2.1. Pilot search

With a view to capturing the full breadth of the use of sensors in
studies of psychological and social variables, we ran a pilot
search for studies with or without the term pain but with keywords
related to disability. We then limited the search to those studies
that included keywords related to psychological distress and to
wearable technology compatible with home use. This first search
yielded more than 10,000 results. One author (T.O.) screened
these titles and then 3 authors (T.O., D.V., and A.W.) examined
the results from the first title screening and decided that the
search identified many titles that were (1) not directly concerned
with pain or chronic pain and (2) focused exclusively on sensor
feasibility without reference to any psychological or social
constructs related to pain. This first search was therefore treated
as a pilot search, and terms were revised for a new search that
would include only pain or chronic pain studies that were also
concerned with how sensor data related to existing psychological
and social constructs related to pain.

2.2.2. Search strategy

PubMed, PsychINFO, and Web of Science publication databases
were searched from inception to December 31, 2022, for published
peer-reviewed articles meeting the criteria below. The search
strategy applied the term “pain” in combination with keywords

related to disability or movement difficulty, limiting studies to those
that contained at least 1 from a list of terms related to psychological
or social constructs and to any wearable or passive sensing
technology compatible with home use (see search supplementary
information, available at http://links.lww.com/PAIN/B973).

2.2.3. Inclusion criteria

We included all studies that recruited participants with either
chronic pain or painful movement and that monitored at least 1
psychological or social variable. All included studies used 1 or
more sensors (wearable or installed in the participant’s house) to
assess specific aspects of psychological (such as fear of
movement or catastrophizing) or social (such as voice tone or
count of social interactions) experiences related to pain.

2.2.4. Exclusion criteria

We excluded studies that did not explore (either qualitatively or
quantitatively) any relationship between sensor data and other
psychological or social aspects of pain (eg, fear of movement).
In addition, for relevance to chronic pain, we excluded dental
studies and any other studies (such as in surgical wards) where
pain might be acute and activity was constrained. We
excluded studies with sensors that could not be transferred
to use in daily life contexts, such as requiring specialized
laboratory settings or technology that required invasive
procedures (eg, blood tests, implanted sensors). We excluded
studies that were based on secondary data and articles in
languages other than English.

2.3. Title and abstract screening

From the 3 data sources, the searches identified 3139 articles
that were imported into EndNote 20 software31 and deduplicated
using DOI and then the EndNote 20 deduplication tool. This
provided 2799 titles and abstracts. One author (T.O.) screened
461 titles from this updated search, and D.V. and A.W. screened
the remaining 2338 new titles. D.V. and A.W. screened a random
selection (10%) of titles screened by T.O. and calculated the ɸ
reliability coefficient.32 Similarly, D.V. and A.W. screened 10% of
the titles allocated to each of them. The interrater reliability
between A.W. and T.O. was ɸ 5 0.80, between D.V. and T.O.
was ɸ 5 0.84, and between D.V. and A.W. was ɸ 5 0.86. All
differences between reviewers were documented and resolved
through consensus, leading to the inclusion of 1 article that had
initially been excluded (refer to the PRISMA diagram).

2.3.1. Additional searches

The database searches yielded 37 reviews focused on pain,
chronic pain, and wearable technology. The reference lists of
these reviews were screened to identify further studies leading to
the inclusion of 2 additional full texts. A total of 106 full texts were
retrieved and examined (refer to the PRISMA diagram).

2.4. Full-text screening

Full texts were reviewed by a similar process. A.W. reviewed 23 of
the 106 full texts and then reviewed an additional 15 titles that
were randomly selected from those allocated to D.V. (n 583). Of
the 15 full texts reviewed by both D.V. and A.W., 1 disagreement
was resolved with the exclusion of 1 text. After the full-text review,
the final list of full texts included was 60 (Fig. 1).
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2.5. Data extraction

Two authors (T.O. and D.V.) extracted data, including title, year,
author of publication, and key information about the sensors, how
they were used, methods used to capture the experiences of
interest from the sensor data, and relevant challenges reported
for each technology (see supplementary information, available at
http://links.lww.com/PAIN/B973).

3. Results

Consistent with accelerating trends in the availability and
affordability of wearable sensors, 48.3% of the 60 studies
included in this review were published between January 1,
2018, and December 31, 2022, with the remaining 31 covering
a span of 23 years (Table 1). Most of the 60 studies (71.6%) were
conducted either in Europe (38.3%) or in North America (33.3%),
16.6% in Asia, 5% in Australia, and 3.3% in South America and
Middle East. Of the 23 European studies, 7 were from the
United Kingdom, 3 from the Netherlands, and 2 from Germany.
Of the 60 studies, 46 (76.6%) involved people with chronic pain
and 14 recruited subjects with acute or other nonchronic pain
presentations. Almost half of the selected studies (n 5 28)
involved people with back pain, and overall, we identified 11
general classifications of pain or chronic pain (Fig. 2), notmutually
exclusive.

The average age of participants with chronic pain (weighted by
sample size) was 43 (SD5 12) years, whereas that of participants
with acute and nonchronic pain conditions was 51 (SD 5 17)
years. The proportion of female participants per chronic pain
study (weighted by sample size) was 60.5% and 68.2% in the
other studies. The proportion of men to women varied across the
studies, with some that enrolled predominantly male or female
participants (Fig. 2). Study design varied; 45% compared sensor
users with a control group, 18.3% were longitudinal studies, and
the remaining 33.3% were observational. More studies were

conducted in laboratory or hospital settings (n5 37, 61.6%), and
the remaining 38.3% (n 5 23) were conducted in daily life
contexts. Comparing these 2 types of settings, there was
a significant difference in the proportion of the chosen research
designs (x2(2) 5 18.56, P, 0.01); studies conducted in daily life
settings were more likely to use longitudinal designs, where
observational and controlled studies were more likely to be
conducted in laboratory or hospital settings.

3.1. Sensor types

The 60 studies used 76 sensor units (average of 1.2 sensor per
study), but most (n5 50, 65.8%) used only 1 type of technology.
Many hospital-based and laboratory-based studies focused on
measuring aspects of fine mobility in specific areas of the body
(eg, the measure of angular velocity and range of trunk move-
ments). These measures are most often achieved using 3D
capturing systems, electrogoniometers, multiple inertial mea-
surement units (IMUs), and virtual reality sets (Fig. 3). Eight sensor
setups targeted muscle activity by electromyography (EMG), of
which 7 were conducted in laboratory or hospital settings and
only 1 study applied this technology in a naturalistic setting.29

Among the studies selected in this review, the use of sensing
technology that captured fine whole-body kinematics appeared
to be exclusively (n 5 23) used in laboratory studies (Fig. 3).
Similarly, all 6 sensor applications focused on gait and sway
analysis were conducted in the laboratory using force platforms,
IMUs, or 3D capturing systems. On the other hand, the studies
conducted in daily life settings seemed less focused on fine local
mobility withmany examples of sensor applications (n5 15) using
technologies that are less complex relatively to the previous
group. These sensors were often low-power single-unit accel-
erometers such as step counter or other triaxial accelerometers
that were used to measure activity levels and—in more recent
studies—to recognize between a set of activities being engaged
(eg, sleeping, resting, walking, or doing exercise). The studies
focusing on psychological or social aspects of pain (eg, emotions
or social interactions) were a minority (3/76), and they were all
conducted in naturalistic settings using wearable cameras95 or
microphones.74,96

Autonomic activity was studied in both research contexts
without notable differences (Fig. 3). The current selection of
studies used heart rate sensors (n 5 6) and respiratory sensors
(n 5 5), with 1 study using a wearable electroencephalogram
(EEG)8 and 1 study using a commercial smart bracelet to detect
electrodermal activity.52

3.1.1. Movement and activity monitors

Motion sensor technology is used primarily as a method to
quantify physical activity and to recognize activity patterns that
represent differences in duration and type of activities. When
used as a relativemeasure of physical activity, motion sensor data
can be applied to indicate whether someone engages in light,
moderate, or intense activity, or none. Activity data are often
summarized on a daily basis, in some cases as a step count and
in other cases unsupervised approaches are used to try to
discriminate different patterns of activity throughout the day and
quantify time spent in each (eg, sleeping, walking, or sitting
down).

Although these metrics are good indicators of movement and
general activity, their correlations with self-reported pain disability
and pain intensity are inconsistent. For instance, evidence is
inconsistent on the association between pain-related disability

Figure 1. PRISMA diagram.
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and direct measures of activity using motion sensors,11,33,90 and
between daily activity data and pain intensity (high correla-
tion35,36,40; low correlation11,17,33,42,60,90). Reduced activity is
associated with greater psychological symptomatology related to
pain (such as fear of movement89 or depression47) in some
studies, but not others.60 These studies applied different
technologies, different sensor-to-participant setups, and made
different pragmatic assumptions about how physical activity
might be related to sensor data.

In addition, interpretation of motion data may require contex-
tual information to make meaningful discriminations.34 For
instance, a pain-free individual and another with chronic pain
may record the same volume of daily activity, but with different

patterns: people with chronic pain in 1 study were very active in
themornings, followed by—perhaps necessitating—rest formost
of the rest of the day, whereas participants without pain tended to
be more active in the evening than in the morning.36 Where the
sensors do not give a timeline, participants may be prompted to
record contextual information4 or equipped with a wearable
camera with sensors to record motion data with snapshots at
regular intervals through the day, supplying social and in-
terpersonal contexts.95

The technological complexity of motion sensors varies
considerably between studies, from a wrist-worn step counter
to multiple motion sensors capturing detailed information about
posture and bodily movement.6 In the following paragraphs, we

Figure 2. Schematic of sample representing pain type, medical condition, sample size, and sex across the extracted studies. The size of the coloured dots is
proportional to the number of participants in that category. AP, acute pain; CP, chronic pain; MSK, musculoskeletal pain.

Figure 3. Graphical contingency tables showing the frequency of sensor types by target of measurement and research context.
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focus on studies that used sensor setups focused on capturing
fine features of movement such as range of movement (ROM),
velocity of movement (eg, angular velocity), balance and co-
ordination (eg, gait analysis), or other specific characteristics of
movement such as hesitation, guarding, or facial expressions.

This subgroup of studies is characterized by a general
heterogeneity of the methods used to elicit motion across
studies, with some studies instructing participants to perform
tasks as fast as possible, some inviting them to move at
a comfortable pace, and others that gave no specific instructions.
These differences in the pace of the tasks can affect the
outcomes of the different kinematic measures.86 In the studies
focused on neck pain, changes in neck ROM, angular velocity, or
both were related to pain intensity1,52,77,88 and in some cases
also to pain-related disability.1,77,88 In studies of spinal, trunk, or
lumbar mobility, there is at best weak evidence of a relationship
between ROM or angular velocity and pain intensity26,27,48,71,90;
the same holds between those kinematic measures and pain-
related disability.3,15,48,54,72 Three-dimensional motion detection
systems that can identify and track the position of multiple
specific markers placed on the body to record 3-dimensional
characteristics of movement are used to detect and monitor
changes in (eg,) dynamics of walking or standing up or
sitting down.

Results of these studies in relation to psychological character-
istics aremixed: some suggest that gait and posture are related to
self-reported pain, depression and anxiety,51 and fear of
movement,7,18,65 but others suggest no relationship.48,91 Rela-
tionships found between movement kinematics and fear seemed
somewhat stronger,7,19,52,79 but not for the relationship between
ROM and fear of movement (typically measured by the Tampa
Scale of Kinesiophobia [TSK]58) in back pain41,48,71,91 and neck
pain.1,3,88 Task-specific fear might be expected to be more
closely related to performance than broader fear of movement.38

In addition, there is some evidence that movement velocity
captures kinematic features affected by fear of movement better
than do displacement and ROM measures,39,64,72,86 with longer
time of movement execution associated with fear of

movement.70,72 A recent virtual reality study using both headset
and handheld sensors found changes in movement velocity to be
associated with both fear of movement and reinjury and chronic
low back pain.52 This may not be due to slowed movement so
much as alternative joint coordination choices86 and stops and
hesitation in movement94 (associated with fear of move-
ment39,67,71). The relationship between fear and movement
detection seems stronger when the fear of movement is
measured in relation to the movement task26,27,38 rather than
the total TSK score38,54 or pain-related anxiety85 rather than
general anxiety.46,90

3.1.2. Autonomic activity

This group of 13 sensors included 6 for monitoring cardiovascular
activity, their complexity ranging from infrared (IR) pulse oximeters
sampling blood oxygenation and heart rate to multitrace electro-
cardiograms (ECGs). Heart rate variability (HRV) data were used
to monitor autonomic regulation and to assess autonomic
sympathetic vs parasympathetic balance.9,23,35,36 Heart rate
variability data can also be used in biofeedback devices that aim
to support the promotion of normal cardiorespiratory homeosta-
sis.9 Reductions in HRV can indicate underlying autonomic
dysregulation associated with persistent pain.9,23,34 Comparing
chronic pain with healthy controls, participants with pain show
a dominance of the sympathetic system such that “fight or flight”
states prevail over a parasympathetic response that would
promote relaxation and resting.23,34,36 Diminished parasympa-
thetic activation at night has been associated with sleep
disturbance and decreased physical activity.35 The same authors
suggest that decreased physical activity may contribute to worse
pain symptoms through autonomic nervous system (ANS)
changes,35,36 but changes in ANS regulation detected through
monitoring of HRV levels alone do not seem to be associated with
self-reported anxiety,23 stress,35,36 or quality of life.34 In the case
of fibromyalgia (FM), 1 study suggested that the dissociation
between change in self-reported symptoms and ANS responses
may indicate that the latter constitute a primary trait of FM.34

Figure 4. Heatmap of sensor use by setting, showing frequency of output of a sensor aimed at researcher or participant. EEG, electroencephalogram; Electr.
Gon., electronic goniometer; EMG, electromyogram; IMU, inertial motion unit; IR, infrared; VR, virtual reality.
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Table 1

Title and short description of studies.

Author year Design Research
context

Pain-related
condition

Type of sensor Data
available

Age
category

Sample size
(pain gr.)

Attrition
rate

Mean
age*

Age
SD*

N.
Female

Alalawi 20221 Controlled Lab./Hosp. b1. Neck/Shoulder IMU No info

provided

Adults 18 0.00% 38.7 12 14

Alberts 20202 Controlled Daily life c. Cancer Resp. rate Unclear Adults 65 3.08% 44.1 8.7 35

Alcaraz 20213 Controlled Lab./Hosp. b2. Neck and low

back

IMU No info

provided

Adults 66 0.00% 40.35 13.08 25

Alschuler 20114 Longitudinal Daily life b. Back pain Accelerometer No info

provided

Adults 20 0.00% 46.1 9.35 9

Aung 20166 Controlled Lab./Hosp. b. Back pain IMU, EMG, 3D

capt.

On request Adults 22 0.00% 50.5 14.6 15

Beebe 20217 Observational Lab./Hosp. a. General/unspec. 3D capture

system

No info

provided

Children 16 15.00% 13.8 2.2 13

Birch 20228 Observational Daily life a. General/unspec. EEG On request Adults 29 44.83% 50.2 — 12

Burch 20209 Controlled Lab./Hosp. c. Cancer Heart—HR/V No info

provided

Adults 38 10.53% 60 3 39

Carvalho

201711
Longitudinal Daily life b. Back pain Accelerometer No info

provided

Adults 130 8.46% 39.1 11.2 82

Cooper 201714 Controlled Daily life e. Osteoarthritis Accelerometer No info

provided

Adults 67 7.46% 60.5 10.3 36

Davis 201315 Observational Lab./Hosp. a. General/unspec. IMU No info

provided

Adults 235 5.11% 32 — 129

de Groot

200817
Controlled Daily life e. Osteoarthritis Accelerometer No info

provided

Adults 84 0.00% 61.7 11 84

de Oliveira Silva

201918
Observational Lab./Hosp. b4. other MSK 3D capture

system

No info

provided

Adults 40 0.00% 22.23 3.2 40

Devecchi

202219
Observational Lab./Hosp. b1. Neck/Shoulder IMU No info

provided

Adults 85 0.00% 33.3 9.4 55

Dubois 201421 Controlled Lab./Hosp. b. Back pain EMG No info

provided

Adults 52 0.00% 39.8 11.5 18

Evans 201323 Controlled Lab./Hosp. b. Back pain Heart—HR/V No info

provided

Children 48 12.50% 14.2 2.6 30

Fujii 202226 Controlled Lab./Hosp. b. Back pain 3D capture

system

On request Adults 31 0.00% 30.5 5.2 0

Fujii 202127 Observational Lab./Hosp. b. Back pain 3D capture

system

On request Adults 35 0.00% 30 Range 9

Geisser 199529 Longitudinal Daily life b. Back pain EMG No info

provided

Adults 25 16.00% 35.1 — 9

Greenberg

202033
Longitudinal Daily life a. General/unspec. Accelerometer No info

provided

Adults 95 16.84% 50.7 14.7 64

Grossman

201634
Controlled Daily life f. Fibromyalgia,

CRPS, WSP

HR/V, RR, acc. No info

provided

Adults 168 22.62% 54.1 9.1 130

Hallman 201236 Controlled Daily life b1. Neck/Shoulder Heart—HR/V,

accel.

No info

provided

Adults 23 17.39% 40.5 7.1 21

Hallman 201435 Controlled Daily life b1. Neck/Shoulder Heart—HR/V,

accel.

No info

provided

Adults 29 6.90% 41 10 13

Imai 202238 Observational Lab./Hosp. b. Back pain 3D capture

system

No info

provided

Adults 54 0 47.1 11.1 25

Imai 202239 Longitudinal Lab./Hosp. b3. other MSK Accelerometer No info

provided

Adults 20 0.00% 69.7 10.2 18

Jacobson

202140
Longitudinal Daily life f. Fibromyalgia,

CRPS, WSP

Accelerometer Public Adults 68 — 41.3 8.1 48

Jette 201641 Observational Lab./Hosp. a. General/unspec. IMU No info

provided

Adults 32 0.00% 32.9 7.83 19

(continued on next page)
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Table 1 (continued)

Author year Design Research
context

Pain-related
condition

Type of sensor Data
available

Age
category

Sample size
(pain gr.)

Attrition
rate

Mean
age*

Age
SD*

N.
Female

Kashikar-Zuck

201042
Longitudinal Daily life f. Fibromyalgia,

CRPS, WSP

Accelerometer No info

provided

Children 104 0.00% 14.9 1.8 93

Kent 201543 Controlled Daily life b. Back pain IMU On request Adults 112 24.11% 39 12 61

Khan 202244 Observational Lab./Hosp. b. Back pain IMU No info

provided

Adults 121 0.00% 55 10 62

Kim 201745 Longitudinal Daily life a. General/unspec. Camera 1 PIR* No info

provided

Elderly 20 0.00% — — —

Knox 200646 Controlled Lab./Hosp. b1. Neck/Shoulder Electrogoniometer No info

provided

Adults 9 0.00% 39 9 7

Korszun 200247 Controlled Daily life f. Fibromyalgia,

CRPS, WSP

Accelerometer No info

provided

Adults 22 0.00% 48 3 24

Lamoth 200648 Controlled Lab./Hosp. b. Back pain 3D capture

system, EMG

No info

provided

Adults 22 13.64% 38 — 13

Lewis 201250 Controlled Lab./Hosp. b. Back pain EMG No info

provided

Adults 42 9.52% 46.2 11.1 29

Liguori 202151 Observational Lab./Hosp. n. Parkinson Dis. IMU No info

provided

Adults 26 0.00% 65.4 8.7 8

Liikkanen

202252
Controlled Daily life b. Back pain VR set, EDA, acc. On request Adults 39 0.00% 54.7 — 34

Matheve

201854
Controlled Lab./Hosp. b. Back pain IMU On request Adults 54 18.52% 43 12 18

Mora 201259 Controlled Lab./Hosp. b3. other MSK EMG No info

provided

Adults 36 7.69% 27.4 6.8 28

Murphy 201360 Longitudinal Daily life e. Osteoarthritis Accelerometer No info

provided

Adults 172 18.60% 72 6 107

Nijs 200862 Observational Lab./Hosp. f. Fibromyalgia,

CRPS, WSP

HR/V, resp. rate No info

provided

Adults 36 0.00% 39 8 36

Nishi 202264 Controlled Lab./Hosp. b. Back pain Force plat., Elect.

Gon.

No info

provided

Adults 48 0.00% 54.46 13.08 36

Nishi 202165 Controlled Lab./Hosp. B. Back pain Accelerometer No info

provided

Adults 20 0.00% 54.05 10.76 9

Nordstoga

201967
Longitudinal Lab./Hosp. B. Back pain IMU No info

provided

Adults 44 31.82% 45.1 14.7 17

Osumi 201870 Observational Lab./Hosp. f. Fibromyalgia,

CRPS, WSP

3D capture

system

Unclear Children 1 0.00% 13 — —

Osumi 201971 Controlled Lab./Hosp. B. Back pain Electrogoniometer No info

provided

Adults 45 0.00% 56.23 10.61

Ozcan

Kahraman

201872

Observational Lab./Hosp. b. Back pain Force platform No info

provided

Adults 51 0.00% 39 — 25

Reinen 202274 Observational Daily life b. Back pain Acc., microphone No info

provided

Adults 121 4.13% 59.4 — 70

Sarig Bahat

201477
Observational Lab./Hosp. b1. Neck/Shoulder VR set No info

provided

Adults 25 0.00% 39 12.7 19

Singh 201680 Observational Lab./Hosp. b. Back pain Acc., resp. rate No info

provided

Adults 15 — — — 10

Singh 201779 Observational Daily life b. Back pain Accelerometer No info

provided

Adults 4 0.00% — — 4

Svendsen

201383
Controlled Lab./Hosp. b. Back pain EMG No info

provided

Adults 12 0.00% 38.6 9.8 3

Thomas 200785 Observational Lab./Hosp. b. Back pain 3D capture

system

No info

provided

Adults 36 0.00% 26.85 6.68 23

(continued on next page)
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Respiratory monitors detect ventilation volume, breathing rate,
and breathing rate patterns throughout the day by sensing
changes in the expansion and contraction of the rib cage. These
data can be used to indicate relative states of calm or stress2 and
can be fed back to the wearer.2 Respiratory rate data can be
augmented using synchronous heart rate and movement data
improving the clinical relevance of the autonomic measures and
discriminating between healthy participants and participants with
chronic pain.34 Heart rate sensors in combination with respiratory
monitors and oximeters can be used tomonitor functional aerobic
impairment. One study that focused on measuring peak heart
rate and peak oxygen consumption during intense exercise found
that high levels of both were negatively correlated with pain
catastrophizing and positively correlated with pain intensity.62

3.1.3. Voice data processing

Voice recordings can be used to capture descriptions of the
experience of pain, but newer analytical techniques (eg, artificial
intelligence) can recognize signs of emotional states in speech
features such as voice tone and speech richness.74 Similarly,
sound files containing clues to social interactions can be coded
and analysed to detect the frequency and length of conversa-
tions, for instance, about pain. A recent study of social

interactions using the method to monitor disclosure of pain to
significant others or to other social networks showed that most
conversations about pain involved people outside the closest
circle of significant others.96

3.1.4. Muscle activity

Electromyographic sensors detect and measure muscle activity
local to their position on the body; they are often used to measure
muscle contractions (with or without movement), and in some
cases, they are interpreted as pain-related behaviors. Depending
on the specific aim of the study, EMG data are used to monitor
muscle recruitment at rest, during activity, or throughout the day
to study muscle activation intensity and maintenance (eg,
prolonged muscle tension), and muscle recruitment patterns in
particular areas of interest, with the expectation of certain muscle
activity patterns or greater contraction intensity to be associated
with greater pain and disability.50,62When considered in relation
to physical activity, muscle recruitment should be interpreted with
caution because muscle recruitment may occur without observ-
able physical activity.29

In some studies, EMG, accelerometer, and gyroscope data
were combined to studymuscle activity in relation to posture or to
specific body or joint kinematics.6,46 Electromyography data can
also be used to determine the presence of dysfunctional
neuromuscular adaptations associated with self-reported dis-
ability21 or to associate muscle recruitment patterns with specific
pain behaviors (eg, protective posture).6 In the included studies,
the evidence on association between EMG data and fear of pain
was somewhat contradictory48,50,91; in some but not all studies,
EMG data were correlated with pain-related anxiety,50 cata-
strophizing, and “ignoring pain sensation.”83 Electromyography
data were investigated in relation to broader psychological
variables such as depression or general anxiety but not
consistently related to them.29,50,59

Table 1 (continued)

Author year Design Research
context

Pain-related
condition

Type of sensor Data
available

Age
category

Sample size
(pain gr.)

Attrition
rate

Mean
age*

Age
SD*

N.
Female

Thomas 200886 Observational Lab./Hosp. b. Back pain 3D capture

system

No info

provided

Adults 88 0.00% 30.9 10.3 46

Treleaven

201688
Observational Lab./Hosp. b1. Neck/Shoulder VR set No info

provided

Adults 39 0 41.56 12.73 26

Uritani 202089 Observational Daily life e. Osteoarthritis Accelerometer On request Adults 168 0.00595 62.2 7.5 105

Vaisy 201590 Controlled Lab./Hosp. b. Back pain IMU No info

provided

Adults 20 0.00% 32.9 9.6 11

Veeger 202091 Observational Lab./Hosp. b. Back pain 3D capt., EMG No info

provided

Adults 31 0.00% 33 — 21

Wilson 201895 Controlled Daily life a. General/unspec. Wearable camera No info

provided

Adults 13 7.69% 70 — 9

Wright 202196 Observational Daily life c. Cancer Microphone Public Adults 56 8.70% 56 14 52

* In the studies examining more than 1 pain group, means are “combined means” and SDs are “pooled SDs.”

CRPS, complex regional pain syndrome; EEG, electroencephalogram; EMG, electromyography; HR/V, heart rate variability; IMU, inertial measurement units; MSK, musculoskeletal pain; RR, respiratory rate; VR, virtual reality.

Table 2

Technological challenges reported in daily life and laboratory

settings.

Type of challenge Daily life settings N Laboratory settings
N

Forgetting/refusing to wear/use 7 0

Needing charge 2 0

Putting it on 4 0

Discomfort 4 0

Inconvenience 3 1

Inaccuracy 3 1

Difficulty keeping in place 3 0

Needing user engagement 1 0

Corrupted or missing data 4 6

Total 31 8

Table 3

Count of predicted* vs observed reports of zero attrition.

Predicted as zero Predicted as non-zero

Observed as zero 31 5

Observed as non-zero 13 11

* This logistic model analysed sample size and research context as independent predictors of the probability

of observing study attrition as zero.

June 2024·Volume 165·Number 6 www.painjournalonline.com 1355

D
ow

nloaded from
 http://journals.lw

w
.com

/pain by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

2+
Y

a6H
515kE

=
 on 05/29/2024

www.painjournalonline.com


3.1.5. Brain activity

We found only 2 studies that applied a portable EEG in the
context of acute or chronic pain and where the EEG device was
completely managed by participants. In both cases, the EEG
sensor units were part of a wearable interface that livestreamed
brain activity for neurofeedback. This specific use case allows
control of some crucial aspects of the EEG recording session (ie,
participant static in a room with constant lighting and following
precise instructions on a computer screen). However, only 1
study8 discussed EEG data in relation to psychological or social
variables, and in this case, theta (4–8 Hz), alpha (8-13 Hz), beta
(13-30 Hz), and hi-beta (20-30 Hz) frequency bands were used
for biofeedback. Decreased activity in relative hi-beta was
associated with decreased anxiety and depression levels.

3.1.6. Multidimensional data

Some studies have started to explore the use of different
synchronous sources of data from sensors in the context of pain.
For example, using cameras, EMGs, and multiple motion sensor
units, it is possible to use AI to systematically detect emotional
states associatedwith facial expressions, aswell as detecting pain-
related behaviors (eg, guarding or limping) associated with specific
body postures, movement velocity, and movement patterns.6 AI
algorithms may be used with an array of unobtrusive sensors
installed in the target’s environment to detect and analyse motion
and behavioral patterns associated with depression and with
difficulties in activities of daily living.45 The combined measures of
autonomic functioning with measures of physical activity can
provide context to improve the clinical relevance of these
measures.34 Another study used multiple input streams to
represent changes in pain states over time, with sensors recording
both actigraphy and speech, then combining these data with
questionnaires on sleep quality, mood, alertness, pain intensity,
activities of daily living (ADLs), and medication use.74

Multiple sensor inputs can be transformed into intelligible
feedback to wearers. Real-time sensor data was translated into
sound feedback (sonification) to enhance the wearer’s capacity
to explore and extend movement patterns,79,80 with feedback
associated with improved awareness of and confidence in
movement.79 Another therapeutic development was the combi-
nation of EMG and motion activity data to detect associations
between pain and posture, fed back to the wearer to support
retraining of movement.43

3.2. Researcher-oriented vs user-oriented output

Although researchers always obtained raw or processed data, there
wasconsiderable variability inwhether user participants receivedany
data at all, despite the opportunities for user experience to refine
design and the possible therapeutic feedback to users. Figure 4
shows twin heatmaps indicating who received data: in most
laboratory and hospital applications (41/45), the output of the
technology was unavailable to participants. A similar trend can be
observed in naturalistic settings, although most of the sensors that
provided a readable output to the participants were sensors
detecting and measuring the volume of activity (eg, step count).
The 2 contexts of study seemed almost complementary, with some
technologies being applied almost exclusively in daily life settings.

3.3. Attrition and technology challenges

Technological problems and other sources of missing data are
shown in Table 2; 24 (36.6%) of the 60 studies provided

information about the practical challenges encountered. Most of
the challenges (31/39) were reported in studies conducted in daily
life settings with some of the challenges begin reported
exclusively in this context, such as “forgetting or refusing to
attach sensors,”, “needing to recharge,” and “putting it on.”

In more than half the studies (20/39), sensor data were missing
or corrupted (10/39), participants forgot or refused to wear
devices (7/39), or found them uncomfortable (4/39). In a few
cases, data accuracy was inadequate (4/39), rendering data
unusable.

We tried to extrapolate attrition due to technology vs to any
other cause, but most (36/60) studies gave too little detail of
attrition rates, particularly those studies conducted in laboratory
or hospital settings (28/36). Overall, the average attrition rate
weighted by sample size was 0.07 (weighted SD 5 0.08). Most
(36/42) studies that reported zero attrition were in controlled
settings and often for relatively short times. We used 2 logistic
models to analyse the relationship between sample size and
context of study on the probability of study attrition of zero. One
model showed that as sample size increased by 1 unit, the log
odds of observing attrition equal to zero decreased by 20.019
(P5 0.009). A second model combining both predictors showed
that both sample size (coeff520.015, P5 0.037) and laboratory
or hospital research contexts (coeff 5 1.278, P 5 0.041) were
independent significant predictors of zero attrition. This second
model presented a better fit with a lower Akaike information
criterion parameter in comparison with that using sample size as
a sole predictor of zero attrition (Table 3) and did so with
acceptable sensitivity (0.70) and specificity (0.68).

4. Discussion

Our search for wearable or fixed sensors useable in the
environment of people with pain, focusing on psychological and
social variables, provided 60 studies, mainly on musculoskeletal
pain16,20,49,63 and in high-income countries. Most were con-
ducted in the 5 years preceding the search, benefiting from rapid
technological progress. Just under 40% were conducted in daily
life settings rather than laboratory or hospital, but all sensors
could potentially be used by participants in daily life.

The largest number of studies was of cumulative physical
activity using accelerometers. Activity is an important outcome in
rehabilitation of painful conditions, and technology complements
self-report. Studies differed in how to summarize sensor data and
how often to sample it, whereas interpretation of some sensor
data seemed to make substantial assumptions about what was
(and was not) relevant contextual information. Movement studies
also used detailed sensor quantification ofmuscle activity, mostly
in single session laboratory or clinic settings, although context
and information from additional sensors was underused in
exploring gross movement in space. The influences of psycho-
logical and pain factors on movement were considered, but often
corresponded poorly with sensor data. Heart rate was also
a common target; wrist-worn devices are widely available,
relatively low cost, and acceptable,30 but interpretation of findings
often lacked a theoretical basis. Studies reviewed here confirm
that HRV monitoring can indicate a shift toward sympathetic
predominance of the ANS in chronic pain,23, 34–36but there
seems to be no relation between HRV and stress or anxi-
ety.23,35,36 Interpretation is hampered by lack of clarity on the
causal direction of these relationships and on whether and how
psychological and social factors interact with the ANS.

Electroencephalogram was the only brain imaging technology
that met our search criteria. We found no pain studies involving the
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use of near-infrared spectroscopy in daily life contexts.87 Various
EEG devices are available in small, wearable, battery-powered,
and wireless brain–computer interfaces (BCIs),12 but few are plug-
and-play devices.97 The technology has critical limitations for use in
community settings, including poor signal detection on the scalp,
degrading spatial resolution5,12; compromise between number of
sensors and memory and power requirements56; and data
artefacts from extraneous signals.57 There are also unresolved
questions of ground truth for psychological states.5

In sensor data validation, “ground truth” refers to a reliable
reference point—a valid analogue—for interpreting and evaluat-
ing its accuracy. Addressing this challenge is crucial as certain
health-related constructs, such as activity or emotional states,
are hard to quantify. In using sensor data to infer mental or
emotional states, establishing ground truth is particularly chal-
lenging because it relies on self-reports that are themselves
subject to bias.28 As the potential of sensor capture, computing
power, and data availability increases exponentially over time,
assessing content validity is crucial to understand how sensor
data relate to health status. In fact, sensor data used to infer
mental states, such as social withdrawal in depression, relies
both on measurement accuracy and understanding of measure-
ment error, and on a theoretical context to make sense of
behavior,84 both lacking in pain.

Extending the number of variables captured risks exacerbating
unresolved problems. Many studies reviewed communicated little
on relevant technical and practical problems in daily life settings,
but data interpretation is compromised by large quantities of
missing data because of connection or charging problems or
intentional or inadvertent nonuse.Willingness to wear a devicemay
be enhanced by comprehensible feedback, but few took the user
perspective to understand how sensors could serve and support
everyday life,79,80 in contrast to themental health field, wheremany
sensor-based apps interact directly with the user and (with
consent) transmit data to the clinical team.24

We supplemented our search by exploring use of sensors and
wearables in mental health research. Two reviews described
strengths and shortcomings,37,78 particularly the scarcity of
studies focused on daily life contexts. Some stress studies were
relevant, assessing stress by cortisol detection in sweat76;
photoplethysmographic methods with sensors on fingers, wrist,
or earlobe61; and smartphone applications for analysing speech,
where changes in muscle tension and breathing affecting speech
prosody are reasonably well correlated with skin conductance
parameters.81 The use of voice features to indicate psychological
disorders is a burgeoning area,78 as are social contact factors to
indicate depression.37 However, authenticating data labels for
relevant mood states remains problematic, and few studies
address clinical utility. Recommendations emphasize greater
involvement of experts by experience in development and testing
and multiple sensor use to improve accuracy.61

Also of relevance to pain studies is the growing interest in
interoceptive awareness and its relevance for mental represen-
tation and interpretation of bodily states and experiences. This
has focussed mainly on psychological disorders, exploring
factors such as oxygen consumption, thermoregulation, and
acoustic feedback related to heart rate during exertion.66,82

Despite these efforts, universally applicable and measurable
bodily indicators for core emotions are not yet established.

4.1. Gaps, strengths, and limitations

Apart from the restricted range of technology used in pain
compared with other disorders, our review revealed important

gaps. One was the underrepresentation of different chronic pain
conditions. For example, people with disorders such as chronic
pelvic or visceral pain may wish to track symptoms, activities,
food intake, or stress. Sensor research studies could potentially
support self-management of these conditions and enrich clinical
care with deeper understanding of fluctuations (“flares”). Children
and adolescents were underrepresented, despite the relevance
of questions asked in adult studies to younger people with pain.
There was limited geographical diversity, with few studies from
Asia and none from South America or Africa. Our search limit to
articles in English may have partially contributed to this, although
differences in culture, digital ubiquity, and national health priorities
are likely also relevant factors. Diversity in study populations offers
better understanding of pain experience and healthcare needs,
but substantial differences in practicality of healthcare solutions
(technological or otherwise) exist between rich, industrialized
regions and lower resource regions.

Despite the recency of many studies, open science practices,
including publishing protocols and data sharing, were rarely
described. Given the effort and expense of collecting these data,
data sharing is important.68 Nor were issues of data storage,
security, and privacy of identifiable data much discussed. We
have not addressed here technological monitoring of individuals’
behavior, even of their physiology, with or without consent, as
instituted for benign reasons to detect lack of motion in homes of
elderly people living alone.

4.2. Ways forward

Ground truth, information independent of the sensor/s that
enables interpretation of sensor data, often relies on self-reports
that are inevitably subject to various sources of error and
inaccuracy.28 Few studies addressed this problem or issues of
clinical relevance and importance of different scales of de-
scription, such as steps or day vs lumbar muscle activity to
quantify function. Self-reported physical functioning, muscle
activation, and step count are complementary representations
of functional ability rather than interchangeable.14,17

Good practice encourages the involvement of multiple stake-
holders, particularly thosewith relevant experience. Contributions
fromend users were rare, and only 7 of the 60 studies shared their
findings with participants. Discussion of our findings with experts
by experience raised novel issues, such as feedback from
sensors boostingmotivation for challenging activities and learning
new ways to control pain. Although rarely addressed in pain self-
management, variability in pain could, in principle, inform
decisions about balance and timing of activity and rest. People
with chronic pain also reminded us that medication, including
side effects, can enable or undermine activities, and identified
a far wider range of activity goals than in studies.79 People with
chronic pain involved in codesign of sensing technology and
related apps can make outputs meaningful for their self-
management; in other medical conditions, users have even
hacked sensors to fit their needs.69 Better understanding of social
demands, barriers, and opportunities for sensing technology
needs user involvement.25 Few studies in this review addressed
social interaction; the 3 exceptions74,95,96 explored novel aspects
of the impact of chronic pain on social activity, providing a basis
for further studies.

5. Conclusion

These lessons, and some uses of sensors in the mental health
field, offer potential tools to the study of pain. Considering the
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profound influence of psychological and social factors in chronic
pain, future studies may focus on leveraging current technology
to gain a more comprehensive understanding of chronic pain in
context. Understanding context is essential for meaningful
interpretation of sensor data and can be supported (for instance)
by explicit definitions of metadata. It is crucial, however, that
public participants are involved in discussing assumptions about
what context is relevant. Ground truth is often unspecified, yet it is
pivotal to guide the interpretation of sensor data in relation to
target behavior or characteristic that is being sensed. Finally,
current advances in machine learning and artificial intelligence,
portable sensing technology, and computing power open the
possibility for future studies to analysemultidimensional and high-
dimensional sensor data to explore some of the complexities of
the chronic pain experience.
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Rodrigues-de-Souza DP, Alburquerque-Sendı́n F. Paravertebral muscle
mechanical properties in patients with axial spondyloarthritis or low back
pain: a case-control study. Diagnostics (Basel) 2021;11:1898.

[4] Alschuler KN, Hoodin F, Murphy SL, Rice J, Geisser ME. Factors
contributing to physical activity in a chronic low back pain clinical sample:
a comprehensive analysis using continuous ambulatory monitoring. PAIN
2011;152:2521–7.

[5] Aung APW. Electroencephalography (EEG) brain computer interface
(BCI) for mental states detection. Nanyang Technological University,
2023. doi: 10.32657/10356/166652.

[6] Aung MSH, Kaltwang S, Romera-Paredes B, Martinez B, Singh A, Cella
M, Valstar M, Meng H, Kemp A, ShafizadehM, Elkins AC, KanakamN, de
Rothschild A, Tyler N, Watson PJ, de C Williams AC, Pantic M, Bianchi-
Berthouze N. The automatic detection of chronic pain-related expression:
requirements, challenges and the multimodal EmoPain dataset. IEEE
Trans Affect Comput 2016;7:435–51.

[7] Beebe JA, Kronman C, Mahmud F, Basch M, Hogan M, Li E, Ploski C,
Simons LE. Gait variability and relationships with fear, avoidance, and
pain in adolescents with chronic pain. Phys Ther 2021;101:pzab012.

[8] Birch N, Graham J, Ozolins C, Kumarasinghe K, Almesfer F. Home-based
EEG neurofeedback intervention for the management of chronic pain.
Front Pain Res (Lausanne) 2022;3:855493.

[9] Burch JB, Ginsberg JP,McLain AC, FrancoR, Stokes S, Susko K, Hendry
W, Crowley E, Christ A, Hanna J, Anderson A, Hébert JR, O’Rourke MA.
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