

Session 5C Panel discussion 3:

CO₂ Impurities and Implications for Multiple Source Networks and Hubs

Lead Panellist: Haroun Mahgerefteh, University College London.

Panellists:

Richard Porter – University College London *Opportunities and challenges of achieving European* CO_2 *transport specifications* Simon Roussanaly – Sintef *Impact of impurities in tanked-based transport of* CO_2 Heike Rütters – BGR *Impacts of impurities on the storage infrastructure/site* Filip Neele – TNO *Techno-economic trade-offs for* CO_2 *impurities in CCUS chain integration*

Challenges and opportunities of achieving European CO₂ transportation and storage specifications

Richard Porter¹

Acknowledgements: Julian Barnett², Paul Cobden³, Eric De Coninck⁴, Haroun Mahgerefteh¹, Giampaolo Manzolini⁵, Sergey Martynov¹, Fabio Ruggeri⁶, Vincenzo Spallina⁷

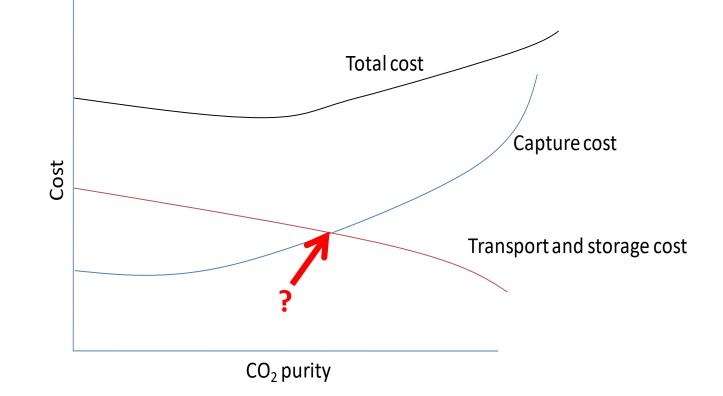
programme under grant agreement No 884418

responsibility of University College London and do not necessarily reflect the opinion of the European Union.

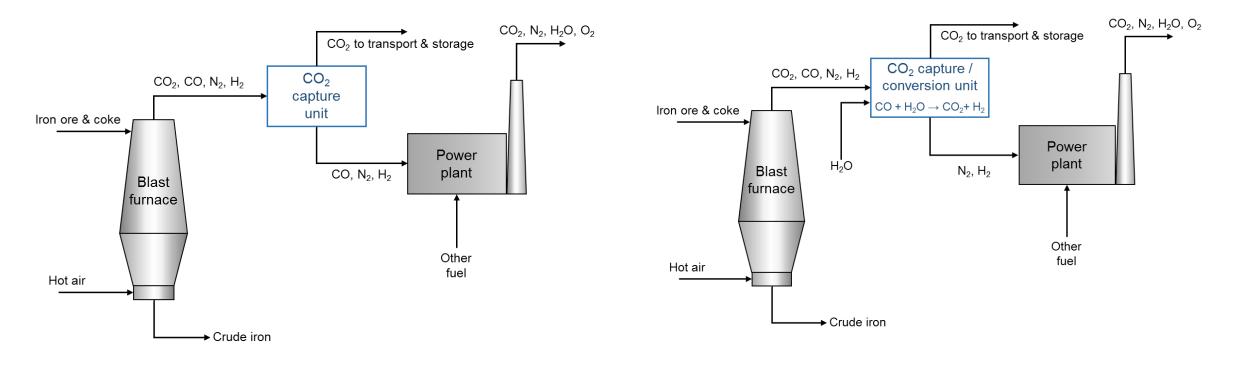
Range and level of impurities in CO₂ product streams (coal power CCS)

	Oxyfuel combustion	cyfuel combustion		Pre-combustion	Post-combustion
	Raw/dehumidified	Double flashing	Distillation		
CO ₂ % v/v	74.8-87.0	95.84-96.7	99.3-99.95+	95-99	99.6-99.8
$O_2 \% v/v$	3.21-6.0	1.05-1.2	0.001-0.4	0	0.015-0.0035
$N_2 % v/v$	4.0-16.6	1.6-2.03	Trace-0.2	0.0195-1	0.045-0.29
Ar % v/v	2.3-4.47	0.4-0.61	Trace-0.1	0.0001-0.15	0.0011-0.021
NO _x ppmv	100-709	0-150	3-100	400	20-38.8
SO ₂ ppmv	36-800	0-4500	0.1-50	25	0-67.1
SO ₃ ppmv	20	-	0.1-20	_	N.I.
H ₂ O ppmv	100-1000	0	0-100	0.1-600	100-640
CO ppmv	50-162	_	<2-50	0-2000	1.2-10
H ₂ S/COS ppmv				0.2-34,000	
H_2 ppmv				20-30,000	
CH ₄ ppmv				0-112	

Summary of CO₂ impurities from different CO₂ capture technologies.


□ ppb – ppm levels of heavy metals (Hg/HgCl₂, Pb, Se, As, etc.) and (poly)aromatics

Natural gas combustion likely to produce lower levels of sulfur oxides and nitrous oxides, but higher oxygen compared to coal combustion



The m\$ Question?

What is the optimum range and concentration of impurities that can be tolerated in the CO₂ stream to enable its safe transportation and storage at minimum cost?

Concepts for CO₂ capture / conversion from Blast Furnace Gas

Benchmark type processes

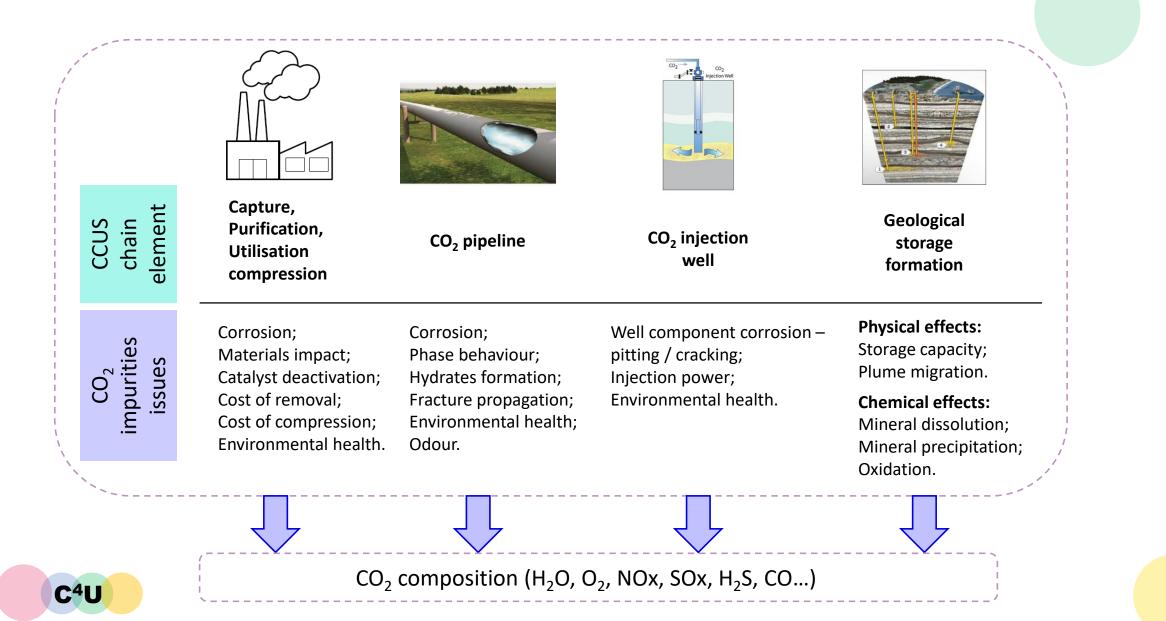
C⁴U

e.g., PSA (Pressure Swing Adsorption) MEA (Monoethanolamine)

Advanced capture technologies

e.g., SEWGS (Sorption Enhanced Water Gas Shift) CASOH (Calcium Assisted Steel-mill Off-gas Hydrogen production)

Potential impurities in steelworks off-gases


Compound class	Compound	
Hydrocarbons	CH_4 , C_2H_4 , C_2H_6 , cyclopentadiene, C_3H_8 , C_3H_6 , C_4H_{10} , acetylene, pentene, heavy hydrocarbons	
Aromatics	Phenol, benzene, toluene, xylene	
РАН	Naphthalene, phenanthrene, benzopyrene, flouranthene	
S-compounds	SO _x (SO ₂), H ₂ S, COS, CS ₂ , thiophene, mercaptan	
N-compounds	NO_x (NO ₂ , NO), NH ₃ , HCN _, tar bases (C _x H _y N), pyridine, (CN) ₂	
O-compounds	O_2 , H_2O , tar acids (C_xH_yOH)	
Heavy metal compounds	Cr, Mn, Ni, Pb, Zn, Hg, As, Cd, Cu	
Halides	HCl, HF, inorganic flourides, PCDD/F, PCB	
P-compounds	Trivalent phosphorus	
Dust	FeO _x , alkali metals, alkali earth metals, metal oxides, CdO _x , elemental sulfur, elemental carbon, Hg	

PAH: Poly aromatic hydrocarbon; **PCCD/F:** Polychlorinated benzo(p)dioxin and furan.

(Carbon2Chem Project) - J. Schittkowski *et al. Methanol Synthesis from Steel Mill Exhaust Gases: Challenges for the Industrial Cu/ZnO/Al₂O₃ Catalyst. Chem. Ing. Tech., 90 (2018), pp. 1419-1429.*

CCUS chain impurities issues

CO₂ transport to geological storage site

Two main options for large-scale CO₂ transportation:

Onshore and/or offshore CO₂ pipeline

Gas-phase: up to 35 bar, 5 to 40 °C **Dense-phase:** 85 to 150 bar, 12 to 44 °C

CO₂ shipping (offshore)

Liquid-phase: 6 to 30 bar, -50 to -20 $^{\circ}$ C

			Limiting concentration criteri	on
CO_2 specifications		Northern Lights†	National Grid*	TAQA
comparison	CO ₂	-	≥ 91 vol% (gaseous phase) ≥ 96 vol% (dense phase)	\geq 95% ‡
•	H ₂ O	\leq 30 ppm _v	\leq 50 ppm _v	\leq 40 ppm _v
	O ₂	$\leq 10 \text{ ppm}_{v}$	$\leq 10 \text{ ppm}_{v}$	\leq 40 ppm _v
Challenge for other	NO _x (NO+NO ₂)	$\leq 10 \text{ ppm}_v$	$\leq 100 \ ppm_v$	$\leq 5 \text{ ppm}_{v} \\ (\leq 2.5 \text{ ppm}_{v} + \leq 2.5 \text{ ppm}_{v})$
CCS applications	SOx	$\leq 10 \text{ ppm}_{v}$	$\leq 100 \text{ ppm}_{v}$	\leq 50 ppm _v
	H ₂ S	$\leq 10 \text{ ppm}_{v}$	\leq 20 or 80 ppm _v §	\leq 5 ppm _v
	COS	-	¶	$\leq 0.1 \text{ ppm}_{v}$
Purity specification	(CH3)2S	-	-	$\leq 1.1 \text{ ppm}_{v}$
	H ₂	\leq 50 ppm _v	$\leq 2 \text{ vol}\%$	$\leq 0.75 \text{ vol}\%$
challenge, specifically	N ₂	-	Depends on saturation P ⁺	$\leq 2 \mod \%$
for the iron & steel —	Ar	-	Depends on saturation P ⁺	$\leq 1 \text{ mol}\%$
in al voter v	CH4	-	Depends on saturation P ⁺	$\leq 1 \text{ mol}\%$
industry	CO	$\leq 100 \text{ ppm}_{v}$	$\leq 2000 \text{ ppm}_{v}$	$\leq 750 \text{ ppm}_{v}$
	Amine	$\leq 10 \text{ ppm}_v$	¶	-
	NH3	$\leq 10 \text{ ppm}_{v}$	ſ	-
References	HCN	-	¶	$\leq 20 \text{ ppm}_v$
Norwegian CCS Demonstration Project Norcem FEED:	Formaldehyde	\leq 20 ppm _v	-	-
https://ccsnorway.com/wp-	Acetaldehyde	\leq 20 ppm _v	-	-
content/uploads/sites/6/2020/07/NC03-NOCE-A-RA-0009-	Mercury, Hg	$\leq 0.03 \text{ ppm}_{v}$	ſ	-
Redacted-FEED-Study-DG3-Report-Rev01-1.pdf	Cadmium, Cd Thallium, Tl	$\leq 0.03 \text{ ppm}_{v}$ (sum)	-	-
National Grid carbon specification for carbon dioxide quality	C2+ (hydrocarbons)	-	-	$\leq 1200 \text{ ppm}_v$
requirements for pipeline transportation. NGC/SP/PIP/25,	Aromatics (incl. BTEX)	-	-	$\leq 0.1 \text{ ppm}_v$
National Grid, 2019.	C ₂ H ₄	-	-	$\leq 1 \text{ ppm}_v$

TAQA - PORTHOS Basis of completion design report: https://www.rvo.nl/sites/default/files/2020/09/Bijlagen%20 Ondergrond.pdf (pp. 519).

* Entry may be permitted for compounds other than those listed (Hg + derived compounds, Se, MEA, Selexol, NH₃, HCl, HF, HCN, COS etc.), conditional on them not exceeding detection limits and to be determined on a case by cases basis. [†] Non-condensable gases are defined in the Northern Lights specification as components that, when pure, will be in gaseous form at 15barg and -26°C, where their content will be limited by the actual solubility in liquid CO₂ in the interim storage

-

tanks at the capture plants.

Total VOC

[‡] The sum of non-condensable species H₂, N₂, Ar, CH₄, CO and N₂ should not exceed 4 vol%.

-

[§] Limits of 80 and 20 ppm_v apply to gaseous (below 80 barg) and dense (below 156 barg) phases, respectively.

¹ The allowable concentration of non-condensable components is subject to confirmation that the mixture saturation pressure does not exceed 80 barg.

¶ Must not exceed levels above measurable limits and need to be discussed and agreed with National Grid.

 \leq 750 ppm_v

Estimated impurities in CO₂ capture from Blast Furnace Gas (BFG)

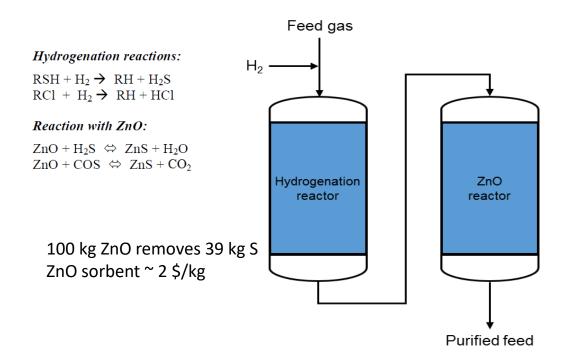
Assumed BFG composition:

BFG component		
AR	0.61	mol%
H ₂	4.26	mol%
N ₂	47.09	mol%
CO ₂	24.37	mol%
СО	23.45	mol%
CH ₄	238.00	ppm _v
H ₂ S	10.00	ppm _v
COS	32.00	ppm _v
SO ₂	0.21	ppm _v
HCI	0.17	ppm _v
HCN	0.11	ppm _v
NH ₃	0.21	ppm _v

C⁴U

Main impurities in CO₂ captured from BFG using PSA and amine systems estimated in this work.

	PSA	PSA	MEA plant
	low purity	high purity	
CO ₂ mol% dry	83	99.5	99.7
H ₂ O mol%	saturated	saturated	saturated
N ₂ mol% dry	10.57	0.29	0.023
CO -	5.27%	0.15%	200 ppm_{v}
H ₂ -	0.96%	266 ppm _v	214 ppm_{v}
COS ppm _v	163	214	131
H ₂ S ppm _v	50.8	66.9	41
$SO_2 ppm_v$	1.1	1.4	0.9
HCN ppm _v	0.02	0.001	0.45
NH ₃ ppm _v	0.05	0.0007	0.88
HCl ppm _v	0.04	0.001	0.71
Amine ppm _v	_	-	<1


References for BFG composition

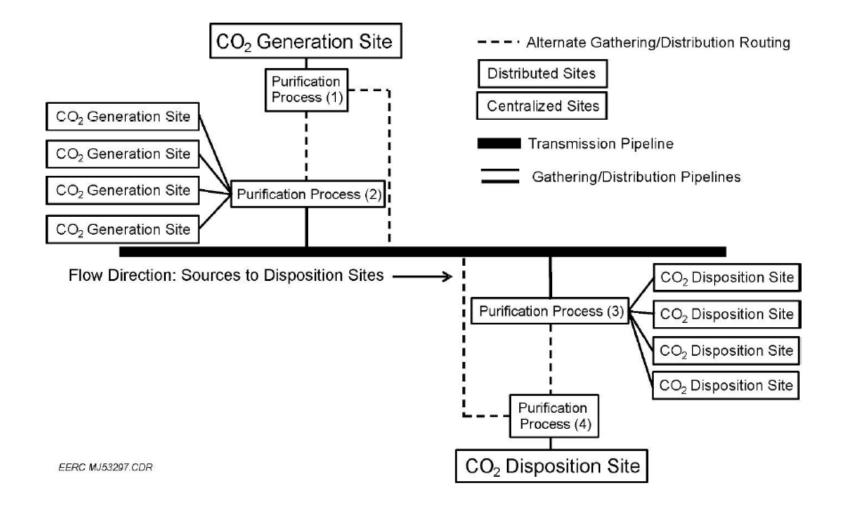
[1] R. Remus et al. Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control), JRC Reference Report, EC, JRC, Institute for Prospective Technological Studies, Seville 2013. [2] Lanzerstorfer, C.; Preitschopf, W.; Neuhold, R.; Feilmayr, C. ISIJ Int. 2019,59(3), 590–595.

10

Potential CO₂ purifications for BFG derived CO₂ product streams

ZnO is a widely used adsorbent for H_2S and COS removal (at levels <50ppm) from NG or syngas at 200–450°C.

+ Cryogenic separation of non-condensables $(H_2, N_2, Ar, CH_4, CO, O_2)$



Purification of Blast Furnace Gas derived crude CO₂ streams

gas • Potential solution: catalytic oxidation and separation of CO₂ impurities¹ MEA plant Configurations and costs require assessment CO_2 mol% dry 99.7 H₂O mol% saturated N₂ mol% drv 0.023 T&S specification $C_x H_y + (x + \frac{y}{4})O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O^2$ 200 ppm_{v} Purified CO₂ CO challenges 214 ppm_v H_2 - $2CO + O_2 \rightarrow 2CO_2$ CO_2 99.9 mol% COS ppm_v 131 $2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$ $< 60 \text{ ppm}_{v}$ N_2 $H_2S ppm_v$ 41 $2COS + 3O_2 \rightarrow 2SO_2 + 2CO_2$ **O**₂ $< 30 \text{ ppm}_{v}$ $SO_2 ppm_v$ 0.9 Sulfur species HCN ppm_v 0.45 $< 1 \text{ ppm}_{v}$ NH₃ ppm_v 0.88 Total hydrocarbons $< 20 \text{ ppm}_{v}$ Temperature-swing adsorption HCl ppm_v 0.71 (Water vapour & residual SO₂) Water $< 20 \text{ ppm}_{v}$ Amine ppm_v < 1removal) O_2 Crude CO₂ Liquid CO₂ Cooler/ Cooler/ Compressor Compressor Sulfur tolerant catalytic ¹ Praxair. EP0952111A1. CO₂ purification system, 1999. Condeser Condeser oxidation system C⁴U 12 Water Water © *C*⁴*U Project*, 2020

Non-condensable

Centralised vs decentralised CO₂ purification

Andrea Dunn. Opportunities and challenges associated with CO_2 compression and transport during CCS activities. Plains CO_2 Reduction Partnership Phase III.

© *C*⁴*U Project, 2020*

Concluding remarks

C⁴U

Component	Canyon Reef project (Metz et al., 2005)	Weyburn pipeline (Metz et al., 2005)
EOR or aquifer	EOR	EOR
CO ₂	>95%	96%
Ar	-	-
со	-	0.1%
H ₂ O	No free water < 0.489 g Nm ⁻³ in vapour phase	< 20 ppm
H ₂ S	< 1500 ppm (wt.)	0.9%
SO _x	-	-
Total sulfur	< 1450 ppm (wt.)	-
N ₂	< 4% ^a	< 300 ppm
NO _x	-	-
O ₂	< 10 ppm (wt.)	< 50 ppm
Glycol	< 4x10 ⁻⁵ Lm ⁻³	-
CH ₄	-	0.7%
H ₂	-	-
$C_2 + C_x H_y$	< 5%	2.3%
Temperature	< 48.9°C	-
Pressure	-	15.2 MPa

There are significant differences in the CO₂ storage specification depending on the project.

Pipeline transport and storage of CO_2 with relatively high concentration of some impurities are technically feasible (e.g. CO, H₂S), as demonstrated by the North American EOR experience; however, this may be undesired in the European context

Challenges

- Need to perform whole chain integration techno-economic analysis and optimisation (i.e. cost of purification vs cost of using more corrosion resistant materials)
- 2. Need to reduce uncertainties on the impacts of impurities in CCS chain elements
- 3. Need to 'strategically' reach a closer agreement for the CO₂ specifications levels as this could well become a potential show stopper to CCS development