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Abstract

Cystic kidney disease (CyKD9 the commonedife-threateningnonogenic disorder
causing great morbidity and mortality. Whilst therbadieved to be strondy
monogenic architectur@n unbiased whole genome sequencing approach to

understanding the underlying genetic architecture has pesreiouslybeen attempted.

In this thesis | used statistical genetics and bioinformatics methodology to gavesti
the genetic architecture of CyKD as well as two otherde@rders, urinary stone
diseas€USD) and extreme early onset hypertengieEHTN), using whole genome
sequencing data from the 100,000 Genomes Projesedpopulationbasedools to
assess the rare and common variant assocatialiverseancestry matchecbhorts
seeking enrichment of single nucleofiddel and structural variants on a genewide

and pefrgene basis.

In all three disorderthis improvedour understanding of the underlying architecture.
CyKD is shown to be strongly monogenic as expectedolufrequency and common
variants are shown to play an important role in pathogenesis and causation of this
diseasetevealing a role fopolygenicfactors The heritability of USD is shown to be
heavily influenced by lowirequency variants in the sodigpmosphate transporter gene
SLC34A3which explains much of the missing heritability not detected by previous
large-scale common variant association studies. fihting bridges the gap between
the traditional thinking that USD is either monogenic or polygenic/environmental.
Finally, EEHTN is shown to likely be an extreme manifestation of primary

hypertension, with a strong polygenic basis.

These resultsupport the idea that with better sequencing and larger biobanks, an
omnigenic model of disease will become more demonstrable for a broader range of
phenotypesconsistent with genotygehenotypéeheterogeneityvariable expressivity

and incomplet@enetrancebserved in all three diseasEmally, | demonstrate that
population levebhpproachetraditionallyused to studgommon disease are applicable

and useful in rare diseasssearch



Impact Statement

The findings from this study withave implications across multiple disciplines within

and external to nephrology. From a patient perspeniaay of the findingsre in

patients who are unsolved by the clinical arm oft@6@,000 genomes projedthese are

i n the process of being fed back to the |
potentially offering them a molecular diagnosis.

Secondlythese results will be of interest to researchers in nephrogenetics as well as
clinicians involved in rare renal disease. | hope that these results will be hypothesis
forming for bothin silico and functional analyses. For the wider genomics community, |
have used a mixed ancestry in nearly all of my analyses without major genomic
confounding. This demonstrates the scientific advantafjesluding a wider cohort

for genomic analysisral normalises the representation of individuals from diverse
arcestral backgroursd At the start of my thesis, | was only using Europeans for my
analyses, which as a researcher not of European ancestry, was odd to me. | am pleased
that our group has developed methods to improve representation in rare disease

analyses.

Finally, attempting to marry the common and rare variants domains via the analysis of

low frequency variants in rare disease has great implications for the future of rare

disease genomics. As rare disease cohorts become larger and sequencing improves, we
really are at an exciting time to tease o0
help guide understanding of biology and more importantly offer new avenues for

therapeutics for a series of diseases that really lack personalised approaches.

The impact of this work will be disseminated primarily through publication in peer
reviewedjournalswith lay summaries to increase public and patient engagement. My
work on USD has already been published ahnavie created a tutorial on Twitter to
increase the visibility and approachability of the wimkpatientsacademicsand
clinicians Promotion through social media such as Twitterihasased the visibility

of our work and has led to fruitful engagements with relevant stakehadldgrsork



has beerselected for presentation at a number of international and national conferences
(oral presentatiosat UK Kidney Week 20242023,Wellcome Genomics of Rare

Disease 202andAssociationof Physician®f Great Britain and Ireland Annual

Meeting 2023 poster presentations at tAenerican Society of Nephrology Kidney

Week 2022highlighting its broad appeal across genetiephrology and medicine.
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Introduction

Chapter 1. Introduction

In thisthesis | examined the genetic architecture of cystic kidney dis@2gkD),
urinary stone disease (USD) and extreme early onset hypertension (EEBIm¢\)
whole genome sequencif@/GS)in an unbiased genonveide mannerin the
introduction | willdefine and elaborate on some of the key concepts to be anatysed

well as a brietliscussiorof the current landscape of genomic analysis
1.1 The current landscape of genomic analysis

1.1.1 From linkage to GWAS

The elucidation of the intricate relationship between genetic variations and complex
traits has been a foundational pursuit in the field of genetics. Over the course of the last
century, this pursuit has undergone a remarkable transformation driven bgltegtal
advancements and methodological innovations. This evolution of genetic association
analysis has propelled the field from rudimentary observations of familial inheritance to
sophisticated investigations at the level of the entire genome. Centinégd progression

is the advent of wholgenome sequencing (WGS), a revolutionary technigue that has
modernizedur ability to comprehensively examine the genetic landscape underlying

various phenotypes.

The history of genetic association analysis can be traced back to the pioneering work of
early geneticists, who sought to decipher the patterns of inheritance of observable traits.
Gregor Mendel's experiments with pea plants in theX8ith century laid th

groundwork for understanding the basic principles of inheritance, and the subsequent
discovery of the DNA double helix by Watson and Crick in the 20th century unveiled

the molecular basis of genetics. These foundational discoveries set the stage for the

exploration of genetic variations' influence on phenotypes.

In the mid20th century, the concept of genetic linkage emerged as researchers began to
observe that certain traits-segregated more often than expected by chance due to their

physical proximity on chromosomes. This led to the development of linkagessnal
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method used to identify genetic loci associated with traits through the study of familial
inheritance patterns. Despite its success in pinpointing genes responsible for Mendelian
disorders, linkage analysis faced limitations when applied to complexitfaisnced

by multiple genetic and environmental factors.

The late 20th century witnessed a shift in focus towards molecular markers and their
application in genetic association studies. The introduction of restriction fragment
length polymorphisms (RFLPs) and microsatellites enabled more accurate mapping of
geneéic loci. Family-based linkage studies paved the way for the identification of genes
linked to inherited diseases, yet these methods remained inadequate for unravelling the
genetic basis of complex traits affecting broader populations as weltdasiovo
disorderslts efficacyalsodiminishes in cases of incomplete penetrance or when locus
heterogeneity is at play. Populatibased candidate gene studies, which have employed
positional cloning methods and more recently targetedgexeration sequencing

(NGS) approaches, adopt googhesisdriven selection of genes based on biological
plausibility. These endeavours have contributed to gene discovery in rare diseases, but
they remain constrained by elevated fgissitive rates and often encounter chajksn

in terms of reproducibility. Today, both of these methodologies have largely ceded
ground to wholeexome sequencing techniques in the domain of rare diseases.
Meanwhile, genomavide association studies (GWAS) conventionally serve as the

method of choice for gene discovery in common, complex traits

1.1.2 The Genomic Era

The shift awayfrom linkageanalysis(although it still has a vital role to play in

elucidating mechanisms in rare diseds®y been facilitated by tlecreasing number of
patients and participants having their DNA sequendesv two decades after the
groundbreaking publication of the draft human genome seqieacder et al. 2001)

there has been a revolution in not just analytical techniques but the datasets that provide
them. Thdnternational HapMap Projefinternational HapMap 3 Consortium et al.
2010)and thel000 Genome Proje¢Budmant et al. 2015)ereharbingerdo

increasingly large international consortia creabiapanksof largescale sequencing

data from hundreds of thousands of individdedsn across the globgi3Africa
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Consortium et al. 2014; Kurki et al. 2022; Halldorsson et al. 2022; Nagai et al. 2017;

Turro et al. 2020; GenomeAsial00K Consortium 2019; Bycroft et al. 2018; Taliun et al.

2019; 100000 Genomes Project Pilot Investigators et al. 2021)

However, initial excitement that tligaft human genome would lead to a revolution in
clinical care has been cooled by thecovery of the vast complexity of the human
genomeboth in sequencing and interpretatidihe whole genome from telomere to

telomere was only sequenced in 2QR2rk et al. 2022and the vast amount of data

generated since 2001 has required rapid advancement in computational and statistical

techniques taraw meaningful inferences that inform biologyeatments informed by
genomics are now beginning to reach clinical pipelines and patients sticbragleic
acid interference (RNAIi) molecules for primary hyperoxal(@arrelfs et al. 2021)
PCSKO9inhibitors for primary hypercholesterolen{ibifadel et al. 2003)the presence
of a truncating variant iRKD1 for access to tolvaptgiMiiller et al. 2022and most
recentlylnaxaplin forAPOL1associated proteinuric renal disefiSgbuna et al. 2023)
Equally impactfully patiens with cancer and rare diseases are now getting rapid and

accurate molecular diagreswvhich canpersonaliséreatment, risk stratify by genotype

and aid in screening programm@&se recent introduction of whole genome sequencing

(WGS) into routine clinical care within the NHS means this is truly an exciting time for

genomicmedicine.

1.1.3 Sitting between rare and common

Thecommon disease common variant (CDQ@\épatehas rootsn the early 28 century

conficctbet ween t h® fHhMendegl Wah | i am Baride¢he on

ABi ometri ci ans 0 Thedatder damp rdfeatedithe Mendelias idea that
discreteunitsof hereditycould explain the continuous range of phenotypic variation
This was | argely unified by RA Figehesr
and laws could worldditivelyto influence the expression of a phenotippéh in a
discrete and continuous cap&cithisinfluenced discourse in more contemporary
debatesuch as the CDCV vs common disease rare variant (CDR&f)the genetic
architecture ohypertension wherarguments centred on whether hypertension was

rooted in low effect polygenic variants loigh effect rare variant.heanswer has been
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shown to be both witBWAS and candidate gene studies highlighting how these two
causes sit together in not just hypertension but ncrynicdiseases.

In their seminal papatiscussinghe common variant/common disegsgadigm Eric
Lander andavid Reichgave rational¢o this theory positing that it holds true for most
diseases and therefore GWAS was a reasonable apprdaehstady of complex
disease¢Reich and Lander 2001howeverPritchardarguedthat population dynamics

are more likely tdavourthe contributionof multiple rare variantdo diseaséPritchard
2001). He contendghatcommon variants, due to their lengthy presence in the human
population, are more likely to have undergone potential selective pressures over time,
diminishing the impact of negative selection. In contrast, rare variations, often newly
arisen within only dew generations, tend to escape the influence of negative selection
or are rare because they are being actively selected against, owing to their inherently
deleterious naturé¢dowever, whilst conceptually disease can be seen as caysed b
spectrum of variants across the allelic frequency spectrum the available tools have
continued to sil o r es/mamoodiseass oirn tia aff cco mmi

varianfrare disease met hods.

1.1.3.1 GWASfor common and complex diseases

Thousands oGWA studies have now been conductedkiog at the relationship
between common variants (initially taken to be those with a minor allele
frequency[MAF] greater thab% but now greater than 1% is acceptu) various
diseasesvith great succeg®\bdellaoui et al. 2023)r'he rationat from the Lander
paper above that the power to detect association ircoedel studiess a function of
the effect size of an allele and its frequency in the study populateans it have been

limited mainly to complex traits and disorders such as diabeth@ophrenia.

Typically, GWAS deploy genomeide singlenucleotidevariant(SNV) microarrays,
encompassing hundreds of thousamdsnillions of variants, often characterized by a
minor allele frequency (MAF) greater than 1%. These microarrays enable the

genotyping of cohorts under investigation, allowing subsequent comparison with
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appropriate control populatiorniBhese genotype results are then typically imputed
whichinvolves leveraging ancestgpecific reference panels comprised of haplotypes
reconstructed from sequencing data, exemplified by initiatives like the Haplotype
Reference Consortium. Imputation serves to bridge gaps in data, utilizing the
knowledge of linlage disequilibrium (LD), which captures niandom ceinheritance

of alleles,to infermissing variants. However, it's crucial to note that the imputation
accuracy dimmishes when dealing with variants not in LD with those genotyped,
particularly rare variants (present in less than 1% of the general population) and those
manifesting in norEuropean population¥hese imputed variants are then used for the
association tesdf the trait of interest, with the variants sevenmgrkers or indirect
proxies rather than direct indicators of the causal variants in the underlying genetic

regions.

GWAS has nw identified housands of associatiotisthave informed genéiscovery,
the generation of predictive risk scqkhera et al. 2018)estimations of heritability

(Zhu and Zhou 202(nd prioritization of targets for drug developmgfiryluk et al.
2023) However, as successful as GWAS has been the results to date only explain a
small fraction of the burden of any disease in the populatitargeT hi s A mi S Si n¢
her i t @&amolioiettaly 2D09Mas been attributed to @WAS not capturing

common variants with low effect sizes, b) the contribution of variants not detected by
imputation of panel data, namely rare variants and structural variardg (¥pistasis,
where gen@ene interactionsccurandd) genomic imprintingpr parent of origin

effects. For those variants that have beetected~90% of risk alleles are found in
noncodingregions of the genome, making functional annotatidficult; although

efforts to generate cell and context specific raiftiics datavia such projects as
ENCODE(Dunham et al. 2012jhe RoadMap Epigenomics ConsortifiRoadmap
Epigenomics Consortium et al. 20E5)d GTEX(The GTEx Consortium et al. 2020)
have aided hugely with prioritization of causal variants for functional fellpw

Finally, >95% GWASo date have been doneimdividuals of European ancestry (as of

August 202Attps://gwasdiversitymonitor.comincreasing ancestral diversity in

genetic studiesnproves thegower to detect associatiofishigaki et al. 2022; Z. Lu et
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al. 2022; Mahajan et al. 2022hdis ethically crucial[Peterson et al. 2019; Fatumo et
al. 2022)

With theserecognised limitations iGWAS, high-coverage WGS data is now being
explored for investigating diseaséis ability to give whole genome coverage to
excellent depth has demonstrated improved power and sensitivitgawezntional
techniquesThis coupled with larger mwancestrybiobankshave identified novel
association#n variants that are either rare or ancespgcific(Hu et al. 2021)The

major limiting factor has been the cost of WGS, but with falling costs (a whole genome
can now be sequenced for <£500) this is set to betoenstandard method of analysis.

1.1.3.2 Sequencing in rare diseases

With GWAS requiring large case numbearsd being unable to accurately impute rare
variants, sequencing both targeted geeguencingnd wholeexome/genome
sequencing became tfexus in Mendelian disease analy$ithen Nget alused whole
exome sequencing to discovarevariants inDHODH as causative for the Miller
syndrome in 2010Ng et al. 2010}t was hoped that a new era of precision medicine in
rare disease would emabledIt was cost effectivand had the potential to overcome
the issues with linkage studiesch as the requirement for large pedigre#ien poor
resolution oflinked regions inability to callde novovariantsandlocus heterogeneity.
In thetwo years post thmitial WES proof of concept experimefiNg et al. 2009)180
novel genes were described in Mendelian disorders éBmeott et al. 2013ad it
soon foundts way into clinical genetics pipelines and diagnostic [ahsrang et al.
2013)

However, WEShasmethodological and conceptussues From a methods perspective
WES gives heterogenous coverage¢he exonglue to thassues with the
hybridisatioricaptureand PCRamplification steps during libragreparation

(Kebschull and Zador 2013)VES alschas lower pebase coverage than W&&Rding

to it missing may variants in exofBelkadi et al. 2015&nd it is not a reliablepproach
for detecting copy number and structural variants (CNV/@Y8 to most CNV/SVs

extending beyond the boundaries of captured extms choice of preparation library is
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particularly important~50% of pathogenic variarassociateé with hereditary
nephrotic syndrome and Deirash syndromeere poorlycoveredusing leading
WES capture kit¢Park et al. 2015 Conceptuallyyariants causing Mendelian
disorders are within coding region85% of the timgBotstein and Risch 20033
finding that spurned the initiarive towards WEShowever, norcoding variants have
been implicated in multiple diseag&pielmann and Mundlos 2016; French and
Edwards 2020including kidneydiseasesuch as atypical haemolytic uraemic
syndromgMele et al. 2015)Alport syndromdKing et al. 2002)and Gitelman
syndrome(Lo et al. 2011) WES ignoresuchvariants,and t also ignores large
proportion of SV/CNVs as it ignable tareliably definetheir breakpointgR. Tan et al.
2014) It also limits ou ability to integrate findings with othdéines of multi-omics
evidence such apigeneticor chromatinconformationwhere the interactions lie

outside of theoding genome

Wholegenomesequencing (WGS)as remained in the shadows of WES for some time
givenits historically higher costindthevast amountsf datacreated leading tissues

with data storagesecurity,and downstream analysisundoubtedly has benefits over
WES, allowing for full capture of noiroding variants, bettemd more uniform

coverage of codingegions(Belkadi et al. 2015)more accurate capture of SV/CNVs
(Hehir-Kwa, Pfundt, and Veltman 201&hdbetter phasingnd thus assessment of
compouncheterozygositfHofmeister et al. 2023Yhe cost of WGS is now falling to

that comparable to WE@®ewey et al. 2014)especially when WES may require

multiple rursto increase read depth to a level to match the variant detection of WGS
(Lelieveld et al. 2015)Alongside thdalling cost the establishment of large scaléGS
biobanks such as deCO&udbjartsson et al. 2015)OPMed(Taliun et al. 2021and
gnomAD (Karczewski et al. 2020)as made the data generated by WGS integral to
human genetics research. The metrics these have directly affected variant interpretation
at a clinical levebnd helped inform the establishment of UK biobanks that serve a dual
function of research and clinicatility such as the 100,000 genome project (100KGP)
(100000 Genomes Project Pilot Investigators et al. 282d Xhe NIHR Rare Disease
BioresourcgTurro et al. 2020)
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1.1.3.3 Rare variantsi intermediate effect sizes

The large WGS biobanks have ledstverainsightsthatare pertinent tthe

CDCVICDRYV debateAs sequencing projects get larger in both number as well as read
lengths (long read sequencirige frequency and volume of genetic variation become
apparent. There is an abundance of rare and private (seen in one individual) variation
within the ~3 million SNVs and ~0.5 million indels in the average gendtarczewski

et al. 2020)lossof-function variants that are predicted to truncate protein function are
more(Lek et al. 2016jrequent than thought and SV/CN¥Y®y in fact account for 25

29% of all such protein truncating events per gen(fRné.. Collins et al. 2020)

Such insights give evidence to the theoretical madistsussed in the past decade.

Figure 11 references a now semiradper byManolio et alfrom 2009whereby the

Ami ssi ng h digeasesaslhedrized dgigtnateofiom rare variants of small

and intermediate effects size as well as structural vai(stasolio et al. 2009)Figure

1-2 highlights variard on this spectrum in relation to renal diseases from a 2020 review
by Groopman et aln the intervening 11 years there has been little exploration of the
rare variant low effect size spatéke GWAS studies, analysis of this would require
large cohorts, well sequenced, using the latest methodolagetoome issues around

lack of statistical power.
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Figure 1-1 Feasibility of identifying genetic variant by risk allele frequency and strength

of geneticeffect.

The dotted lines represethear eas t he aut hordés thought variants
The genetic research landscape has expanded greatly sincEakemfrom Manolio et &009.
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Figure 1-2 The genetic contributionof variants to renal diseases

Disease causing variants for renal diseases can be large effect, rare variants which tend to follow a
Mendelian patten of inheritaneed monogenic. More common alleles have snaibividual effect
sizesalthough exceptions such APOL1exist. Other genes suchd®OD have both common and rare
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variart roles in renal diseasesr multiple phenotypes such asHiN F 1@yucially the araof rare, low
effect size variants remains relatively unexplored in the renal disease.

We now live in the era of large biobanks of WGS data. There are also techniques such
as regiorbased testing that collapse information across genomic regions e.g., a gene,
before testing for association with a phenotype. Such methods have seen success in
describing a number of novel gedesease relationshig®. Wang et al. 2021; Deaton

et al. 2021; Akbari et al. 202and more importantly begin to fill out the bottom left
hand quadrant of both figure 1112. One of the largest analysis of rare and low
frequency variants to date, across 643,219 individuals and 744 phenotypes from the
UKBB and Finngen, found 975 assdmas of which 145 were driven by unique

variants in the allelic frequency between-@% with an average odds ratio of 2.8
(Benjamin B. Sun et al. 2022}learly these variants are not acting in purely Mendelian
ways, their penetrance is likely to be low and thleguld be seen as risk factors or
modifiers that transact with other genetic and environmental factors for a particular
diseaseThis is an exciting era for genomic medicar@ in thisthesis,| will use

similar methods to explore this genome space for a number of disorders to further

elucidate their genetic architecture.

1.2 Genetic architecture

The term fAgenetic architect uthesidltrafeeséod s d e f
the types of genetic variation and their respective eftacthe observed variation in a
phenotype. This is driven by both our knowledge of the types of variation that exist and
in turnthe technologies and methods available to détent. Thisencompasssthe
arrangementanddistribution of genetic variants, such as single nucleotide variants
(SNVs), insertions/deletionin@els) and structuravariants(SNVs)acrossac o hor t 6 s
genoms, their allelefrequenciesand theireffect sizesin human populatiofbased

analyses genetic architecture describes the gerstationthat is responsible for
broadsense phenotypic heritabiliiMackay 2001)This is compared to narresense
heritability which applies to additive genetic effect oflysscher, Hill, and Wray

2008)

30



Introduction

Genetic architecture also includes the interactioncanebinel effects of multiple
genegepistasispnd theinnteractionswvith environmental factors determiningthe
expression ofraits. Defining this architecture for t@ait or disease is a fundamental goal

of human genetics both scientifically and clinically.

Genetic architecture is defined as much by the technologies available to the researchers
as the underlying genomic variants. Historigdiimited by both pedigree size and

genetic mapping technology, linkagealysis and fine mapping where the technologies

of the dayduring the 1980s and 199Qspner and Greenberg 201&)ocalizationof
geneticssignalswas typically followed up using Sanger sequeneing then functional

studies in cellular andnimalmodels(Heather and Chain 2016)his was a difficult

and laborious process by 2000~1000 of the~7000 single gene inherited disease had
beendesribeds uch as Hunti ngt ono gKraneretab O, Fand ¢
S. Collins 1990)

The first draft of the human genome sequence reduced many of the barriers te disease
genemapping(Schmutz et al. 2004)Microarray-basedechnologiesllowed for
structuralvariationto be analysednd exome andenomewide sequencingnave been
instrumental in further elucidation of genedichitectureaided by thearallel

developmenbof in silico analysis of genetic varianfsleather and Chain 2016)

Complex diseases and traits with polygenic architecture can ndesitebedand

biobanks of increasing size allow for the examination offlegquencylow effectrare
variantsin all forms of diseas@). Wang et al. 2021)n fact for certain traits such as
height,thdf mi ssi ng her it ab iBuropeanancdstay pavibgehe ways ol v
for further phenotypet® be elucidated in a similar fashion as biobanks increase in size
(Yengo et al. 2022)

This increasing ability to sequganda mor e
scalehad led to an evolution of the models of genatahitecture Traditionally genetic
architecturénas been described as monogenic, oligogenic or polygeplging

differing levels of genetic variant contribution to the variability in a phenofaelano

and Katsanis 2002Ho we v e r , t h esodél descniliegasgene regulatory
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network wired as such to allow all gereegressedo contribute to a trgitwith

peripheral gene networks having azeyo effect and interaction with a core set of

genes in a given tissue or cell tyfBoyle, Li, and Pritchard 2017)ikeFi s her 6 s
Aiinnfi t esi mal model 6 whzero effects oratrhit variatiar, thea nt s
omnigenic modeéffectively describes altaitsas quantitative as variation throughout

the genome affects tiprocess as much as more closely related varfargser 1919)

Clearlyit still holds true that somghenotypesre much more monogenic e.g. Cystic
Fibrosis whilst others are more polygenic e.g. Typ&Beates but the increasing
influenceofi per i pher al comgemedrn €0 vaegnantand sub:
increasingly being appreciatdétom a practical perspective, thesBuenceshave been
bestdescribedat the intersection ahonogenic disease and polygenic risk scores, such

as inaltering the penetrance ofonogenidier 1 genomic conditiong-ahed et al.

2020) describing the modification of chronic kidney disease (CKD) risk in monogenic
causes ofrenal diseaséhan et al. 2023and our work orthe polygenic interaction

with rare low effect size variants inephrolithiasis described later in this thesis
(SadeghiAlavijeh et al. 2023)

A comprehensivenderstandingf geneticarchitecture allow$or better screening,
diagnosisprognosisandtherapeutic$or a givendisease. In this thesis | describe the
use of shortead whole genome sequencing (WGB3 nationaktohortof cystic kidney
disease (CyKD)urinary stone disease (USBNd extreme early onset hypertension

(EEHTN)in order to describehe genetic architecturef these disorders

1.3 Summary

In summarypur ability to plumb the full range of genetic variation and assigae

findingsa role in a trait odiseasdasexploded in the last decad&hile previous

studies of genetic causation in disease have been sildbd bgchnologies and

methods available nt o A tGWMS O 0-rs effruae roar abilitg to

overcome these challenges has improved to the point of being able to integrate a broad

spectrum of variation into our models.
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1.4 This study

In this study | use WGS data from the 100,000 Genomes Project to understand the
genetic architecture of CyKD, USD and EEHTN. Population based rare and common
variant association testing was perfornrediverseancestry case control cohorts

looking for enrichment of single nucleotide/indel and structural variants on a genome
wide level. Polygenic risk scoring was utilised as a method to ascertain heritability and
understand common variant contribution to thaseases. This studgpresentsne of

the largest WGS analyses of all three conditions using unbiased genome wide methods.
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Chapter 2. Materials & Methods

In this chapter | discuss the methods used for generating genomic and cohort data used
throughout the thesis. | then discuss the overarching theories behind the statistical
methodology used for controlling for sources of bias and the subsequent association
testing. I will go into more detailed practical methodology within each reshaister.

All code used in this thesis can be found onGitiAub:

https://github.com/oalavijeh/phd_scripts/tree/maith workflows generated by

Genomics Englandés bioinfhipssfrati cs team c:

docs.genomicsengland.co.uk/workflowAll summary statistics have been uploaded to

a shared drive at:

https://liveuclae

my.sharepoint.com/:f:/r/personal/zchaf43 ucl_ac_uk/Documents/thesis_summary_stats

?csf=1&web=1&e=0TKY8a nd wi || be referenced to as

text, this will be hyperlinked to this location.

2.1 The 100,000 Genomes Project

In 2012, the UK launched the 100,000 Genomes Project (100KGP), an initiative to
sequence 100,000 genomes from patients with cancer, rare disease and

their unaffected relativgd00000 Genomes Project Pilot Investigators et al. 2021)

13 National Health Service (NHS) Genomic Medicine Centres across the UK recruited
participants which was completed in December 2018. In total 132,760 genomes had
been sequenced by March 2023. The Genomics England dataset (version 15) consists of
WGS dataclinical phenotypes encoded using a standardized vocabulary of phenotypic
abnormalities called Human Phenotype Ontology (HPO) cfBlexza et al. 2015pand
retrospective and prospectively ascertained NHS hospital records for 90,189
individuals. Ethical approval for the 100KGP was granted by the Research Ethics
Committee for East of England Cambridge South (REC Ref 14/EE/1112). Written

informed consent as obtained from all participants or their guardians.

The 100,000 Genomes Project (100KG) is one of the largest sequencing initiatives in

the worldoffering a unique opportunity to combine highality, highcoverage
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genomic data with rich clinical and phenotypic information from a national health
system. Furthermore,kay strength of this dataset is the availability of sequence data
from large numbers of people without the phenotype under study, drawn from the same
population recruited and their samples processed and sequenced within a shared
pipeline. This allows condl for allele frequency and variant burden in the population.

This is an advantage compared with previous sequencing studies in these disorders that

have typically lacked such robust control.

2.2 Data Generation and Processing

DNA extraction, processing, whole genome sequencing, WGS alignment, variant
calling, variant quality control and aggregation were all performed centrally by the
Genomics England central bioinformatics team and will be detailed below. This resulted
in an agregated genomic variant calling file (QVCF) incorporagngajorityof the

100KGP participants split into chunks by genomic position.

2.2.1 DNA extraction and preparation

Nearlyall the DNA (99%) was harvested from blood and prepared using EDTA with
the remaining coming from saliva or tiss@&mples underwent quality control
assessment based wslume, concentratigrpurity, and degradation. Libraries were
prepared using the lllumina TruSeq DNA PERee High Throughput Sample
Preparation kit to minimize PGRduced sequencing bias. Where limited DNA was
available (<1% samples) the lllumina TruSeq Nano High Througbaunple

Preparation kit was used.

2.2.2 Whole-genome sequencing and alignment

lllumina HiSeq X instruments were used to perform W&Seratingl50bp paired end
reads which were processed on the lllumina North Star Version 4 Whole Genome
Sequencing Workflow (version 2.6.53.23). Read were mapped to the Homo Sapiens
NCBI GRCh38 reference assembly and decoys (partially assembled DNA sequences

missing from the reference genome) using the lllumina Isaac Aligner (version
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03.16.02.19 Aqual ity threshold of O 95% genome
quality > 10 for samples to be retained was set.

For the pilot arm of the 100KGP samples were aligned to NCBI GRCh37 reference,
however, those patients in the pilot were mostly moved to build 38. For downstream
analyses | only took those samples aligned to GRCh38, however, the clinical arm of
100KGP whee diagnostic yields for the project are generated are calculated using
probands aligned teitherGRCh37 or GRCh38. In terms of coverage (the number of
times a single base is read during sequenctiggl00KGP samples achieved 97.4%
mean coverage at 15X thimedian genomeide coverage of 39X. Samples with
heterozygosity rates >2% (implying cressntamination of samples) were removed (as
determined by the VerifyBamID tool). Maland females were subset and analysed

separately for sex chromosome quality control.

2.2.3 Variant calling

Variant calling was performed using |11 u
small SNVs and short insertions/deletions (INDELS). These were output to a genomic
variant calling format file (gVCF). Starling uses a combination of read quality scores,

allele counts to predict a genotype per locus before comparing it to a reference genome.

2.2.4 gVCF aggregation and variantlevel quality control

Genomic variant call format files (QVCFs) were aggregated using gvcfgenotyper
(lumina, version: 2019.02.26) with variants normalized and raliiilic variants
decomposed using vt (version 0.57721). Variants were retained if they passed the
following fil ters:
f missingness O 5%
T median depth O 10
f medi an GQ O 15
1 percentage of heterozygous calls not showing significant allele imbalance for
reads supporting the reference and al i

T percentage of complete sites (compl et

36



Materials & Methods

1 P value for deviations from Hardy/einberg equilibrium (HWE) in unrelated

samples of inferredbEuropean ancestry

HWE is the principal by which allele and genotype frequencies remain static between
generations as long as mating is random and migration, mutation or selection do not
occur. Variants that differ vastly by HWE normally represent genotyping or sequencing
errors.However, HWE deviances can also represent population stratification or true
associations. HWE is normally assessed separately in cases and controls to avoid

removing true associations.

2.2.5 gVCF annotation

Annotation was performed using Variant Effect Predictor (VEP, version 98.2)

(McLaren et al. 2016)Allele frequencies were annotated using gnomAD and TOPMed
databases using both total population and ancestry specific values. Variants were further
annotated with the Combined Annotation Dependent Depletion (CADD) scores (version
1.5) (Rentzsch et al. 2019helossof-function transcript effect estimatrOFTEE)

tool (Karczewski et al. 202@nd SpliceAl splice site predictor to@dlaganathan et al.

2019)

CADD incorporates more than 60 different annotations (including evolutionary
constraint, epigenetimodifications,and functional predictions) into a machine
learning modelgenerating a deleteriousness score for all ~9 billion potential coding
and noncoding SNVs in the human genoifiRentzsch et al. 20197\ CADD PHRED
adjusted score >20 for a variant means it is predicted to be in the top 1% damaging
variants in the human genome. CADD scoring is a very popular method for variant
deleteriousness calling and remains one of the&sforming and flexible tols (D.

Wang et al. 2022)espite many other callers now being incorporated into Ensembl.

LOFTEE assesses variants that are-gi@ped, splice site disrupting and frameshift
variant only. It filters out variants based on sequence and transcript context (such as
removing terminal truncation variants or well rescued splice variants) and flags ex

features such as conservatitirhas been shown to effectively remove predicted loss of
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function variants (pLoF) that are common in the population while retaining correctly
ascertained pLoF varianfgarczewski et al. 2020)For these variants LOFTEE gives a
flag indicating whether there is a fAhigh

they cause pLoF.

SpliceAl is deep neural network that predicts cryptic splice mutations from genomic
sequence data using an unsupervised deep learning (dagahathan et al. 2019)he
output for each variant is a delta score ranging frelrf@ each type of splice variant
(donor loss, donor gain, acceptor loss, acceptor gain) with higher scores indicating a
higher probability of the variant affecting splicing; a score >0.8 id bgehe authors as
a high precision cubff.

2.2.6 Bioinformatics tools

The gVCF files were filtered using bcftools (version 1 (3necek et al. 2028Bnd
BEDtools(Quinlan and Hall 2010 the command. Phenotype data including hospital
episodestatisticsSfHES) and human phenotype ontology data (HPO) was extracted from
LabKey tables using the LabKey R pack#@iyelson et al. 2011)The outputs of the
association analyses were manipulated, analysed and plotted in R (Version 4.0.3) using
the data.table, tidyverse, ggm@n Turner 2018pnd ggplot2 packag€gvickham.

2016. Survival analysis was performed and plotted with the survival package in R
(Therneau 2023)

2.3 Relatedness Estimation

Casecontrol analyses in genomics looks for shared areas of the genordefipesl at

the point of testing e.g. SNV, gene, structural variant etc that are more common in
either cases or control outputs a statistical probability as to the confidence of the
association as well as an effect size as to the magnitude of the association. Related
individuals share more common tracts of genomic information and if grouped together

in such analyses lead to spurious associations and biased estimated of effdct sizes i
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unaccounted for. Common practice entails

defined as more distant than secalagjree relatives.

Genetic relatedness can be ascertained using idémytifescent (IBD), a concept that

refers to the sharing of genetic material between two individuals inherited from a

common ancestor. IBD assumes that individuals who are closely related are more likely
to share longer segments of their DNA. The proportion of loci where a pair of

individuals share 0,1 or 2 alleles from a common ancestor is calculated, with these
estimated used to create apair se ki nship coefficient (0)
probabilty that a randomly selected allele from two individuals is IBOo&fficientof

0.5 isequivalento monozygotic twins, 0.25 to firstegree relatives and 0.125 to

seconddegree relatives.

Genomics England had generated a seR@f747 high quality autosomal biallelic
SNVs witha minor allele frequency (MAF 1%using PLINK (version 1.9)Purcell et
al. 2007) SNVs were included if they met the following criteria:

1 missingness < 1%

f medi an GQ O 30

T median depth O 30
1T AB Ratio O 0.9

)l

completeness O 0.9

SNVS that were ambiguous due to strand uncertainty were excluded. To prevent further
confounding linkage disequilibrium (LD) pruning was performed using a squared
correlation coefficient (r2) threshold of 0.1 and window of 500kb to remove correlated
variarts. Variants in regions of loaginge high LD
(https://genome.sph.umich.edu/wiki/Regions_of high_linkage_disequilibrium_(LD)
were also removed. SNVs out of HWE in any of the African (AFR), East Asian (EAS),

European (EUR) or South Asian (SAS) 1000 Genomes populations were also removed
(pPHWE <1x105).
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With this pruned set of variants, | employed the KHRGbust algorithnfManichaikul

et al. 2010}o infer relationships in the presence of population substructure. KING
generates pairwise kinship matrices, which | generated for cases and controls separately
first. I then subset my sampled into unrelated individuals with a kinship coefficient
threshotl of 0.0884 (second degree relative). | then combined the case/control subsets
and reran KING with the same threshold, removing controls that were related to the

causes using a custom Python sdfiyt. Catalin Voinescu, UCL).

2.4 Population Stratification

Removing close relatives from genetic analyses removes one source of bias however,
population structure presents another similar challddgpulation stratification refers

to the presence of systematic genetic differences between subpopulations within a larger
populationi.e., the distribution of genetic variants differs between subpopulations

These differences can arise due to various factors such as geographical igeittion
norrrandom mating)migration patternggenetic drift tandom fluctuationsni the

frequency of genetic variants or alleles within a population over successive

generationg genetic admixturggene flow (the transfer of genetic material from one
population to anothegnd evolutionary processédhe result is false positive

associations and inflated test statistics. Various statistical approaches have been

developed to minimise confounding by population structure.

2.4.1 Genomic Control

Agenomewi de infl ation factor, often denoted
used in genomwide association studies (GWAS) to assess and correct for potential
inflation of test statistics due to population stratification or other sources ofnsy&te

bias.The inflation factor is a measure of the inflation of test statistics compared to what

is expected under the null hypothesis of no associdfitire test statistics are inflated

due to populatiostratification or other sources of bias, the inflation factor will be
greater than 1. A valwue of & = 1 indicat

follow the expected null distributioifhe inflation factor can then be used to correct the
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test statistics in the GWA®evlin and Roeder 1999enomic inflation under a
collapsing rare variant model is less straightforward and further discussed in the

collapsing rare variant section (3.3.2.4).

2.4.2 Principal component analysis (PCA)

Principal component analysiBCA) helps to identify patterns, structure, and
relationships within higldimensional genetic data by reducing the dimensionality and
visualizing the data in a more manageable fdmthe context of genomics, PCA is

often applied to genotype or gene expression data, where each individual or sample is
represented by many variables (e.g., genetic variants or gene expression levels). By
employing PCA, these higtimensional datasets che transformed into a lower
dimensional spze while retaining the most important patterns of variafldre steps of

PCA analysis are:

1 Covariance Matrix: PCA calculates the covariance matrix from the data, in this
case PLINK files containing sample and genomic variant data which quantifies
the relationships and dependencies between the genetic. The covariance matrix

captures the varian@nd cevariance of the variables in the dataset.

1 Eigendecomposition: The covariance matrix is then eigendecomposed to obtain
the eigenvectors (principal components) and eigenvalues. Each eigenvector
represents a principal component, and the corresponding eigenvalue indicates
the amount of variance expted by that componePatterson, Price, and
Reich 2006)

1 Dimension Reduction: The eigenvectors are ranked based on their associated
eigenvalues, and the topnked eigenvectors capture the most significant
patterns of variation in the data. By selecting a subset of the top principal

components, the dimensionglinf the data is reduced.
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To aid in interpretation this data is visualised in a scatter plot, where each individual is
represented by its scores on the selected principal components. This visualization allows
for the identification of clusters, outliers, and patterns of genetitasity or

dissimilarity among individuals. This is particularly useful for detecting population
stratification or genetic ancestry differences in genomic datasets. It can reveal
underlying genetic substructure or relationships between populations, wisicltial

for controlling population stratification in genetic association studies.

Usually, the top ten PCs are included as fixed {rammom) effects in the regression
model of an association analysis to control for population stratification. However, it
should be noted that PCA is less reliable in small sample sizes or when estimating
population substructurEtoltzfus 2011; Johnstone and Lu 2Q09)

2.4.3 Linear mixed models (LMM)

LMMs (also known as a mixed effect model) now play an integral role in accounting
for population stratification in genetic association studies and can be used on both
continuous and binary traits (if using binary input it is known as logistic mixed model)
(Z. Zhang et al. 2009; Dandiioulland and Perdry 2015; G. Li and Zhu 2013)

LMM is a statistical modelling approach that incorporates both fixed effects and
random effects into the analysis. The response variable is modelled as a linear
combination of fixed effects and random effects, along with an error term. Fixed effects
(covaiates) represent the systematic or-nandom factors that influence the response
variable. Fixed effects can be categorical (e.g., treatment groups, sex) or continuous
(e.g., principal components). The coefficients associated with the fixed effectstestima
the relationship between the covariates and the response variable. Random effects
capture the variability due to factors that are not of primary interest but are still
important to account for. Random effects account for correlation or clustering within
the data and are typically used to model the hierarchical or nested structure of the data.
In genetic studies, random effects can account for the genetic relatedness between

individuals or clustering within families and are calculated via a genomicoredaip

42



Materials & Methods

matrix (GRM). The random effects are assumed to follow a specific probability
distribution, often a multivariate normal distribution. Finally, the error term in an LMM
accounts for the residual variation that cannot be explained by the fixed and random
effects. It represents the withgroup or withinsubject variability that is not accounted
for by the model. The error term is assumed to follow a normal distribution with mean

zero and constant variance.

LMMs are flexible and can handle unbalanced or missing data, accommodate different
data structures (e.g., repeated measures, nested designs), and provide estimates of both
fixed and random effects, along with associated uncertainty measures (e.g., standard
errors, confidence intervals). LMMs are commonly estimated using maximum

likelihood estimation (MLE) or restricted maximum likelihood estimation (REML). It
should be noted that LMMs are computationally intensive but allow for the accounting

of interr-and ntra-population structure and cryptic relatedness.

2.4.4 Control of population structure

Published methodology from our group has shown that incorporating two of the above
approaches controls confounding from population structure in a mixed ancestry
case/control populatiofChan et al. 2022)r'he first method is using a matching

algorithm that matches cases to controls within a distance threshold as calculated using
the first ten principal components (generated WithNK using the 127,747 high

quality autosomal biallelic SNVs with MAF > 1%) weighted by the percentage of
genetic variation explained by each component (Figtkéo? an example from

CyKD). Only controls within a&pecified distance of a case were included, with each

case having to matchnainimum of two controls to be included in the final cohort.
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Figure 2-2 Ancestry Matching

Principal component analysis showing the first eiricipal components for matched cases (red) and
controls (green) and unmatched controls (gheyd CyKD cohort This highlights that cases are taken

from multiple different ancestries with the appropriate matched controls. After ancestry matching there
were 1209 cases to 29096 controls.

Secondly, a logistic mixed model was implemented using SAWEZhou et al. 2018)
and SAIGEGENE (W. Zhou et al. 2022)This in additiorto ancestry matching allowed

for further control of population structure and cryptic relatedness.

2.5 SAIGE

The Scalable and Accurate Implementation of Generalized mixed model or SAIGE and
its extension SAIGESENE have been developed to deal with the increasing challenges
in running association testing in large biobank scale genomic datasets. It is
computationdy intensive running mixed models on such datasets and controlling type
1 error is challenging in unbalanced case control ratios (roughly greater than 100
controls per case). These tools have now become the standard for geidensengle

variant and exomeide regionbased association testing in large coh@is Zhou et

al. 2018, 2022)Given the importance of SAIGE in this thesis | have broken dtsvn

key features below:
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2.5.1 Generalised logistic mixed model

SAIGE uses a logistic mixed model written as:

logit(ui) =XiU +b G+ b
wherey; is the probability of individuall being affected by the disease or trait in
guestion based on their covariates, genotype, and random effesta.vector of
covariates (e.g., sex and top ten principal componduis)a vector of fixed covariate
effects including the intercepg; is the matrix of allele counts (0,1,2) for each
qualifying variant and is the fixed genotype effeds is a vector of random effects that
incorporates relatedness (and consequently population structure) between irglividual
estimated using an N x N GRM. SAIGE wraps this methodology around optimised
computational strategies to reduce the cost of fitting null logistic mixed models, making
it ideal for large scale biobanks.

2.5.2 Saddlepoint approximation

In unbalance caseontrol cohorts (roughly greater than 100 comsttoll case) there is

not a normal distribution of test statistics for single variants leading to inflated type 1
error rates. In order to control for this SAIGE utilises saddlepoint approximation (SPA)
(Dey et al. 2017)SPAis a mathematical technique used to approximate the distribution
of a random variable when its exact distribution is difficult to determine analytically. It
is particularly useful when dealing with complex distributions, such as those
encountered in gendmassociation testén some scenarios, the null distribution of the
test statistic is not readily available in closed form. This can be the case when the
sample size is small or when the distribution of the test statistic is compliS&ad.
provides an efficient and accurate method to estimate the null distribution and compute

p-values in such situations.

SPAInvolves finding the saddlepoint of a Laplagpe integral equation, which is a
point in the domain of the characteristic function of the random variable where the
integral equation is satisfied. The saddlepoint approximation constructs an asymptotic

expansion around this saddlepoint, allowing for the estimation of the tail probabilities of
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the distribution. This approach is particularly effective for approximating the tails of

distributions, which is essential for calculatingadues.

In genomic association tests, saddlepoint approximation can be applied to compute
accurate pralues for test statistics under various null distributions, such as the chi
square distribution or the logistic distribution. By accurately estimating the null
distribution, one can determine the statistical significance of genetic associations and
make more reliable inferences about the relationship between genetic variants and traits

or diseases.

However, when variants have a minor all el
then SPA loses accuracy. SAIGEENE tunes this signal by employing efficient

resampling methods to further control for type 1 error rg@esinggeun Lee et al.

2016) Efficient resampling refers to methods such as bootstrapping or permutation tests
that involve generating multiple resamples or permutations from the observed data to
assess the sampling variability and make statistical inferences. In the case of SAIGE
GENE, permutation testing is performed only in those individuals carrying the minor

allele to estimate the sampling distribution and generate an empinele.

2.5.3 Workflow

There are two main steps behind SAIGE and SAEENE:

1. Variance component estimation using a generalized linear mixed model
(GLMM): The first step involves fitting a null GLMM using sex and the first ten
principal components without the genetic variants (fixed effects). Next a GRM
is constructed using variantsth a MAF>1% with the variance components
used as random effects. This account for both genetic relatedness and population
structure.

2. Score test for association analysis: After estimating the variance components,
the second step involves performing association tests to assess the significance

of genetic variants. SAIGE and SAIGEENE use a score test, which is a
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variant of the standard likelihood ratio test (LRT). The score test compares the
likelihood of the model under the null hypothesis (no association) to the
likelihood under the alternative hypothesis (presence of association). The test
statistic is derivedrom the score vector, which represents the derivative of the
log-likelihood function with respect to the variant effect size. The saddlepoint

approximation is used to account for casatrol imbalance.

Whilst SAIGE has been widely adopted, there exist several relevant limitations. With

any use of logistic regression, iftheevenrat e i's | ow then esti mat
can be inaccurate; thi®lds true for rare variants and the authors of SAIGE now

recommend Firth logistic regression be used instead in such scenarios. Secondly,

SAIGE has been shown to be slightly conservative whenamageol ratios are very

unbalanced.

2.6 Power

For singlevariant association analysis statistical power was calculated using the R
package genpwiMoore, Jacobson, and Fingerlin 2088suming an additive model
and aP<5x10%, the standard genonwéde significance threshold. Figure3dlilustrates
the power for the GWAS at different alldlequenciesand odds ratios (OR) for the
CyKD cohort. At an allele frequency of 1% single variant association testing is well
powered (>80%) to detect alleles with an ORBISD and EEHTN are discussed in

more detail in their respective chapters.
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Figure 2-3 Statistical power of CyKD GWAS

Power to detect single variant association under an additive model for 1209 CyKD cases and 26096
controls at a genomweide significance threshold of 5x0MAF, minor allele frequency.

For regionbased association testing, establishing power is more challenging due to the
myriad parameters that need to be accounted for such as allele frequency and effect
sizes of individual variants. PAGEANDerkach, Zhang, and Chatterjee 20085
developed to aid in calculating power for gdrssed collapsing tests by using
distributions derived from the precursor to the gnomAD database, Bx&Cet al.

2016) PAGEANT was used to calculate the minimum proportion of cases explained by
asinglegene detected Wit80% power in the rare variant analyses (discussed further in
chapter 3), assuming 80% of the qualifying variants used for the collapsing test were
causal. The genomeide threshold used w#<2.5x10%; theless stringenp-value

reflectinga Bonferroni correction per gene rather than per SNV.
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2.7 Statistical Significance

The more tests one carries out, the more likely one is to see a statistically significant
result by chance. This means that the chances of rejecting the null hypothesis when it is
true also increases. This is Type 1 error and require careful considangtiercontext

of genomewide association testingheremillions of independent tests are carried out.

| will discuss some of the current thinking behind controlling for multiple testing below:

2.7.1 Bonferroni correction

Il f U is the desired si misnthefnumber of ndepehdent e | |,
tests, then a Bonferr onin Thisiswidelg dsedanrthe c a n
genomics community and represents the most stringent of type 1 error control methods.
The underlying assumption that every variant tested is independent does not always
hold true and this method is weighted in favour of miningdalse positives (type 2

error) at the expense of potentially missing real sigfi2éslin and Roeder 1999)

2.7.2 False discovery rate

False discovery rate (FDR) is recently gained more favour in the genomics community
as an alternative to Bonferroni correction. FDR determines a proportion of false positive
that are acceptable within the significant results, typically 1% ofE&njamini and
Hochberg 1995)FDR has an increased type 1 error rate but greater power for signal
detection. They are often used for hypothggeserating where the results will not

directly impact patient care.

2.7.3 Permutation testing

Rather than assuming an underlying distribution, permutation testing calculates a
distribution for the test statistic under the null hypothesis in order to give an empirical
value.By randomly rearranging the data and recalculating the test statistic of irderest,
null distribution of the test statistis calculatedSalmaso et al. 2011)his is then

compare tothe observed test statistic to determine t#valpe Permutation testing is
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computationally intensive byarticularly useful when the underlying assumptions
required by traditional parametric tests are not met or when the sample size is small.

2.7.4 Bayesian approaches

Bayesian methods provide an alternative approach to determining statistical
significance compared to classical frequentist methods. In Bayesian statistics, statistical
significance is typically expressed in terms of posterior probabilities or credible

intervals rather than-palues.Bayesian methods use prior probabilities to fine tune and
generate a conditional probability using the observed data. The Bayes factor quantifies
therelative strength of evidence for one hypothesis compared to another. $ergpre

the ratio of the likelihood of the data under one hypothesis to the likelihood under an
alternative hypothesis, after considering prior beliefs. A Bayes factor greater than 1
indicates evidence in favour of the hypothesis in the numerator, whilaelgas than

1 favours the hypothesis in the denominator. The strength of evidence can be interpreted
using widely accepted guidelinbat as of yet has not been widely adopted by the

genomics communit{Fernando and Garrick 2013)

Bayesian methods have found more favour
make up a significant GWAS signal, rather than the traditionalype thresholding as

it allows for a more nuanced interpretation of the results by providing a range of
plausible effect sizes or variants rather than a binary significant/not significant
determination. It also enables researchers to quantify and compare the evidence for

different variants or effect sizes, aiding in prioritizing folloyy investigations.

2.7.5 Significance thresholds

Bonferroni correction was selected as theafue adjustment methods throughout this
thesis as my aim was to replicate any significant findings in an independent cohort such
as the UK Biobank. In order to do so | wanted to make sure any significant 8nding

were as robust as possible and thus | wanted to minimise noise.
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Single variant association analysis uses a gensitie significance threshold of

5x10%8, a figure derived from the International HapMap Consortium based on estimates
of the number of common independent variants (r2 < 0.8) with MAF > 5% in a
European ancestry population (~1 million). Given | used a lower MAF of 1% and have
access to WGS dagand therefore test more variants than the HapMap consortium there
IS an argument to be made that a lowerfue threshold is applicable. However, this

has yet to be implemented in the genomics community.

Forgenelevelrare varianassociatioranalyses R2.5x10%is the exome wide
significance 0.05Bonferroni corrected for the number of protein coding genes in the
human genome (U = 0.05/~19,000).

2.8 Summary

In this chapter | have discussed how the central data used for this thesis was constructed
as well as the underlying theories behind the statistical genetic apmdacte

subsequent chapters | will go into more detail specific to the results prepented

phenotype
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Chapter 3. Cystic kidney disease

Cystic kidney disase (CyKD)is a catch all tan encompassing wide group of

diseases with differingauses that all involve the formation of fluid filled cysts in one
or both kidneysCyKD can present at any point in life and the many causes ardyusual
distinguished by their respective clinical feature, imagingracteristicscyst
distributionand whetheextrarenal features are present. Howewethe age of

genomic testing becoming more widely available, a moleeayproach as the first step
in diagnosis is increasingly popular and has led to a better understan@ipkf[Df
pathogenesis and improved diagnostic accurboyhis end the causes Gf/KD can be
divided intohereditary and nehereditarycauses andre detailed in th&able3-1

below. | will give more indepth analysis ahe causes of CyKD thaire directly

relevant to this thesis, namalpminantand recessiveauses of CyKas well as

H N F 1rélatedCyKD; other relevant and important genes and pathways involved in
CyKDwillber ef erred to in the fipathophysiol og)
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Table 3-1 Causes of cystic kidney disease.

Cystic kidney disease

Extra-renal

variable

elevated liver

enzymes, bicornate

Gene Disease Renal Phenotype Mode OMIM# Reference
phenotype
ADPKD
PKD1 Bilateral kidney cysts, renal
(truncating) enlargement, median age ESRF ~5 PLD, ICH, heart 173900 Harriset al. 1994
ADPKD-PKD1 ' years valve abpormalltles
PKD1 (non Bilateral kldney cysts, renal _ ao'rtlc root_ _
; enlargement, median age ESRF ~6| dilatation hernias, 173900 Harriset al. 1994
truncating) o .
years diverticular disease
Bilateral kidney cysts, renal cysts inother
PKD2 ADPKD-PKD2 enlargement, median age ESRF ~7 organs 613095 Mochizukiet al.1996
years
GANAB | ADPKD-GANAB Bilateral cysts, preserved renal PLD 600666 Porathet al.2016
function AD
DNAJB11 | ADPKD-DNAJB11 | Multiple small cysts with normal/sma PLD 618061 | ComeclLe Gallet al.2018
kidneys, possible ESRF after 60 yea
Interstitial fibrosis with norenlarging
ALG5 ADPKD-ALG5 cystic kidneys, possible ESRF after § Rarely mild PLD 620056 Lemoineet al.2022
years
ALGS8 ADPKD-ALGS8 Bilateral kidney cysts, nephrolithiasig None to date Pending Appleet al.2023
ALG9 ADPKD-ALGg | Moderate bilateral kidney cysts, rare} o o\ milg pLD Pending Besseet al. 2019
progressing to ESRF
) Bilateralenlargingkidney cysts with . .
IFT140 ADPKD-IFT140 ESRF comparable ®KD2 Rarely mild PLD Pending Senumet al.2022
ADTKD
Diabetes, gout,
Bilateral kidney cysts in ~45% of hyperuricaemia,
HNF1B ADTKD-HNF1B affected individuals, ESRF highly | hypomagnesaemia AD 137920 Binghamet al.2001
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uterus, solitary

Cystic kidney disease

kidney
Normal to smalisized kidneys, ~50%
MUC1 ADTKD-MUC1 small renal cysts; variable progressic Gout 174000 Kirby et al.2013
to ESRF inadulthood
Intrauterine growth
. . A0 retardation,
SEC61A1 | ADTKD-SECe1A1| Normalorsmalsized kidneys, ~50% ¢ \onenia, 617056 Bolaret al. 2016
small bilateral renal cysts .
anaemia
(congenital)
Normal tosmaltsized kidneys, 1/3
UMOD ADTKD-UMOD small kidney cysts (uni/bilateral), Gout 162000 Dahanet al.2003
variable ESRF in adulthood
ADPLD
PRKCSH Occasional kidney cysts PLD 174050 Li et al. 2003
SEC63 ADPLD Occasional kidney cysts PLD AD 617004 Davilaet al.2004
ALGS8 Occasional kidney cysts PLD 617874 Besseet al.2017
LRP5 Occasional kidney cysts PLD 617875 Cnosseret al.2014
ARPKD
Congenital hepatic
Antenatally enlarged hyperechogeni fIbI’O_SIS with
. ) . . associateghortal
kidneys; multiple bilateral small cysts HTN. Caroli
PKHD1 ARPKD 50% ESRF within first 10 years, mildé ' 263200 Onuchicet al. 2002
. . o7 syndrome, small
presentatiormssociatedvith increased i )
. . iver cysts in
age of diagnosis h
eterozygous
patients AR
Antenatally enlarged hyperechogeni
kidneys; multiple bilateral small cystg
DZIP1L ARPKD variableESRE in second and third None to date 617610 Lu et al.2017
decadeof life
Hyperinsulinaemic| Antenatally enlarged hyperechogeni Hyperinsulinaemic
PMM2 hypoglycaemia | kidneys; multiple bilateral small cysty hypoglycaemia; Pending Cabezagt al.2017

with PKD

variableESRF

occasional PLD
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Collagenopat

hies

Occasional kidney cysts. Thinning o

Sensorineural

COL4A3 basement membrane with microscog deafne_ss, anterior AR 203780710 Mochizuki et al. 1994
. . lenticonus, 4200
haematuria and progressive ESRF X
perimacular flecks
Alport Syndrome -
Occasional kidney cysts. Thinning o d;ﬂzggn:r?tr:rlior 203780/14
COL4A4 basement membrane with microscof N AR Mochizuki et al. 1994
. . lenticonus, 1200
haematuria and progressive ESRF X
perimacular flecks
. . - Sensorineural
b Occasional kidney cysts. Thinning o .
COL4A5 X-linked Alport basement membrane with microscof deafne_ss, anterior XLD 301050 M'Rad et al. 1992
Syndrome : . lenticonus,
haematuria and progressive ESRF ;
perimacular flecks
Syndromic forms of CyKD
CNS (cortical
tubers,
astrocytomas,
epilepsy, and
intellectual
Multiple and bilateral disabilitieg; skin
angiomyolipomas and kidney cysts; lesions (facial
TSClor TS . kidney function usually preserved; | angiofibromas and 191100/61
c2 Tuberoussclerosis possible evolution to ESRF, contiguo| hypopigmented AD 3254 Kandtet al.1992
gene deletion of SC2andPKD1leads | spots); pulmonary
to severe CyKD with ESRF <30 year lymphangioleiomyo
matosis; cardiac
rhabdomyoma and
retinal hamartoma;
PLD in contiguous
deletion
Hemangioblastoma;
. . . . of the retina, spine,
VHL Von H|ppeI-L|ndau Bilateral k|dne_y cysts, renal cell or brain: AD 193300 Carsilloet al. 2000
disease carcinoma ]
pheochromocytoma

; neuroendocrine
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tumour of the
pancreas

Cystic kidney disease

COL4A1

HANAC syndrome
or COL4A%related

disease

adulthood

Bilateral kidney cysts, ESRF in later

Microscopic
haematuria,
aneurysms, muscle
cramps, elevated
creatine
phosphokinase,
tortuosity of the
retinal arteries

AD

611773

Plaisieret al. 2007

OFD1

Oro-faciakdigital
syndrome type 1

CyKD in women

X-linked, embryonically lethal in boys

Cleft palate, facial
dysmorphia
syndactyly,

clinodactyly, or
polydactyly; PLD

XLD

311200

Ferranteet al.2001

FLCN

Birt-Hogg-Dubé
syndrome

Kidney cysts and kidney tumours

Hair follicle
hamartomas, lung
cysts with
spontaneous
pneumothorax

AD

135150

Nickersonet al.2002

NPHP16

Nephronophthisid
oubert/Senior
Lgken syndrome

Bilateral kidney cysts

Retinal
degeneration,
polydactyly, liver
disease, severe CN
disease

AR

PS256100

Review: Wolfet al.2011

BBS1-12

BardetBied|
syndrome

Broad range of structural kidney issu
including unlateralor bilateral cysts

Conerod
dystrophy,obesity
polydactyly,
cognitive
impairment,
hypogonadism,
neurological issues
olfactory
dysfunction,

diabetes

AR

PS209900

Review: Floreat al.2021
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Encephalocele with
CNS involvement,
MeckelGruber hepatic fibrosis,

MGS1-6 syndrome Bilateral cysts polydactyly, AR PS249000 Review: Hartillet al.2017
genitourinary
malformation
Acquired cystic renal disease
N/A Mu'lt|ple benign Multiple benlgq5|mplecy§ts- more N/A N/A N/A N/A
simple cysts common with increasing age
Acquired kidne CKD associated especially with patie
N/A d Y| onrenal replacement therapysually N/A N/A N/A N/A

cystic disease small and bilateral.

Lithium induced Nprmal/small kidneys Wit.h §ma||
N/A kidney cysts bilateral cysts history of lithium N/A N/A N/A N/A

exposure, interstitial fibrosis
AD T autosomal dominant, AR Autosomal Recssive, XLDi X-linked Dominant, PLO Polycystic Liver Disease, ESRFENd Stage Liver Failure, CNISCentral
Nervous System, CKD Chronic Kidney DiseaséCH i Intracerebral haemorrhage
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3.1 Introduction to CyKD

3.1.1 Autosomal dominant polycystic kidney disease

Autosomal dominant polycystic kidney dise#d8®PKD) is the most common
monogenic cause of renal failure worldwide and one ofd¢imemonessinglegene
disorderggenerally(Bergmann et al. 2018Present in roughly 1:460:1000 live birhs,
it is present in equal distribution worldwide and is a huge health burejeresenting
roughly 10% of all patients receiving renal replacement therapy (RRBvans et al.,
2018. It is typically late onse&nd is multisystemcharacterisetdy bilateralreal cysts,
liver cysts, and an increased riskimfacranialaneurysm antlaemorrhageExtrarenal
manifestationgncludecysts in otheorganssuch as the pancreas aaminalvesicles
aorticroot dilatation, mitralzalve prolapse and abdominal wall herni@éinically this
can present asarlyonset hypertension, flank pain and eventually renal faii&o of
ADPKD patients reach end stagmalfailure by 60 yearsld (CorneeLe Gall, Alam,
and Perrone 20197 hereis, however substantiaphenotypevariability between
patientsevenwithin familiessuggesting either secondary genetic effects and/or
environmental factors play an important role in disease modul@i@mis and Rossetti
2010)

Diagnosis is madbased orimaging criteria or genetic testing confirming the presence
of aheterozygousariant in oneof the known pathogenic gesigpredominatelyPKD1

or PKD2 or the less commoand more recently discovergegnesGANAB,ALG5ALGS8
ALG9, DNAJB1:ANndIFT140 (Hughes et al. 1995; The European Polycystic Kidney
Disease Consortiuni994; T. Mochizuki et all996; Apple et al. 2023;.emoine et al.
2022; Porath et al. 2016; Cornee Gall et al. 2018; Senum et al. 202&)h roughly

5% of casegemainingunsolved(Bergmann et al. 2018enotypephenotype

correlations are described in more detail in T&k
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Table 3-2 Genotypephenotype correlation of the causes of ADPKD

glucosyltransferase

normal kidney size,

nephrolithiasis

Gene ADPKD Protein Renal phenotype Liver
attributable phenotype
to gene
PKD1 78% Polycystinl Truncating: Polycystic
Innumerable bilateral | liver disease
kidney cysts leading to| mild to
progressive kidney severe
enlargement, median
age of ESRF about 55
years
Non-truncating:
Innumerable bilateral
kidney cysts leading to
progressive kidney
enlargement, median
age of ESRF abo@7
years

PKD2 15% Polycystin2 Innumerable bilateral | Polycystic
kidney cysts leading to| liver disease
progressive kidney mild to
enlargement, median | severe
age of ESRF about 79
years

ALG5 <0.5% Dolichyl-phosphate| Nonenlarging cystic | Polycystic

beta kidneyswith some liver disease
glucosyltranseferas| interstitialfibrosis absenbor

ESRF in those greater | mild
than 65 potentially

ALGS <0.5% Alphal,3 Bilateral cysts with Some liver

cysts but not

unique
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truncatingPKD2

variants

ALG9 <0.5% Alpha-1,2- Moderate number of | Polycystic
mannosyltransferas bilateral cystsRarely | liver disease
progresses to ESRF | absent to
mild
DNAJB11 | <0.5% DnaJ homolog Normal to small Polycystic
subfamily B kidneys, small cysts, | liver disease
member 11 potential evolution to | absent to
ESRF after 60 years | moderate
GANAB | <0.5% Neutral alpha Bilateral cysts, normal | Polycystic
glucosidase AB renal function liver disease
mild to
severe
IFT140 1-2% Intraflagellar Bilateral renal cysts, | Occasional
transport protein mild effect on renal polycystic
140 homolog function akin to non liver disease

ADPKD i Autosomal dominant polycystic kidney disease

Until recently, treatment of ADPKDentred on thenanagemendf symptoms

secondary to renal cyst formatiand chronic kidney disease. Howewgith the

approval for the use dfolvaptan(Torres et al. 2012}here is now a treatment designed

to retard disease progression, witanynovel compounds currently going through

clinical trials (J. X. Zhou and Torres 2023reatment initiation isiow focused on

those patientwiith rapidly progressive disease asdenced byseveralfactors including

rate of kidney decline, rapidity of cyst growth, family history of ESRF and crucially

genotype, with truncatinBKD1 variants requiring treatment initiation eaffyorneclLe

Gall et al. 2016)This has given added impetus to the need to molecularly screen

individuals.
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3.1.2 Autosomal recessiveolycystic kidney disease

Autosomal recessive polycystic kidney (ARPKB)x severe disordexccurring in 1 in
20,000births It causesevere dilatation of the kidney collecting ducts and
malformationof the portobiliary systenOften diagnosed in utero or at birthe

patients suffer from large echogenic kidneys leading to poorly functigmngysand
consequenvligohydramniosPerinatal mortality is roughly 30%ith children that

survive mostly reaching ESRF by adulthood (42%alsurvival by 20 years old)
(Bergmann et al. 2018Nearly all patients suffer a gamut of issues related to renal
failure, portalhypertensiorand biliary failure Patients who are diagnosed la@dto

have a better renal prognadister presentations of the disease have phenotypic overlap

with ADPKD and can lead to diagnostic misclassificatifekine et al. 2022)

ARPKD is predominatelycaused by variants in the polycystic dr@paticdisease gene
1 (PKHD1)and codes for the fibrocystpolyductin complex (FPQ)L. F. Onuchic et
al. 2002) Most affected patients are compound heterozygMasagement is largely

supportive with no dedicated treatments at present.

Other recessiveystic diseases includ®MM?2 associated hyperininaemic
hypoglycaemiavith PKD andDZIP1L associated ARPK[Cabezas et al. 2017; H. Lu
et al. 2017)Antenatal enlarge hyperechogekidneysand bilateral small cysts are
present in both. IPMM2 associated disease thare small liver cysts and
hyperinsulinaemic hypoglycaemia whiBEZ1P1L diseaséas no associated exiranal

manifestations.

Treatment is supportive, with genetic testing allowing for a molecular diagnosis and

genetic counselling.

3.1.3 H N F labsociated cystic renatlisease.

Broad renal involvement is now seen as one of the eanimsifestation®fHNF 1 b

associated diseas€arious phenotypes have been attributeld td F Lckassically
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starting with maturity onset diabetes of fleing(MODY) coupledwith renal cysts

leading to the term r e n a | cysts an(@oridawvaehad. 1998 syndr or
However, there are now over 10 different renal pathologies associated With4 b
nephropathylzzi et al. 2020) This is mirrored in theverexpandindist of extrarenal
sidephenotypes such as exocrine pancreatic failure, liver function abnormajitigs,

andgenital tract malformations

H N F dcddes hepatocyte nuclear fadhmmeobox B found on chromosome 17gh2l

plays an integral role in early embryonic development. Its protein product, transcription
factor2 (TCF2)is a necessary component in tissue spegéiteexpression in many
epithelial tissues including kidney, pancreas, liver and genitourinary(ialettsi

Joannou et al. 2001; Ferre and Igarashi 2019)

Structural variants involvingl N F labe ofnote In ~45% of casewithHNF 1 b
variants a whole gene deletion 6f N F bdrurs as part of therj12 deletia
syndromecausing a multsystem disorder with renal involvemd@IM #614527)
(Mitchel et al. 2016)The other cases are mainly heterozygdh¥s (Fokkema et al.
2011) There is little correlation between phenotype and gendiypkarge cohorts
studying this condition are lackir{lagano et al. 2019; Dubeisaforgue et al. 2017)
with none assessing the burderHolN F Jattagenome widdevel using WGS

There are no specific treatments for this condition bar supportiveedrsurveillance
for multi-organ involvement in patients with 179g12 deletions

3.1.4 Pathophysiology of cyst formationfrom genetic insights

3.1.4.1 ADPKD

PKD1is a large gene with 46 exons, of which the first 34 are homoldgods

therefore very similar in sequende)several nearby pseudogenes as well as being GC
rich making sequencing challengir®KD2is much smaller (15 exons) and is therefore
easier to sequenceéheir respective discoveries 1995 and 1996aveledto the

development of @olycystin model of cyst formation.
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Thepolycystins 1 and 2 codde?C1 and PC2)y PKD1/2respectively are found
predominantlyin the primarycilium although are expressedapithelialcells, vascular
smoothmuscle cardiacmyocytesas well as other locatiorid. C. Ong 200Q)Within

the cellsPC1 is foundhroughoutateral membrane junctions, focal adhesions, apical
vesicles angrimarycilia whereas PC2 is mainly found at the endoplasmic reticulum
although the two proteins do also-expres (A. C. M. Ong and Harris 2005PC1 is a
4303 amino acigdnembrane boungrotein with 11 transmembrademains, a large
extracellular dorain and a ~200 amino acid intracellular carbtagminal tail thought

to be integral in the regulation in multiple signalling cascd#ssris and Torres 2014)
The cleavage of PC1 asiG protein couple receptagulates biogenesis and
trafficking of PC1(Kurbegovic et al. 20143s well as modulating signalling pathways
via the release dhe intracellulaiC-terminaltail, freeing PC1 fragments into the
cytoplasm and nucleyy. Xu et al. 2016)PC2is less tharB68amino acidsand has six
transmembrane spanning domadieting as a calcium permeable channel, it sits within
thetransient receptor potential (TRR)Mily and in isolation forms a tetrameric chahne

structure with a pore loop and voltage sensing doif&tien et al. 2016)

PC2 colocalises with PCvithin the primary cilia shaft and basal body in renal
epithelia(Geng et al. 1997and their correct localisatiomsid functioraredependent
onboth elements functioning correc(y. Kim et al. 2014; Cai et al. 2014)he C-
terminal tail of PCZXacilitates the interaction between PC1 and PTx2okas et al.
1997) which together act as an ion transpontgolved in calcium signallingput many
functions of both PC1 and PC2 remain uncl&estructure of a modified PCRC2
complex was solved by cry@lectron microscopin 2018, revealing atructure (1:3
PC1:PC2yesembling & RP with a novel pore like structurewhich the Gterminal
domain of PCXontributesone side of the tetrameric chan(®u et al. 2018)This
asymmetric pore loop structumakes it very different to TRP channels as it potentially
ameliorates the catiaelectivityof thepolycystin channel explaining why
electrophysiology to date have found it difficult to reach a consensus on the cation
selectivity of the channéDelling et al. 2016)A ligand for this polycystin complex is
yet to be elucidatedith a recent studguggesting theleaved Nterminus of PC(a

mutational hotspot) as a candidéta et al. 202Q)This last points of note asSu et al

64



Cystic kidney disease

were unable tinclude the entire extracellular N terminus of PC1 in their structure due
to the protein being too large and unstable to analyse

Given the similarities in phenotype between ADPKD phenotypes caudeldby
variantsand the physical proximity of PC1 and PC2 in c&ltspnmon signalling
pathways have been soug@iclic AMP (cCAMP), mammalian target of rapain
complex 1 (mTORC1)extracellular signafegulated kinaseg®&RK), 5' AMP-activated
protein kinas€d AMPK) and JAKSTAT have all been shown to be affecteddtperrant
polycystin functioningHarris and Torres 20143AMP in particular has been targeted
for downregulation viaasopressin receptor 2 antagonism using Tolvagtascessfully
retarding cyst growth and disease progresdibiese disrupted signalling pathways
have then been postulated to cause cyst formation and growth vial clonal expansion of
epithelial cells alterations in apad-basalpolarity, planar celpolarity, increased
extracellular matrix productioand cellulametabolisncreating a snowball effeat
which the secondargvents take on an in@sing role in cyst formation and growth
(Figure 31).

protein-truncating or
nontruncating mutations

Germline and somatic | Polycystin-1 and -2 ((())) Germline and somatic
mutations of genes in ER — dosage within individual ™2\ g mutations of genes in ER
protein biogenesis pathways tubular epithelial cells B protein biogenesis pathways

|

Aberrant cellular signaling:
1 cAMP, t mTOR, 1 ERK, ®
1 JAK-STAT, | AMPK

!

1 Clonal expansion of epithelial cells
Cyst formation and growth

|

“Snowball effect” y
* Tubular obstruction

¢ Inflammation
* Regional ischemia
* Metabolic reprogramming

Figure 3-1 Proposed model of ADPKD pathology

Germline PKD1 or PKD2 é
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Proposed mechanisms of the pathobiology of ADPKD. Taken (t@mktree, Haghighi, et al. 2021)

Even though the germline variants in ADPKD are present icedl, cysts form in less than 10% of

tubules focally(Grantham 1996)T hi s | ed to a fAsecond hitod hypothes
a somatic second hit is required to alter the remaining normal copy of PKD1 or. FKiB2as been

shown to be the case in studies of kidney cysts in patients with PKD1, showing loss of heterozygosity due

to a somatic variansupporting a cellularly recessive mechanism for cyst formation in ADZKY.

Tan et al. 2018; Brasier and Henske 1997; Watnick et al. 1998)

However there are numerous examples of patieith hypomorphic variantsvhich

reduced the level of the gepeoductin the polycystin genesuffering CyKD

suggesting@t hr eshol do me c h éalilaghen, Germinoc and Somlg e n e s
2010; Rossetti et al. 2009; Harris 2010has been suggested that a dose of functional
polycystin below ~1€80% of normal within tubular epithelial cells is enough to start

cyst formation(Hopp et al. 2012; Lantingaan Leeuwen et al. 200#ading to various
downstream aberrant cellular procesgasnultiple signalling pathways-T. Jiang et

al. 2006; Boca et al. 2006; Song et al. 2009; Lanktree, Haghighi, et al. Z0il)g of

gene inactivation is also vitaPKD1 inactivationup to 13 days prior to birth in a mouse

model led to severe CyKBomparedd PKD1 inactivationafterday 14of age in the

same model which results in a far milder form of Cyifontek et al. 2007)

More recently, genes linked to ADPKD haween discovered that affect protein
creationmodification,and trafficking within the endoplasmic reticulum (ERhese

genes effect the entry ahfoldedprotein into the ERSEC63andSEC61BBesse et al.

2017) the control of protein through the ERornecLe Gall et al. 2018)N-

glycosylation of nascent protei(avital step in the traffickingf glycoproteinsApple

et al. 2023; Besse et al. 2019; Lemoine et al. 2022; Cabezas et ala@dti® removal

of glucose moledes to allow export from the ER to tkBolgi complex(Porath et al.

2016) Thesev ar i ant s have all beenygdingwn t o | ov
particularly PC1within the cel, helping to a) confirm their role in pathogenesis and b)
further elucidate the pathway the polycystomplex takes from transcription to final

destination.
The latest discovery ahonoallelic variants ihFT140causing a mild form of CyKs
of particular interesas it the first description of@rotein involved irciliary structure

and functiorbeing described as causing ADPK®enum et al. 2022ADPKD has
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been seen by mawithmangof the efperiménialcagsdgsthey o
various causative genshowng clear ciliary disruptiorbut never irmmonoallelic human
diseaseAs part of the IFTA complex that is responsible fogtrograde transport in
cilia, IFT140has a clearly defined ciliary rolelowever,IFT140is not required for the
assembly of the IFA complex butdoes account for roughly half of tAi&LP3binding
surface of theomplex(M. Jiang et al. 2023 ombined withwork by Legue et al
showingTULP3 s i n wtanlcilragy mnafickingin CyKD (Legué and Liem 2019)
it as has been proposed that truncalifigl40variants disrupT ULP3-mediated cargo
transportIFT140disruption may lead tdisruption in the trafficking of the pgtystins
to the cilia but this requires further experimental work.

Figure 32 detailsa schematic of the journey the polycystins take to their target with
listed geneg¢modified from Lanktree et aR02]). We can see that genes along the
entireroute of PC1/2journey to the ciliunhave been discovered to affect gene
formation.As shown in the results chapter, these more recent genes have lower effect
sizes tharlPKD1/PKD2and their recent discoveries is down to larger cohorts being
sequenced with the latastchnologies. This has enabled a higher diagnostic yield and

an exellent elucidation otiliary biology.
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Cilia
IFT140
Mature PC-1/PC-2
Tubular lumen complex /
Kidney tubular epithelial cell Golgi apparatus /

Calnexin/ \
PMM2  calreticulin cycle R\

Glucosidase Il
(GANAB, PRKCSH, PKHD1)

ALG8

ALG5 Nascent polycystins

\ — DNAJB11

Y PKDT Endoplasmic reticulum
ARRRR

* Nucleus

Figure 3-2 Genes in implicated in ADPKD and their effect on PC1/2 maturation.

Schematic representing the genes indicating in ADPKD and their effects on the maturation of P
(Modified from Lanktree et al 2021)

3.1.4.2 ARPKD

Most ARPKD cases are caused by variamBKHD1, found on chromosome 6p21
which encodes fibrocystiPKHD1 has multiple transcriptsvith a 4074 amino acid
made up of a single transmembrameain an extensive extracellular-términal
domain,and a short @erminal cytoplasmic taicomprising the largest on€he

function of fibrocystin is still debated, but it is found throagtthe kidney and
epithelialcells ofhepaticbile ductsand localises to the primary cilmembrangWard

et al. 2003, 2002; L. F. Onuchic et al. 2Q0&)e proteolyticcleavageof fibrocystin
releases its C terminus, and this cleaved product has been the focus of much of the
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speculateghathophysiology of ARPKI&sits motifs are associated with ciliary
targeting andnteractions with the polycystin compléxollit et al. 2010)

Many of the signallingpathwaysaffected in ADPKD are also disrupted in ARPKD
including cAMP(X. Wang et al. 20059nd mTOR(Fischer et al. 2009)ut the general
pathophysiology remainsoorly understood. This has been compounded by mouse
models ofPKHD1 including knockout$iaving minimal renal disease before adulthood
(Moser et al. 2005; S. S. Williams et al. 20@8king functional characterisations of
fibrocystin challenging. Recent work has highlightied rolethe cleaved @erminus of
fibrocystin may have in preventing cytogenesisitganteractiorwith mitochondrial
pathway (R. Walker et al. 2022work which carriers homology wittmat of Caplan et
al whichshowedhe Gterminal of PC1 suppressesysticdiseasesia a mitochondrial
pathway(L. Onuchic et al. 2023)I'he potential for a mechanism other than direct
interaction was confirmed byork ona digenicsystemcombiningPKHD1 knock out
mice with a hypomorphi®KD1 mutant showng no interaction between the fibrocystin
protein and polycystin@lson et al. 201irectly. It is likely that a shared ciliary

mechanism or mitochondrial process is the missing link.

Variants in the genBZIPI1L, coding for the ciliaryransition zongrotein DAZ
interacting protein 4ike proteinhas been described as a moderate cause of ARPKD.
Working at the barrier between the cell and cilium, variants in this gene have been
shown to disrupt the transport of PC21 and PC2 into the c{lurhu et al. 2017)
Phosphomannomuta8¢PMM2) variants have also been descrilsdcausing ARPKD,
whilst the pathophysiology has not been fully deline&®dM2 is an enzyme critical to
N-linked glycosylation potentially causing a trafficking issue with the polycystins

similar to the other ER linked monogenic causes of Cy&Bbezas et al. 2017)

3.1.4.3 HN F 1abhd ADPKD

H N F dsfihought tdoe an autosomal dominazdndition with haploinsufficiency as the
moleculamechanismas patients with wholgene deletions have a similar phenotype
to those with coding or splice variant$p to 50% oH N F kdses are thought to de
novo(Ulinski et al. 2006; Edghill et al. 2007)
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Mice with renal specific depletion éf N F Hévelop CyKD and renal dysfunction

(Gresh et al. 2004; Hiesberger et al. 3 2064yther molecular analysis reveals

H N F & Bole in regulating the transcription BKHD1, PKD2, UMODand gene

implicated in nephronophthis{&ttanasio et al. 2007; Song et al. 2009; Gong et al.
2009)which explains the variable nature of the phenotype as well as the mechanism of
diseaseBar the effects on known monogenic causes of cystogehebid; hlbo

directly increases cAMP levels via the regulation of the expression of
phosphodiesterase 4thich catabolises cAMP in the primary ciliufd.-H. Choi et al.

2011) inhibition of cAMP being a pFutheary
functional workis required to map the full moleculpathwayof H N F Jafsociated

renaldisease.
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3.2 Cystic kidney disease as a monogenic disorder

3.2.1 Introduction

Rare variants that cause classidandelian disease are kept rare through the process of
natuil selection whereby raeleteriousrariants arg@revented from becoming

common in the general population by negatively affecting reproductive fifRass.
diseases are typically caused by rare variants and CyKD is no excé&aren highly
penetrant alleles that are very damaging make up the bulk of causative variants in
CyKD and offer the most clues as to the underlying biology of the disease. This is
reflected in the vast swash of published genetics research on CyKD being focused on
monogenic causeas patients and familie@Bergmann et al. 2018 his chapter focuses

onrare variants, defined as those with a MAF<0.4%the primary driver of CyKD.

3.2.2 Aims

1. To determine the prevalence of known monogenic disease in a large cohort of
patientswith cystic kidney disease

2. To discover novel candidate genes using an unbiased exatagare variant
association testing approach.

3.2.3 Methods

3.2.3.1 Case selection

Cases were recruited under the ACystic
across the country using the following inclusion criteria:
1 >5 cysts affecting one or bokidneys with one of the following features:
0 cysts not clinically characteristic of ADPKD
0 onset before the age of 10
o0 syndromic features

o0 where a genetic diagnosis would influence management

71

K i



Cystic kidney disease

o Unaffected individuals had to have undergone appropriate screening for
crypticdisease.

A second tranche of recruitment widened the inclusion criteria to include participants
with features suggestive of classical ADPKD who had not undergone prior genetic
testing ofPKD1 andPKD2. Participants were excluded if they suffered from-stadje
kidney failure due to identified (necystic) disease, if they had multicystic dysplastic
kidney(s) or if they had a prior genetic diagnosis for their condifibis recruitment
strategy led the total cohort being a mixture of unsolved cystic cases anchtrese
obviously ADPKDPKD1 and ADPKDPKD2.

3.2.3.2 Control selection

Controls were made up of unaffected relatives ofremal rare disease participants in

the 100KGP. We refined this further by excluding those with HPO and/or hospital
episode statistics (HES) terms related to kidney disease or failure. Within the >20,000
controls there was the possibility that some harboured undetected cystic kidney disease
as we did not have access to imaging data, however, it was felt their contribution to
statistical signal would not significantly affect the outcome

3.2.3.3 Identification of pathogenic variants

All cases recruited for had been assessed in the clinical interpretation arm of the
100KGP(100000 Genomes Project Pilot Investigators et al. 2B2d)r t hi s, pat
WGS datds extracted variants that are rare (MAF < 1% for autosomal recessive and

MAF < .1% orautosomal dominant inheritance), protaiancating or missense. These

are thercross referenced wittaexpertly curatedAntonio Rueda Martin et al. 2019)

panel of 28 CyKD associated genb#({s://nhsgms

panelapp.genomicsengland.co.uk/panels/283)v@NVs losses with a 60%verlap

with the 2913 loci associated wikPHP1lossand the 17912 loci associated with

H N F 1obs were alsmascertained for
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These results then underwentlti-disciplinary(MDT) reviewwith the recruiting

clinical team local genomic medicine centre with support from Genomics England.
Candidate variants weessessed against the Association for Clinical Genomic Science
(ACGS) Best Practice Guidelines for Variant Classification in Rare Disease
(https://lwww.acgs.uk.com/media/11631/pkacticeguidelinesfor-variant
classificationv4-01-2020.pdf) These criteria are based on recommendations from the
American College of Molecular Genetics (ACMG) criteria to determine pathogenicity
(Richards et al. 201%)sing a host afetrics includingpopulation frequency of alleles,

in silico predictions of deleteriousness, functional localization, putative mechanism of
disease anknownassociations with phenotypesvalidated diseasgatabases to

assign one of the following classifications: pathogenic, likely pathogenic, variant of

uncertain significance (VUS), likely benign or benign.

3.2.3.4 Aggregate rare coding variant analysis

3.2.3.4.1 Overview of rare variant association tests

Rare variant analysis is considered mdrallenging than common variant analysis due
to several factorg:irstly, rare variants, by definition, occur at a low frequency in the
population. As a result, large sample sizes are often required to have sufficient
statistical power to detect associatidBscondly, when rare variants are called single
variant association testingusderpowered due to the scarcity of variants in a given

population(Seunggeung Lee et al. 2014)

In order to overcome some of these issues, collapsing analyses haeenpé®yed to
boost power. I n this statistical met hod,
most commonly per genand their effect sizes cumulated to test for an association with
the disease or trait of intere$tis is particularly helpful for allelibeterogeneityvhere

multiple different allelesiccount for a disease, with no single allele explaining a large
fraction of risk; a situatiofound in ADPKD(Paul et al. 2014) will discuss below the

broad categories of rare variant collapsing tasta/ell as the rationale for selecting my

chosen method.
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3.2.3.4.1.1 Burden tests

Collapsing burden test®mbined multiple genetic variants into a single genetic score
perregion testing for an association between tieigionand the disease of intereAt.
simple example would involve countitige number of minor alleles all variantsin

eachregion The scorestatistic would be:

wherem = the number of variants in the regian, = the weight for variant(e.g.,
using MAFor beta effect sigeand™Y = the score statistic for variangenerated from
the sum of alleleounts (0,1, or 2) for each individual at varigraccounting for
phenotype’Y is positive when variarjtincreases disease risk, and negative when
associated witklecreased disease riskPAvalue is then obtained by comparing the

burden tesstatistic tochi-squaredlistribution with 1 degree of freedo{Beunggeung
Lee et al. 2014)

Multiple different implementations of the burden test exisich make different
assumptions about disease mechanism and architdcttine main, a dominant mode
of inheritance is assuméd maximise power, with the various methods differing on
how they define thaveight (0 of variants to be collapsedhe MZ test for example
countsindividuals with at least one minor allele in the regiptorris and Zeggini 2010)
whilst the cohort allelic sums test (CAS&@ksumes any rare variant in a region can
cause loss of functiofMorgenthaler and Thilly 2008oth of which give a binary
weight tov . TheMadsen and Browning method weigbisthe MAF as a proportion
to give a beta of densitiésadsen and Browning 2009Finally, theCombined
Multivariate and CollapsinCMC) test uses the CAST approach but by collapsing
groups based on their MAF per regiamd then using aonregressiortechnique
(Hot el i ngds thedffectyB. )i and beal 2aD&)Burden éests assume
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most the variants collapsed are causative and have the same direction efigffect

violations of these assumptions resulting in a significant loss of power

Burden testing has been further adapted fathtaptive burdemtests to help account for
thenull variants and variants affecting disease risk in either diredfibmist such
methods such as ttkernelbased adaptive cluster (KBAC) meth@ J. Liu and Leal
2010)have overcome these issumast adaptive methods requRezalue permutation
and are therefore computationally intensive, making them unsuitable for large scale

biobank studies.

3.2.3.4.1.2 Variance Component tests

Variance component tests use a random effects model to overcome some of the issues
of unknown underlying genetic architecture and variant effetdtead of aggregating
variantsand then generating a combined test statistic on the whole yegitance
component test®ok at the distribution ohdividual test statistics per variant and then
aggregate these to compute an ovdtalhlue Themost usedrariancecomponent test

is thesequence kernel association test (SKAW et al. 2011jvhich can be

represented as:

The SKAT test uses the weighted sum of squares of single variant score stutiBiics
collapsing’Y instead ofS as per the burden test, SKAT is robust to both-cenrsal and
variants acting in direction of effedhe addition of covariates to this analyai®ws

for adjustment for population stratificaticdBKAT testing has two major issudsstly,
contrary to the burden test, if a large proportion of variants are causal, variance
component tests lose powsecondly, for binary traitsalculating manyP values on a
per variant basis and then combining them per recponead tdigh type 1 errorates

especially when the minor allele count is low or the sample size.small
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3.2.3.4.1.3 Combined tests

An understanding of the genetic architecture of a disease is often lacking at the time of
analysiseffecting the power of both approaches to collapsiraiyais discussedtven

for conditions such as CyKDhe architecture of disease may differ ayeaeby-gene
basisas evidenced by both recessive and dominant Mendelian conditions causing
kidney cystsThis has led to the development of a combined methuach uses a linear
combination of burden and SKAT testing based on the underlying data to maximise

power, SKAT-O (Seunggeun Lee et al. 2013KAT-O can be represented as:

Q=1 M) Qkar+ M Judenh yo,
The key term here is the paramagtevhich represents the pairwisergsation between
genetice f f ect c o.¢ £ Iwhenialevariands adt in he same direction,
meaning the test statistic resolvesrsesQourden Whereas if the variants are uncorrelated
in their direction and magnitude of effects thenjte0 and the tesstatistic
approximats to theQskat. In reality the} is unknownso SKAT-O uses an adaptive
procedure to approximate tkialue anctalculateP values analyticallyallowing for a
combined method that uses that uses the best of both methods and allows for
uncertainty in the underlying genetic architect@KAT-O has been shown to perform
well across a wide range of disease models and is widely used in association tests

(Seunggeun Lee et al. 2012)

3.2.3.4.2 Selection of qualifying variants

As powerful as the collapsing methods discussed above areniigjbéaty of variants

selected to be collapsed per region have little or no dffeatthe power gained by

collapsing variants is limited. Including qualifying variants that are more likely to be
damaging and therefoBsease causing will increase the power to detect association. In
gener al , Adamagingo or nNndel et dassobus o var |
function e.g. protein truncating, or predictadilico to be damaging. For my analyses |
collapsed variants acrogenesusing a number of parametexgplied as & ma s k 0

detailed belowThanks to having access to WGS data | was also able to include masks

that included intronic variants aldoa p p | i ed t+0e afmmdi SideorFrve mask

76



Cystic kidney disease

total CyKD cohort and then removed cases that had qualifying variants in statistically
significant genes wuntil we had a cohort
To this cohort we applied all the masks listed
1. Likely damaging i mi s s:ense+0)
A MAF < 0.1% or absent from gnomAD (version 3.1.1)
A Annotated as missense;fiame insertion, ifframe deletion, start loss, stop
gain, frameshift, splice donor or spliaeceptor.
A CADD (version 1.5) score O @dlictedorres
deleteriousvariants in the genome. Indeisthout CADD scores were also

kept as most frameshift variants do not have assigned CADD scores.

2. Lossof-function( AL o F o)
A MAF < 0.01% or absent from gnomAD (version 3.1.1)
A 6Hi gh c o n fof-fdnetinnovariantsI(stop gain, splice site, or
frameshift) as determined by LOFTEEarczewski et al. 2020)

3. Intronic:
A MAF < 0.01% or absent from gnomAD (version 3.1.1)
A Variants labelled as intronic
A CADD score O 20

4. 506 untrangb@tTRd) region (
A MAF < 0.01% or absent from gnomAD (version 3.1.1)
A variants | abelled as 586UTR
A CADD score O 10

5. 36 untransl ated region (fAi36 UTRO) :
A MAF < 0.01% or absent from gnomAD (version 3.1.1)
A variants |l abelled as 306UTR
A CADD score O 10
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6. Splicing( idonpbddwae,sd ayad exp,tac cepstsor gai no)
A Spl i ceAl (discussecin Methdds 2B2.5)

Variants meeting the following quality coc
sitewide sequencing depthinnonmi ssi ng samples > 20 -and m
level QC metrics for each site were set to minimum depth per sample of 10, minimum

GQ pea sample of 20 and ABratio P value > 0.001. Variants with significantly different
missingness between cases and controls (B¥bb >5% missingness overall were

excluded.

3.2.3.4.3 SAIGE-GENE

I employed SAIGEGENE (W. Zhou et al. 2020 ascertain whether rare coding
variation was enriched in cases on agene basis exomegide. SAIGEGENE uses a
generalized mixeenodel to correct for population stratification and cryptic relatedness
as well as a saddle point approximation and efitcitesampling adjustment to account
for the inflated type 1 error rates seen with unbalancedaageol ratiogsee chapter

2.5 for further details)lt combines singleariant score statistics and their covariance
estimate to perform SKAD genebased ssociation testing, upweighting rarer variants
using the beta (1,25) weights option. Sex and the top ten principal components were
included as fixed effects when fitting the null model. A Bonferroni adjusted P value of
2.58x10P (0.05/19,364 genes) was used to determine the exadeesignificance
threshold. Binary odds ratios and 95% confidence intervals were calculated for exome
wide significance genes by extracting the number of cases and controls carrying

gualifying variantger gene in the collapsingpaa | ysi s and applRyi ng ¢

3.2.3.4.4 Genomic inflation in rare variant collapsing tests

Genomic inflation estimates using rare variants is unreliable as the variant distribution
under the null model is unknown when allele counts axe hoaking inferences about
population stratification difficultEqually, different set or gene based association tests

have different numbers ofriantsper set meaning inflation statistics are incomparable
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to each othefQ. Liu, Nicolae, and Chen 2013jor referencenost of my genomic
inflation values for rare variant analyde#i below 1 with figures betweeh5-0.9

however, these are unreliabldave provided quantiguantileplots (QQplots) as

they continue to provide@ood visual methodf assessing inflation and hataken the
well-controlled inflation values from the common variant seqGWAS analysis as
evidence of a lack of population stratification in my rare variant analyses (please see
chapter 5 for further details). Furthermaiegre is good evidence that the addition of
controlsallows for appropriate stratification correctionrare variant analysesyen in
situations of large case: control imbalances wh&LMM and PC approach is used for
correction(Bouaziz et al. 2021 an approach | have adhered to in rage variant

analyses.

3.2.3.5 Stratification by primary variant and depleting analysis

The type of variant driving ADPKD is known to affect the renal prognosis with
truncatingPKD1 variants carrying the worst prognogidornecLe Gall et al. 2016)

Within families it is also known that those with the same variant can have vastly
different phenotypefHarris and Rossetti 2010)ith the heritability of time to ESRF
ranging from 4550% (Paterson et al. 2005; Fain et al. 2008ilst there are known
environmental factors affecting disease progression such as caffeine and smoking
(Tanner and Tanner 2001; Orth et al. 1998 clear that there are genetic modifiers of
ADPKD. This will likely hold true for other causes of CyKD but has yet to be studied in

detail.

Until now, candidate gene studies have been unsuccessful in identifying modifier genes
due to small study sizes, lack of clinical characterisation and problematic endpoints
(Baboolal et al. 1997; A. Persu et al. 2002; D. Walker et al. 200®)e biobank era

with access to WGS we are now able to stratify cohorts based on the primary driving
disease causing variant and conduct genetic association studies to look for secondary
genetic markersausingdisease. As will be discussed in the time to event analysis
chapter, biobanks also contain renal function endpoints, allowing for association studies

to look for markers of disease progression within each molecular cohort.
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CyKD patients who have their -gidiplinaoyt ype i
team (MDT) had a report issued with the details of the molecular diagnosis. These were
available to researchers in the 100KGP and could be manipulated in R using the
LabKeytool (Nelson et al. 2011Depending on the molecular diagnosis CyKD patients

were placed into different cohorBKD1-truncating PKD1-T), PKD2-truncating

(PKD2-T), PKD1-non truncating®PKD1-NT), PKD2 nontruncating PKD2-NT),

Aot her gened (encompassing other green g
thought to cause CyKD) and no variant detected (NVD). In the patients withINVD

bi oinformatically reanalysed them | ooki ni
Al eosfsuncti on masko (det ai ltiekiinepdseasewpanelofi n t
genes in PanelApfAntonio Rueda Martin et al. 2018hd placing them in the relevant

cohort. The filtering was performed using BCFtools and fMEP (McLaren et al.

2016) For each subsequent round of analysis if a gene or structural variant was found to
be significantly enriched in casdsdentified the cases that contained qualifying

variants and removed them from the NVD cohort ardnaysed the cohort, eventually

leaving266 cases with no clear genetic cause of disease.

| performed all singlvariant, gendurden,and structural variant analysis in each

mol ecul ar subgroup (bar the fAother genes:
disorde}. | used the same controls for each subgroup without repeating ancestry

matching as there was no evidence of genomic inflation within each subgroup and the

controls (lambda between 09902 in all common variant analyses).

3.2.3.6 Pathway analysis using collapsing rare variant summary statistics

Gene set analysis (GSA), similar to collapsing tests via genes, aims to increase the
power to detect signal by collapsing variant signals across sets of genes associated with
a molecular pathway. GSA aggregates signals from genes into sets sharingddiologic
functional characteristics. This reduces the number of tests performed and can provide
insight into the pathways of cellular mechanisms involved in a trait or phen@lgpe

2016)
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For the cohort of patients that had no molecular diagnosis the summary statistics from
their rare variant SKAJO analysis with SAIGEGENEwas analysed using the Gene

set analysis Association using Sparse Signals method (GAUSS) with default settings
(Dutta et al. 2021)The summary statistics were analysed using the canonical curated
gene set pathways from the Gene Set Enrichment Analysis (GSEA) group
(Subramanian et al. 20055AUSS was selected as it has been shown to be more
powerful than existing methods, whilst controlling for type | error and scaling to

biobank level datasets.

3.2.4 Results

All variants contributing to significargssociationen the collapsing tests can be found

in thesummary statistics available in thepplementary data

3.2.4.1 Diagnostic yield of WGS in CyKD

3.2.4.1.1 Cohort description

1558 participants were recruited to the 100KGP under cystic kidney disease. 1294 were
probands. 921 were recruited as singletons (59.11%), 187 (12%) as a duo with their
mother or father, 147(9.44%) as a trio with their mother and father, 124 (7.96%) as a
duo, 81 (5.2%) as a family with more than three participants, 66 (4.24%) as a trio with
one of their mothers or fathers and another biological relation, 32 (2.05%) as a trio with
other biological relativesThe median age of the cohort was 50 with a fatmmigyory in

58% of the cohort. 25% of the cohort had reached ESRF with a median agé loé 52.
demographic information of probandsd the ancestry matched contiiglset out in

table3-3. The top five most frequent human phenotype ontology codes are set out in
table3-4.
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Table 3-3 Demographic breakdown of the recruited cystic kidney disease probands and

controls

Cystic kidney disease

Demographics

Case

Control

Female 669(51.75%) 14557(55.78%)

Median age 50 (IQR 3761) 47.89(IQR 3954)
Affected F'degree relative 752(58.03%) NA
Consanguinity in parents 41(3.17%) NA
Endstage kidney disease 398(25.55%) NA
Median age ESRF 52(IQR 4460) NA

Self-reported ethnicity

European 924(71.41%) 18445(70.68%)
African 58(4.42%) 564(2.16%)
Other Asian 12(0.93%) 461(17.67%)
SouthAsian 54(4.17%) 2308(8.84%)
East Asian 6(0.46%) 73(0.28%)
Mixed 25(1.93%) 357(1.37%)

Not stated/unknown

215(16.62%)

3888(14.90%)

IQRT Interquartile Range, ESRFENd Stage Renal Failure

Table 3-4 Top 5 most frequent HPO terms in the CyKD cohort

HPO code

Count(percentage)

Multiple renal cysts

1085(83.85%)

Hypertension

697(53.86%)

Enlarged Kidney

513(39.64%)

Hepatic cysts

383(29.60%)

Haematuria

162(12.52%)

HPOT Human phenotype ontology

3.2.4.1.2 Prevalence of monogenic disease in the clinical arm of 100KGP

Of these probands 1290 had outcome data from the 100KGP clinical pipeline: 640
(52.93%) were solved, 32.81%) partially solved, 78.54%) unaccounted for and
537(44.42%) unsolved. The full breakdown of solved cases and their types of variants
can be found in table-3 (3 patients were solved for primary conditions unrelated to
their cystic kidney disease e.g. intellectual disability and were not included in this table
and 12 cases did not have listed genes despite being listed as.gofwbd)1290 cases

578 had data regarding kidney function in the form of HPO or HES codes with 398
having reached ESRF.
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Table 3-5 Molecular diagnosis in cystic kidney disease cases that were solved by the

100,000genome project clinical pipeline.

Gene (Condition) Consequence Count
PKD1 (ADPKD) Protein truncating 340
Non protein truncating 118
PKD2 (ADPKD) Protein truncating 122
Non protein truncating 13
PKHD1 (ARPKD) Compound heterozygous 7
Homozygous 5
DNAJB11 (ADPKD) Protein truncating 5
Non protein truncating 1
BBS1 (BardeBiedl syndrome 1; biallelic) Non protein truncating 2
HNF1B (Renal cysts and diabetes syndrome) | Protein truncating 2
SALL1 (TownesBrocks syndrome) Protein truncating 1
Non proteintruncating 1
COL4A4 (Alport syndrome) Truncating 1
FANL1 (Interstitial nephritis) Protein truncating 1
GANAB (ADPKD) Protein truncating 1
OFD1 (Joubert syndrome 10) Protein truncating 1
SDCCAGS (BardeBiedl syndrome 16; biallelic] Proteintruncating 1
TMEMG67 (Joubert syndrome 6) Protein truncating 1
UMOD (Tubulointerstitial kidney disease) Non protein truncating 1
WT1 (DenysDrash syndrome) Non protein truncating 1

ADPKD i Autosomal dominant polycystic kidney disease, ARPKButosomal recessive polycystic
kidney disease

3.2.4.1.3 Survival analysis

Grouping the solved cases into their respective primary driving variants and performing
survival analysis led to the graph in figur&.3Age of reaching ESRF was the endpoint
and in keeping with the known literature, patients with truncaikB1 variants carried

the worse prognosis with a median age of ESRF of 58 years. There were not enough

events in thé®KD2 nontruncating group to be included in the Kapleier plot (two
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events with median age of ESF 71 years). Thear@ant detected group had a survival
profile (median age of ESRF 76 years) between thBK@ 1 nontruncating variants
(median age 63 years) aR&KD2 truncating variants (median age 89 years) highlighting

their unmet clinical need.
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Figure 3-3 Kaplan-Meier plot of renal survival plotted by primary driving variant

PKD1-T PKD1-truncating variantPKD1-NT PKD21-nontruncating varianKD2-T PKD2-truncating
variant,Otheranother variant in the PanelApp cystic kidney disease gene panelj Mo Rariant
detectedNote PKD2-NT is not plotted due to the low number of events.

3.2.4.2 Rare variant association testing

3.2.4.2.1 Depleting analysis of cases

| performed SKATO testing as implemented via SAGEENE in 1209 CyKD cases
ancestry matched to 26096 unrelated controls in all coding genes collapsed by the
A mi ss ens eamaginf(CADR x20, MAF <0.01, at least a missense
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annotation]) and fALoFO tags ( Mdhnrctbn)0 1, hi
| then consequently depleted the cases for those solved by the 100KGP project or those
who carried variants that made up the significantly associated gene signals ander th

Ami ssense+0 or ALOFO masks. At each step
up significant associations until any positive signal was ameliorated. Unless otherwise
stated, all individuals with qualifying variants for the results presented heee wer

heterozygous for their variants.

3.2.4.2.2 Likely damagingv ar i ants (fAmissense+0)

Rare variant analysis of the total ancestry matched cohort of 1209 cases and 26096
controls wunder the Amissense+0 mask show
PKD1 (P=1.17x16°, OR=10.60, 95% CI = 9.352.01),PKD2 (P=1.96x10°,

OR=19.07, 95% CI 15.133.99),DNAJB11P=3.52x1¢’, OR 1.07, 95% CI 0.95

1.21), andCOL4A3P=1.26x1¢%, OR=3.02, 95% CI 2.18.22). Notable genes just

below genome wide significance includéd 140 (P=1.02x1¢°, OR=2.04, 95% CI

1.532.75)) andPKHD1 (P=8.17x10%, OR=1.®, 95%CI=1.272.00) Figure 34).

There was no evidence of genomic inflation (lambda<1Fgute 35).
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Figure 3-4 Gene based Manhattan for the associatioof likely damagingvariants between
all CyKD cases and control.

Manhattan plot of exomeide genebased rare, likelgamagingvariant association testing f@209

CyKD cases and 260%hcestry matchedbntrols SAIGE-GENE was performed for 19,168 genes with
lossof-function and likelydamagingmissense variants with MAF < 0.1%ach dot represents a gene.
The red line indicates the exoméde significance threshold of P=2.58x4.PKD1 andPKD2 are listed
at the top of the graph to highlight they fall far out of bounds of the doa@l¢o thestrength of their
association
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Figure 3-5 Q-Q plot for the association of likelydamagingvariants betweenall CyKD
cases and control

Q-Q plot of exomewide genebased association testing ft209CyKD cases and 260%hcestry
matchecdcontrols Each dot representsgeane. The red line signifies the observed versus the expected
logio(P) for each gene tested.

Removing cases solved by 100KGP and patients that had a bioinformatically
ascertained pathogenic variant in a known cystic gene left 308 cases. Performing rare
variant analysis under the fAmissense+o0
with varians inIFT140(P=1.26x10, OR=5.57, 95%Cl 3.68.21) andCOL4A3
(P=6.83x10", OR=4.93 95%Cl 2.7-8.11) compared with 26096 controls (FigGr6,
QQ-plot 3-7).

™ IFT140

—logso(p)

0oL
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& a w1 12 13 14 15 17 18 20 22
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Figure 3-6 Gene based Manhattan for the association of likelgjamagingvariants between
unsolved CyKD case and controls.

Manhattan plot of exomeide genebased rare, likelgamagingvariant association testing f808
unsolved CyKDcases and 2602%cestry matchecontrols SAIGE-GENE was performed for 19,168
genes with losef-function and likelydamagingmissense variants with MAF < 0.1%ach dot
represents a gene. The red line indicates the exddesignificance threshold of P=2.58%60
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Cystic kidney disease

Figure 3-7 Q-Q plot for the association of likelydamagingvariants betweenunsolved
CyKD cases and controls

Q-Q plot of exomewide genebased association testing for 308 unsolved CyKD cases and 26096
ancestry matched controls. Each dot represents a gene. The red line signifies the observed versus the
expected logio(P) for each gene tested.

3.2.4.2.3 Loss of function variants

Collapsing rare variants that had a high confidence call fordbfsnction under the

ALoFO mask reveal ed PKD2gP¥3.05i1@'2a@R=13@85r i c h me |
95% Cl = 83.66215.37) PKD1(P=1.29x10"*" OR=36.01, 95% CI 30.522.23)
IFT140(P=3.00x1°, OR=14.03, 95%CI 7.924.45) DNAJB11P=1.84x10/?, OR

1.07, 95% CI1 0.98..21)andPKHD1 (P=2.98x1® OR=4.07 95%CI 2.24.88)

(Figure 38 and QQ Figure -®).
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