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Abstract
Medawar's mutation accumulation hypothesis explains aging by the declining force 
of natural selection with age: Slightly deleterious germline mutations expressed in 
old age can drift to fixation and thereby lead to aging‐related phenotypes. Although 
widely cited, empirical evidence for this hypothesis has remained limited. Here, we 
test one of its predictions that genes relatively highly expressed in old adults should 
be under weaker purifying selection than genes relatively highly expressed in young 
adults. Combining 66 transcriptome datasets (including 16 tissues from five mamma‐
lian species) with sequence conservation estimates across mammals, here we report 
that the overall conservation level of expressed genes is lower at old age compared to 
young adulthood. This age‐related decrease in transcriptome conservation (ADICT) 
is systematically observed in diverse mammalian tissues, including the brain, liver, 
lung, and artery, but not in others, most notably in the muscle and heart. Where 
observed, ADICT is driven partly by poorly conserved genes being up‐regulated dur‐
ing aging. In general, the more often a gene is found up‐regulated with age among 
tissues and species, the lower its evolutionary conservation. Poorly conserved and 
up‐regulated genes have overlapping functional properties that include responses to 
age‐associated tissue damage, such as apoptosis and inflammation. Meanwhile, these 
genes do not appear to be under positive selection. Hence, genes contributing to old 
age phenotypes are found to harbor an excess of slightly deleterious alleles, at least 
in certain tissues. This supports the notion that genetic drift shapes aging in multicel‐
lular organisms, consistent with Medawar's mutation accumulation hypothesis.
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1  | INTRODUC TION

To date, more than 300 hypotheses have been postulated to 
explain senescence, that is, age‐related loss of function and in‐
crease in mortality rates (Medvedev, 1990). The mutation accu‐
mulation (MA) hypothesis, an evolutionary explanation for aging 
first developed by Rose (1991) and Medawar (1952), is among the 
simplest and most influential of such hypotheses. It states that 
negative selection will be inefficient against alleles that exhibit 
harmful effects only late after maturation. Such alleles can even‐
tually fix through genetic drift and thus contribute to observed 
senescent phenotypes (Kirkwood & Austad, 2000). The MA hy‐
pothesis generates several testable predictions. For instance, (a) 
genetic variance in fitness‐related traits, such as reproductive suc‐
cess or survival, should increase with age (Flatt & Schmidt, 2009; 
Rose, 1991); (b) inbreeding depression should increase with age; 
(c) alleles associated with late‐onset disease should segregate at 
higher frequencies than early‐onset disease alleles; and (d) genes 
expressed at late age should be under weaker purifying selection 
and evolve faster in their sequence, than those expressed at young 
age. To date, a number of studies have reported empirical evidence 
broadly consistent with these predictions. Several studies have 
shown age‐related increase in genetic variance in fitness‐related 
traits in either laboratory populations (e.g., Drosophila melanogas‐
ter: refs. (Charlesworth & Hughes, 1996; Hughes, Alipaz, Drnevich, 
& Reynolds, 2002)) [but see refs. (Promislow, Tatar, Khazaeli, & 
Curtsinger, 1996; Shaw, Promislow, Tatar, Hughes, & Geyer, 1999)] 
or natural populations (e.g., Soay sheep and red deer: ref. (Wilson 
et al., 2007)). In hermaphroditic snails, in an indirect test of the 
expectation regarding inbreeding depression, outbreeding was 
reported to mitigate age‐related increase in mortality (Escobar, 
Jarne, Charmantier, & David, 2008). In humans, the heritability 
of CpG methylation patterns was shown to increase with age 
for about 100 genome‐wide loci (although here, possible fitness 
consequences were not evaluated) (Robins et al., 2017)⁠. Finally, 
studying >2,500 human genetic variants linked to 120 genetic dis‐
eases, Rodríguez et al. (2017)⁠ reported that variants associated 
with late‐onset disease tend to segregate at higher frequencies 
than those associated with early‐onset disease.

Beyond those cited above, few studies have used empirical data 
to test the MA hypothesis. In particular, the conceivably variable 
contribution of MA to the aging processes affecting different spe‐
cies and different tissues has not yet been comparatively evaluated. 
Furthermore, with the exception of a few extreme cases such as the 
CAG repeat variants in the huntingtin gene that cause Huntington's 
disease, we have limited understanding into the nature and preva‐
lence of late‐expressed substitutions, a central element of MA (Flatt 
& Schmidt, 2009).

The role of MA in aging therefore awaits testing through new 
approaches that encompass a larger number of traits, a wider array 
of species, different tissues, and molecular data. One such ap‐
proach would be to take advantage of widely available transcrip‐
tome data, in particular genome‐wide gene expression datasets 

that include adult individuals of varying age. Such transcriptome 
datasets have traditionally been used to identify functional pro‐
cesses affected by or underlying senescence, although they can 
also be used to test evolutionary theories, as we show here.

In previous work, we used prefrontal cortex transcriptome age‐
series from humans to investigate whether protein sequence con‐
servation varies among genes that are highly expressed at different 
ages (Somel et al., 2010). This analysis showed that relatively highly 
expressed genes in young versus old adults are evolutionarily more 
conserved than those relatively highly expressed genes in old versus 
young adults, which we call age‐related decrease in conservation of the 
transcriptome (ADICT). Although this observation appeared broadly 
consistent with the MA hypothesis, the work analyzed only one brain 
region and did not distinguish between two distinct processes: (a) up‐
regulation of lowly conserved genes with age and (b) down‐regulation 
of highly conserved genes with age. Both processes could generate 
the ADICT effect, but only (a) would be predicted by MA.

Here, we expand our investigation to include five mammalian 
species and 16 different tissue types. First, we study the prevalence 
of the ADICT pattern across multiple mammalian aging datasets, 
using estimates of protein and regulatory sequence conservation 
across mammals. Second, we ask whether genes up‐regulated late 
in life show low evolutionary conservation, as predicted by MA. In 
other words, we test whether slightly deleterious mutations are more 
likely to fix in genes that are more highly expressed in old age, such 
as genes that respond to age‐associated tissue damage (López‐Otín, 
Blasco, Partridge, Serrano, & Kroemer, 2013; Salminen, Kaarniranta, 
& Kauppinen, 2012).

2  | RESULTS

2.1 | Age‐related decrease in conservation of the 
transcriptome

We collected published transcriptome age‐series of young and old 
adults of five mammalian species, generated using RNA‐sequencing or 
microarrays (Homo sapiens, Macaca mulatta, Macaca fascicularis, Rattus 
norvegicus, Mus musculus; n = 66 datasets and 2,461 unique samples in 
all). The datasets represent transcriptomes of different brain regions 
(humans, macaques, rats, and mice), muscle (humans, rats, and mice), 
artery (humans, macaques, and rats), skin (humans and mice), kidney 
(humans and mice), liver (humans and mice), and lung (humans and 
mice). Heart, adipose, adrenal gland, blood, colon, esophagus, thy‐
roid, and uterus datasets were only available from humans and spleen 
only from mice. The analyzed datasets included variable sample sizes 
(n = 9–116 individuals, mean = 37.2), and human ages ranged from 16 
to 106 years, macaque ages from 4 to 28 years, rat ages from 3 to 
30 months, and mouse ages from 8 to 130 weeks (Table S1).

We first studied congruence in age‐related gene expression 
change across the 66 datasets. For this, for each gene in each data‐
set, we calculated the Spearman correlation coefficient between 
gene expression level and individual age (ρEA). We then compared 
datasets to estimate pairwise similarity in ρEA values across common 
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genes. ρEA values were mostly (71% of comparisons) positively cor‐
related across datasets, indicating that the same genes’ expression 
levels were similarly affected by aging across tissues and species 
(Figure S1).

As a measure of gene sequence conservation, we used esti‐
mates of purifying selection on protein sequence (ω0), calculated by 
Kryuchkova‐Mostacci and Robinson‐Rechavi (2015) and estimated 
for the human or the mouse branch using the branch‐site model 
(Zhang, Nielsen, & Yang, 2005). ω0 is the dN/dS ratio calculated for 
those sites determined to be under purifying selection and thus is ex‐
pected to be a direct measure of the strength of purifying selection 
on a gene. We further calculated an adjusted protein conservation 
metric (ω0*) for each gene, factoring out the possible effects of GC 
content, CDS length, intron length, intron number, mean expression, 
median expression, maximum expression, tissue specificity, network 
connectivity, phyletic age, and number of paralogs, using a multiple 
regression model following Kryuchkova‐Mostacci and Robinson‐
Rechavi (2015). The value −ω0* (ω0* multiplied by −1) represents the 
main protein sequence conservation metric we used in our analysis, 
where more positive values represent more conserved genes. Note 
that −ω0* is expected to be more powerful for detecting negative 
selection than metrics using intraspecies variation (a larger number 
of events are being evaluated in interspecies comparisons) or simple 
dN/dS (sites predicted to be neutrally evolving are not included in 
−ω0*).

We then investigated the prevalence of ADICT in mammalian 
aging. To do so, we first calculated the Spearman correlation coef‐
ficient between gene expression levels for each individual and the 
protein sequence conservation metric (which we call ρEC) across 

all expressed genes (Figure 1a,b). Note that the conservation met‐
ric (−ω0*) is a constant value per gene, while gene expression levels 
will differ among individuals. In mammals, a weakly positive ρEC, 
indicating that more highly expressed genes tend to be more con‐
served in their protein sequence, has been consistently observed in 
previous work (Kryuchkova‐Mostacci & Robinson‐Rechavi, 2015; 
Subramanian & Kumar, 2004; Warnefors & Kaessmann, 2013). The 
correlation suggests that a gene's expression level, among other 
factors, influences purifying selection pressure on its sequence, 
possibly as a consequence of selection against mistranslation and 
misfolding of highly expressed proteins (Drummond & Wilke, 
2008; Pal, Papp, & Lercher, 2006). The magnitude of this correla‐
tion, though, can vary among individuals depending on their age, as 
genes expressed in young adults may be subject to stronger selec‐
tion than genes expressed in old adults. To test this idea, in each 
dataset, we determined the correlation between individual ages and 
ρEC (ρAρEC). Figure 1c provides an example of such a pattern in 
one brain aging dataset (Berchtold et al., 2008), and Figure 2 shows 
the results across all datasets. Nonparametric correlation analysis is 
appropriate here, as the relation between individual ages and ρEC 
mainly follows a linear trajectory (Figure S9 and Table S3).

In each dataset, we used two gene sets for testing ADICT: (a) 
genes showing significant age‐related change in expression levels (at 
Spearman correlation test q‐value < 0.10) and (b) all expressed genes. 
We conducted analyses using all expressed genes in order to avoid 
a reduction in statistical power in datasets with low sample sizes 
and to determine whether patterns that hold for strongly age‐asso‐
ciated genes also apply across the entire transcriptome (Table S2). 
Note that we could identify a set of significant age‐related genes at 

F I G U R E  1  Relationship between gene expression level and protein conservation. Examples of gene expression level versus protein 
conservation metric correlations (a) for a 20‐year‐old human and (b) for a 91‐year‐old human, in the postcentral gyrus of the brain (data 
from Berchtold et al., 2008). The analysis includes only age‐related genes detected in this dataset (at q < 0.10). Each point represents a 
gene (n = 1688). The x‐axis shows the protein sequence conservation metric, where more positive values reflect higher conservation across 
mammals. The y‐axis shows log2‐transformed gene expression levels. The expression–conservation ρ values (ρEC) are indicated in the inset. 
To improve visualization, we removed genes with disproportionately low conservation metrics (n = 3) in panels (a) and (b). Note that our 
correlation statistic, Spearman, is not affected by such potential outliers. (c) Age‐dependent change in expression–conservation ρ values in 
the human postcentral gyrus, based on age‐related genes in the same dataset as panels (a) and (b). The y‐axis shows expression–conservation 
ρ values (ρEC) calculated for each individual in this dataset (n = 39). The x‐axis shows the ages of individuals. The ρ value between age and 
expression–conservation correlation (ρAρEC) is indicated in the inset.

(a) (b) (c)
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q < 0.10 only among 42 datasets. The remaining were mainly smaller 
datasets, and for these, we only conducted the analysis using all ex‐
pressed genes (see Methods).

In the brain, we identified ADICT among 18/19 brain data‐
sets with age‐related genes, that is, ρAρEC values were negative 
(significant at nominal p  <  0.05 in 17 datasets). When repeat‐
ing this analysis with all expressed genes, 27/28 brain datasets 
had negative ρAρEC values (significant at nominal p  <  0.05 in 
16 datasets). Together, these results support a general trend of 
ADICT in the brain (Figure 2). We also found nominally signif‐
icant negative ρAρEC values in the majority of liver (3/4) and 
lung (3/3) datasets, and in 2/5 artery datasets. In contrast, we 
found no consistent ADICT pattern in other tissues where we 
had multiple representative datasets, most notably in muscle 
(n = 10 datasets, among which we identified only one nominally 
significant case), as well as in heart, skin, kidney, and colon. We 
also note that in 6/10 muscle datasets, we did not detect signif‐
icant age‐related expression change in gene‐by‐gene analyses 
(Table S2). Finally, in tissues where we had only one representa‐
tive dataset, adipose and uterus showed a nominally significant 
ADICT pattern, while adrenal gland, colon, esophagus, thyroid, 
and blood did not.

Overall, 50/66 of the tested datasets (76%) showed an ADICT 
trend across all their expressed genes. Moreover, 28/42 of the data‐
sets (67%) showed significant ADICT signatures across age‐related 
genes after correction for multiple testing (q < 0.10) (Figure 2). The 
pattern was driven by mainly brain, liver, lung, and artery, with 25 of 
the 28 datasets belonging to one of these four tissues. We focus on 
these 25 datasets in the following analyses.

We first sought to determine the robustness of this result with 
respect to our protein‐coding sequence conservation metric. For 
this, we repeated the analysis (a) using ω0 values without apply‐
ing multiple regression, (b) using ω values (i.e., raw dN/dS values) 
obtained from the Ensembl database for “one‐to‐one orthologs” 
between human–mouse, human–elephant, and human–cow, and 
(c) using the mean PhastCons score (a conservation measure based 
on the UCSC database 100‐way vertebrate alignment) per gene 
as conservation metric. We further tested whether ADICT holds 
when we exclude (d) putatively positively selected genes (with 
ω > 1 in our data), (f) immune system genes known to be generally 
fast‐evolving (Mikkelsen et al., 2005; Nielsen et al., 2005; Zhang et 
al., 2005)⁠, and (e) genes down‐regulated with age in each dataset 
(ranging from n = 1,086 to 6,717). In addition, to exclude the pos‐
sibility that ADICT signals are driven by gene expression changes 
involving only few functional processes (e.g., highly conserved 

developmental genes being down‐regulated), we calculated 
ρAρEC separately for genes in each of the largest GO Biological 
Process (BP) categories (n = 19, each with node size >1,000 anno‐
tated genes) (Figure S2). We repeatedly observed ADICT (negative 
ρAρEC values) as a general trend across the same 25 brain, liver, 
lung, and artery datasets, irrespective of the metric used, the gene 
sets, and GO categories involved (Table S2, Figure S2). Overall, 
ADICT appears to be a consistent pattern in multiple mammalian 
tissues.

2.2 | Up‐regulation with age predicts low 
conservation

We next investigated two nonexclusive processes that could lead 
to ADICT: (a) Genes that show age‐related up‐regulation could 
be lowly conserved, consistent with MA, or (b) genes that show 
age‐related down‐regulation could be highly conserved, relative to 
genes showing no change in expression. The latter scenario could 
occur if a set of highly conserved genes (e.g., synaptic genes) are 
down‐regulated during the postnatal lifespan, as previously re‐
ported (Lu et al., 2004; Somel et al., 2010), but would not provide 
direct support for MA.

To test whether one or both of these scenarios underlie ADICT, 
we compared the mean conservation metric among (a) genes up‐reg‐
ulated with age (ρEA > 0.1, q < 0.1) and (b) genes down‐regulated 
with age (ρEA <  −0.1, q  <  0.1), using (c) genes that show no age‐
related changes in expression level as a control. We repeated this 
analysis across the 25 brain, liver, lung, and artery datasets showing 
the ADICT signature at q < 0.10, and using −ω0* as the conservation 
metric. We found results consistent with both scenarios (Figure 3): 
Genes down‐regulated with age were more strongly conserved than 
genes with no change (n = 22/25; 14 with bootstrap support >95%). 
Conversely, genes up‐regulated with age were more weakly con‐
served than genes with no change, in nearly all cases (n = 23/25; 15 
with bootstrap support >95%). This is in line with the MA hypoth‐
esis: Genes that become more active late in life may be subject to 
stronger drift.

If age‐related up‐regulation is a general indicator of poor sequence 
conservation for a gene, the more tissues or the more species in which 
a gene shows age‐related up‐regulation, the less conserved it might 
be. To test this idea, we selected genes shared across the 25 ADICT 
datasets (in brain, liver, lung, and artery) and counted how many times 
each gene was up‐regulated with age. As predicted, we found a neg‐
ative correlation between the number of datasets where a gene was 
up‐regulated with age and its conservation metric (ρ = −0.17, p < 0.001) 

F I G U R E  2  Age‐dependent changes in transcriptome conservation. The x‐axis shows the Spearman correlation coefficient (ρAρEC) 
between individual age and expression–conservation correlations (ρEC described in Figure 1). The statistics are calculated separately for 
each dataset, and for significant age‐related genes in that dataset (light bars), as well as for all expressed genes (dark bars). On the y‐axis, 
the species name (Hs: Homo sapiens, Mmu: Macaca mulatta, Mmf: Macaca fascicularis, Rn: Rattus norvegicus, Mm: Mus musculus) and tissue 
name are reported for each dataset. Note that in 26 of 66 datasets, where light bars are missing, significant age‐related genes could not be 
identified. The asterisks indicate nominal significance levels in the Spearman correlation test, (*): p ≤ 0.05, (**): p ≤ 0.01, (***): p ≤ 0.001. In 
the analysis using age‐related genes, all 28 datasets showing nominal significance for ADICT remained significant at q < 0.10 after applying 
Benjamini–Hochberg correction
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(Figure S8a). Repeating this analysis for all 66 datasets also revealed a 
significant negative correlation (ρ = −0.23, p < 0.001) (Figure S8b). This 
suggests the presence of shared patterns of age‐related up‐regulation 
and low conservation across tissues and across species.

2.3 | Functional analysis of ADICT

To find functionally coherent gene sets that may contribute to 
ADICT patterns in brain, liver, lung, and artery, we conducted Gene 
Ontology (GO) analysis for the three GO domains (BP, Cellular 
Component (CC), and Molecular Function (MF)). We separately ana‐
lyzed (a) genes that showed increased expression with age and low 
conservation (IELC, consistent with MA) and (b) genes that showed 
decreased expression with age and high conservation (DEHC). For 
this, we ranked genes according to both expression‐age correlations 
(ρEA) and the conservation metric (−ω0*), and investigated GO term 
enrichment in each of the 10% tails of the distributions. We sought 
shared GO categories enriched either in IELC genes or in DEHC 
genes across all the 25 brain, liver, lung, and artery datasets show‐
ing the ADICT signature. To determine the random expectation for 
shared GO categories, we randomly permuted ages of individuals in 
each dataset 1,000 times, calculated ρEA again, and repeated the 
gene ranking and GO analysis.

IELC genes, which could be contributing to aging through the 
MA process, were enriched in the same 24 GO BP categories in all 
the 25 datasets (expected = 0; permutation test p < 0.001) (Figures 
S3 and S4, Table S4). These included categories related to apopto‐
sis, inflammation, and the immune response, among others (see the 

REVIGO summary in Figure S4). In addition, four GO CC categories 
(expected = 0; p < 0.001) and one GO MF category (expected = 0; 
p = 0.022) were shared among IELC genes across the 25 datasets 
(Figure S3). Meanwhile, among DEHC genes, we found shared en‐
richment only in CC and MF categories (permutation test p < 0.05); 
significant gene sets included synapse‐ and signaling‐related func‐
tions (Figure S4) and Table S4).

2.4 | Age‐dependent effects on regulatory region 
conservation

Finally, we asked whether ADICT extends to conservation of gene 
regulatory regions. To test this possibility, we calculated the mean 
PhastCons score per gene for (a) ±2000 bp around the transcrip‐
tion start site (TSS) and (b) the 3′‐UTR. We then repeated the ADICT 
analysis by substituting these two regulatory conservation metrics 
for −ω0*. This again revealed a heterogeneous trend toward ADICT 
across tissues, with consistent ADICT trends in brain, liver, and lung 
(Figures S5 and S6).

3  | DISCUSSION

The MA hypothesis predicts that the burden of slightly deleterious 
germline substitutions will increase with age due to the declining 
force of negative selection, that is, due to the increasing influence 
of drift (Medawar, 1952). Our approach differs from earlier attempts 
to test this hypothesis (Charlesworth & Hughes, 1996; Escobar et al., 

F I G U R E  3  Mean conservation among gene sets with different patterns of age‐related change in expression levels. The plots show the 
mean conservation metric for genes that show age‐related increase (a) and age‐related decrease (b) in expression levels, compared to the 
mean conservation metric among genes that show no significant age‐related change in expression levels (see Methods). The error bars 
indicate 95% confidence intervals calculated by 1,000 bootstraps. The analysis includes the 25 brain, liver, lung, and artery datasets showing 
ADICT signatures

(a) (b)
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2008; Hughes, 2002; Promislow et al., 1996; Rodríguez et al., 2017; 
Shaw et al., 1999; Tatar, Promislow, Khazaeli, & Curtsinger, 1996; 
Wilson et al., 2007) in various respects. First, we used transcriptome 
data to study late‐expressed substitutions and age‐related pheno‐
typic change. Second, instead of relying on intraspecies variation to 
estimate mutational load affecting a phenotype, we used interspe‐
cies divergence, which should be statistically more powerful as it in‐
volves a larger number of substitutions per gene. Third, we studied 
the mutational load in multiple tissues, thus considering the possibil‐
ity that age‐dependent germline mutational load may vary among 
tissues, depending on tissue‐specific developmental patterns, mi‐
totic capacity, damage accumulation, and consequences for organ‐
ism‐level fitness.

We observed age‐related decrease in transcriptome conserva‐
tion (ADICT) in datasets from brain, liver, lung, and artery, con‐
sistently across the mammalian species studied. Among datasets 
from all four of these tissues, genes up‐regulated with age showed 
low sequence conservation. Furthermore, across all datasets we 
studied, the frequency a gene was up‐regulated during aging in‐
versely predicted its evolutionary conservation. These results are 
consistent with the MA hypothesis. In addition, processes that in‐
volve responses to aging‐related damage such as apoptosis and 
inflammation (Salminen et al., 2012) were enriched among genes 
that increased in expression during aging and had low conserva‐
tion (IELC genes).

A number of questions remain. First, the methodology depends 
on mRNA expression data and whether all the observed aging‐re‐
lated changes influence downstream, organism‐level phenotype is 
unclear. Further, if the function of a gene is modulated through other 
mechanisms, such as post‐translational modifications or alterations 
in the interaction partners, these will not be captured in our study.

Second, among the nine tissues for which we had >1 dataset, 
we could not systematically detect ADICT in the muscle, heart, 
kidney, skin, or colon. This observation is compatible with several 
distinct, nonmutually exclusive explanations. (a) Lack of an ADICT 
signal could represent false negatives due to experimental noise. 
The fact that the frequency of a gene's up‐regulation across all 66 
datasets is negatively correlated with its conservation level (Figure 
S8b) supports this possibility. (b) ADICT propensity may vary due 
to differences in aging‐related expression change from tissue to tis‐
sue. This is most conspicuous in the comparison of brain and muscle, 
the two tissues with the richest data. For example, we consistently 
find a weaker signature of aging in muscle than in brain transcrip‐
tomes: We could only identify age‐associated genes in 4/10 mus‐
cle datasets compared to 18/19 of brain datasets. The functional 
properties of transcriptome changes also differ. For instance, while 
immune‐related genes are prominently up‐regulated during brain 
aging, the trend is significantly attenuated in muscle aging (Mann–
Whitney U test p = 0.006; Figure S11). This difference is notable in 
view of the fact that immune‐related functions are enriched among 
IELC genes (Figure S4). This explanation does not, however, account 
for differences in the behavior of apoptosis‐related genes across 
tissues, where changes with age are similar in brain and muscle 

(Mann–Whitney U test p = 0.39). (c) Differences in ADICT propen‐
sity may also reflect differences in sensitivity to mistranslation er‐
rors among tissues: For example, neural tissue is highly sensitive to 
proteotoxicity and selection on protein sequence appears stronger 
on neuron‐related genes (Drummond & Wilke, 2008). Such differ‐
ences among tissues, either in damage accumulation patterns, in the 
gene expression response to aging, or in tissue‐specific selection 
pressures, could influence the relative signal of MA in our analysis.

Third, shared IELC genes could represent genes evolving under 
positive selection instead of genes subject to drift. That is, low 
conservation might reflect the accumulation of beneficial substitu‐
tions (e.g., in immune genes) rather than weakly deleterious ones. 
If we further assume that such genes’ up‐regulation is detrimental 
during aging, this scenario would be consistent with the antagonis‐
tic pleiotropy (AP) hypothesis, which argues that substitutions pos‐
itively selected for their early life benefits may be harmful late in 
life (Williams, 1957). We find this unlikely, however, as (a) our main 
analysis is based on an estimate of negative selection rather than 
raw ω, and thus should not be affected by positive selection; (b) 
when we removed genes with ω  > 1, or all immune‐related genes 
from our analysis, we still found the same ADICT and IELC signals 
(Figure S10); and (c) when we compared IELC genes and 370 genes 
identified to be under positive selection in humans through multiple 
genome scans (Cagan et al., 2016), we did not find more overlap than 
expected compared to the background set of all genes we analyzed 
(Fisher's exact test p = 0.3). Therefore, deficient purifying selection 
and accumulation of slightly deleterious substitutions by drift (Ohta, 
2002), as predicted by the MA hypothesis, is a more parsimonious 
explanation for the observed IELC signal.

That said, our results do not exclude a role for AP in metazoan 
aging. Multiple aging‐related phenomena have been convincingly at‐
tributed to AP, such as negative correlations between early‐ and late‐
life fitness in Drosophila (Sgrò & Partridge, 1999; Wit, Kristensen, 
Sarup, Frydenberg, & Loeschcke, 2013) and in humans (Carter & 
Nguyen, 2011; Rodríguez et al., 2017). In our previous work on aging 
brain transcriptomes, we had likewise interpreted the early initiation 
of synaptic gene down‐regulation as a case of runaway development 
possibly caused by an AP‐like process (Somel et al., 2010). In fact, the 
IELC phenomenon we describe here itself may partly be explained by 
AP, if some of the genes involved are affected by as‐yet undetected 
positive selection in early life. Aging is considered a highly heteroge‐
neous phenotype shaped by multiple evolutionary and physiological 
processes, and joint roles for MA and AP in shaping aging‐related 
deleterious genetic load would be in line with this notion.

We do yet not understand how the IELC phenomenon might 
contribute to physiological decline in aging. Nevertheless, our find‐
ing that inflammation and apoptosis are shared functional charac‐
teristics of IELC genes in four tissues is telling, especially given the 
growing appreciation of the role of inflammaging, that is, low‐level 
inflammation observed in many aging tissues (Franceschi et al., 
2000; López‐Otín et al., 2013; Salminen et al., 2012). There are 
multiple examples of how chronic inflammation can impair house‐
keeping functions, especially in the brain (e.g., refs. (Salminen et 
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al., 2012; Zhang et al., 2013)). It is also notable that the adipose 
dataset, a tissue with a known role in inflammaging (Mau & Yung, 
2018), also shows an ADICT trend. Meanwhile, apoptosis is cru‐
cial for eliminating senescent cells during healthy aging and dis‐
ruptions in apoptosis could lead to accumulation of dysfunctional 
cells over time. Conversely, apoptosis is also thought to have a role 
in neurodegenerative disease etiology, for example, in the case of 
Alzheimer's disease, by driving neuronal loss (Currais, Hortobágyi, 
& Soriano, 2009). Our results suggest that genes involved in cel‐
lular‐ and tissue‐level damage response, such as those with roles 
in inflammation and apoptosis, are subject to weaker purifying se‐
lection than other genes, possibly due to their relatively restricted 
recruitment early in life. The resulting mutational load may then 
lead to suboptimal regulation and function during aging in par‐
ticular tissues, when these genes show elevated activity. The MA 
process may thus contribute to mammalian senescent phenotypes, 
although at varying levels in different tissues.

4  | METHODS

4.1 | Data preprocessing

We collected published mammalian transcriptome datasets that 
included young and old adults, preferentially with large sample 
sizes. We aimed to cover a diversity of tissues and to include 
multiple datasets per tissue if available, given conspicuous vari‐
ation among transcriptome datasets in genome‐wide trends. 
Affymetrix.CEL files from 23 datasets (Barnes et al., 2011; Blalock 
et al., 2010; Edwards et al., 2007; Haustead et al., 2016; Jonker et 
al., 2013; Lee et al., 2011; Liu et al., 2013; Lu et al., 2004; Maycox 
et al., 2009; Miller et al., 2007; Misra et al., 2007; Niedernhofer 
et al., 2006; Qiu et al., 2007; Sinha et al., 2014; Somel et al., 
2010; Swindell et al., 2012; Verbitsky et al., 2004; Welle, Brooks, 
Delehanty, Needler, & Thornton, 2003; Welle et al., 2004; Zahn et 
al., 2006) were downloaded from NCBI Gene Expression Omnibus 
(GEO) (Barrett et al., 2013) and from EBI Array Express (Kolesnikov 
et al., 2014) (Table S1). These raw datasets were preprocessed 
using the Bioconductor “affy” package “expresso” function 
(Gautier, Cope, Bolstad, & Irizarry, 2004). The selected options 
for the “expresso” function were as follows: “rma” for background 
correction, “quantiles” for normalization, and “medianpolish” for 
summarization; the procedure also includes log2 transformation 
(Bolstad, Irizarry, Astrand, & Speed, 2003). Whenever raw data 
were not available, the preprocessed series matrix files were 
downloaded from NCBI GEO; the datasets were log2‐transformed 
and quantile normalized if deemed necessary based on inspec‐
tion of the downloaded data. RNA‐seq datasets were downloaded 
from genotype‐tissue expression (GTEx) (Ardlie et al., 2015). We 
chose 15 tissues from GTEx to represent a diversity of tissues. 
These datasets were processed using log2 transformation on the 
gene expression levels and quantile normalization using “preproc‐
essCore” package in R (Bolstad et al., 2003). Preprocessing steps 
used on the analyzed datasets are presented in Table S1. Quantile 

normalization was preferred because the amount of gene expres‐
sion level change that occurs during aging is known to be limited 
(Somel et al., 2010).

4.2 | Probeset‐to‐gene conversion

Affymetrix probe set IDs were converted to Ensembl gene IDs using 
the Bioconductor “biomaRt” package (Durinck et al., 2005). We used 
the “useMart” function to select the dataset for the species of in‐
terest and the “getBM” function to retrieve the Ensembl gene IDs 
corresponding to Affymetrix probe set IDs. We then followed two 
steps: (a) If one probe set corresponded to more than one Ensembl 
gene, we removed that probe set and (b) if >1 probe set corre‐
sponded to one Ensembl gene, we chose the probe set which had 
the maximum expression value across all samples in that dataset. 
This approach used information only from the highest expressed and 
best‐measured transcript per gene in each dataset (in other words, 
we discarded information from more lowly expressed and possibly 
noisy transcripts in that dataset).

4.3 | Age test and age‐related gene sets

In each dataset, genes showing age‐related change in expression 
levels were identified using the Spearman correlation test. We 
used the R “cor.test” function using the “method = ‘Spearman’” ar‐
gument for calculating the age‐expression correlation coefficient 
ρEA. The p‐values were corrected for multiple testing using the 
“p.adjust” function with the “Benjamini–Hochberg (BH)” method in 
R, yielding q‐values as a measure of the false discovery rate. We 
used the nonparametric Spearman rank correlation test to over‐
come several problems related to conducting meta‐analysis (e.g., 
expression levels in each dataset display unique and sometimes 
non‐normal distributions; outliers can influence the analysis). We 
used a q‐value cutoff of q < 0.10, which is a commonly used thresh‐
old (e.g., refs. (Hartmann et al., 2009; Somel et al., 2010)). Among 
66 datasets, 26 had a low number of age‐related genes (n  < 50); 
therefore, to limit type II error, we did not include these datasets 
in analyses of age‐related gene sets. Gene set sizes for age‐related 
genes and all detected genes for all 66 datasets are shown in Table 
S2. Unsurprisingly, the number of age‐related genes is partially 
affected by sample size (at Spearman correlation test ρ  =  0.35, 
p = 0.03), but this does not influence the main patterns we report 
with respect to ADICT (see below).

In each dataset, we further defined three gene sets based on 
the expression‐age Spearman correlation coefficient (ρEA): (a) 
genes that showed age‐related increase, with ρEA > 0.1 and q < 0.1; 
(b) genes that showed age‐related decrease, with ρEA < −0.1 and 
q < 0.1; and (c) genes that show no change in expression level with 
age (q > 0.10). Here, in addition to the q‐value, we also used the cor‐
relation coefficient (ρEA) as cutoff; this avoids including genes with 
small effect size that can be identified in large datasets (i.e., with high 
power) but not in small datasets. Genes with q < 0.10 and |ρEA| < 0.1 
were discarded from gene set‐based analyses.
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4.4 | ADICT

The ADICT pattern was calculated as the Spearman rank correlation 
between age and ρEC in each dataset, (a) using age‐related genes, 
if detected in that dataset, and (b) using all genes in each dataset. 
The Spearman p‐values were corrected using the BH method as de‐
scribed above (across all datasets included in an analysis). We note 
that correlation between |ρAρEC| and sample size across datasets 
was negative (ρAρEC calculated for age‐related genes: ρ  =  −0.66, 
p  <  0.001; ρAρEC calculated for all genes: ρ  =  −0.47, p  <  0.001). 
This is simply because finding large correlation coefficients is un‐
likely with large sample sizes. However, this pattern cannot explain 
why we observe a consistent trend for negative ρAρEC values (i.e., 
ADICT) only in some tissues: For example, in the brain, 27/28 data‐
sets show a negative ρAρEC, whereas only 4/10 muscle datasets 
show a negative ρAρEC.

4.5 | Protein sequence conservation metrics

We used several types of metrics to estimate negative selection 
pressure on protein‐coding sequences.

First, we used ω0, a statistic based on coding sequence align‐
ments across mammalian species. ω0 is estimated for the Homininae 
branch for human and the Murinae branch for mouse, using the 
branch‐site model (Zhang et al., 2005). In the branch‐site model, the 
branch of interest (the “foreground branch”) is permitted to have 
a different distribution of dN/dS values than the other branches in 
the phylogenetic tree (the “background” branches), which are con‐
strained to have the same distribution of dN/dS value among sites. 
The branch‐site model thus estimates positive or negative selection 
pressure on a protein‐coding gene sequence. Here, we used the 
dN/dS ratio calculated for sites determined to be under negative se‐
lection. Thus, ω0 is expected to be a measure of the strength of neg‐
ative selection on a gene. The values, calculated for each Ensembl 
gene, were downloaded from the Selectome database (Moretti et 
al., 2014).

This measure of ω0 can vary among genes due to multiple factors 
that are not the focus of this study. To disentangle the effects of such 
factors from the effect of protein sequence conservation per se, we 
used information on GC content, CDS length, intron length, intron 
number, mean expression, median expression, maximum expression, 
tissue specificity, network connectivity, phyletic age, and number 
of paralogs, which were directly obtained from the Supplemental 
Material of Kryuchkova‐Mostacci and Robinson‐Rechavi (2015). To 
remove the effect of these variables from ω0, we used the “lm” func‐
tion in the R “stats” package to calculate the residuals (ω0*) from a 
multiple regression model with ω0 as the response variable and all 
other variables as predictors. The ω0* statistic was calculated sepa‐
rately for human and for mouse ω0 values. We used the human ω0* 
data in analyses involving primate transcriptome datasets and the 
mouse ω0* data in analyses involving rodent transcriptome datasets.

Second, we calculated conservation in protein‐coding regions 
between pairs of species separated by different evolutionary 

distances, using dN (nonsynonymous substitution rate) and dS 
(synonymous substitution rate) statistics downloaded from 
Ensembl Biomart (v.83) (Yates et al., 2016). Here, we used “one‐
to‐one orthologs” between human–mouse, human–elephant, and 
human–cow, in order to identify whether evolutionary distance 
between species affects estimated levels of sequence conser‐
vation. Because dN/dS ratios measure the strength of both neg‐
ative selection and positive selection, we repeated our analysis 
only using genes with dN/dS  <  1 (i.e., excluding the genes most 
likely to evolve under recurrent positive selection). In addition, 
we used the R “biomaRt” package to select 3,171 genes assigned 
to GO categories and subcategories related to the immune sys‐
tem (“GO:0002376”), known to be fast‐evolving, and repeated the 
analysis after discarding these genes.

Third, we calculated the conservation of protein‐coding se‐
quences using the PhastCons scores (phastcons100way) downloaded 
from the UCSC database (Siepel et al., 2005). Phastcons100way 
scores each base of the human genome based on the alignment of 99 
vertebrate genomes to human. To find coding regions for each gene, 
we used the coding start and end positions from Ensembl Biomart 
(v.83), combining all isoforms per gene. We obtained a list of all 
PhastCons scores (phastcons100way) for the coding bases of each 
human gene via BEDTools (Quinlan & Hall, 2010) software and then 
calculated the mean PhastCons score value as a metric to represent 
conservation of that gene's coding region (Figure S7).

4.6 | Regulatory region conservation metrics

To calculate conservation for 3′‐UTRs of mammalian genes, we 
first retrieved start and end positions of human gene 3′‐UTRs from 
Ensembl Biomart (v.83). Due to alternative splicing, one gene may be 
transcribed into multiple isoforms, leading to more than one 3′‐UTR 
per gene, which may overlap. Thus, for each gene, we selected all 
bases annotated as part of any isoform's 3′UTR. To calculate conser‐
vation levels of human gene promoter regions, we defined promot‐
ers as the 2,000 bp upstream and downstream of a gene TSS, which 
we again obtained from Ensembl Biomart (v.83). For genes with mul‐
tiple TSSs, we selected all bases that were located in promoter re‐
gions. To overcome possible biases that may arise from the inclusion 
of conserved exon regions into the regulatory region boundaries, we 
discarded exonic regions within the 2,000 bp window around gene 
TSSs.

Using the BEDTools software package (Quinlan & Hall, 2010)⁠, 
we obtained a list of all PhastCons scores (phastcons100way) for 
the defined 3′UTR bases or promoter bases of each gene. We then 
calculated the mean PhastCons score value as a metric to represent 
that gene's 3′‐UTR or promoter region conservation.

4.7 | Bootstrapping

Bootstrapping was performed using the “sample” function in R, with 
“replacement  =  TRUE.” We used bootstrapping to calculate 95% 
confidence intervals for the mean conservation metric among genes 
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that showed (a) age‐related increases in expression levels, (b) age‐re‐
lated decreases in expression levels, and (c) no age‐related changes 
in expression levels. For each case, we resampled genes 1,000 times 
and calculated the mean. To visually compare the conservation met‐
ric among datasets, we then subtracted the median for genes that 
showed no age‐related change, from genes that showed age‐related 
increase or age‐related decrease. The upper and lower 2.5% quan‐
tiles are plotted in Figure 3.

4.8 | Testing linearity

To determine whether the relationship between individual age and 
ρEC (calculated across age‐related genes) was linear across adult‐
hood, we compared linear regression models and quadratic regres‐
sion models for each dataset, with ρEC as the response variable and 
age as the explanatory variable (using the R “lm” function).

4.9 | Defining IELC and DEHC gene sets

We developed a nonparametric statistic, z, which simultaneously 
captures the relationship between a gene's expression and age, and 
the relative conservation level of a gene:

where x is the rank of a gene's ρEA (expression level vs. age correlation 
coefficient) across all detected genes in a dataset, and y is the rank 
of the same gene's conservation metric. Using squared values gives 
additional weight to differences between higher ranks. High values of 
z indicate genes that have relatively high expression and low conserva‐
tion, whereas low values of z indicate genes that have relatively low ex‐
pression and high conservation. After sorting z values, the top 10% of 
genes were included in the increasing expression and low conservation 
(IELC) gene set and the bottom 10% were included in the decreasing 
expression and high conservation (DEHC) gene set.

4.10 | Gene Ontology analysis

Here, we sought to find functional groups associated with either 
IELC or DEHC patterns that were shared across datasets of a tis‐
sue and across all datasets. We conducted GO analyses for the 
three GO domains: BP, CC, and MF. For this, we (a) chose GO 
groups showing enrichment tendencies in each dataset, using lib‐
eral cutoffs (see below), (b) determined the overlap among cho‐
sen GO groups among datasets, and (c) tested the significance of 
the overlaps using random permutations of individual age in each 
dataset. Specifically, in each dataset, we chose GO groups with an 
odds ratio > 1, comparing either IELC or DEHC genes (the most 
extreme 10% tails of the z statistic's distribution described above) 
to the rest (90%). We preferred to use liberal odds ratio cutoff (>1) 
instead of a p‐value cutoff in order to avoid type II error and to 
ensure that datasets with different numbers of genes contributed 
equally to downstream analysis. We then counted the number 
of overlapping GO groups that were thus chosen (odds ratio > 1) 

across the 25 brain, liver, lung, and artery datasets showing the 
ADICT signature, or among different datasets for the same tis‐
sues. Next, we randomized ages of individuals in each dataset by 
conducting 1,000 permutations using the R “sample” function, 
calculated expression correlations with age, and repeated the GO 
analysis using these correlation values. We finally compared the 
number of GO groups that showed enrichment tendency (odds 
ratio > 1) in the random permutations, with the observed values.

In order to get GO annotations for genes, we used Ensembl 
biomaRt package in R. We propagated the annotations considering the 
GO hierarchy (downloaded using http://archi​ve.geneo​ntolo​gy.org/lat‐
est-termd​b/, date of retrieval: June 17, 2015), so that GO terms include 
all genes that are associated with their descendent GO terms.
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