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Abstract

Identification based on higher moments has drawn increasing theoretical atten-
tion and been widely adopted in empirical practice in macroeconometrics in the last
two decades. This article reviews two parallel strands of the literature: identification
strategies based on heteroskedasticity and strategkes based on non-Gaussianity more
generally. I outline the seminal identification results and discuss recent extensions,
parametric and non-parametric implementations, and prominent empirical applica-
tions. I additionally describe key issues for the adoption of such strategies, including
weak identification and interpretability of statistically identified structural shocks. I
further outline key areas of ongoing research.
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1 Introduction

Following Sims (1980), structural vector-autoregressions (SVARs) have become the

workhorse of causal inference in macroeconometrics. To recover dynamic causal effects

from these models, the econometrician must identify a matrix of contemporaneous

causal effects. Most traditional approaches to doing so are economic in nature. In par-

ticular, they either impose economically-motivated restrictions on these contemporane-

ous impacts (e.g., short-run restrictions, Sims (1980); long-run restrictions, Blanchard

and Quah (1989); sign restrictions, Uhlig (2005)), or supply external economic informa-

tion to help pin down a unique set of structural parameters (e.g., external instruments,

Mertens and Ravn (2013)). A separate strand of the literature that has gained pop-

ularity in recent years employs statistical identification, in particular exploiting the

information from higher moments. It is well-known that the second moments of VAR

innovations – the reduced form covariance matrix – contains inadequate information to

uniquely decompose the innovations into structural shocks and their contemporaneous

impacts. However, moments beyond the covariance can contain sufficient information

to achieve identification under certain conditions. This insight dates to as early as

Wright (1928).

Two distinct, although closely connected, threads of this literature have developed.

The first is based on heteroskedasticity, beginning with Sentana and Fiorentini (2001).

If the variances of the structural shocks change through time, then there is not just

a single reduced form covariance matrix to exploit. Thus, an SVAR model may no

longer be underidentified using the expanded set of second moments. Over the past

two decades, this idea has been applied, extended, and generalised in multiple direc-

tions, most popularly to a small number of discrete variance regimes (Rigobon (2003)),

but also to smooth transition models (Lütkepohl and Netšunajev (2017a)) and para-

metric processes (Sentana and Fiorentini (2001); Lanne et al. (2010)). More recently,

Lewis (2021) synthesised previous approaches in a non-parametric identification argu-

ment that accommodates all previously proposed processes and indeed essentially ar-

bitrary persistent variance processes, including those with a state-space representation.

The second strand of the literature is based on the information offered by higher

moments more generally, and is often referred to by the shorthand of identification

via non-Gaussianity. Since Gaussian distributions are fully characterised by their first

two moments, any identification scheme successfully exploiting higher moments must

leverage some deviation of the structural shocks’ distribution from Gaussianity. Due

to the Darmois-Skitovich Theorem (e.g., Darmois (1953); Skitovich (1953)), if at least

n − 1 of the structural shocks exhibit non-Gaussianity and the structural shocks are
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mutually independent, then the decomposition of innovations into structural shocks

is unique (e.g., Comon (1994)). This well-known result has been exploited in sev-

eral different ways. These include non-parametric estimators based on independent

component analysis (ICA) algorithms (Hyvärinen et al. (2010)), parametric maximum

likelihood estimators (Lanne et al. (2017)), pseudo-maximum likelihood estimators

(Gouriéroux et al. (2017)), and moment-based estimators (Guay (2021); Lanne and

Luoto (2021); Keweloh (2021)). Of course, heteroskedasticity of the structural shocks

in general implies non-Gaussianity; for example, shocks coming randomly from two

different variance regimes are unconditionally non-Gaussian. Thus, the two strands of

the literature are intrinsically connected.

Statistical identification approaches are attractive because they avoid making po-

tentially controversial economic assumptions about the underlying structural param-

eters. Indeed, the structural parameters are typically the objects of interest to the

econometrician, so imposing assumptions on them may be unappealing. Statistical

identification, which can remain largely agnostic to these parameters is thus attractive

when the econometrician is interested in testing hypotheses about structural parame-

ters.

However, these identification approaches do make assumptions of their own – on the

statistical properties of the data. While the presence of heteroskedasticity in macroeco-

nomic or financial data may be uncontroversial, to avoid weak identification (and thus

for standard inference techniques to be reliable) the departures from homoskedasticity

may need to be substantial in typical applications; the mere existence of heteroskedas-

ticity is not enough in finite samples. If adequate departures from homoskedasticity or

Gaussianity are not present, such models will only be weakly identified, as recognized

by Magnusson and Mavroeidis (2014) and Nakamura and Steinsson (2018) and recently

studied by Lewis (2022), Montiel Olea et al. (2022), and Lee et al. (2022), for example.

While it is in general hard to test identification conditions related to higher moments,

there has been recent progress in this direction (e.g., Lewis (2022), Lütkepohl et al.

(2020), Guay (2021)). Another key assumption, at least in the non-Gaussian family

of approaches, is that of mutual independence of the structural shocks. Mutual inde-

pendence is much stronger than the usual assumption that the structural shocks are

mutually and serially uncorrelated, since it rules out that their variances follow a com-

mon or factor process, for instance – a condition that seems tenuous in light of episodes

like the Great Moderation. Several recent papers have aimed to relax the independence

assumption to varying degrees, (e.g., Guay (2021); Lanne and Luoto (2021); Mesters

and Zwiernik (2022)). A final challenge of statistical identification is labeling. Based
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on the statistical information contained in higher moments alone, models are only ever

identified up to sign/scale and column permutations, or “locally”. There is no way to

place an interpretable “label” on a structural shock, or a column of impact coefficients.

Some papers have sought to provide a labeling approach based on a purely statistical

preference over column order which guarantees global uniqueness, but no economic

interpretation (e.g., Lanne et al. (2017)). More typically though, authors resort to

economic information – meaning that these identification approaches are not in fact

completely devoid of economic assumptions.

This review develops the identification strategies above in detail and outlines on-

going areas of research; the focus is macroeconometric applications, and SVARs in

particular. Section 2 reviews the SVAR setting. Section 3 discusses identification

approaches based on heteroskedasticity. Section 4 presents approaches based on non-

Gaussianity. Section 5 describes the issues posed by weak identification as well as

methods for robust inference and detection. Section 6 collects key open questions in

the literature and active research areas. Section 7 concludes by identifying several

appealing avenues for ongoing work.

2 Setting

Consider an n× 1 vector of observed variables, Yt, assumed mean zero for simplicity.1

A standard SVAR has the form

Yt = A1Yt−1 +A2Yt−2 + . . .+ApYt−p + ut, ut = Bϵt, (1)

or, more compactly,

A(L)Yt = Bϵt. (2)

ϵt are mean-zero mutually orthogonal and serially uncorrelated structural shocks, or

E [ϵt] = 0, E [ϵitϵjs] = 0,∀i ̸= j, s ̸= t, E
[
ϵtϵ

′
t

]
= Λ, (3)

where Λ is diagonal. Crucially, B is the n×n matrix of contemporaneous causal effects,

assumed to be invertible.2 The coefficients of the lag polynomial, A(L), are consistently

estimable via OLS. The SVAR identification problem pertains to B. In particular, the

1For a more general treatment of SVARs, see Kilian and Lütkepohl (2017).
2Note that the invertibility assumption is not innocuous, and is studied by a growing literature, see

Fernández-Villaverde et al. (2007) for a discussion of such issues. Gouriéroux et al. (2019) consider the
interaction of non-Gaussianity and non-invertibility.
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covariance of the reduced form innovations, ut,

Σ = E
[
utu

′
t

]
, (4)

provides only n (n+ 1) /2 unique equations, but there are n2 unknown parameters to

be identified in the n × n matrix B and the n-entry diagonal covariance of ϵt, even

after a suitable scale normalisation, giving n restrictions, is imposed (via either a unit

diagonal for B or identity covariance for ϵt). Indeed, the impact coefficients of B

are identified only up to orthogonal rotations. To see this, impose the unit variance

normalisation, so Λ = In. Let Q ∈ On, where On is the space of all n×n orthonormal

matrices. Then

Σ = BInB
′ = BB′ = (BQ)Q′InQ

(
Q′B′) = B∗B∗′, (5)

where B∗ = BQ. In other words, B and B∗ are observationally equivalent up to second

moments of ut without further restrictions.

As discussed in the introduction, there are then two options to identify B uniquely.

Restrictions must either be imposed on B, to reduce the number of free parameters

from n2 towards the n (n+ 1) /2 equations available in Σ (or in the case of sign re-

strictions, reduce the space of permissible rotations from On to some subset of On), or

additional information must be furnished – either through external variables or further

moments of ut. This review focuses on the final option, exploiting higher moments of

the data. Two notions of identification are considered: local identification means that

there is some neighbourhood around B in which no other parameters are observation-

ally equivalent, while global identification means there exist no other observationally

equivalent parameters. In what follows, higher moments alone will only ever identify

B up to scale and column permutations – so are at most locally identifying without

economic or other restrictions.

3 Heteroskedasticity

The intuition for how identification via heteroskedasticity can solve the SVAR identi-

fication problem is straightforward. Observational equivalence is based on the single

set of equations – Σ – available under homoskedasticity. However, if there are multiple

values for the variances of the structural shocks through time, the number of available

equations scales up linearly. The key assumption permitting identification is that B

remains constant, even as the variances change. Then, the number of new free pa-
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rameters added for each variance regime is only n, fewer than than the n (n+ 1) /2

equations added.

Sentana and Fiorentini (2001) provide the first formal result exploiting heteroskedas-

ticity directly for identification.3 Let Λt denote the diagonal covariance matrix of the

structural shocks at time t, which may follow an arbitrary stochastic process. Then,

their Proposition 3 shows that if the paths of the n diagonal elements, λt, through

time have full rank, then B is uniquely determined up to permutations (and scale/sign

normalisation). The condition allows at most one shock to be homoskedastic. Indeed,

the requirement of n − 1 dimensions of linearly independent time-varying volatility

will be shared by all schemes exploiting heteroskedasticity below, and mirrored by the

requirement of at least n − 1 non-Gaussian shocks in the next section. In general,

this result provides substantial overidentifcation, as is discussed below. However, a

major limitation of this result for practical use is that identification is based on the

time path of Λt, and thus the time path of Σt, denoting the time-specific covariance of

the reduced form innovations. These time-specific reduced form covariances are not,

in general, consistently estimable without further parametric assumptions on the vari-

ance process for the structural shocks: as T increases, the sample size informative for

time t without any further restrictions stays fixed. Sentana and Fiorentini’s (2001)

solution is to impose a GARCH functional form for the structural variance process,

under which the variances are deterministic functions of past data and consistently es-

timable parameters. A relatively small empirical literature has employed the Sentana

and Fiorentini (2001) approach directly, based on estimating a GARCH process for the

structural shocks by (pseudo-)maximum likelihood, and thus estimating the structural

parameters of interest, see for example King et al. (1994), Normandin and Phaneuf

(2004), Bouakez and Normandin (2010), and Lütkepohl and Milunovich (2016).

3.1 Variance regimes

Rigobon (2003) makes perhaps the best-known, and most widely applied, contribu-

tion to this literature. In a special case of Sentana and Fiorentini (2001), he argues

that if there are two discrete regimes for the structural variances, then B is uniquely

determined provided that Λ1 and Λ2 are not scalar multiples of each other. Simple

equation-counting shows why: 2 × n((n− 1) /2 = n2 + n, which is the number of

structural parameters in B and two diagonal variance matrices, after n elements are

normalised for scale. If there are more than two regimes, or values for the structural

variances, then the model is overidentified. His Proposition 1 gives the now well-known

3However, the result appears earlier in an unpublished working paper, Sentana (1992).
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identification condition in the two-regime case: identification holds as long as the vari-

ances do not change proportionally across regimes,

Λ2 ̸= αΛ1, (6)

for any scalar α. There are extensions allowing for additional “common shocks” (re-

quiring further regimes), see his Proposition 2. Crucially, it is not required that the

econometrician knows the precise dates of the two variance regimes, or indeed that the

variances follow a discrete process at all. Provided that the econometrician specifies

the regimes such that the associated covariance estimators are consistent for distinct

(non-proportional) variance regimes, the identification condition is met, see his Propo-

sition 3. However, the better specified, and thus more distinct the regimes are, the

stronger identification is likely to be. Additional regimes that provide overidentifying

information allow the econometrician to test the modeling assumptions via the overi-

dentifying restrictions, for example the assumption that B stays fixed over time.

In the special case of two regimes, where the model is just identified, a convenient

closed form solution exists. As noted by Lanne et al. (2010), for example, B is identified

as the left eigenvectors of the matrix Σ2Σ
−1
1 :

Σ2Σ
−1
1 = BΛ2Λ

−1
1 B−1, (7)

where Λ2Λ
−1
1 is diagonal, containing the eigenvalues, and thus B contains the eigen-

vectors. These eigenvectors are unique (up to normalisation and order) provided that

there are no repeated eigenvalues – no variances change proportionally across regimes.

This result also clarifies how partial identification can occur: if there are repeated

eigenvalues, the columns of B (eigenvectors) corresponding to the non-repeated entries

are still identified, but only the column space associated with repeated values is iden-

tified. The case of partial identification has received little formal attention, although

Bacchiocchi and Kitagawa (2023) derive identified sets resulting from partially identi-

fying heteroskedasticity and sign or zero restrictions. In general, estimation of these

regime-based models proceeds via GMM. Moments take the form

ϕ (B,Λ1, . . . ,ΛN , ηt) =


1[t ∈ R1] (E [ηtη

′
t]−BΛ1B

′)
...

1[t ∈ RN ] (E [ηtη
′
t]−BΛNB′)

 , (8)

where 1[t ∈ Rj ] is an indicator for whether observation t belongs to the jth regime.

However, maximum likelihood approaches are also available, and Brunnermeier et al.
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(2021), Bacchiocchi and Kitagawa (2023), and Bacchiocchi et al. (2023) adopt fully

Bayesian frameworks, for example.

Under additional assumptions, such that the variance of only one shock changes

through time, the other(s) remaining homoskedastic, Rigobon and Sack (2004) show

that an instrumental variables type estimator is available for a typical parameter of

interest. In particular, let Bij be the coefficient of interest, and assume that it measures

the effect of the shock whose variance does change, say j, on some variable, say i. In

this case, under the unit diagonal normalisation,

Σ2,ij − Σ1,ij

Σ2,jj − Σ1,jj
=

Bijλ2j +Bjiλi −Bijλ1j −Bjiλi

λ2j +B2
jiλi − λ1j −B2

jiλi
= Bij

λ2j − λ1j

λ2j − λ1j
= Bij . (9)

The left-hand side is equivalent to

E [uitZt]

E [ujtZt]
, (10)

where the instrument Zt is given by

Zt =
T

T2
1 [t ∈ R2]ujt −

T

T1
1 [t ∈ R1]ujt (11)

and Tr denotes the number of observations in regime r.

For the estimators described above, provided that identification is strong – that

is, (6) is satisfied, inference can proceed using the standard asymptotic results associ-

ated with each estimation strategy. However, the final formulation of the identification

strategy (under stronger assumptions), (10), presents an analogy to IV estimation,

which should make clear that weak identification is possible – in this case when the

variance of shock j changes little between the two regimes; see Section 5 for further

discussion.

One key distinction between the Sentana and Fiorentini (2001) and Rigobon (2003)

results is the type of heteroskedasticity accommodated. The former in principle applies

to both unconditional and conditional heteroskedasticity, although the paper focuses

on conditional heteroskedasticity. The latter exploits unconditional heteroskedasticity,

and it remains to determine the variance regimes. In some cases, external information

proves helpful, with perhaps the most popular example being, in daily financial data,

to use dates corresponding to announcements, especially monetary policy announce-

ments, as a “high variance” regime, and dates far away from such announcements

as a ”control” regime (see, e.g., Rigobon and Sack (2004), Nakamura and Steinsson
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(2018)). Applying the same logic to continuous time periods like the Great Modera-

tion, for instance, is more problematic, since doing so may mask considerable variation

(periods of larger shocks within an otherwise low-variance interval). Rigobon (2003)

uses narrative information on the dates of tranquil and crisis periods in Latin Ameri-

can debt markets to define regimes for identification. Alternatively, Rigobon and Sack

(2003) propose to estimate the regime dates based on realised volatility, in particular

comparing rolling averages of squared reduced form residuals to the average levels of

the squared residuals to determine high- and low-variance periods. In population, the

precise regime breaks do not matter so much, but in finite samples, estimation error

can lead to more muted variance changes, and thus weak identification. One further

drawback of estimating regimes, however, that has not been explored in the literature

is that the realisations of squared residuals are driven by realised values of the struc-

tural shocks. Certain combinations of values of the shocks will be more conducive to

“high” or “low” realisations of squared reduced form residuals, depending on B. Thus,

for regimes determined based on finite-length windows, it need not be the case that the

covariance matrix of the structural shocks is diagonal conditional on estimated regime

membership, possibly introducing bias.

When regimes are unknown, a perhaps more natural option is to estimate them

parametrically, using a Markov switching model. This is precisely the innovation of

Lanne et al. (2010). In a straightforward extension, they propose a maximum likelihood

estimator exploiting the Rigobon (2003) identification result; the identification condi-

tions remain unchanged. Herwartz and Lütkepohl (2014) combine a Markov switching

model with more conventional short- and long-run restrictions. Lütkepohl and Woźniak

(2020) develop a Bayesian implementation of this approach and use it to test overiden-

tifying restrictions on B.

Another important extension of the regime based model is the so-called “smooth

transition” approach, in which the covariances are assumed to move as a convex com-

bination between two matrices in a continuous manner. Lütkepohl and Netšunajev

(2017b) propose such a model. Concretely, the reduced form covariance, Ωt, follows

the law of motion

Ωt = (1− F (st)) Σ1 + F (st)Σ2, (12)

where F (·) is a parametric function. In particular, they propose

F (γ, b, st) = (1 + exp [− exp(γ)(st − b))])−1 , (13)
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where γ is a slope parameter determining the speed of transition and b is a location

parameter. st is the “transition variable”, which governs the state at time t. It can ei-

ther be a random variable (lagged inflation in Lütkepohl and Netšunajev (2017b)), or a

deterministic variable, like t. If the former, it must be exogenous in order for standard

inference results to hold. As γ → ∞, the model approaches a threshold model, where

Ωt = Σ1 for st < b and Ωt = Σ2 for st > b. As γ → 0, the model becomes unidentified

(variances are constant), so weak identification is a concern for small values of γ. Con-

ditional on a set of parameters in the transition equation, (γ, b), identification follows

by the Rigobon (2003) argument, applied to Σ1,Σ2. In practice, the authors note that

(γ, b) must be identified and that the choice of st may be important. For example, if st

does not evolve with the underlying structural variances, then identification will likely

be weak or non-existent. The authors propose to estimate the model via Gaussian

maximum likelihood across a grid of parameters for (γ, b) using a two step procedure,

alternating between estimating the reduced form and structural parameters. Then, the

final log-likelihoods can be compared across the grid for (γ, b).

3.2 Unconditional moments

All of the preceding papers adopt different forms for the variance process, but rely

on the same key insight – multiple values for the structural variances offer additional

covariance matrices from which B may be identified. These approaches can all be

thought of as relying on the path of the structural variances for identification. A much

smaller literature argues for identification based on the parameters governing the evo-

lution of the variances through time. Milunovich and Yang (2013) revisit identification

based on ARCH-type functional forms. They formulate the mapping between param-

eters of the reduced form GARCH process for the residuals and those of the structural

GARCH process for the shocks. They assume that structural ARCH coefficient matrix

is diagonal. Based on the Jacobian of these equations, they show that B and the struc-

tural GARCH parameters are jointly locally identified from the reduced form GARCH

parameters provided that there is at most one zero on the diagonal of the structural

ARCH coefficient matrix. This condition amounts to a requirement that at most one

shock is homoskedastic, mirroring the arguments above.

Lewis (2021) takes a different approach to argue that B is non-parametrically iden-

tified from the unconditional autocovariances of the squares of the reduced form residu-

als. Under the slightly stronger assumption that the shocks are a martingale difference

sequence with respect to past shocks and current and past volatilities, and finite fourth

moments, the following equations hold
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cov(vec(utu
′
t), vec(usu

′
s)

′) = (B ⊗B)Gcov(λt, vec(ϵt−sϵ
′
t−s)

′)(B ⊗B)′, s > 0 (14)

E
[
utu

′
t

]
= BE[Λt]B

′, (15)

where G is a selection matrix of zeros and ones. The main result is that this system of

equations has a unique solution for B, cov(λt, vec(ϵt−sϵ
′
t−s)

′), E[Λt], up to normalisa-

tion and column order, provided that, for some lag s,
[
cov

(
λt, vec(ϵt−sϵ

′
t−s)

′) E[λt]
]

has rank of at least two and no proportional rows. If there are no ARCH effects,

cov(λt, vec(ϵt−sϵ
′
t−s)

′) = cov(λt, λ
′
t−s)G

′, the autocovariance matrix of λt at lag s.

Applied to cov(λt, vec(ϵt−sϵ
′
t−s)

′), the rank condition essentially means that the au-

tocovariance structures of the shock volatilities are not proportional. This will be

satisfied if the volatility processes have persistence coming from a source other than a

lower-dimensional factor structure, for example. Augmented with E[λt], the condition

states that even if the autocovariance structures are proportional, identification will

still hold so long as the constants of proportionality are not equal to the ratios between

the mean variances. Notably, this condition can be interpreted as allowing at most 1

homoskedastic shock, much like all of the previous schemes. If the identification condi-

tions for any of the preceding schemes hold, then the rank condition above is satisfied.

In this sense, the Lewis (2021) argument nests all previous identification schemes based

on heteroskedasticity, without relying on parametric features for identification or con-

sistent estimability of identifying moments.

The intuition behind the argument is that if the shocks are serially uncorrelated

(and in fact are martingale difference sequences), then the only persistence in the

squared residuals is that of the variance process (and/or ARCH effects). Then B, or

rather (B ⊗B) contains the coefficients relating the autocovariance of the squared re-

duced form residuals to the autocovariance of the squared structural shocks.4

There are several important features of the Lewis (2021) argument. First, it is non-

parametric, so can be implemented without assuming any form for the identifying het-

eroskedasticity, for instance simply estimating the equations (14) by GMM. However,

given standard macroeconomic sample sizes, it will often be challenging to estimate the

required higher moments precisely, so in practice it may be more appealing to view it

as a general-purpose argument that shows that a very wide range of parametric models

will identify the structural parameters of interest. Provided that a parametric model

4The structure of the argument, particularly in a simplified motivating example presented in the paper, is
not dissimilar to the seminal argument of Blundell et al. (2008) identifying coefficients of an income process
in panel data.
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satisfies the rank condition, then B will be identified from the associated likelihood.

Finally, distinct from any previous arguments based on heteroskedasticity, it permits

identification based on volatility models including state variables. For example, the

autoregressive log stochastic volatility model is very popular in empirical work (e.g.,

Cogley and Sargent (2005); Primiceri (2005)), but previously was not compatible with

any available identification arguments, since all require consistent estimation of the

path of (reduced form) volatilities; see for example the implementation in Bertsche

and Braun (2022), developed concurrently. Since the Lewis (2021) argument instead

requires consistent estimation of unconditional moments of the volatilities, it is com-

patible with state-space volatility models.

Although this review focuses on identification as opposed to estimation and infer-

ence, one common estimation issue across these identification scheme warrants further

discussion. Most commonly, SVARs are estimated in a two-step process: in the first

step, the reduced form VAR is estimated via OLS, and the implied estimated residu-

als are then treated as data to estimate the structural parameters in the second step.

For estimation purposes, these two steps are often treated as entirely separable (al-

though inference may adjust for estimation error in ût). However, identification via

heteroskedasticity motivates GLS-type estimators for the entire model, since they may

offer efficiency gains if heteroskedasticity is present. In practice, maximum likelihood

estimation alternates between estimating the reduced form parameters and structural

parameters, computing time-varying variances and thus weights, then updating, until

convergence, as described for Lütkepohl and Netšunajev (2017a) for example above.

Moreover, without additional assumptions, inference on the structural parameters (and

in particular IRFs) is complicated. Indeed, the estimation error in ût cannot be ig-

nored for the purpose of inference on B̂ and IRFs in general. However, if the shocks,

ϵt, are assumed to follow a symmetric distribution, it can be shown that the estimators

of the reduced form covariances and those of the reduced form VAR parameters are

asymptotically independent, which means that estimation error in ût is asymptotically

negligible in estimating B̂. For further discussion, see Brüggemann et al. (2016), and in

particular their Theorem 2.1, and the summary in Lewis (2021) (in particular footnotes

15 and 20). For a detailed discussion of estimation for many of the schemes described

above, see Kilian and Lütkepohl (2017).

4 Non-Gaussianity

While the previous section considered exploiting a particular type of higher moment for

identification, identification based on non-Gaussianity (and some form of Independence
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assumption) exploits moments beyond the second generically. Some approaches take

a stand on what types of deviation from Gaussianity are likely to be informative in

macroeconomic data, while others are more flexible. Note that in general, heteroskedas-

ticity generates non-Gaussianity in the structural shocks, even if the underlying (stan-

dardised) disturbances are themselves Gaussian, so identification via heteroskedasticity

can be thought of as a special case of identification based on non-Gaussianity.

This approach can be motivated from the idea that structural shocks should be

independent (or at least more than uncorrelated), as discussed in Keweloh (2024). For

example, the shocks ϵ1t ∼ N (0, 1) and ϵ2t = ϵ21t − 1 are uncorrelated, but exhibit de-

pendence that is inconsistent with how must macroeconomists think about structural

shocks. Independence assumptions rule out these types of dependence. Given such an

assumption, non-Gaussianity can identify the shocks. Consider the moment E
[
ϵ21tϵ2t

]
,

a coskewness condition measuring the dependence of the two shocks. If E
[
ϵ21tϵ2t

]
̸= 0,

then the first shock’s size is informative for the sign of the second shock, and inde-

pendence is violated; the key is to find an orthogonal rotation of the structural shocks

such that independence holds. If the shocks are Gaussian, the moment is mechanically

zero, but if they are non-Gaussian, moments like this are informative for B.

4.1 The main result

The idea that non-Gaussianity in general suffices to identify B follows from the Dar-

mois (1953)-Skitovich (1953) Theorem. This result states that if the elements of

ζ = (ζ1, . . . , ζn)
′ are independent random variables and µ′ζ and β′ζ are independent

(for non-zero µ, β), then all ζi are Gaussian. As a consequence, Comon (1994) (Theo-

rem 11 and Corollary 13) shows that a decomposition of the form ut = Bϵt is unique up

to column order and scale provided at most 1 component of ϵt is Gaussian and the com-

ponents of ϵt are independent. The result is based on a “contrast function”, Ψ(·) that
measures the (negative) deviation of a random vector from independence; intuitively,

any candidate shocks cannot cannot be any “more independent” than the original

shocks, ϵt. By Comon’s Definition 5, for some random vector et, Ψ(fet) = Ψ(fϵt),

where fet denotes the density of et, if and only if et is a scaled permutation of ϵt. Fur-

ther, if ϵt are independent, then Ψ(fMϵt) ≤ Ψ(fϵt), with M invertible, so maximising

the contrast function will return (a scaled permutation of) ϵt. It remains to propose

candidate functions with these properties. Earlier results on identifiability under non-

Gaussianity can be found in Geary (1941) and Reiersøl (1950). A notable feature of all

of these results is the independence assumption on ϵt, which is notably stronger than

the mutually orthogonal and serial uncorrelatedness assumption typically employed

elsewhere in the SVAR literature. We will return to this below.
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4.2 Independent Components Analysis

The Comon (1994) result is central to the “Independent Components Analysis” (ICA)

literature, which originated the idea of identification via non-Gaussianity in modern

macroeconometrics. ICA is focused on deconvolutions of the the form ut = Bϵt, where

ϵt are independent, and is a key technique in the signal processing and neural net-

works literatures. While there are variants of ICA, the basic idea is, for an intial set of

candidate standardised shocks, ẽt, say, (for example, those arising from a Cholesky fac-

torisation) to find the rotation Q for which the shocks et = ẽtQ are as independent as

possible – for which some contrast function is maximised. For example, Comon (1994)

proposes to use a feasible approximation to the negative of the Kullback-Leibler diver-

gence of the joint density of et from the density under the independence of e1t, . . . , ent

(“mutual information”). This approximation can be expressed in terms of the cumu-

lants of ut and Q.

This subsection focuses on non-parametric ICA. This ICA literature is vast, and a

comprehensive discussion is outside of the scope of this review. For a review of this

literature, see Hyvärinen (2013), for example, or the recent literature review in Mesters

and Zwiernik (2022). We focus on contributions that have directly impacted macroe-

conometrics. One such variant is the FastICA algorithm (Hyvarinen (1999)), which is

in wide use, and available in many statistical software packages (many others exist,

see for example the JADE algorithm of Cardoso and Souloumiac (1993)). FastICA ex-

ploits results showing that the negentropy (which measures the distance between some

distribution and the normal distribution) can be better approximated by the maximum

entropy principle than by cumulants (e.g., Hyvärinen (1997)) and further that min-

imising the mutual information is roughly equivalent to maximising the negentropy,

or the degree of non-Gaussianity, of each shock. In practice, the algorithm uses an

approximation to the negentropy of eit = c′iut, JH(·)

JH(ci) =
(
E
[
H(c′iut)

]
− E [H(z)]

)2
, (16)

for some vector ci and non-quadratic function H, where z is standard normal. For

symmetric variables, this is a generalisation of the cumulant-based approximation in

Comon (1994), where H(eit) = e4it. Then the contrast function is
∑n

i=1 JH(ci), which is

maximized over C = B−1. Hyvarinen (1999) proposes a number of different choices for

H, implemented in the algorithm, including 1/k1 log cosh(k1u), −1/k2 exp
(
−k2u

2/2
)
,

and 1/4 u4, motivated by efficiency and robustness considerations. The FastICA algo-
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rithm then proceeds to maximise the negentropy given H(·) using a computationally

efficient fixed point algorithm. While most of the ICA literature assumes i.i.d. shocks,

a concern that will be discussed in detail below, some recent algorithms have been

extended to accommodate heteroskedasticity, for example, gJADE, Matilainen et al.

(2015).

Results on the statistical properties of estimators are relatively rare in the ICA

literature. In particular, consistency results for the estimators resulting from many

algorithms are hard to find, and some are in fact inconsistent, see the discussion in

Gouriéroux et al. (2017). Consistency and asymptotic normality of the FastICA algo-

rithm have been established by Wei (2015), although expressions for the asymptotic

variance (assuming consistency) date to Shimizu et al. (2006), for example. Bonhomme

and Robin (2009) provide earlier consistency and asymptotic normality results for a

modification of the JADE algorithm.

Hyvärinen et al. (2010) is likely the first paper to exploit modern non-Gaussianity

results to identify an SVAR, using financial data. They consider a SVAR of four

global stock indices and estimate the reduced form before applying the FastICA-based

LiNGAM algorithm of Shimizu et al. (2006). They impose a sparsity penalty in the

estimation, and find that more than half of the impact coefficients are zero, and that

B̂ can be permuted to a lower-triangular matrix, with strong spillovers from the Dow

Jones to both Nikkei and Hang Seng indices. Moneta et al. (2013) introduce the same

methodology, but in an economics publication, with applications to both firm growth

and the effects of monetary policy.

4.3 Likelihood approaches

The next generation of results identifying SVARs using non-Gaussianity rely on like-

lihood approaches instead of non-parametric ICA. Lanne et al. (2017) assume that

the shocks are sequences of independent and identically distributed and mutually in-

dependent disturbances with variances λi, with at most one shock Gaussian. Their

identification result is based on those above. They propose a maximum likelihood esti-

mator in terms of the density fi,λi
(x, θi) = λ

− 1
2

i fi(x/λ
1
2
i , θi), but in practice assume that

each shock follows a Student-t distribution. Standard asymptotic properties for max-

imum likelihood estimation hold, provided the choice of densities is correct, a rather

heroic assumption given that there are infinitely many ways to model non-Gaussianity,

and presenting a challenge to empirical users. They propose a computationally simpler

three-step estimator that is efficient if the shocks follow symmetric distributions. In an

extension, they are able to relax the assumption of temporal independence to no serial
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correlation, which admits time-conditional heteroskedasticity for the shocks, provided

that the volatility processes remain independent. They also provide an approach for re-

fining local identification to global identification, which is discussed in detail in Section

6.4. As an empirical application they study the relationship between the macroecon-

omy and financial conditions, and are able to marginally reject a conventional recursive

structure in their SVAR.

Contemporaneously, Gouriéroux et al. (2017) instead consider pseudo-maximum

likelihood (PML) estimation. They assume that the shocks ϵt are independent, with

at most one Gaussian. Importantly, they establish consistency for the PML estimator

even when the likelihood is misspecified, provided the misspecified model is identified.

Additional results offer testable implications of Gaussianity of 2 or more shocks for the

observed data, Yt. They further provide expressions for the asymptotic variance. In an

SVAR-X application in real activity, inflation, and the Fed Funds rate, with oil prices

exogenous, they are able to reject two recursive schemes, depending on the chosen real

activity variable. Further PML results can be found in HKO (2001).

More recently, Jarociński (2021) proposes to estimate the effects of four different

dimensions of monetary policy based on non-Gaussianity using maximum likelihood

estimators. His baseline approach uses the Student-t distribution, as in Lanne et al.

(2017), but he also proposes an alternative estimator allowing for dependence. In par-

ticular, he allows for endogenously determined dependence in the tails of the shock

distributions by designing a new partially dependent multivariate t-distribution that

nests both independent and multivariate t-distributions as extreme cases. In the data,

the level of dependence is found to be small, leading to minimal changes in results, but

this contribution may be of interest in many applications.

Elsewhere, Chen and Bickel (2006) avoid the choice of likelihood by proposing a

semi-parametric estimator based on the efficient score function, which they show is

asymptotically efficient. Hafner et al. (2023) propose to maximise a kernel estimate

of the likelihood in another non-parametric approach. Fiorentini and Sentana (2023)

propose mixture of normals PML estimators. They prove that while for other likelihood

approaches estimates of impact coefficients (and autoregressive parameters) will in

general be consistent under misspecification, they are inconsistent for VAR intercepts

and shock moments. Their proposed estimators provide consistent estimates of all

parameters. Maxand (2020) considers maximum likelihood estimation of models with

possibly more than one Gaussian shock, and provides tests for the number of such

shocks.
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Bayesian implementations of identification based on non-Gaussianity can be found

in Lanne and Luoto (2020) (t-distributed shocks to compute the probability of sign

restrictions holding), Anttonen et al. (2023) (generalised skewed t-distributed shocks,

with MCMC methods proposed), Braun (2021) (Dirichlet process mixture model),

Keweloh et al. (2023b) (skewed t-distributed shocks and potentially invalid proxy vari-

ables), and Lanne et al. (2023b) (t-distributed errors and a GARCH process for the

shock volatilities).

4.4 Moment-based approaches

More recently, the literature has turned to moment-based estimators exploiting non-

Gaussian-ity. Typically, these results relax the independence assumption and instead

require uncorrelated shocks that satisfy a number of zero restrictions on co-skewness

and/or co-kurtosis. These co-skewness and co-kurtosis conditions are implied by the

stronger (and previously maintained) independence assumption. Unsurprisingly, this

exercise (like similar efforts to allow dependence in the likelihoods above) presents a

trade-off, since additional restrictions implied by independence can improve identifi-

cation when valid. By virtue of selecting specific moments, all such approaches rely

on specific deviations from Gaussianity, but in practice, the identification condition is

heuristically thought of as “at least n− 1 non-Gaussian shocks”.

A first set of identification results focuses on using fourth moments, and in par-

ticular excess co-kurtosis restrictions. These date to Bonhomme and Robin (2009),

who show that B is identified from the covariance and co-kurtosis (e.g., the collection

equations E[uitujtultumt]) of reduced form errors ut, provided the co-kurtosis tensor

of ϵt is diagonal, as implied by independence, and at most one shock has zero excess

kurtosis. Their proof is based on spectral arguments, in a factor model setting, and

identification is global. They establish consistency and asymptotic normality of GMM

estimators, as do the following papers. Guay (2021) considers the same moment con-

ditions as Bonhomme and Robin (2009), but establishes local identification under the

assumption of zero excess co-kurtosis by studying the rank of the Jacobian, which facil-

itates additonal results discussed below. Keweloh (2021) works from slightly different

moments, written instead in terms of the underlying shocks, which, under a mutual

independence assumption and normalisation, have the form
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E[ϵ2it] = 1 (17)

E[ϵitϵjt] = 0, i ̸= j (18)

E[ϵ2itϵ
2
jt] = 1, i ̸= j (19)

E[ϵ3itϵjt] = 0, i ̸= j. (20)

After restricting the set of permissible B matrices to those matching the permuta-

tion/scaling rule in Lanne et al. (2017) and assuming that n− 1 shocks exhibit excess

kurtosis, the covariance and co-kurtosis conditions globally identify B, following an

argument similar to Comon (1994). Note that while each paper may write the assump-

tions and results somewhat differently, the identification conditions are indeed the

same. The only difference is that writing the moments in terms of ut versus ϵt entails

fewer moments but requires the inversion of B, both of which may have finite sample

consequences. Lanne and Luoto (2021) argue that B is identified if E
[
ϵ3itϵjt

]
= 0 for

at least n(n−1)/2 combinations of i ̸= j. This condition appears weaker than those in

the preceding three papers. However, this result does not in fact hold under the stated

assumptions; rather, it requires all co-kurtosis restrictions (symmetric and asymmet-

ric) implied by independence to be satisfied – the same as the previous papers. The

authors rely on these conditions in their proof, which establishes local identification via

the Jacobian of the identifying moments. Keweloh (2021) shows by counterexample

that under the stated conditions, the model is only locally and not globally identified,

and in particular not identified up to sign and permutation. Ultimately, all of the above

studies require exactly the same restrictions on the dependence of the shocks. Lanne

et al. (2023a) subsequently introduce the additional assumption that n−1 shocks have

excess kurtosis of the same sign, under which they achieve global identification using

only n(n− 1)/2 higher moments – all of the symmetric co-kurtosis conditions implied

by independence. However, asymptotic normality additionally requires n(n − 1)/2

asymmetric co-kurtoisis restrictions. They argue that this is potentially far fewer than

the moments required by Keweloh (2021). Nevertheless, they still require all fourth

moments implied by independence to hold, even if they are not exploited for identifi-

cation. They propose a moment selection procedure, although it is unlikely to perform

well in the larger SVARs where it would be most useful.

A second strand of this literature uses third cumulants, or skewness, for identi-

fication, either separately or in conjunction with kurtosis. Again, all restrictions on

co-skewness implied by independence are used for identification. In parallel to their re-

sult using kurtosis, Bonhomme and Robin (2009) show that under the restriction of zero
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co-skewness, i.e. E[ϵ2itϵjt] = 0, i ̸= j, provided at most one shock has zero skewness, B

is identified, following similar spectral arguments. Guay’s (2021) identification argu-

ment also applies to sets of moments including skewness conditions alongside kurtosis

conditions. The identification condition holds when all but one shock exhibits skewness

and/or non-zero excess kurtosis. Moreover, he establishes partial identification results,

such that the parameters corresponding to all skewed and/or non-mesokurtic shocks

are identified regardless of the properties of the remaining shocks. He further shows

that the rank can be decomposed into the sum of the ranks of certain blocks of the Ja-

cobian. Importantly, this decomposition makes the identification conditions testable.

The number of skewed shocks is equal to the rank of the coskewness matrix of the re-

duced form residuals and likewise the number of non-mesokurtic shocks is equal to the

rank of the cokurtosis matrix of the reduced form residuals. He proposes a bootstrap

procedure to implement this test. Keweloh’s (2021) identification argument, based

on Comon (1994), goes through whether skewness conditions, kurtosis conditions, or

both, are used. An advantage of using skewness conditions alone is that they admit

possible coheteroskedasticity in the data, an empirically relevant form of dependence

that violates the diagonal coskewness assumptions discussed above.

As originally noted by Bonhomme and Robin (2009), estimation of the higher mo-

ments required can be challenging without in the absence of parametric restrictions due

to relatively small sample sizes; this is especially true for inference, which requires up

to eighth moments. Guay (2021) uses the identity weighting matrix due to difficulty

estimating the efficient weighting matrix. For improved finite sample performance,

Keweloh (2021) proposes the “fast-GMM” estimator, which uses a diagonal weighting

matrix in which the weight on the covariance moments goes to infinity, so that the

shocks are always whitened. The idea is similar to ICA, with the weighting matrix

replacing the problem of minimising dependencies between the shocks with that of

maximising non-Gaussianity, subject to satisfying the covariance moments. In larger

models there is a significant computational advantage to this change, and he does not

find efficiency loss relative to the efficient estimator in simulations. Moreover, he finds

that the estimators of Lanne and Luoto (2021) and Gouriéroux et al. (2017) do not

effectively exploit information found in skewed shocks, instead relying on excess kur-

tosis, and more generally that information contained in coskewness can be important.

Lanne and Luoto (2021) propose 2-step, iterative, and CUE GMM estimators, as well

as a test for overidentifying restrictions and a moment selection procedure based on

Andrews (1999), although this procedure may struggle in larger SVARs. In simula-

tions, they prefer the two-step procedure, which in general performs slightly worse than

the baseline PML estimator of Gouriéroux et al. (2017), but better than their itera-
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tive estimator. Keweloh (2023) further studies the limitations of GMM estimators in

short samples. In particular, he notes the challenge of precisely estimating the efficient

weighting matrix (which requires up to eighth moments) and also that bias is typically

introduced towards parameters implying shock variances below unity. He proposes to

impose independence assumptions not just for identification, but also in the estimation

of the efficient weighting matrix for the former and a continuously updated scaling

term for the latter. Simulations show reduced bias and improved coverage. Discussed

in more detail below, Keweloh (2024) provides a method to incorporate uncertain eco-

nomic prior information into moment-based estimators exploiting non-Gaussianity.

In a minimum distance setting, Mesters and Zwiernik (2022) are able to relax the

independence assumption in important ways. They show that in general, diagonality

of any higher-order cumulant tensor is sufficient for identification up to sign and per-

mutation, generalising away from previous work focused on third and fourth moments

(e.g., Bonhomme and Robin (2009); Guay (2021); Keweloh (2021)). More importantly,

they show that “reflectionally invariant restrictions”, where the only non-zero cumu-

lant tensor entries are those where each index appears an even number of times, are

similarly sufficient for identification This is the first identification result exploiting non-

Gaussianity and fourth moments that is able to accommodate co-heteroskedasticity in

the errors, an empirically-relevant form of higher-order dependence. However, the

shocks must satisfy an additional genericity condition. Working in a similar direction,

Herwartz and Wang (2023a) combine the non-parametric approach of Hafner et al.

(2023) with standardisation using a kernel estimate of time-varying volatility to iden-

tify B in the presence of co-heteroskedasticity.

5 Weak Identification Based on Higher Moments

It may be tempting to view identification based on higher moments as a free lunch

for recovering causal effects in macroeconometrics. No “economic” assumptions are

required – at least for local identification – and identification obtains provided that of-

ten uncontroversial properties of the data hold. However, the separation of statistical

and economic assumptions is a false dichotomy; assuming that the variances of certain

shocks has changed over time in a particular pattern, that all shocks are mutually

independent, or that shocks have meaningful excess kurtosis has real economic con-

tent. More importantly, the higher moments leveraged by the identification schemes

discussed above are all non-trivial to estimate in realistic macroeconomic sample sizes.

At best, the schemes exploit the difference in second moments, but more generally
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rely on up to the fourth moments of the data, which typically will be very imprecisely

estimated in at most 50 years of quarterly data – 200 observations.

Researchers are now generally familiar with the weak instruments problem, but the

challenges posed by weak instruments apply to any identification scheme. As described

formally by Stock and Wright (2000), when the objective function is relatively flat in

the neighbourhood of the true parameters, standard inference methods will be invalid,

exhibiting large size distortions and poor coverage. This occurs when deviations from

homoskedasticity are small, relative to estimation error so additional values for the vari-

ances offer little information beyond the original n(n− 1)/2 covariance equations (and

deviations B̂ from B are at best weakly rejected by the data in a non-trivial neigh-

bourhood of B). Alternatively, when deviations from Gaussianity are small, higher

moments offer little information beyond those of a Gaussian distribution – where they

are completely redundant with the original covariance restrictions. The possibility that

identification based on heteroskedasticity might only be “weak” – and thus that stan-

dard inference methods like Wald tests might perform poorly – dates back to at least

Magnusson and Mavroeidis (2014), who consider how instability in moments can be

used to sharpen identification in general, and propose identification-robust test statis-

tics (S-statistics) tailored to such settings. They consider the Rigobon (2003) model as

a leading example. More recently, Montiel Olea et al. (2022) argue that weak identi-

fication is likely present in many applications of identification based on higher moments.

Lewis (2022) studies the problem of weak identification via heteroskedasticity di-

rectly, again in the context of the Rigobon (2003) model. Rigobon and Sack (2004)

show that in a bivariate model where only one variance changes that regime-based

identification can be rewritten as an instrumental variables problem. In that setting,

it is unsurprising that weak identification may arise; it does so when the variance that

does change only does so by a small amount. In that case, the pre-test for weak in-

struments of Montiel Olea and Pflueger (2013) applies (with bias-based critical values),

and the usual robust inference methods for IV estimators can be adopted. Lewis (2022)

further characterises weak identification problems in models identified using variance

regimes more generally, which arise when variance changes are close to proportional

across regimes. In this general setting, the size-based Andrews (2018) procedure to

detect weak identification in GMM estimators can be applied. In these models, ro-

bust inference is more complicated due to the projection problem: robust inference

can have prohibitively conservative limiting distributions when the econometrician is

only interested in a subset of the parameters in B. Lewis (2022) provides conditions

under which limiting distributions providing exact size can be derived, which hinge
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on whether the remaining “nuisance” parameters can be uniquely determined from

the data conditional on the null hypothesis. Empirical evidence suggests that weak

identification is present in event studies based on daily financial data, a popular set-

ting in applied practice. There are several limitations to the methods proposed. The

bias-based pre-test is attractive, but only applies in a restricted bivariate model. The

Andrews (2018) test requires the computation of robust confidence sets, which can

be computationally demanding in larger models, and prohibitively conservative when

the conditions provided for improved limiting distributions do not hold. Finally, those

conditions place strong limits on the extent of weak identification, which may be hard

to justify for n > 2.

Lütkepohl et al. (2020) provide a test of the identification condition for the Rigobon

(2003) identification scheme using two regimes. They test whether equality can be re-

jected for each subset of eigenvalues in equation (7). This is not a test for weak

identification, but rather a test of non-identification. A limitation of this test is that

it presents a potentially substantial multiple testing problem when n > 2: to reject

non-identification, as many tests as there are adjacent subsets of the integers 1, . . . , n

must be conducted. However, it remains the most attractive option in applied practice

given the computational and performance issues of the Andrews (2018) procedure for

larger models.

Similar tests for non-identification exist for other schemes. Lewis (2021) derives

testable implications of that paper’s non-parametric identification conditions and pro-

poses a suitable Cragg-Donald statistic. Lanne and Saikkonen (2007) propose two

LM-type tests for the order of the GARCH process driving the SVAR residuals, which

can help determine whether the required n − 1 dimensions are present, or whether

identification is only partial. Lütkepohl and Milunovich (2016) propose a further test

and study all three in extensive simulations. The size and power of the tests and their

ranking varies with DGPs and sample sizes, and they tend to be conservative in deter-

mining the correct model order. However, these papers only consider the case where

there are r heteroskedastic shocks and n − r homoskedastic shocks, rather than the

models where all shocks may be heteroskedastic, but with a factor structure in the

volatilities.

Turning to non-Gaussianity, serious effort has recently been applied to robust in-

ference. Lee and Mesters (2021) and Hoesch et al. (2023) provide a robust inference

approach based on a semi-parametric score statistic (with the non-parametric part cor-

responding on the shock distributions). The former considers identification via non-
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Gaussianity from observed innovations, while the latter extends the results to SVARs

and IRFs, and also shows how the score can be used to construct an efficient estimator.

Inference on IRFs ultimately requires a Bonferroni step and projection methods. The

confidence intervals constructed in Drautzburg and Wright (2021), based on sign re-

strictions and an independence assumption, are also robust to weak identification (via

the independence assumption).

Recently, Amengual et al. (2022a) and Amengual et al. (2022b) provide tests of

the assumptions for identification based on non-Gaussianity. Both are based on the

estimated shocks. The former proposes moment-based tests for whether one (or more)

shock(s) has a Gaussian distribution and for dependence in the shocks. The latter is

a test for dependence amongst the shocks that compares the estimated joint cdf of

the shocks to the estimated marginal cdfs. Both are based on the mixture of normals

pseudo-maximum likelihood estimator of Fiorentini and Sentana (2023), for which in-

fluence functions allow adjustment for estimation error in the shocks. There is further

work on testing the independence assumption alone, coming from the ICA literature,

see for instance Matteson and Tsay (2017) and Davis and Ng (2023).

6 Open issues

6.1 Time-varying B

A possible tension in standard models identified via heteroskedasticity is that the struc-

tural parameters in B – the causal effects – are required to be constant over time, while

the variances are allowed to change. Indeed, these two sources of variation are often

included together in models where identification comes from other sources (e.g., Cog-

ley and Sargent (2005), Primiceri (2005)). On the other hand, many DSGE models

include time-varying volatility, but not changes in the deep structural parameters that

dictate B in a VAR representation. In any case, arguments for identification based on

higher moments hinge on the constancy of B. Nevertheless, it is possible to accom-

modate time-varying reduced form parameters, A(L), and the failure to do so when

demanded by the data can be a source of spurious heteroskedasticity (Sims (2002)).

There have been several recent attempts to combine identification via heteroskedas-

ticity with particular forms of time-variation in B. Typically, these approaches make

use of additional regimes that would be overidentifying with constant coefficents in

order to identify changes in a restricted number of coefficients. Note, however, that

adding additional regimes cannot identify time-varying B and volatilities without such

restrictions: each additional regime adds n new volatility parameters and n2 new co-
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efficients, but only (n2 + n)/2 new equations. Typically, identification results in this

literature provide local identification conditions under which the Jacobian of the re-

duced form covariance matrices with respect to the unrestricted parameters is full-rank.

Bacchiocchi and Fanelli (2015) and Bacchiocchi et al. (2018) propose a framework

that nests that of Rigobon (2003). They consider two regimes with the covariance ma-

trix of the shocks constant, but with two matrices of coefficients, B and B̃ ≡ B +W ,

modeled as functions of a vector of n2 + n unknown parameters. Note that changes in

shock variances can be subsumed into B̃ = B+W , where each column is just rescaled

by the new volatility additively instead of multiplicatively. They derive the rank condi-

tion for identification; unsurprisingly, changes in relative effects of the shocks can only

be identified if some of the variances are restricted to be unchanged (via the matrix W );

these are the same equations that were just-identifying with B fixed and all volatilities

allowed to change. Angelini et al. (2019) go a step further. They likewise do not explic-

itly model heteroskedasticity, but exploit it to identify three different regimes of impact

coefficients in a study of economic uncertainty. In particular, they keep the shock vari-

ances fixed at unity and model the impact coefficients as B,B + W1, B + W1 + W2.

This structure allows for changes in the volatilities via W1 and W2, as well as changes

in the relative effects of the shocks. Identification is achieved by imposing a suitable

number of zero restrictions in W1 and W2.

Brenna et al. (2023) take a different perspective. Studying macro-financial linkages,

they note that there are too few uncontroversial restrictions that can be imposed on

time variation in B to offer point identification. Instead, for a regime i > 1 they let

Bi = B +Wi, construct the full set of combinations of zero restrictions that could be

sufficient to identify the model, and recover the identified set of parameters across that

collection of sets of possible identifying restrictions.

Dungey et al. (2015) marry the smooth-transition and GARCH-based identification

approaches. They model volatilities as evolving according to a GARCH process and

the time-varying Bt as a convex combination of N + 1 unit diagonal matrices,

Bt = (1− SN ) [. . . {(1− S2) [(1− S1)B0 + S1B1] + S2B2} . . .] + SNBN . (21)

with Sj =
(
1 + e−γ(xt−dj)

)−1
, where dj is the center of the transition between regimes

j−1 and j and xt = t/T expresses time t as a fraction of the sample. The identification

argument contends that when γ, the speed of transition, is large enough so that within

each regime j, Bt is essentially Bj , then identification results like that of Milunovich
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and Yang (2013) can be applied within each regime. However, the true parameters

only appear to be identified in the limit as γ → ∞.

6.2 Choosing the right functional form

Amongst identification approaches based on heteroskedasticity, the econometrician is

generally required to take a stance on the form of heteroskedasticity taken, at least to

some extent. While now behind the frontier range of options for the volatility process,

Lütkepohl and Netsunajev (2015) provide an early survey of possible models, high-

lighting their relative strengths and weaknesses. With the exception of Lewis (2021),

all identification schemes rely on estimating the paths of the reduced form variances

through time, at least for feasible implementations. While using a regime approach

can be thought of as unrestrictive – since variance regimes can be estimated through

time regardless of the true variance process – they will only offer sharp identifying in-

formation if there are distinct differences in structural variances across regimes. If the

true variance process is poorly approximated by a regime structure, it is unlikely that

identification will be strong, and at the very least valuable identifying information will

be left on the table. However, as discussed in Section 6.2, even though non-parameteric

estimators are available under fairly weak assumptions, it will often be preferable to

specify a functional form for the variance process in finite samples for efficiency reasons.

Therefore, how should the researcher go about choosing the variance process to fit

to the data? This remains an open question, with three possibilities. The first option is

to use application-specific knowledge to choose an appropriate model. The second is to

conduct statistical tests to learn the correct functional form, as proposed by Lütkepohl

and Schlaak (2018). They provide various information criteria for determining the

correct model of heteroskedasticity. They then evaluate their performance in a simula-

tion study. They consider exogenously determined regimes, Markov switching, smooth

transition, and GARCH DGPs. They find that the information criteria struggle to

differentiate between different models for the structural variances, in terms of making

the correct binary determination. They tend to favour the exogenous regime model,

and in particular struggle to detect GARCH data. However, adopting the criteria can

still help to reduce the MSE of impulse response estimates. Ultimately, they conclude

that these tests can be helpful in ascertaining whether adequate heteroskedasticity is

present in the data for identification, but are not yet well-suited to discriminating be-

tween different volatility models.

Elsewhere, Lewis (2021) and Bertsche and Braun (2022) conduct parallel simula-

tion studies comparing the performance of various different estimators (in terms of

25



MSE and other criteria) when correctly and incorrectly specified, pointing to the third

possibility of choosing a demonstrably robust functional form. In particular, they con-

sider estimators based on AR(1) log stochastic volatility, GARCH, Markov Switching,

and regime-based models for the structural variances, as well as a non-parametric esti-

mator based on GMM; Lewis (2021) adds further estimators, including two exploiting

non-Gaussianity. Both papers consider DGPs corresponding to each of these models.

Both studies find that the AR(1) log stochastic volatility model is remarkably robust

to misspeficiation. It performs very well when correctly specified, but even when badly

misspecified often performs nearly as well as correctly specified estimators. This is not

true of any of the other estimators, whose performance is generally very heterogeneous.

Both papers recommend the stochastic volatility model for use in practice on the ba-

sis of its robustness to misspecification. However, beyond the simple flexibility of the

DGP (ex post, paths for the latent volatilities can approximate those coming from any

of the other variance processes, and even the fat tails of homoskedastic non-Gaussian

DGPs), no theoretical explanation for this performance or justification for this guid-

ance is available.

For the case of non-Gaussianity, similar questions arise, and there is, as yet, unfor-

tunately little clear guidance for empirical researchers. There are maximum likelihood

and PML approaches, typically based on variations on student-t distributions, and

non-parametric estimators. For the latter, there is an important choice of which co-

skewness and/or co-kurtosis restrictions to impose or of which contrast function to use

for ICA. Moneta and Pallante (2022) compare a variety of estimators in a simulation

study. They include FastICA, the PML estimator of Gouriéroux et al. (2017), and two

other ICA approaches based on Givens matrices; unfortunately, they do not include

recent moment-based estimators. Overall, they find that FastICA has an edge in terms

of bias, efficiency, size distortions, and coverage, with PML slightly behind.

6.3 Combining multiple sources of identifying informa-

tion

An exciting avenue for ongoing research focuses on combining identification based on

higher moments with other identification schemes. This can serve three purposes.

First, additional over-identifying assumptions – particularly economic ones – can be

tested. Second, combining statistical identifying information with other types of iden-

tifying information, like an external instrument, zero restrictions, or sign restrictions,

can serve to sharpen identification when the heteroskedasticity or non-Gaussianity may

not be pronounced enough to provide strong identification in finite samples. Finally, it
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can also help to resolve the labeling indeterminacy; discussion is deferred to Section 6.4.

The first purpose is one of the key advantages of statistical identification in the first

place. For example, B can be estimated based on higher moments alone, and then a

simple joint Wald test for all of the entries above the diagonal can test whether recur-

sive identification assumptions are rejected by the data. Alternatively, the same can

be done using likelihood ratio tests etc. There are myriad examples of this approach

to testing economic identification assumptions, including the empirical applications of

virtually all of the references in this review; see for example Normandin and Phaneuf

(2004); Lanne and Lütkepohl (2008); Herwartz and Lütkepohl (2014); Lütkepohl and

Woźniak (2020); Lewis (2021); Bertsche and Braun (2022).

Combining higher moments with additional identifying assumptions to achieve

sharper identification, for example when it is feared that the higher moments may

only be weakly identifying, is still an emerging literature. Carriero et al. (2023) pro-

vide a wide-ranging treatment in a Bayesian framework. They propose algorithms to

estimate SVARs combining heteroskedasticity with sign and narrative restrictions as

well as external instruments. They argue that heteroskedasticity, since it is potentially

point-identifying, can substantially reduce the identified sets resulting from sign or

narrative restrictions. On the other hand, those restrictions can resolve the labeling

problem associated with statistical identification. One key challenge to such strate-

gies is understanding how conflicting identifying information will interact. Indeed, the

identified set may be empty if two sources of identifying information are at odds; for

instance, if no shock exists, according to the moments arising from heteroskedastic-

ity, that satisfies stipulated sign restrictions. In that case, determining which set of

assumptions is incorrect presents a further challenge. Lütkepohl and Schlaak (2022)

consider a slightly different problem: they take the presence of heteroskedasticity (in

regimes, say) as potential evidence of time-varying impact coefficients. They combine

heteroskedasticity and an external instrument to test whether the column of B iden-

tified by the instrument changes across variance regimes. Bacchiocchi et al. (2023)

derive identified sets resulting from partially identifying heteroskedasticity and zero or

sign restrictions and provide methods to compute them as well as for robust Bayesian

inference. Bacchiocchi and Kitagawa (2023) provide a comprehensive treatment of

identification in SVARs with breaks, which nests models identified with heteroskedas-

ticity regimes, but also allows for breaks in B and the reduced form parameters. They

allow for additional information in the form of inequalities on various SVAR objects

and stability restrictions and provide Bayesian and robust Bayesian algorithms and

methods for valid inference.

27



Drautzburg andWright (2021) combine sign restrictions with non-Gaussianity: they

propose an identified set that is the intersection of that arising from sign restrictions

and the set of models for which independence of the shocks cannot be rejected. Keweloh

et al. (2023a) combine a block recursive structure with non-Gaussian shocks to pro-

pose an estimator that has advantages over purely statistical information in terms of

performance, shock labelling, and weaker independence requirements. Braun (2021)

develops a Bayesian framework combining priors involving sign restrictions and non-

Gaussianity. He models each non-Gaussian shock as a univariate Dirichlet process

mixture model, and shows that, combined with weak priors on important coefficients,

the non-Gaussianity sharpens inference to deliver results similar to those under much

strong restrictions in an application to oil markets. Keweloh et al. (2023b) propose a

Bayesian framework that allows for potentially endogenous proxy variables, and show

that that such endogeneity helps to reconcile the range of empirical estimates for fiscal

multipliers. Keweloh (2024) combines non-Gaussianity with potentially invalid short-

run restrictions, proposing an estimator with data-dependent shrinkage towards those

restrictions. Herwartz and Wang (2023b) develop a point estimator that minimises the

dependence of the implied structural shocks subject to sign restrictions. Crucil et al.

(2023) exploit external instruments with non-Gaussianity to sharpen identification and

partially resolve the shock labelling problem.

6.4 The shock labeling problem

One of the main challenges of purely statistical identification is the shock labeling prob-

lem – B is only ever identified up to column order by statistical information alone.5 The

answer, in general, is to use economic information to label the shocks, see Herwartz and

Lütkepohl (2014) for an early detailed discussion. While this may seem self-defeating,

having turned to statistical identification to avoid economic assumptions, the versions

of economic assumptions required for labelling are generally much less restrictive than

those required for point identification on their own. For example, rather than imposing

a lower-triangular structure on B, the researcher can obtain the permutation of the

identified columns of B that is “closest” to that structure, under the Frobenius norm,

say. The economic assumptions do not determine the possible values of identified pa-

rameters – they are recovered on statistical information alone; rather, the economic

information helps to choose amongst the statistically identified models, which is desir-

able if the restrictions are thought to be approximately but perhaps not literally true.

Another alternative is to obtain a set of model-based causal effects (values for B, or

5This results in the challenging “label switching” problem for Bayesian inference, see e.g., Bacchiocchi
and Kitagawa (2020) for a discussion.
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IRFs at longer horizons) and choose the shock labeling that most closely matches the

model predictions (see, e.g., Brunnermeier et al. (2021)). Augmenting the statistical

identification assumptions with some economic assumption that selects a unique col-

umn order (or even selects a single column of interest) is enough to point identify the

causal effects of interest. Lewis (2021) and Kilian and Lütkepohl (2017) (chapter 14)

discuss this labeling problem in further detail.

There are also non-economic options for pinning down a unique value for B, beyond

column order. For example, Lanne et al. (2017) propose to globally identify an SVAR

based on non-Gaussianity using a series of transformations. Given any one of the n!

observationally equivalent identified matrices, they first normalise each column to have

unit Euclidean norm. Next, they choose the unique column permutation for which the

entries to the right of each diagonal element are smaller in absolute value than that

diagonal element. Finally, they impose the unit diagonal normalisation. This can be

thought of as an approximation to a lower-triangular matrix, since the permutation

is chosen for which all of the entries above the diagonal are smaller than the corre-

sponding diagonal entries. Another popular choice in the ICA literature, and recent

papers using non-Gaussianity, is the Pham and Garat (1997) scheme, which chooses

the permutation that maximises the product of the diagonal entries of B, after restrict-

ing them to be positive and making a unit variance assumption. While augmenting

statistical assumptions with such column ordering rules achieves global identification,

it does not directly assist in rendering identified shocks (or their effects) economically

interpretable.

A further concern is the impact of the labeling problem on inference. While the

asymptotic distribution of a given column permutation of B may be known (after fixing

some statistical rule, like those mentioned above, for estimation), what is the distribu-

tion after subsequent permutations and re-scaling for economic labeling? Lewis (2021)

applies results from the model selection literature to show that, provided a “consistent

labeling criterion” is used, the error introduced by the labeling procedure is asymptot-

ically negligible, and the asymptotic distribution of the permutation of interest is valid

for the labeled estimator without modification. A consistent labeling criterion is a rule

for choosing the column order of B that will choose the economically correct order

with probability approaching 1 as T → ∞. This meaningfully simplifies inference on

the parameters of interest in practice.
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7 Conclusion

To conclude, we review several areas fruitful for ongoing research.

Robust inference As discussed above, higher moments often likely only provide

weakly identifying information in realistic sample sizes. While this fact has been noted

in the theoretical literature for some time, it has only recently started to impact ap-

plied practice. In general, weakly identified SVARs require projection inference for a

subset of the parameters, with available critical values proving sometimes prohibitively

conservative, as noted by Lewis (2022) for heteroskedasticity and Lee et al. (2022) for

non-Gaussianity. Lewis (2022) provides a solution for a particular class of models in

the form of considerably sharper critical values, but no such results exist for the ma-

jority of applications. Robust inference methods that exhibit acceptable performance

and are computationally conveninent remain elusive, and, as the literature comes to

grips with the prevalence of weak identification, will be increasingly in demand.

Testing identification conditions Enlarging the range of settings in which the

identification conditions are testable should be a priority. Since the identification con-

ditions are in terms of the structural parameters, it is challenging to test them without

assuming identification in the first place. To do so generally requires the derivation of

testable implications in terms of only reduced form quantities. Several methods are dis-

cussed in Section 5. Testing approaches, especially those testing for weak identification

as opposed to non-identification, that perform well and are computationally tractable

for arbitrarily large models, remain a target for all of the identification schemes con-

sidered.

Combining identifying information As discussed in Section 6.3, several re-

cent papers have turned to combining statistical identification with other forms of

identification, aiming to combat the weakness of the identifying variation coming from

higher moments, provide point identification when economic restrictions are only set-

identifying, or test economic restrictions. This is a conceptually appealing strategy,

since it addresses head-on the fact that many sources of identifying information fail to

provide sharp identification. It has the potential to extploit the “best of both worlds”

in terms of statistical and economic identifying information. The Bayesian literature is

perhaps somewhat further advanced in this respect as a consequence of the fact that it

is particularly appealing to combine higher moments with set identification approaches,

which are most commonly implemented in a Bayesian framework. However, there is

plenty of scope to pursue such developments in the frequentist framework as well, see
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for example Drautzburg and Wright (2021) and Keweloh (2024). Besides theoretical

work, this area also presents a rich vein for empirical work, since the combination of

all credible identifying information available will likely pay dividends.

Functional forms Section 6.2 outlined the challenges of choosing the best func-

tional form for a particular application. For both identification based on heteroskedas-

ticity and identification based on non-Gaussianity, there are meaningful decisions for

the researcher to make in terms of whether to choose a non-parametric estimator or

specify some particular functional form for the volatility process or distribution for the

shocks. As discussed, current attempts to detect the best-fitting form of heteroskedas-

ticity based on information criteria proved unsatisfactory in Lütkepohl and Schlaak

(2018). That paper’s study also predates the availability of identification results for a

much richer range of functional forms, like the AR(1) log stochastic volatility model

favoured by Bertsche and Braun (2022) and Lewis (2021). Thus, there is scope to both

extend that paper’s analysis and to investigate alternative testing methodologies that

may offer better performance.

To my knowledge, there has not been a systematic comparison of the quickly mul-

tiplying options for implementation of identification via non-Gaussianity. The speed

at which new implementations of identification based on non-Gaussianity are devel-

oped makes comprehensive systematic comparisons difficult; current options described

in Section 4 include various parametric models, moment based approaches where the

researcher must choose which higher moments to use and which restrictions to impose

on cross-moments, and a plethora of non-parametric estimators from the ICA litera-

ture. Moneta and Pallante (2022) is the only simulation comparison of which I am

aware. There is ample scope for further and updated simulation studies comparing

the leading alternatives, as well as “pre-tests” to select suitable moments containing

relevant identifying variation.

Separately, there is also scope for creative innovation under each of these identifi-

cation approaches. First, Lewis (2021) justifies identification under a very wide class

of persistent volatility models. This frees the researcher to exploit whatever DGP she

thinks best suits the data, providing substantial ground for exploration. In the case

of non-Gaussianity, while several early parametric implementations started from obvi-

ous fat-tailed distributions, the identification requirements likewise admit a continuum

of possible distributions, and there is scope to propose new alternatives here as well.

For example, Jarociński (2021) proposes a novel likelihood that allows for dependence

in the tails of the shocks, motivated by empirical features of U.S. monetary policy.
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Moreover, Mesters and Zwiernik (2022) provide exciting new results relaxing the inde-

pendence assumption and opening the door for researchers to work on a much richer

and more realistic range of distributions (including those with co-heteroskedasticity,

for instance).

Presenting statistical identification to applied researchers While statis-

tical identification often exploits relatively uncontroversial properties of the data, the

mechanisms of identification can be much less clear. Many applied researchers want

to know what economic features identify the parameters. Statistical properties of the

data do have economic meaning. Unpacking statistical identification in economic terms

can be challenging, and is an area where econometricians must do better. The original

Rigobon (2003) paper is a great exemplar in this respect: it represents identification

based on variance regimes graphically, and makes clear how identification obtains as

the variances of two shocks change across them. Lewis (2021) attempts to reframe

rather abstract conditions on the persistence and co-persistence of shock variances in

terms of predictions from structural models and conceptual properties of the shocks, as

well as interpreting periods of high and low volatility and particularly sizeable shocks

through the lens of historical events. While it is natural to use information from the

historical record to define variance regimes, there is no reason such narrative informa-

tion cannot also be used to interpret the variation underlying any other approach using

higher moments.

Similar arguments can be made with respect to non-Gaussianity. While somewhat

more challenging, theory can also help to motivate the required independence or other

restrictions on higher moments necessary to achieve identification. Guay (2021) pro-

vides a compelling graphical illustration of the identification argument, mirroring that

in Rigobon (2003) for heteroskedasticity. Braun (2021) argues similarly, illustrating

the power of non-Gaussianity for identifying supply and demand shocks in oil markets.

Greater effort along these lines to build intuition for what drives identification, besides

a collection of equations and associated rank conditions, will increase applied uptake

and the appeal of future work in these areas.
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