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Abstract 
The field of artificial intelligence has expanded rapidly in recent years permeating to many application 
domains including medical science, climate science, finance, and geography. In Geography, these 
advances have culminated in the new subdomain of GeoAI which was driven by advances in deep 
learning, optimised computational tools and the availability of large scale spatially embedded data. In this 
chapter, we will describe a couple of techniques in deep learning for analysing image, point, graph and 
text data. We will then provide some projections on the near future for the topic, including increasing 
application of deep learning on traditional geographical problems and incorporation of geographical 
thinking in machine learning, open data practices as well as cross disciplinary engagements and 
teaching. We envisage the use of deep learning in geography will continue to grow rapidly leading to 
hopefully new spatial insight, knowledge and methods to be discovered in the future. 

1.0 Background  
Geography is an inclusive discipline without strict boundaries–it pervades multiple topics and is there all 
around us (Holt-Jensen 2018). There are several debates, divisions, and revolutions in the history of 
geography. One is the quantitative revolution, a period from the 1950s – 1960s, where geographers 
increasingly used statistical and mathematical techniques, theorems, and proofs in understanding 
geographical systems (Burton 1963). This brought 'scientific thinking' to geography, leading to an 
increased use of quantitative practices. Along this line, the development of GIS in the 1980s has further 
improved the technical bases and computational power for geographical research. In the late 1990s, 
Geocomputation was proposed as a new paradigm and defined by Openshaw and Alvanides (1999 
pp.270) as the “adoption of a large-scale computationally intensive approach to the problems of physical 
and human geography in particular, and the geosciences in general”. Artificial intelligence tools were 
mentioned alongside GIS data as a family of computational approaches (Openshaw 1993; Openshaw 
and Openshaw 1997).  
 
Since 2012, the field of artificial intelligence have expanded rapidly due to the possibilities offered from 
deep learning, for example in computer vision (Krizhevsky et al 2012) and language understanding tasks 
(Sutskever et al 2014). Such progresses have driven innovations in many domains and applications 
including autonomous driving (Geiger et al 2012), and medical science research (Jumper et al 2021) but 
also Geospatial artificial intelligence GeoAI in geography (Janowicz et al 2020). In this chapter, we focus 
on the recent progress in quantitative geography, namely machine learning and deep learning, and 
provide some projections on this topic for future geographical research and education. We will begin by 
giving a brief background to the topic. 

2.0 From Machine Learning to Deep Learning in Geography 
Most definitions of Artificial intelligence/Machine Learning begin with the famous question asking whether 
machines can think? (Turing 1950) These enquiries motivated early research in Machine Learning  
(Samuel 1959) which is a subfield or method of AI that signifies the ability for a computer to learn without 
being explicitly programmed. One of these research strands, inspired by biological neural networks, 
resulted in the development of the perceptron machine by Rosenblatt (1957). This idea of connecting 
neurons together to make a synthetic nervous system has led to the development of many different kinds 
of “Artificial” Neural Networks. Despite these early advances in learning machines, it wasn’t until (1) 
critical methodological developments in the 1990s, such as the backpropagation algorithm (LeCun, 
1990), (2) advances in computational tools, such as the use of graphic processor (Raina et al 2009) and 
(3) the ubiquity of large scale data (Krizhevsky 2012) that more complex neural computing methods 
(known as “deep learning”) have become operational. These deep neural networks are composed of 
multiple processing layers and are able to automatically learn representations from data (LeCun, Bengio, 
Hinton 2015). 
 
In Geography, the application of machine learning and artificial intelligence started prior to the deep 
learning revolution (Openshaw 1993; Openshaw and Openshaw 1997). This includes the use of 



ensemble learning methods in remote sensing (Benediktsson et al 1990), the application of artificial 
neural networks on spatial interaction models (Openshaw 1993) and the use of unsupervised methods 
on geodemographic profiling (Harris et al 2005; Singleton and Longley 2009). It wasn’t until recently that 
deep learning has become accepted in quantitative geography, leading to a new subdomain known as 
Geospatial Artificial Intelligence or GeoAI (Janowicz et al 2020). Here, GeoAI refers to spatially explicit 
artificial intelligence techniques in geography. The driver of growth is fundamentally led by advances in 
deep learning methods, development of highly optimised and scalable computational tools, and 
importantly the increasing availability of spatially embedded big data (Kitchin 2014), like vector-based 
points data from location based social media (Shen et al 2019), mobility data from travel cards (Zhong et 
al 2016), street network data from OpenStreetMaps (Boeing 2017), spatially embedded textual data such 
as surnames (Longley et al 2011) and Earth-Observation data, for example from the Sentinel satellites 
(Drusch et al 2012).  
 

 
Fig1. Deep learning research focuses on learning a data representation (eg. text, graphs, points, images) 
that can capture the underlying structure of the data.  
 
Most of deep learning research entails the use of deep neural networks to learn a mapping between the 
input data and a data-specific representation that can be useful for a down-stream task such as 
prediction, generation and discovery. We will now summarise a couple of example applications of deep 
learning methods applied to four types of geographical data, namely image, point, graph and text.  
 
2.1 Image Data  
Machine learning methods have been applied to remotely sense data in geography since the 1990s 
(Benediktsson et al 1990). One early example is the use of ensemble learning methods (such as random 
forests) for land use and land cover classification (Gisalson et al 2006). Due the increasing volume and 
resolution of open remotely sensed data coupled with the increasing capability of deep learning as a 
feature extractor, these techniques have been used extensively on many remote sensing tasks such as 
image restoration (Zhang et al 2014) and pixel level classification (Lagrange et al 2015).1 The flexibility of 
deep learning techniques allows easy adaptation for different spatial, spectral and temporal resolutions, 
as well as integration with different data types. Once a deep learning model has been trained, forecasting 
can be done at scale. Recent applications include monthly sea-ice prediction (Andersson et al 2021), 
daily rainfall nowcasting (Ravuri et al 2021), tree canopy estimation (Francis and Law 2022; Weinstein et 
al 2019) and citywide crowd prediction (Zhang et al 2017).  
 
Machine learning were also applied to imagery captured at the street level prior to deep learning. Early 
examples include the retrieval of classical computer vision features such as Histogram of Oriented 
Gradients (Dalal et al 2005) and Scale Invariant Features Transform (Lowe 2004) to discriminate urban 
architectural features in Paris (Doersch 2012), and the prediction of safety perception in the United 
States (Naik et al 2014). Similar to other domains, most of the recent research on street imagery 

 
1 A separate chapter in the book focuses on this topic. 
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(specially from 2015 onwards) focused predominantly on using deep learning methods such as 
convolutional neural networks and more recently vision transformers.2  Examples include estimating 
demographic profiles in the States (Gebru et al 2017), nowcasting gentrification (Glaeser et al 2018), 
estimation of real estate values (Law et al 2020) and on predicting urban design quality (Law et al 2017; 
2019). These methods, when used innovatively, can help the monitoring of urban environments for urban 
and transport planning.  
 

 
Fig 2. A standard Convolutional Neural Network classifier 

 
Method 
In terms of methods for image data, the most popular deep learning computer vision methods used in 
geography is a type of artificial neural network called Deep Convolutional Neural Networks (LeCun et al 
1990; LeCun et al. 2015; Krizhevsky 2012). Convolutional Neural Networks (ConvNets) can learn a 
function that maps inputs, images in this case, to a representation that can then be used to classify a 
target class/value, for example in recognising whether the image is a rock garden or not (see Figure 1). 
This architecture consists of stacks of convolutional layers which learns a set of local spatial features 
hierarchically from image data.3 These representative features can then be used in task such as scene 
recognition (Simonyan and Zisserman 2014), object detection (Girshick 2016) and semantic 
segmentation (Chen et al. 2017). ConvNets can also be adapted for unsupervised/generative learning. 
One variant is the variational autoencoder which embeds the data into a latent distribution through a set 
of encoding and decoding layers (Kingma et al 2013; Pu et al. 2016). Another popular variant is 
Generative Adversarial Network (GAN), which is composed of a generator that synthesizes an image 
from a random vector and a discriminator that distinguishes whether the generated image is a real or 
fake image (Goodfellow et al 2014). These generative models are able to synthesize photo-realistic 
images and are beginning to be used in geography (Zhu et al 2020).  
 
2.2 Points Data 
Much research in deep learning concerns mapping the input data into a data specific representation. 
This is not only true for image data but also for point data which is one of the most common data type in 
spatial analysis. A common example of this data type includes event data where each point corresponds 
to a particular spatial temporal event such as crime (Huang et al 2018). Deep learning with point data 
have been used in a wide array of studies including point of interest prediction (Mai et al 2020), next 
location prediction (De Brebisson et al 2015), point cloud classification (Qi et al 2017) and geo-aware 
image-classification (Chu et al 2019). Recent research encodes location information (Chu et al 2019) and 
contextual information for spatially explicit modelling (Mai et al 2020). Another common example of this 
data type is trajectory data where points in space and time are linked sequentially such as those 
captured from high frequencies GPS. Data mining on trajectory data to study human mobility pattern is 
widely studied in spatial analysis (Gonzalez et al 2008; Barbosa et al 2018). Deep learning methods have 
also been applied extensively on mobility data, for example in studying human mobility flow prediction 
(Alahi et al 2016; Xu et al 2018).  
 

 
2 For a more comprehensive review on the recent use of computer vision methods in urban analytics, 
please see Ibrahim et al (2020). 
3 More recently we have seen the rising popularity of Vision Transformers, inspired from natural language 
processing, as an alternative architecture for visual representation learning (Dosovitskiy et al 2020). 
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Fig 3. A key task in spatial data encoding is to capture both positional and contextual information for 

spatially explicit machine learning 
 
Method 
Early research on spatial point representation embeds space into some discrete value like a grid or 
postcode not dissimilar to the Bag of Words representation (Tang et al 2015) or embedding coordinates 
directly within a machine learning based image classifier (Chu et al 2019). Both of these results show 
improvement over geo-unaware classification models. In more recent research, we are seeing spatial 
representation learning that not only encode the points explicitly but also accounting for spatial 
relationship between points (see Figure 2). One example is Tile2Vec (Jean et al 2018), which is an 
unsupervised learning method that uses a triplet loss to learn a contextual continuous representation 
similar to Word2Vec for tasks such as poverty prediction with remotely sensed data. A more recent 
example is Space2Vec, inspired from research in neuroscience (Banino et al 2018), which uses an 
encoder-decoder architecture that encodes positional information and a space-aware graph attention 
network to capture multi-scale spatial relationships for tasks such as POI prediction or image 
classification (Mai et al 2020).  
 
2.3 Graph Data 
From streets to transportation networks, geospatial network (graph) data is another popular forms of 
data to study in transport geography (Haggett and Chorley 1970), urban planning and architecture (Hillier 
and Hansen 1989). This type of geospatial data model relationships between entities as complex 
networks that are embedded in space (Batty 2013). An example is the street network, where each 
junction is a node and each street is an edge, or a commuter flow network, where each city is a node 
and the flows between cities are edges (Barthelemy 2018). Geospatial networks are often modelled as 
graphs that are composed of a set of nodes and edges embedded in space (see Figure 3). Until recently, 
there have been limited applications of graph-based machine learning methods in geography. A recent 
example is Zhu et al (2020) which applied Graph Convolutional Neural Networks (GCN) on a nearest 
neighbours graph to predict place characteristics. Another popular use is traffic forecasting (Zhao et al 
2019) where graph neural network are combined with Recurrent Neural Network (Fu et al. 2016) to 
capture spatial temporal dependencies on graphs.  
 

 
Fig 4. Geospatial networks are graphs that are made up of a set of nodes (vertices) connected by a set 

of edges embedded in space. 
 
 
 



Method 
Graph-based deep learning methods were popularised by Duvenaud et al (2015) and Kipf and Welling 
(2016), who developed a specific type of Graph Neural Network called a Graph Convolutional Neural 
Network (GCN). GCN, which adapts from ConvNet is similarly composed of multiple layers, where each 
layer aggregates the attributes of neighbouring nodes. The resulting node embeddings can be used for 
various downstream tasks such as node or graph classification. These seminal works led to many 
subsequent and related graph neural network methods such as GraphSage (Hamilton et al 2017) and 
Graph Attention Network (Velickovic et al. 2017).  
 
2.4 Textual Data 
Natural language processing (NLP) is a subfield within computational linguistics and artificial intelligence 
that tries to achieve a better understanding of natural language through computational methods 
(Manning and Schutze 1999). For example it can be used to understand the topic of a tweet (Lansley 
and Longley 2016) or to understand the sentiment trajectories of novels or films (Del Vecchio et al 2018). 
There are many subtasks within text analysis such as information retrieval and extraction as well as text 
classification, translation, generation and summarisation. In geography, text analysis is often used to 
recover textual information in a specific geographic location. This includes spatially embedded textual 
data such as geo-tagged tweets or spatially implicit data where the document describes a place that 
needs to be geocoded such as Wikipedia or news articles. Examples include what opinions or emotions 
are associated with a place (Ballatore and Adams 2015), how sentiment relates to specific environmental 
features (Wartmann and Purves 2018), social media topic modelling (Lansley and Longley 2016), the 
extraction of perceptual neighbourhood boundaries from social media data (Mckenzie and Adams 2017). 
More recently we have seen the increasing popularity of geographic knowledge graph that extracts 
information from geographic semantic entities that can be used for information retrieval and 
Geographical Question and Answering (Mai et al 2020b; Janowiscz et al 2022). To provide a general 
framework for understanding NLP tasks in geography, we find Hu et al. (2018)’s summary of geo-text 
data analysis useful. Hu et al. (2018) divide geo-text analysis tasks into the following groups:  
 

- Geoparsing, which extracts and geolocate places,  
- Place relations, which measures the co-occurrence of places within text,  
- Place sequencing, which tracks individuals trajectories through text,  
- Place opinions which models the sentiment of text about places such as districts or restaurants 
- Place zones, which seeks to detect neighbourhoods from textual data about cities  
- Place impacts. which identifies the real time attitudes of people in places during high impact 

events, as in disaster management.  
 

 
Fig 5. The idea of Neural Word Embedding adapted from Word2Vec concept (Mikolov et al 2013) 

 
Method 
A key concept in NLP is embedding text either at the character level, word level, sentence level or 
document level into a numerical representation. Prior to advances in neural computing, words were 
embedded by counting the term frequency, either in an unweighted (BagOfWords) or weighted form 
(Term-Frequency-Inverse-Document-Frequency). This type of representation produces a sparse matrix4 
that does not consider the ordering and context of words. These limitations lead to more efficient 

 
4space inefficient with many zeroes in the matrix. 
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methods that analyze text using a continuous representation such as neural word embedding methods 
(Bengio et al 2001). An early variant of this type of embedding, such as Word2Vec (Mikolov et al 2013), 
uses shallow neural networks that embed terms and immediate context into a continuous representation 
where similar concepts would be nearer to each other than dissimilar concepts in the embedded vector 
space. A famous example is that the distance between “king” and “man” in the Word2Vec embedding is 
similar to the distance between “queen” and “woman” (see Figure 4). Other methods for text embedding 
include GloVe (Pennington et al 2014), fastText (Joulin et al 2016) and Bert embeddings. The latter 
makes use of self-attention layers in considering contextual relations between words (Vaswani et al. 
2017; Devlin et al 2018). These neural word embedding methods can be used in downstream language 
modelling tasks such as text classification, document summarisation, text translation and text generation 
such as GPT-3 (Brown et al 2020). To note, these NLP architecture have since inspired Vision 
Transformer models  
 
 rising popularity of Vision Transformers, inspired from natural language processing, as an alternative 
architecture for visual representation learning (Dosovitskiy et al 2020). 
 
To summarise, we have described a couple of examples on how deep learning methods are being 
applied on different types of spatial data commonly used in Geography including, image, point, network 
and text data. This list is not exhaustive and it is constantly being extended but it demonstrates the 
possibilities and potential of applying these methods in quantitative geography. 

3.0 Towards Greater Integration 
To continue, we envisage greater integration between geography and machine learning on three topics:  

1. Tackling geographical problems with deep learning methods while incorporating geographical 
thinking and representation in machine learning (ML <-> GEO) 

2. Embracing cross disciplinary research  
3. New norm in geographical research - Open research practice 

 
Tackling geographical problems with AI while incorporating geographical thinking in machine learning 
Despite the continuous progress of technical advances in quantitative geography, we should focus on 
geographical problems, not solutions. Research on the creative use of deep learning techniques for 
traditional geographical problems are ascendant. Simultaneously, we are also seeing the incorporation of 
geographical thinking and representation in machine learning. We will describe a couple of recent 
examples here demonstrating applications of modern machine learning methods such as deep learning 
on traditional geographical problems such as spatial interaction, spatial interpolation and hedonic price 
models.  
 
The first recent example is the estimation of spatial interaction models using a deep learning architecture 
entitled Deep Gravity Model (Simini et al 2021). In this research, the author framed an origin constrained 
spatial interaction model (Wilson 1971) as a two stage problem; in the first stage, the model estimates a 
set of destination probabilities using a fully connected feedforward neural network classifier, and in the 
second stage, the method multiplies the destination probabilities by the number of residents in the origin 
location to give the corresponding commuting flows to each destination. The authors found the deep 
gravity model achieves better results than a linear gravity model. These results are expected but more 
importantly it shows how deep learning can provide novel ways to study a classical geographical 
problem in estimating commuting flows between origins and destinations (Fotheringham and O’Kelly 
1989).  
 
The second is the use of a spatial auxiliary task for spatial interpolation (Klemmer et al 2021). The authors 
proposed a method for embedding the autoregressive nature of spatial data by utilising multi-resolution 
local Moran’s I as a model agnostic auxiliary task learner. The auxiliary task is a model agnostic method 
that can be plugged into standard deep learning models (eg. GAN and ConvNet) coupling a spatial loss 
into a multi-objective optimisation problem. The model agnostic method was tested on a spatial 
interpolation task using a standard Digital Elevation Modelling dataset. The Moran’s I embedded 
ConvNet outperformed benchmarks from geography including Inverse Distance Weighting (IDW), 
Ordinary Kriging and Universal Kriging. This research demonstrates how traditional geography theory in 



spatial analysis (Miller 2004; Longley et al. 2005) can be incorporated into modern deep learning 
approaches showing a bi-directional relationship between the two disciplines.  
 
The third is the use of a semi-interpretable framework on house price prediction (Law et al 2019). A key 
criticism with machine learning method is its lack of interpretability as these models (often non-linear) 
focus on prediction accuracy rather than explainability (Molnar et al. 2020). In responding to this concern, 
Law et al (2019), developed a semi-interpretable model in predicting house price through a two stage 
process. In the first stage, street and aerial images were compressed into a visual desirability feature 
through two fine-tuned pretrained convolutional neural network models (Simonyan and Zisserman 2014). 
In the second stage, the visual feature can then be used as part of an hedonic price regression model in 
predicting house price. The research shows that a semi-interpretable framework that integrates non-
interpretable models (like Artificial Neural Networks) with interpretable models (like linear models) allows 
for greater interpretability of the visual features geographically while achieving similar accuracy to a fully 
non-interpretable model. Importantly, this research shows how geography and mapping can help with 
interpreting the implicit representations of deep learning models, and also how non-interpretable models 
can be used in geographic regression problems such as hedonic price models. 
 
Embracing Interdisciplinary Research 
Another ascendant trend we are observing is increasing cross institute and departmental collaborative 
research and education in quantitative geography (Turing Institute as an example)5. A scan of recent 
papers published in the seminal GeoAI workshop in 2019 (Gao et al 2019) and 2021 (Lunga et al 2021) 
showed that 16 of the 27 papers presented in the workshop have included authors from multiple institute 
and/or across multiple departments within the same institute. These research efforts show cross 
discipline and institute collaborative research is becoming more common in the domain, which can help 
facilitate novel integration between geography and machine learning.  
 
To further encourage geographic data science and spatially-explicit machine learning research in the long 
term, we need to integrate the teaching of quantitative data science methods in geography. An 
encouraging sign is that an online search shows at least twelve (at the time of writing) Postgraduate level 
masters courses in the UK that are teaching topics related to geographic data science or urban analytics 
(University College London, London School of Economics, Birkbeck University of London, University of 
Bristol, University of Liverpool, University of Leeds, University of Glasgow, Kings College London, 
University of Exeter, University of Manchester, Newcastle University). We believe this trend will continue in 
the near future, when there will be greater levels of geography-specific data science teaching resources. 
 
New norm in geographical research - Open research practice 
Machine learning is fundamentally about learning from data. Therefore, the quality of data sets and the 
reproducibility of research are essential qualities to building useful and transparent machine learning 
models. A welcoming trend that is happening concurrently is the acceptance of open data practices and 
products in geography (Arribas-Bel et al 2021) to ensure research in geographic data science is open, 
transparent and reproduceable. Examples include the production of well documented open teaching 
resources (Arribas-Bel 2019), the proliferation of computational notebooks (Boeing and Arribas-Bel 
2021), the use of open data application interface such as osmNX (Boeing 2017) and Google Earth 
Engine (Gorelick et al 2017), the use of open source analytical tools such as PySAL (Rey et al 2021) and 
GeoPandas (Jordahl 2014) and the launch of journal sections for data and novel software or data 
products, such as urban data/code: a new section in Environment and Planning B6 and Scientific Data7. 
These trends are also expected to continue in the near future. 

4.0 Discussion and Conclusion 
In summary, the utilisation of deep learning in geography will continue to grow due to rapid advances in 
AI and the growing abundance of spatial data. We have described some examples on how deep learning 
is currently applied on four spatial data types namely; images, points, graphs and texts. Additionally, we 

 
5 The Alan Turing Institute https://www.turing.ac.uk/ 
6 Environment and Planning B: Urban Analytics and City Science. 
https://journals.sagepub.com/home/epb 
7 Nature Scientific Data. https://www.nature.com/sdata/ 



have described three ascendant topics that we see in the near future of GeoAI. With the aid of 
aforementioned advancements and increase cross-disciplinary engagements and open data practices, 
we envisaged new spatial insights, knowledge and methods to be discovered in the future.  
 
Due to the topic’s popularity, this summary is not exhaustive. We did not cover several importance 
topics, such as research on data ethics, bias and privacy in geography (Proctor 1998; Krumm 2009; Finn 
et al 2012), the application of reinforcement learning on multi-agent simulations (Heppenstall  et al 2021; 
Crooks et al 2018; Martinez-Gil et al 2014) and the application of machine learning frameworks to 
optimise the analysis of large scale geospatial data (Richardson et al 2020). These topics are vital for the 
domain and are discussed elsewhere in this book or are planned to be addressed in future summaries.  
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