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Abstract 

 

Cystic kidney disease (CyKD) is the commonest life-threatening monogenic disorder, 

causing great morbidity and mortality. Whilst there is believed to be a strongly 

monogenic architecture, an unbiased whole genome sequencing approach to 

understanding the underlying genetic architecture has never previously been attempted.  

 

In this thesis I used statistical genetics and bioinformatics methodology to investigate 

the genetic architecture of CyKD as well as two other rare disorders, urinary stone 

disease (USD) and extreme early onset hypertension (EEHTN), using whole genome 

sequencing data from the 100,000 Genomes Project. I used population-based tools to 

assess the rare and common variant associations in diverse ancestry matched cohorts 

seeking enrichment of single nucleotide/indel and structural variants on a genome-wide 

and per-gene basis.  

 

In all three disorders this improved our understanding of the underlying architecture. 

CyKD is shown to be strongly monogenic as expected but low-frequency and common 

variants are shown to play an important role in pathogenesis and causation of this 

disease, revealing a role for polygenic factors. The heritability of USD is shown to be 

heavily influenced by low-frequency variants in the sodium-phosphate transporter gene 

SLC34A3, which explains much of the missing heritability not detected by previous 

large-scale common variant association studies. This finding bridges the gap between 

the traditional thinking that USD is either monogenic or polygenic/environmental. 

Finally, EEHTN is shown to likely be an extreme manifestation of primary 

hypertension, with a strong polygenic basis.  

 

These results support the idea that with better sequencing and larger biobanks, an 

omnigenic model of disease will become more demonstrable for a broader range of 

phenotypes, consistent with genotype-phenotype heterogeneity, variable expressivity 

and incomplete penetrance observed in all three diseases. Finally, I demonstrate that 

population level approaches traditionally used to study common disease are applicable 

and useful in rare disease research.  
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Impact Statement 

 

The findings from this study will have implications across multiple disciplines within 

and external to nephrology. From a patient perspective many of the findings are in 

patients who are unsolved by the clinical arm of the 100,000 genomes project. These are 

in the process of being fed back to the relevant patientôs clinicians with a view to 

potentially offering them a molecular diagnosis.  

 

Secondly, these results will be of interest to researchers in nephrogenetics as well as 

clinicians involved in rare renal disease. I hope that these results will be hypothesis 

forming for both in silico and functional analyses. For the wider genomics community, I 

have used a mixed ancestry in nearly all of my analyses without major genomic 

confounding. This demonstrates the scientific advantages of including a wider cohort 

for genomic analysis and normalises the representation of individuals from diverse 

ancestral backgrounds. At the start of my thesis, I was only using Europeans for my 

analyses, which as a researcher not of European ancestry, was odd to me. I am pleased 

that our group has developed methods to improve representation in rare disease 

analyses.  

 

Finally, attempting to marry the common and rare variants domains via the analysis of 

low frequency variants in rare disease has great implications for the future of rare 

disease genomics. As rare disease cohorts become larger and sequencing improves, we 

really are at an exciting time to tease out the ñmissed heritabilityò of diseases. This will 

help guide understanding of biology and more importantly offer new avenues for 

therapeutics for a series of diseases that really lack personalised approaches.  

 

The impact of this work will be disseminated primarily through publication in peer 

reviewed journals with lay summaries to increase public and patient engagement. My 

work on USD has already been published and I have created a tutorial on Twitter to 

increase the visibility and approachability of the work for patients, academics, and 

clinicians. Promotion through social media such as Twitter has increased the visibility 

of our work and has led to fruitful engagements with relevant stakeholders. My work 
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has been selected for presentation at a number of international and national conferences 

(oral presentations at UK Kidney Week 2021-2023, Wellcome Genomics of Rare 

Disease 2023 and Association of Physicians of Great Britain and Ireland Annual 

Meeting 2023; poster presentations at the American Society of Nephrology Kidney 

Week 2022) highlighting its broad appeal across genetics, nephrology, and medicine.  
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pLOF Predicted Loss-of-Function 
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Introduction 

Chapter 1. Introduction  

In this thesis I examined the genetic architecture of cystic kidney diseases (CyKD), 

urinary stone disease (USD) and extreme early onset hypertension (EEHTN) using 

whole genome sequencing (WGS) in an unbiased genome-wide manner. In the 

introduction I will define and elaborate on some of the key concepts to be analysed as 

well as a brief discussion of the current landscape of genomic analysis. 

1.1 The current landscape of genomic analysis 

1.1.1 From linkage to GWAS 

The elucidation of the intricate relationship between genetic variations and complex 

traits has been a foundational pursuit in the field of genetics. Over the course of the last 

century, this pursuit has undergone a remarkable transformation driven by technological 

advancements and methodological innovations. This evolution of genetic association 

analysis has propelled the field from rudimentary observations of familial inheritance to 

sophisticated investigations at the level of the entire genome. Central to this progression 

is the advent of whole-genome sequencing (WGS), a revolutionary technique that has 

modernized our ability to comprehensively examine the genetic landscape underlying 

various phenotypes. 

 

The history of genetic association analysis can be traced back to the pioneering work of 

early geneticists, who sought to decipher the patterns of inheritance of observable traits. 

Gregor Mendel's experiments with pea plants in the mid-19th century laid the 

groundwork for understanding the basic principles of inheritance, and the subsequent 

discovery of the DNA double helix by Watson and Crick in the 20th century unveiled 

the molecular basis of genetics. These foundational discoveries set the stage for the 

exploration of genetic variations' influence on phenotypes. 

 

In the mid-20th century, the concept of genetic linkage emerged as researchers began to 

observe that certain traits co-segregated more often than expected by chance due to their 

physical proximity on chromosomes. This led to the development of linkage analysis, a 
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method used to identify genetic loci associated with traits through the study of familial 

inheritance patterns. Despite its success in pinpointing genes responsible for Mendelian 

disorders, linkage analysis faced limitations when applied to complex traits influenced 

by multiple genetic and environmental factors.  

 

The late 20th century witnessed a shift in focus towards molecular markers and their 

application in genetic association studies. The introduction of restriction fragment 

length polymorphisms (RFLPs) and microsatellites enabled more accurate mapping of 

genetic loci. Family-based linkage studies paved the way for the identification of genes 

linked to inherited diseases, yet these methods remained inadequate for unravelling the 

genetic basis of complex traits affecting broader populations as well as in de novo 

disorders. Its efficacy also diminishes in cases of incomplete penetrance or when locus 

heterogeneity is at play. Population-based candidate gene studies, which have employed 

positional cloning methods and more recently targeted next-generation sequencing 

(NGS) approaches, adopt a hypothesis-driven selection of genes based on biological 

plausibility. These endeavours have contributed to gene discovery in rare diseases, but 

they remain constrained by elevated false-positive rates and often encounter challenges 

in terms of reproducibility. Today, both of these methodologies have largely ceded 

ground to whole-exome sequencing techniques in the domain of rare diseases. 

Meanwhile, genome-wide association studies (GWAS) conventionally serve as the 

method of choice for gene discovery in common, complex traits. 

1.1.2 The Genomic Era 

The shift away from linkage analysis (although it still has a vital role to play in 

elucidating mechanisms in rare disease) has been facilitated by the increasing number of 

patients and participants having their DNA sequenced. Now two decades after the 

groundbreaking publication of the draft human genome sequence (Lander et al. 2001) 

there has been a revolution in not just analytical techniques but the datasets that provide 

them. The International HapMap Project (International HapMap 3 Consortium et al. 

2010) and the 1000 Genome Project (Sudmant et al. 2015) were harbingers to 

increasingly large international consortia creating biobanks of large-scale sequencing 

data from hundreds of thousands of individuals from across the globe (H3Africa 
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Consortium et al. 2014; Kurki et al. 2022; Halldorsson et al. 2022; Nagai et al. 2017; 

Turro et al. 2020; GenomeAsia100K Consortium 2019; Bycroft et al. 2018; Taliun et al. 

2019; 100000 Genomes Project Pilot Investigators et al. 2021).  

 

However, initial excitement that the draft human genome would lead to a revolution in 

clinical care has been cooled by the discovery of the vast complexity of the human 

genome both in sequencing and interpretation. The whole genome from telomere to 

telomere was only sequenced in 2022 (Nurk et al. 2022) and the vast amount of data 

generated since 2001 has required rapid advancement in computational and statistical 

techniques to draw meaningful inferences that inform biology. Treatments informed by 

genomics are now beginning to reach clinical pipelines and patients such as ribonucleic 

acid interference (RNAi) molecules for primary hyperoxaluria (Garrelfs et al. 2021), 

PCSK9 inhibitors for primary hypercholesterolemia (Abifadel et al. 2003), the presence 

of a truncating variant in PKD1 for access to tolvaptan (Müller et al. 2022) and most 

recently Inaxaplin for APOL1 associated proteinuric renal disease (Egbuna et al. 2023). 

Equally impactfully, patients with cancer and rare diseases are now getting rapid and 

accurate molecular diagnoses which can personalise treatment, risk stratify by genotype 

and aid in screening programmes. The recent introduction of whole genome sequencing 

(WGS) into routine clinical care within the NHS means this is truly an exciting time for 

genomic medicine. 

1.1.3 Sitting between rare and common 

The common disease common variant (CDCV) debate has roots in the early 20th century 

conflict between the ñMendeliansò led by William Bateson and Hugo de Vries and the 

ñBiometriciansò led by Karl Pearson. The latter camp rejected the Mendelian idea that 

discrete units of heredity could explain the continuous range of phenotypic variation. 

This was largely unified by RA Fisher and colleagues who showed that Mendelôs genes 

and laws could work additively to influence the expression of a phenotype both in a 

discrete and continuous capacity. This influenced discourse in more contemporary 

debates such as the CDCV vs common disease rare variant (CDRV) over the genetic 

architecture of hypertension where arguments centred on whether hypertension was 

rooted in low effect polygenic variants or high effect rare variants. The answer has been 
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shown to be both with GWAS and candidate gene studies highlighting how these two 

causes sit together in not just hypertension but many chronic diseases.  

 

In their seminal paper discussing the common variant/common disease paradigm Eric 

Lander and David Reich gave rationale to this theory positing that it holds true for most 

diseases and therefore GWAS was a reasonable approach to the study of complex 

diseases (Reich and Lander 2001). However Pritchard argued that population dynamics 

are more likely to favour the contribution of multiple rare variants  to disease (Pritchard 

2001) . He contends that common variants, due to their lengthy presence in the human 

population, are more likely to have undergone potential selective pressures over time, 

diminishing the impact of negative selection. In contrast, rare variations, often newly 

arisen within only a few generations, tend to escape the influence of negative selection 

or are rare because they are being actively selected against, owing to their inherently 

deleterious nature. However, whilst conceptually disease can be seen as caused by a 

spectrum of variants across the allelic frequency spectrum the available tools have 

continued to silo researchers into ñcommon variant/common diseaseò or ñrare 

variant/rare diseaseò methods.  

 

1.1.3.1 GWAS for common and complex diseases 

Thousands of GWA studies have now been conducted looking at the relationship 

between common variants (initially taken to be those with a minor allele 

frequency[MAF] greater than 5% but now greater than 1% is accepted) and various 

diseases with great success (Abdellaoui et al. 2023). The rationale from the Lander 

paper above that the power to detect association in case-control studies is a function of 

the effect size of an allele and its frequency in the study population means it have been 

limited mainly to complex traits and disorders such as diabetes or schizophrenia.  

 

Typically, GWAS deploy genome-wide single-nucleotide variant (SNV) microarrays, 

encompassing  hundreds of thousands or millions of variants, often characterized by a 

minor allele frequency (MAF) greater than 1%. These microarrays enable the 

genotyping of cohorts under investigation, allowing subsequent comparison with 
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appropriate control populations. These genotype results are then typically imputed 

which involves leveraging ancestry-specific reference panels comprised of haplotypes 

reconstructed from sequencing data, exemplified by initiatives like the Haplotype 

Reference Consortium. Imputation serves to bridge gaps in data, utilizing the 

knowledge of linkage disequilibrium (LD), which captures non-random co-inheritance 

of alleles, to infer missing variants. However, it's crucial to note that the imputation 

accuracy diminishes when dealing with variants not in LD with those genotyped, 

particularly rare variants (present in less than 1% of the general population) and those 

manifesting in non-European populations. These imputed variants are then used for the 

association test of the trait of interest, with the variants severing markers or indirect 

proxies rather than direct indicators of the causal variants in the underlying genetic 

regions. 

 

GWAS has now identified thousands of associations that have informed gene discovery, 

the generation of predictive risk score (Khera et al. 2018), estimations of heritability 

(Zhu and Zhou 2020) and prioritization of targets for drug development (Kiryluk et al. 

2023). However, as successful as GWAS has been the results to date only explain a 

small fraction of the burden of any disease in the population at large. This ñmissing 

heritabilityò (Manolio et al. 2009) has been attributed to a) GWAS not capturing 

common variants with low effect sizes, b) the contribution of variants not detected by 

imputation of panel data, namely rare variants and structural variants (SVs), c) epistasis, 

where gene-gene interactions occur and d) genomic imprinting or parent of origin 

effects. For those variants that have been detected, ~90% of risk alleles are found in 

non-coding regions of the genome, making functional annotation difficult; although 

efforts to generate cell and context specific multi-omics data via such projects as 

ENCODE (Dunham et al. 2012), the RoadMap Epigenomics Consortium (Roadmap 

Epigenomics Consortium et al. 2015) and GTEx (The GTEx Consortium et al. 2020) 

have aided hugely with prioritization of causal variants for functional follow-up. 

Finally, >95% GWAS to date have been done in individuals of European ancestry (as of 

August 2023 https://gwasdiversitymonitor.com). Increasing ancestral diversity in 

genetic studies improves the power to detect associations (Ishigaki et al. 2022; Z. Lu et 

https://gwasdiversitymonitor.com/
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al. 2022; Mahajan et al. 2022) and is ethically crucial (Peterson et al. 2019; Fatumo et 

al. 2022).  

 

With these recognised limitations in GWAS, high-coverage WGS data is now being 

explored for investigating diseases. Its ability to give whole genome coverage to 

excellent depth has demonstrated improved power and sensitivity over conventional 

techniques. This coupled with larger multi-ancestry biobanks have identified novel 

associations in variants that are either rare or ancestry-specific (Hu et al. 2021). The 

major limiting factor has been the cost of WGS, but with falling costs (a whole genome 

can now be sequenced for <£500) this is set to become the standard method of analysis.  

1.1.3.2 Sequencing in rare diseases   

With GWAS requiring large case numbers and being unable to accurately impute rare 

variants, sequencing both targeted gene sequencing and whole exome/genome 

sequencing became the focus in Mendelian disease analysis. When Ng et al used whole 

exome sequencing to discover rare variants in DHODH as causative for the Miller 

syndrome in 2010 (Ng et al. 2010) it was hoped that a new era of precision medicine in 

rare disease would be enabled. It was cost effective and had the potential to overcome 

the issues with linkage studies such as the requirement for large pedigrees, often poor 

resolution of linked regions, inability to call de novo variants and locus heterogeneity. 

In the two years post the initial WES proof of concept experiment (Ng et al. 2009), 180 

novel genes were described in Mendelian disorders alone (Boycott et al. 2013) and it 

soon found its way into clinical genetics pipelines and diagnostic labs (Y. Yang et al. 

2013).  

 

However, WES has methodological and conceptual issues. From a methods perspective 

WES gives heterogenous coverage of the exons due to the issues with the 

hybridisation/capture and PCR-amplification steps during library preparation 

(Kebschull and Zador 2015), WES also has lower per base coverage than WGS leading 

to it missing may variants in exons (Belkadi et al. 2015) and it is not a reliable approach 

for detecting copy number and structural variants (CNV/SV) due to most CNV/SVs 

extending beyond the boundaries of captured exons. The choice of preparation library is 
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particularly important, ~50%  of pathogenic variants associated with hereditary 

nephrotic syndrome and Deny-Drash syndrome were poorly covered using leading 

WES capture kits (Park et al. 2015). Conceptually, variants causing Mendelian 

disorders are  within coding regions ~95% of the time (Botstein and Risch 2003), a 

finding that spurned the initial drive towards WES, however, non-coding variants have 

been implicated in multiple diseases (Spielmann and Mundlos 2016; French and 

Edwards 2020) including kidney diseases such as atypical haemolytic uraemic 

syndrome (Mele et al. 2015), Alport syndrome (King et al. 2002)  and Gitelman 

syndrome (Lo et al. 2011). WES ignores such variants, and it also ignores a large 

proportion of SV/CNVs as it is unable to reliably define their breakpoints (R. Tan et al. 

2014). It also limits our ability to integrate findings with other lines of multi-omics 

evidence such as epigenetics or chromatin conformation where the interactions lie 

outside of the coding genome.  

 

Whole genome sequencing (WGS) has remained in the shadows of WES for some time 

given its historically higher cost and the vast amounts of data created leading to issues 

with data storage, security, and downstream analysis. It undoubtedly has benefits over 

WES, allowing for full capture of non-coding variants, better and more uniform 

coverage of coding regions (Belkadi et al. 2015), more accurate capture of SV/CNVs 

(Hehir-Kwa, Pfundt, and Veltman 2015) and better phasing and thus assessment of 

compound heterozygosity (Hofmeister et al. 2023). The cost of WGS is now falling to 

that comparable to WES (Dewey et al. 2014), especially when WES may require 

multiple runs to increase read depth to a level to match the variant detection of WGS 

(Lelieveld et al. 2015). Alongside the falling cost, the establishment of large scale WGS 

biobanks such as deCODE (Gudbjartsson et al. 2015), TOPMed (Taliun et al. 2021) and 

gnomAD (Karczewski et al. 2020) has made the data generated by WGS integral to 

human genetics research. The metrics these  have directly affected variant interpretation 

at a clinical level and helped inform the establishment of UK biobanks that serve a dual 

function of research and clinical utility such as the 100,000 genome project (100KGP) 

(100000 Genomes Project Pilot Investigators et al. 2021) and the NIHR Rare Disease 

Bioresource (Turro et al. 2020).  
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1.1.3.3 Rare variants ï intermediate effect sizes 

The large WGS biobanks have led to several insights that are pertinent to the 

CDCV/CDRV debate. As sequencing projects get larger in both number as well as read 

lengths (long read sequencing) the frequency and volume of genetic variation become 

apparent. There is an abundance of rare and private (seen in one individual) variation 

within the ~3 million SNVs and ~0.5 million indels in the average genome (Karczewski 

et al. 2020), loss-of-function variants that are predicted to truncate protein function are 

more (Lek et al. 2016) frequent than thought and SV/CNVs may in fact account for 25-

29% of all such protein truncating events per genome (R. L. Collins et al. 2020).  

 

Such insights give evidence to the theoretical models discussed in the past decade. 

Figure 1-1 references a now seminal paper by Manolio et al from 2009 whereby the 

ñmissing heritabilityò of diseases is theorized to originate from rare variants of small 

and intermediate effects size as well as structural variants (Manolio et al. 2009). Figure 

1-2 highlights variants on this spectrum in relation to renal diseases from a 2020 review 

by Groopman et al. In the intervening 11 years there has been little exploration of the 

rare variant low effect size space. Like GWAS studies, analysis of this would require 

large cohorts, well sequenced, using the latest methodology to overcome issues around 

lack of statistical power.  
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Figure 1-1 Feasibility of identifying genetic variant by risk allele frequency and strength 

of genetic effect.  

The dotted lines represent the areas the authorôs thought variants were most likely to be found in 2009. 

The genetic research landscape has expanded greatly since then. Taken from Manolio et al 2009. 

 

 

 

Figure 1-2 The genetic contribution of variants to renal diseases  

Disease causing variants for renal diseases can be large effect, rare variants which tend to follow a 

Mendelian patten of inheritance and monogenic. More common alleles have smaller individual effect 

sizes although exceptions such as APOL1 exist. Other genes such as UMOD have both common and rare 



Introduction 

 

30 

 

variant roles in renal diseases, or multiple phenotypes such as in HNF1ɓ. Crucially the area of rare, low 

effect size variants remains relatively unexplored in the renal disease.  

 

We now live in the era of large biobanks of WGS data. There are also techniques such 

as region-based testing that collapse information across genomic regions e.g., a gene, 

before testing for association with a phenotype. Such methods have seen success in 

describing a number of novel gene-disease relationships (Q. Wang et al. 2021; Deaton 

et al. 2021; Akbari et al. 2021) and more importantly begin to fill out the bottom left 

hand quadrant of both figure 1.1-1.2. One of the largest analysis of rare and low 

frequency variants to date, across 643,219 individuals and 744 phenotypes from the 

UKBB and Finngen, found 975 associations of which 145 were driven by unique 

variants in the allelic frequency between 0.1-2% with an average odds ratio of 2.8 

(Benjamin B. Sun et al. 2022). Clearly these variants are not acting in purely Mendelian 

ways, their penetrance is likely to be low and they should be seen as risk factors or 

modifiers that transact with other genetic and environmental factors for a particular 

disease. This is an exciting era for genomic medicine and in this thesis, I will use 

similar methods to explore this genome space for a number of disorders to further 

elucidate their genetic architecture.  

1.2 Genetic architecture  

The term ñgenetic architectureò needs defining prior to its use in this thesis. It refers to 

the types of genetic variation and their respective effects on the observed variation in a 

phenotype. This is driven by both our knowledge of the types of variation that exist and 

in turn the technologies and methods available to detect them. This encompasses the 

arrangements and distribution of genetic variants, such as single nucleotide variants 

(SNVs), insertions/deletions (indels) and structural variants (SNVs) across a cohortôs 

genomes, their allele frequencies, and their effect sizes. In human population-based 

analyses genetic architecture describes the genetic variation that is responsible for 

broad-sense phenotypic heritability (Mackay 2001). This is compared to narrow-sense 

heritability which applies to additive genetic effect only (Visscher, Hill, and Wray 

2008).  
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Genetic architecture also includes the interaction and combined effects of multiple 

genes (epistasis) and their interactions with environmental factors in determining the 

expression of traits. Defining this architecture for a trait or disease is a fundamental goal 

of human genetics both scientifically and clinically.  

 

Genetic architecture is defined as much by the technologies available to the researchers 

as the underlying genomic variants. Historically, limited by both pedigree size and 

genetic mapping technology, linkage analysis and fine mapping where the technologies 

of the day during the 1980s and 1990s (Lipner and Greenberg 2018). Localization of 

genetics signals was typically followed up using Sanger sequencing and then functional 

studies in cellular and animal models (Heather and Chain 2016). This was a difficult 

and laborious process but by 2000 ~1000 of the ~7000 single gene inherited disease had 

been described such as Huntingtonôs disease and cystic fibrosis (Kremer et al. 1994; F. 

S. Collins 1990).   

 

The first draft of the human genome sequence reduced many of the barriers to disease-

gene mapping (Schmutz et al. 2004).  Microarray-based technologies allowed for 

structural variation to be analysed and exome and genome-wide sequencing have been 

instrumental in further elucidation of genetic architecture aided by the parallel 

development of in silico  analysis of genetic variants (Heather and Chain 2016). 

Complex diseases and traits with polygenic architecture can now be described and 

biobanks of increasing size allow for the examination of low frequency, low effect rare 

variants in all forms of disease (Q. Wang et al. 2021). In fact for certain traits such as 

height, the ñmissing heritabilityò has been solved in European ancestry paving the way 

for further phenotypes to be elucidated in a similar fashion as biobanks increase in size 

(Yengo et al. 2022). 

 

This increasing ability to sequence more of an individualôs DNA more reliably and at 

scale had led to an evolution of the models of genetic architecture. Traditionally genetic 

architecture has been described as monogenic, oligogenic or polygenic implying 

differing levels of genetic variant contribution to the variability in a phenotype (Badano 

and Katsanis 2002). However, the ñomnigenicò model describes a gene regulatory 
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network wired as such to allow all genes expressed to contribute to a trait, with 

peripheral gene networks having a no-zero effect and interaction with a core set of 

genes in a given tissue or cell type (Boyle, Li, and Pritchard 2017). Like Fisherôs 

ñinfinitesimal modelô whereby all variants have non-zero effects on trait variation, the 

omnigenic model effectively describes all traits as quantitative as variation throughout 

the genome affects the process as much as more closely related variants (Fisher 1919). 

Clearly it still holds true that some phenotypes are much more monogenic e.g. Cystic 

Fibrosis whilst others are more polygenic e.g. Type 2 diabetes but the increasing 

influence of ñperipheralò genetic variants on ñcoreò genes and subsequent phenotype is 

increasingly being appreciated. From a practical perspective, these influences have been 

best described at the intersection of monogenic disease and polygenic risk scores, such 

as in altering the penetrance of monogenic tier 1 genomic conditions (Fahed et al. 

2020), describing the modification of chronic kidney disease (CKD) risk in monogenic 

causes of  renal disease (Khan et al. 2023) and our work on the polygenic interaction 

with rare, low effect size variants in nephrolithiasis described later in this thesis 

(Sadeghi-Alavijeh et al. 2023).  

 

A comprehensive understanding of genetic architecture allows for better screening, 

diagnosis, prognosis, and therapeutics for a given disease. In this thesis I describe the 

use of short-read whole genome sequencing (WGS) in a national cohort of cystic kidney 

disease (CyKD), urinary stone disease (USD) and extreme early onset hypertension 

(EEHTN) in order to describe  the genetic architecture of these disorders.  

1.3 Summary 

In summary, our ability to plumb the full range of genetic variation and assign these 

findings a role in a trait or disease has exploded in the last decade. While previous 

studies of genetic causation in disease have been siloed by the technologies and 

methods available into ñcommon ï GWASò or ñrare- sequencingò our ability to 

overcome these challenges has improved to the point of being able to integrate a broad 

spectrum of variation into our models.  
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1.4 This study  

In this study I use WGS data from the 100,000 Genomes Project to understand the 

genetic architecture of CyKD, USD and EEHTN. Population based rare and common 

variant association testing was performed in diverse ancestry case control cohorts 

looking for enrichment of single nucleotide/indel and structural variants on a genome-

wide level. Polygenic risk scoring was utilised as a method to ascertain heritability and 

understand common variant contribution to these diseases. This study represents one of 

the largest WGS analyses of all three conditions using unbiased genome wide methods.  
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Chapter 2. Materials & Methods 

In this chapter I discuss the methods used for generating genomic and cohort data used 

throughout the thesis. I then discuss the overarching theories behind the statistical 

methodology used for controlling for sources of bias and the subsequent association 

testing. I will go into more detailed practical methodology within each results chapter. 

All  code used in this thesis can be found on my GitHub: 

https://github.com/oalavijeh/phd_scripts/tree/main, all workflows generated by 

Genomics Englandôs bioinformatics team can be found here: https://re-

docs.genomicsengland.co.uk/workflows/. All summary statistics have been uploaded to 

a shared drive at:  

https://liveuclac-

my.sharepoint.com/:f:/r/personal/zchaf43_ucl_ac_uk/Documents/thesis_summary_stats

?csf=1&web=1&e=oTKY8q and will be referenced to as ñsummary statisticsò in the 

text, this will be hyperlinked to this location.  

2.1 The 100,000 Genomes Project 

In 2012, the UK launched the 100,000 Genomes Project (100KGP), an initiative to 

sequence 100,000 genomes from patients with cancer, rare disease and 

their unaffected relatives (100000 Genomes Project Pilot Investigators et al. 2021) .  

13 National Health Service (NHS) Genomic Medicine Centres across the UK recruited 

participants which was completed in December 2018. In total 132,760 genomes had 

been sequenced by March 2023. The Genomics England dataset (version 15) consists of 

WGS data, clinical phenotypes encoded using a standardized vocabulary of phenotypic 

abnormalities called Human Phenotype Ontology (HPO) codes (Groza et al. 2015), and 

retrospective and prospectively ascertained NHS hospital records for 90,189 

individuals. Ethical approval for the 100KGP was granted by the Research Ethics 

Committee for East of England Cambridge South (REC Ref 14/EE/1112). Written 

informed consent was obtained from all participants or their guardians. 

 

The 100,000 Genomes Project (100KG) is one of the largest sequencing initiatives in 

the world offering a unique opportunity to combine high-quality, high-coverage 

https://github.com/oalavijeh/phd_scripts/tree/main
https://re-docs.genomicsengland.co.uk/workflows/
https://re-docs.genomicsengland.co.uk/workflows/
https://liveuclac-my.sharepoint.com/:f:/r/personal/zchaf43_ucl_ac_uk/Documents/thesis_summary_stats?csf=1&web=1&e=oTKY8q
https://liveuclac-my.sharepoint.com/:f:/r/personal/zchaf43_ucl_ac_uk/Documents/thesis_summary_stats?csf=1&web=1&e=oTKY8q
https://liveuclac-my.sharepoint.com/:f:/r/personal/zchaf43_ucl_ac_uk/Documents/thesis_summary_stats?csf=1&web=1&e=oTKY8q
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genomic data with rich clinical and phenotypic information from a national health 

system. Furthermore, a key strength of this dataset is the availability of sequence data 

from large numbers of people without the phenotype under study, drawn from the same 

population recruited and their samples processed and sequenced within a shared 

pipeline. This allows control for allele frequency and variant burden in the population. 

This is an advantage compared with previous sequencing studies in these disorders that 

have typically lacked such robust control.  

 

2.2 Data Generation and Processing 

DNA extraction, processing, whole genome sequencing, WGS alignment, variant 

calling, variant quality control and aggregation were all performed centrally by the 

Genomics England central bioinformatics team and will be detailed below. This resulted 

in an aggregated genomic variant calling file (gVCF) incorporating a majority of the 

100KGP participants split into chunks by genomic position.  

2.2.1 DNA extraction and preparation  

Nearly all the DNA (99%) was harvested from blood and prepared using EDTA with 

the remaining coming from saliva or tissue. Samples underwent quality control 

assessment based on volume, concentration, purity, and degradation. Libraries were 

prepared using the Illumina TruSeq DNA PCR-Free High Throughput Sample 

Preparation kit to minimize PCR-induced sequencing bias. Where limited DNA was 

available (<1% samples) the Illumina TruSeq Nano High Throughput Sample 

Preparation kit was used. 

2.2.2 Whole-genome sequencing and alignment 

Illumina HiSeq X instruments were used to perform WGS, generating 150bp paired end 

reads which were processed on the Illumina North Star Version 4 Whole Genome 

Sequencing Workflow (version 2.6.53.23). Read were mapped to the Homo Sapiens 

NCBI GRCh38 reference assembly and decoys (partially assembled DNA sequences 

missing from the reference genome) using the Illumina Isaac Aligner (version 
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03.16.02.19). A quality threshold of Ó 95% genome alignment at Ó15X with mapping 

quality > 10 for samples to be retained was set. 

 

For the pilot arm of the 100KGP samples were aligned to NCBI GRCh37 reference, 

however, those patients in the pilot were mostly moved to build 38. For downstream 

analyses I only took those samples aligned to GRCh38, however, the clinical arm of 

100KGP where diagnostic yields for the project are generated are calculated using 

probands aligned to either GRCh37 or GRCh38. In terms of coverage (the number of 

times a single base is read during sequencing) the 100KGP samples achieved 97.4% 

mean coverage at 15X with median genome-wide coverage of 39X. Samples with 

heterozygosity rates >2% (implying cross-contamination of samples) were removed (as 

determined by the VerifyBamID tool). Males and females were subset and analysed 

separately for sex chromosome quality control.  

2.2.3 Variant calling  

Variant calling was performed using Illuminaôs Starling software (version 2.4.7) for 

small SNVs and short insertions/deletions (INDELs). These were output to a genomic 

variant calling format file (gVCF). Starling uses a combination of read quality scores, 

allele counts to predict a genotype per locus before comparing it to a reference genome.  

2.2.4 gVCF aggregation and variant-level quality control  

Genomic variant call format files (gVCFs) were aggregated using gvcfgenotyper 

(Illumina, version: 2019.02.26) with variants normalized and multi-allelic variants 

decomposed using vt (version 0.57721). Variants were retained if they passed the 

following fil ters:  

¶ missingness Ò 5% 

¶ median depth Ó 10 

¶ median GQ Ó 15 

¶ percentage of heterozygous calls not showing significant allele imbalance for 

reads supporting the reference and alternate alleles (ABratio) Ó 25% 

¶ percentage of complete sites (completeGTRatio) Ó 50% and  
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¶ P value for deviations from Hardy-Weinberg equilibrium (HWE) in unrelated 

samples of inferred European ancestry Ó 1Ĭ10-5. 

 

HWE is the principal by which allele and genotype frequencies remain static between 

generations as long as mating is random and migration, mutation or selection do not 

occur. Variants that differ vastly by HWE normally represent genotyping or sequencing 

errors. However, HWE deviances can also represent population stratification or true 

associations. HWE is normally assessed separately in cases and controls to avoid 

removing true associations.  

2.2.5 gVCF annotation  

Annotation was performed using Variant Effect Predictor (VEP, version 98.2) 

(McLaren et al. 2016). Allele frequencies were annotated using gnomAD and TOPMed 

databases using both total population and ancestry specific values. Variants were further 

annotated with the Combined Annotation Dependent Depletion (CADD) scores (version 

1.5) (Rentzsch et al. 2019), the loss-of-function transcript effect estimator (LOFTEE) 

tool (Karczewski et al. 2020) and SpliceAI splice site predictor tool (Jaganathan et al. 

2019). 

 

CADD incorporates more than 60 different annotations (including evolutionary 

constraint, epigenetic modifications, and functional predictions) into a machine 

learning model, generating a deleteriousness score for all ~9 billion potential coding 

and non-coding SNVs in the human genome (Rentzsch et al. 2019). A CADD PHRED 

adjusted score >20 for a variant means it is predicted to be in the top 1% damaging 

variants in the human genome. CADD scoring is a very popular method for variant 

deleteriousness calling and remains one of the top-performing and flexible tools (D. 

Wang et al. 2022) despite many other callers now being incorporated into Ensembl. 

 

LOFTEE assesses variants that are stop-gained, splice site disrupting and frameshift 

variant only. It filters out variants based on sequence and transcript context (such as 

removing terminal truncation variants or well rescued splice variants) and flags exonic 

features such as conservation. It has been shown to effectively remove predicted loss of 
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function variants (pLoF) that are common in the population while retaining correctly 

ascertained pLoF variants (Karczewski et al. 2020).  For these variants LOFTEE gives a 

flag indicating whether there is a ñhigh confidenceò (HC) or a ñlow confidenceò that 

they cause pLoF.  

 

SpliceAI is deep neural network that predicts cryptic splice mutations from genomic 

sequence data using an unsupervised deep learning model (Jaganathan et al. 2019). The 

output for each variant is a delta score ranging from 0-1 for each type of splice variant 

(donor loss, donor gain, acceptor loss, acceptor gain) with higher scores indicating a 

higher probability of the variant affecting splicing; a score >0.8 is used by the authors as 

a high precision cut-off.  

 

2.2.6 Bioinformatics tools 

The gVCF files  were filtered using bcftools (version 1.11) (Danecek et al. 2021) and 

BEDtools (Quinlan and Hall 2010) in the command. Phenotype data including hospital 

episode statistics (HES) and human phenotype ontology data (HPO) was extracted from 

LabKey tables using the LabKey R package (Nelson et al. 2011). The outputs of the 

association analyses were manipulated, analysed and plotted in R (Version 4.0.3) using 

the data.table, tidyverse, qqman (D. Turner 2018) and ggplot2 packages (Wickham. 

2016). Survival analysis was performed and plotted with the survival package in R 

(Therneau 2023).  

 

2.3 Relatedness Estimation  

Case-control analyses in genomics looks for shared areas of the genome, pre-defined at 

the point of testing e.g. SNV, gene, structural variant etc that are more common in 

either cases or control outputs a statistical probability as to the confidence of the 

association as well as an effect size as to the magnitude of the association. Related 

individuals share more common tracts of genomic information and if grouped together 

in such analyses lead to spurious associations and biased estimated of effect sizes if 
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unaccounted for. Common practice entails using ñunrelatedò individuals, usually 

defined as more distant than second-degree relatives.  

 

Genetic relatedness can be ascertained using identify-by-descent (IBD), a concept that 

refers to the sharing of genetic material between two individuals inherited from a 

common ancestor. IBD assumes that individuals who are closely related are more likely 

to share longer segments of their DNA. The proportion of loci where a pair of 

individuals share 0,1 or 2 alleles from a common ancestor is calculated, with these 

estimated used to create a pair-wise kinship coefficient (ū). The ū is defined as the 

probability that a randomly selected allele from two individuals is IBD. A coefficient of 

0.5 is equivalent to monozygotic twins, 0.25 to first-degree relatives and 0.125 to 

second-degree relatives.  

 

Genomics England had generated a set of 127,747 high quality autosomal biallelic 

SNVs with a minor allele frequency (MAF) > 1% using PLINK (version 1.9) (Purcell et 

al. 2007). SNVs were included if they met the following criteria:  

 

¶ missingness < 1% 

¶ median GQ Ó 30 

¶ median depth Ó 30 

¶ AB Ratio Ó 0.9 

¶ completeness Ó 0.9 

 

SNVS that were ambiguous due to strand uncertainty were excluded. To prevent further 

confounding linkage disequilibrium (LD) pruning was performed using a squared 

correlation coefficient (r2) threshold of 0.1 and window of 500kb to remove correlated 

variants. Variants in regions of long-range high LD 

(https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD) 

were also removed. SNVs out of HWE in any of the African (AFR), East Asian (EAS), 

European (EUR) or South Asian (SAS) 1000 Genomes populations were also removed 

(pHWE <1×10-5). 

 

https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
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With this pruned set of variants, I employed the KING-Robust algorithm (Manichaikul 

et al. 2010) to infer relationships in the presence of population substructure. KING 

generates pairwise kinship matrices, which I generated for cases and controls separately 

first. I then subset my sampled into unrelated individuals with a kinship coefficient 

threshold of 0.0884 (second degree relative). I then combined the case/control subsets 

and re-ran KING with the same threshold, removing controls that were related to the 

causes using a custom Python script (Mr. Catalin Voinescu, UCL). 

 

2.4 Population Stratification 

Removing close relatives from genetic analyses removes one source of bias however, 

population structure presents another similar challenge. Population stratification refers 

to the presence of systematic genetic differences between subpopulations within a larger 

population i.e., the distribution of genetic variants differs between subpopulations. 

These differences can arise due to various factors such as geographical isolation (with 

non-random mating), migration patterns, genetic drift (random fluctuations in the 

frequency of genetic variants or alleles within a population over successive 

generations), genetic admixture, gene flow (the transfer of genetic material from one 

population to another) and evolutionary processes. The result is false positive 

associations and inflated test statistics. Various statistical approaches have been 

developed to minimise confounding by population structure.  

 

2.4.1 Genomic Control 

A genome-wide inflation factor, often denoted as ɚ (lambda), is a statistical measure 

used in genome-wide association studies (GWAS) to assess and correct for potential 

inflation of test statistics due to population stratification or other sources of systematic 

bias. The inflation factor is a measure of the inflation of test statistics compared to what 

is expected under the null hypothesis of no association. If the test statistics are inflated 

due to population stratification or other sources of bias, the inflation factor will be 

greater than 1. A value of ɚ = 1 indicates no inflation, meaning that the test statistics 

follow the expected null distribution. The inflation factor can then be used to correct the 
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test statistics in the GWAS (Devlin and Roeder 1999). Genomic inflation under a 

collapsing rare variant model is less straightforward and further discussed in the 

collapsing rare variant section (3.3.2.4).  

 

2.4.2 Principal component analysis (PCA) 

Principal component analysis (PCA) helps to identify patterns, structure, and 

relationships within high-dimensional genetic data by reducing the dimensionality and 

visualizing the data in a more manageable form. In the context of genomics, PCA is 

often applied to genotype or gene expression data, where each individual or sample is 

represented by many variables (e.g., genetic variants or gene expression levels). By 

employing PCA, these high-dimensional datasets can be transformed into a lower-

dimensional space while retaining the most important patterns of variation. The steps of 

PCA analysis are: 

 

¶ Covariance Matrix: PCA calculates the covariance matrix from the data, in this 

case PLINK files containing sample and genomic variant data which quantifies 

the relationships and dependencies between the genetic. The covariance matrix 

captures the variance and co-variance of the variables in the dataset. 

 

¶ Eigendecomposition: The covariance matrix is then eigendecomposed to obtain 

the eigenvectors (principal components) and eigenvalues. Each eigenvector 

represents a principal component, and the corresponding eigenvalue indicates 

the amount of variance explained by that component (Patterson, Price, and 

Reich 2006). 

 

¶ Dimension Reduction: The eigenvectors are ranked based on their associated 

eigenvalues, and the top-ranked eigenvectors capture the most significant 

patterns of variation in the data. By selecting a subset of the top principal 

components, the dimensionality of the data is reduced. 
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To aid in interpretation this data is visualised in a scatter plot, where each individual is 

represented by its scores on the selected principal components. This visualization allows 

for the identification of clusters, outliers, and patterns of genetic similarity or 

dissimilarity among individuals. This is particularly useful for detecting population 

stratification or genetic ancestry differences in genomic datasets. It can reveal 

underlying genetic substructure or relationships between populations, which is crucial 

for controlling population stratification in genetic association studies. 

 

Usually, the top ten PCs are included as fixed (non-random) effects in the regression 

model of an association analysis to control for population stratification. However, it 

should be noted that PCA is less reliable in small sample sizes or when estimating 

population substructure (Stoltzfus 2011; Johnstone and Lu 2009).  

 

2.4.3 Linear mixed models (LMM) 

LMMs (also known as a mixed effect model) now play an integral role in accounting 

for population stratification in genetic association studies and can be used on both 

continuous and binary traits (if using binary input it is known as logistic mixed model) 

(Z. Zhang et al. 2009; Dandine-Roulland and Perdry 2015; G. Li and Zhu 2013). 

 

LMM is a statistical modelling approach that incorporates both fixed effects and 

random effects into the analysis. The response variable is modelled as a linear 

combination of fixed effects and random effects, along with an error term. Fixed effects 

(covariates) represent the systematic or non-random factors that influence the response 

variable. Fixed effects can be categorical (e.g., treatment groups, sex) or continuous 

(e.g., principal components). The coefficients associated with the fixed effects estimate 

the relationship between the covariates and the response variable. Random effects 

capture the variability due to factors that are not of primary interest but are still 

important to account for. Random effects account for correlation or clustering within 

the data and are typically used to model the hierarchical or nested structure of the data. 

In genetic studies, random effects can account for the genetic relatedness between 

individuals or clustering within families and are calculated via a genomic relationship 
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matrix (GRM). The random effects are assumed to follow a specific probability 

distribution, often a multivariate normal distribution. Finally, the error term in an LMM 

accounts for the residual variation that cannot be explained by the fixed and random 

effects. It represents the within-group or within-subject variability that is not accounted 

for by the model. The error term is assumed to follow a normal distribution with mean 

zero and constant variance. 

 

LMMs are flexible and can handle unbalanced or missing data, accommodate different 

data structures (e.g., repeated measures, nested designs), and provide estimates of both 

fixed and random effects, along with associated uncertainty measures (e.g., standard 

errors, confidence intervals). LMMs are commonly estimated using maximum 

likelihood estimation (MLE) or restricted maximum likelihood estimation (REML). It 

should be noted that LMMs are computationally intensive but allow for the accounting 

of inter-and intra-population structure and cryptic relatedness. 

 

2.4.4 Control of population structure 

Published methodology from our group has shown that incorporating two of the above 

approaches controls confounding from population structure in a mixed ancestry 

case/control population (Chan et al. 2022). The first method is using a matching 

algorithm that matches cases to controls within a distance threshold as calculated using 

the first ten principal components (generated with PLINK using the 127,747 high 

quality autosomal biallelic SNVs with MAF > 1%) weighted by the percentage of 

genetic variation explained by each component (Figure 2-1 for an example from 

CyKD). Only controls within a specified distance of a case were included, with each 

case having to match a minimum of two controls to be included in the final cohort. 
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Figure 2-1 Principal component matching 

Principal component analysis showing the first eight principal components for CyKD cases (red) and 

controls (white) prior to ancestry matching (1294 cases and. 27660 controls). 
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Figure 2-2 Ancestry Matching  

Principal component analysis showing the first eight principal components for matched cases (red) and 

controls (green) and unmatched controls (grey) in a CyKD cohort. This highlights that cases are taken 

from multiple different ancestries with the appropriate matched controls. After ancestry matching there 

were 1209 cases to 29096 controls.  
 

Secondly, a logistic mixed model was implemented using SAIGE (W. Zhou et al. 2018)  

and SAIGE-GENE (W. Zhou et al. 2022). This in addition to ancestry matching allowed 

for further control of population structure and cryptic relatedness.  

2.5 SAIGE 

The Scalable and Accurate Implementation of Generalized mixed model or SAIGE and 

its extension SAIGE-GENE have been developed to deal with the increasing challenges 

in running association testing in large biobank scale genomic datasets. It is 

computationally intensive running mixed models on such datasets and controlling type 

1 error is challenging in unbalanced case control ratios (roughly greater than 100 

controls per case). These tools have now become the standard for genome-wide single 

variant and exome-wide region-based association testing in large cohorts (W. Zhou et 

al. 2018, 2022). Given the importance of SAIGE in this thesis I have broken down its 

key features below: 
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2.5.1 Generalised logistic mixed model 

SAIGE uses a logistic mixed model written as: 

 

logit(µi) = XiŬ + Giɓ + bi 

where µi is the probability of individual i being affected by the disease or trait in 

question based on their covariates, genotype, and random effects. Xi is a vector of 

covariates (e.g., sex and top ten principal components), Ŭ is a vector of fixed covariate 

effects including the intercept, Gi is the matrix of allele counts (0,1,2) for each 

qualifying variant and ɓ is the fixed genotype effect. bi is a vector of random effects that 

incorporates relatedness (and consequently population structure) between individuals 

estimated using an N x N GRM. SAIGE wraps this methodology around optimised 

computational strategies to reduce the cost of fitting null logistic mixed models, making 

it ideal for large scale biobanks.  

2.5.2  Saddlepoint approximation  

In unbalance case-control cohorts (roughly greater than 100 controls to 1 case) there is 

not a normal distribution of test statistics for single variants leading to inflated type 1 

error rates. In order to control for this SAIGE utilises saddlepoint approximation (SPA)  

(Dey et al. 2017). SPA is a mathematical technique used to approximate the distribution 

of a random variable when its exact distribution is difficult to determine analytically. It 

is particularly useful when dealing with complex distributions, such as those 

encountered in genomic association tests. In some scenarios, the null distribution of the 

test statistic is not readily available in closed form. This can be the case when the 

sample size is small or when the distribution of the test statistic is complicated. SPA 

provides an efficient and accurate method to estimate the null distribution and compute 

p-values in such situations. 

 

SPA involves finding the saddlepoint of a Laplace-type integral equation, which is a 

point in the domain of the characteristic function of the random variable where the 

integral equation is satisfied. The saddlepoint approximation constructs an asymptotic 

expansion around this saddlepoint, allowing for the estimation of the tail probabilities of 
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the distribution. This approach is particularly effective for approximating the tails of 

distributions, which is essential for calculating p-values. 

 

In genomic association tests, saddlepoint approximation can be applied to compute 

accurate p-values for test statistics under various null distributions, such as the chi-

square distribution or the logistic distribution. By accurately estimating the null 

distribution, one can determine the statistical significance of genetic associations and 

make more reliable inferences about the relationship between genetic variants and traits 

or diseases. 

 

However, when variants have a minor allele count (MAC) < 10, considered to be ñrareò, 

then SPA loses accuracy. SAIGE-GENE tunes this signal by employing efficient 

resampling methods to further control for type 1 error rates (Seunggeun Lee et al. 

2016). Efficient resampling refers to methods such as bootstrapping or permutation tests 

that involve generating multiple resamples or permutations from the observed data to 

assess the sampling variability and make statistical inferences. In the case of SAIGE-

GENE, permutation testing is performed only in those individuals carrying the minor 

allele to estimate the sampling distribution and generate an empirical P value.  

 

2.5.3 Workflow  

There are two main steps behind SAIGE and SAIGE-GENE: 

 

1. Variance component estimation using a generalized linear mixed model 

(GLMM): The first step involves fitting a null GLMM using sex and the first ten 

principal components without the genetic variants (fixed effects). Next a GRM 

is constructed using variants with a MAF>1% with the variance components 

used as random effects. This account for both genetic relatedness and population 

structure.  

2. Score test for association analysis: After estimating the variance components, 

the second step involves performing association tests to assess the significance 

of genetic variants. SAIGE and SAIGE-GENE use a score test, which is a 
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variant of the standard likelihood ratio test (LRT). The score test compares the 

likelihood of the model under the null hypothesis (no association) to the 

likelihood under the alternative hypothesis (presence of association). The test 

statistic is derived from the score vector, which represents the derivative of the 

log-likelihood function with respect to the variant effect size. The saddlepoint 

approximation is used to account for case-control imbalance. 

 

Whilst SAIGE has been widely adopted, there exist several relevant limitations. With 

any use of logistic regression, if the event rate is low then estimations of effect size (ɓ) 

can be inaccurate; this holds true for rare variants and the authors of SAIGE now 

recommend Firth logistic regression be used instead in such scenarios. Secondly, 

SAIGE has been shown to be slightly conservative when case-control ratios are very 

unbalanced.  

 

2.6 Power 

For single-variant association analysis statistical power was calculated using the R 

package genpwr (Moore, Jacobson, and Fingerlin 2019) assuming an additive model 

and a P<5x10-08, the standard genome-wide significance threshold. Figure 2-3 illustrates 

the power for the GWAS at different allele frequencies and odds ratios (OR) for the 

CyKD cohort. At an allele frequency of 1% single variant association testing is well 

powered (>80%) to detect alleles with an OR >3. USD and EEHTN are discussed in 

more detail in their respective chapters.  
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Figure 2-3 Statistical power of CyKD GWAS 

Power to detect single variant association under an additive model for 1209 CyKD cases and 26096 

controls at a genome-wide significance threshold of 5x10-8. MAF, minor allele frequency. 

 

For region-based association testing, establishing power is more challenging due to the 

myriad parameters that need to be accounted for such as allele frequency and effect 

sizes of individual variants. PAGEANT (Derkach, Zhang, and Chatterjee 2018) was 

developed to aid in calculating power for gene-based collapsing tests by using 

distributions derived from the precursor to the gnomAD database, ExAC (Lek et al. 

2016). PAGEANT was used to calculate the minimum proportion of cases explained by 

a single gene detected with 80% power in the rare variant analyses (discussed further in 

chapter 3), assuming 80% of the qualifying variants used for the collapsing test were 

causal. The genome-wide threshold used was P<2.5x10-06; the less stringent p-value 

reflecting a Bonferroni correction per gene rather than per SNV.  
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2.7 Statistical Significance 

The more tests one carries out, the more likely one is to see a statistically significant 

result by chance. This means that the chances of rejecting the null hypothesis when it is 

true also increases. This is Type 1 error and require careful consideration in the context 

of genome-wide association testing where millions of independent tests are carried out. 

I will discuss some of the current thinking behind controlling for multiple testing below: 

2.7.1 Bonferroni correction 

If Ŭ is the desired significance level, usually 0.05, and n is the number of independent 

tests, then a Bonferroni correction can be represented as Ŭ/n. This is widely used in the 

genomics community and represents the most stringent of type 1 error control methods. 

The underlying assumption that every variant tested is independent does not always 

hold true and this method is weighted in favour of minimising false positives (type 2 

error) at the expense of potentially missing real signals (Devlin and Roeder 1999).  

2.7.2 False discovery rate 

False discovery rate (FDR) is recently gained more favour in the genomics community 

as an alternative to Bonferroni correction. FDR determines a proportion of false positive 

that are acceptable within the significant results, typically 1% or 5% (Benjamini and 

Hochberg 1995). FDR has an increased type 1 error rate but greater power for signal 

detection. They are often used for hypothesis-generating where the results will not 

directly impact patient care.  

 

2.7.3 Permutation testing 

Rather than assuming an underlying distribution, permutation testing calculates a 

distribution for the test statistic under the null hypothesis in order to give an empirical P 

value. By randomly rearranging the data and recalculating the test statistic of interest, a 

null distribution of the test statistic is calculated (Salmaso et al. 2011). This is then 

compared to the observed test statistic to determine the p-value. Permutation testing is 
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computationally intensive but particularly useful when the underlying assumptions 

required by traditional parametric tests are not met or when the sample size is small. 

 

2.7.4 Bayesian approaches 

Bayesian methods provide an alternative approach to determining statistical 

significance compared to classical frequentist methods. In Bayesian statistics, statistical 

significance is typically expressed in terms of posterior probabilities or credible 

intervals rather than p-values. Bayesian methods use prior probabilities to fine tune and 

generate a conditional probability using the observed data. The Bayes factor quantifies 

the relative strength of evidence for one hypothesis compared to another. It represents 

the ratio of the likelihood of the data under one hypothesis to the likelihood under an 

alternative hypothesis, after considering prior beliefs. A Bayes factor greater than 1 

indicates evidence in favour of the hypothesis in the numerator, while a value less than 

1 favours the hypothesis in the denominator. The strength of evidence can be interpreted 

using widely accepted guidelines but as of yet has not been widely adopted by the 

genomics community (Fernando and Garrick 2013).  

 

Bayesian methods have found more favour in generating ñcredible setsò of variants that 

make up a significant GWAS signal, rather than the traditional p-value thresholding as 

it allows for a more nuanced interpretation of the results by providing a range of 

plausible effect sizes or variants rather than a binary significant/not significant 

determination. It also enables researchers to quantify and compare the evidence for 

different variants or effect sizes, aiding in prioritizing follow-up investigations. 

2.7.5 Significance thresholds 

Bonferroni correction was selected as the p-value adjustment methods throughout this 

thesis as my aim was to replicate any significant findings in an independent cohort such 

as the UK Biobank. In order to do so I wanted to make sure any significant findings 

were as robust as possible and thus I wanted to minimise noise.  
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Single variant association analysis uses a genome-wide significance threshold of    

5x10-08, a figure derived from the International HapMap Consortium based on estimates 

of the number of common independent variants (r2 < 0.8) with MAF > 5% in a 

European ancestry population (~1 million). Given I used a lower MAF of 1% and have 

access to WGS data and therefore test more variants than the HapMap consortium there 

is an argument to be made that a lower p-value threshold is applicable. However, this 

has yet to be implemented in the genomics community.  

 

For gene-level rare variant association analyses P<2.5x10-06 is the exome wide 

significance: 0.05 Bonferroni corrected for the number of protein coding genes in the 

human genome (Ŭ = 0.05/~19,000).  

 

2.8 Summary 

In this chapter I have discussed how the central data used for this thesis was constructed 

as well as the underlying theories behind the statistical genetic approaches. In the 

subsequent chapters I will go into more detail specific to the results presented per 

phenotype.  
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Chapter 3. Cystic kidney disease  

Cystic kidney disease (CyKD) is a catch all term encompassing a wide group of 

diseases with differing causes that all involve the formation of fluid filled cysts in one 

or both kidneys. CyKD can present at any point in life and the many causes are usually 

distinguished by their respective clinical feature, imaging characteristics, cyst 

distribution and whether extra-renal features are present. However, in the age of 

genomic testing becoming more widely available, a molecular approach as the first step 

in diagnosis is increasingly popular and has led to a better understanding of CyKD 

pathogenesis and improved diagnostic accuracy. To this end the causes of CyKD can be 

divided into hereditary and non-hereditary causes and are detailed in the Table 3-1 

below. I will give more in-depth analysis of the causes of CyKD that are directly 

relevant to this thesis, namely dominant and recessive causes of CyKD as well as 

HNF1ɓ -related CyKD; other relevant and important genes and pathways involved in 

CyKD will be referred to in the ñpathophysiology of cyst formationò section. 
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Table 3-1 Causes of cystic kidney disease. 

Gene Disease Renal Phenotype 
Extra -renal 

phenotype 
Mode OMIM#  Reference 

ADPKD 

PKD1 

(truncating) 

ADPKD-PKD1 

Bilateral kidney cysts, renal 

enlargement, median age ESRF ~55 

years 
PLD, ICH, heart 

valve abnormalities, 

aortic root 

dilatation, hernias, 

diverticular disease, 

cysts in other 

organs 

AD 

173900 Harris et al. 1994 

PKD1 (non-

truncating) 

Bilateral kidney cysts, renal 

enlargement, median age ESRF ~67 

years 

173900 Harris et al. 1994 

PKD2 ADPKD-PKD2 

Bilateral kidney cysts, renal 

enlargement, median age ESRF ~79 

years 

613095 Mochizuki et al. 1996 

GANAB ADPKD-GANAB 
Bilateral cysts, preserved renal 

function 
PLD 600666 Porath et al. 2016 

DNAJB11 ADPKD-DNAJB11 
Multiple small cysts with normal/small 

kidneys, possible ESRF after 60 years 
PLD 618061 Cornec-Le Gall et al. 2018 

ALG5 ADPKD-ALG5 

Interstitial fibrosis with non-enlarging 

cystic kidneys, possible ESRF after 60 

years 

Rarely mild PLD 620056 Lemoine et al. 2022 

ALG8 ADPKD-ALG8 Bilateral kidney cysts, nephrolithiasis None to date Pending Apple et al. 2023 

ALG9 ADPKD-ALG9 
Moderate bilateral kidney cysts, rarely 

progressing to ESRF 
Rarely mild PLD Pending Besse et al. 2019 

IFT140 ADPKD-IFT140 
Bilateral enlarging kidney cysts with 

ESRF comparable to PKD2 
Rarely mild PLD Pending Senum et al. 2022 

ADTKD  

HNF1B ADTKD-HNF1B 

Bilateral kidney cysts in ~45% of 

affected individuals, ESRF highly 

variable 

Diabetes, gout, 

hyperuricaemia, 

hypomagnesaemia, 

elevated liver 

enzymes, bicornate 

AD 137920 Bingham et al. 2001 
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uterus, solitary 

kidney 

MUC1 ADTKD-MUC1 

Normal to small-sized kidneys, ~50% 

small renal cysts; variable progression 

to ESRF in adulthood 

Gout 174000 Kirby et al. 2013 

SEC61A1 ADTKD-SEC61A1 
Normal or small-sized kidneys, ~50% 

small bilateral renal cysts 

Intrauterine growth 

retardation, 

neutropenia, 

anaemia 

(congenital) 

617056 Bolar et al. 2016 

UMOD ADTKD-UMOD 

Normal to small-sized kidneys, 1/3 

small kidney cysts (uni/bilateral), 

variable ESRF in adulthood 

Gout 162000 Dahan et al. 2003 

ADPLD 

PRKCSH 

ADPLD 

Occasional kidney cysts PLD 

AD 

174050 Li et al. 2003 

SEC63 Occasional kidney cysts PLD 617004 Davila et al. 2004 

ALG8 Occasional kidney cysts PLD 617874 Besse et al. 2017 

LRP5 Occasional kidney cysts PLD 617875 Cnossen et al. 2014 

ARPKD 

PKHD1 ARPKD 

Antenatally enlarged hyperechogenic 

kidneys; multiple bilateral small cysts; 

50% ESRF within first 10 years, milder 

presentation associated with increased 

age of diagnosis 

Congenital hepatic 

fibrosis with 

associated portal 

HTN, Caroli 

syndrome, small 

liver cysts in 

heterozygous 

patients AR 

263200 Onuchic et al. 2002 

DZIP1L ARPKD 

Antenatally enlarged hyperechogenic 

kidneys; multiple bilateral small cysts; 

variable ESRF in second and third 

decade of life 

None to date 617610 Lu et al. 2017 

PMM2 

Hyperinsulinaemic 

hypoglycaemia 

with PKD 

Antenatally enlarged hyperechogenic 

kidneys; multiple bilateral small cysts; 

variable ESRF  

Hyperinsulinaemic 

hypoglycaemia; 

occasional PLD 

Pending Cabezas et al. 2017 
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Collagenopathies 

COL4A3 

Alport Syndrome 

Occasional kidney cysts. Thinning of 

basement membrane with microscopic 

haematuria and progressive ESRF.  

Sensorineural 

deafness, anterior 

lenticonus, 

perimacular flecks 

AR 
203780/10

4200 
Mochizuki et al. 1994 

COL4A4 

Occasional kidney cysts. Thinning of 

basement membrane with microscopic 

haematuria and progressive ESRF.  

Sensorineural 

deafness, anterior 

lenticonus, 

perimacular flecks 

AR 
203780/14

1200 
Mochizuki et al. 1994 

COL4A5 
X-linked Alport 

Syndrome 

Occasional kidney cysts. Thinning of 

basement membrane with microscopic 

haematuria and progressive ESRF.  

Sensorineural 

deafness, anterior 

lenticonus, 

perimacular flecks 

XLD 301050 M'Rad et al. 1992 

Syndromic forms of CyKD 

TSC1 or TS

C2 
Tuberous sclerosis 

Multiple and bilateral 

angiomyolipomas and kidney cysts; 

kidney function usually preserved; 

possible evolution to ESRF, contiguous 

gene deletion of TSC2 and PKD1 leads 

to severe CyKD with ESRF <30 years 

CNS (cortical 

tubers, 

astrocytomas, 

epilepsy, and 

intellectual 

disabilities); skin 

lesions (facial 

angiofibromas and 

hypopigmented 

spots); pulmonary 

lymphangioleiomyo

matosis; cardiac 

rhabdomyoma and 

retinal hamartoma; 

PLD in contiguous 

deletion 

AD 
191100/61

3254 
Kandt et al. 1992 

VHL 
Von Hippel-Lindau 

disease 

Bilateral kidney cysts, renal cell 

carcinoma 

Hemangioblastomas 

of the retina, spine, 

or brain; 

pheochromocytoma

; neuroendocrine 

AD 193300 Carsillo et al. 2000 
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tumour of the 

pancreas 

COL4A1 

HANAC syndrome 

or COL4A1-related 

disease 

Bilateral kidney cysts, ESRF in later 

adulthood 

Microscopic 

haematuria, 

aneurysms, muscle 

cramps, elevated 

creatine 

phosphokinase, 

tortuosity of the 

retinal arteries 

AD 611773 Plaisier et al. 2007  

OFD1 
Oro-facial-digital 

syndrome type 1 

X-linked, embryonically lethal in boys, 

CyKD in women 

Cleft palate, facial 

dysmorphia; 

syndactyly, 

clinodactyly, or 

polydactyly; PLD 

XLD 311200 Ferrante et al. 2001 

FLCN 
Birt-Hogg-Dubé 

syndrome 
Kidney cysts and kidney tumours 

Hair follicle 

hamartomas, lung 

cysts with 

spontaneous 

pneumothorax 

AD 135150 Nickerson et al. 2002 

NPHP1-6 

Nephronophthisis/J

oubert/Senior-

Løken syndrome 

Bilateral kidney cysts 

Retinal 

degeneration, 

polydactyly, liver 

disease, severe CNS 

disease 

AR PS256100 Review: Wolf et al. 2011 

BBS1-12 
Bardet-Biedl 

syndrome 

Broad range of structural kidney issues 

including unilateral or bilateral cysts 

Cone-rod 

dystrophy, obesity, 

polydactyly, 

cognitive 

impairment, 

hypogonadism, 

neurological issues, 

olfactory 

dysfunction, 

diabetes 

AR PS209900 Review: Florea et al. 2021 
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MGS1-6 
Meckel-Gruber 

syndrome 
Bilateral cysts 

Encephalocele with 

CNS involvement, 

hepatic fibrosis, 

polydactyly, 

genitourinary 

malformation 

AR PS249000 Review: Hartill et al. 2017 

Acquired cystic renal disease 

N/A 
Multiple benign 

simple cysts 

Multiple benign simple cysts - more 

common with increasing age 
N/A N/A N/A N/A 

N/A 
Acquired kidney 

cystic disease 

CKD associated especially with patient 

on renal replacement therapy. Usually 

small and bilateral. 

N/A N/A N/A N/A 

N/A 
Lithium induced 

kidney cysts 

Normal/small kidneys with small 

bilateral cysts - history of lithium 

exposure, interstitial fibrosis 

N/A N/A N/A N/A 

AD ï autosomal dominant, AR ï Autosomal Recessive, XLD ï X-linked Dominant, PLD ï Polycystic Liver Disease, ESRF ï End Stage Liver Failure, CNS ï Central 

Nervous System, CKD ï Chronic Kidney Disease, ICH ï Intracerebral haemorrhage  
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3.1 Introduction to CyKD  

3.1.1 Autosomal dominant polycystic kidney disease 

Autosomal dominant polycystic kidney disease (ADPKD) is the most common 

monogenic cause of renal failure worldwide and one of the commonest single-gene 

disorders generally (Bergmann et al. 2018). Present in roughly 1:400-1:1000 live births, 

it is present in equal distribution worldwide and is a huge health burden, representing 

roughly 10% of all patients receiving renal replacement therapy (RRT) (K. Evans et al., 

2018). It is typically late onset and is multi-system, characterised by bilateral real cysts, 

liver cysts, and an increased risk of intracranial aneurysm and haemorrhage. Extra-renal 

manifestations include cysts in other organs such as the pancreas and seminal vesicles, 

aortic root dilatation, mitral valve prolapse and abdominal wall hernias. Clinically this 

can present as early onset hypertension, flank pain and eventually renal failure. 50% of 

ADPKD patients reach end stage renal failure by 60 years old (Cornec-Le Gall, Alam, 

and Perrone 2019). There is, however, substantial phenotype variability between 

patients even within families suggesting either secondary genetic effects and/or 

environmental factors play an important role in disease modulation (Harris and Rossetti 

2010). 

  

Diagnosis is made based on imaging criteria or genetic testing confirming the presence 

of a heterozygous variant in one of the known pathogenic genes, predominately PKD1 

or PKD2 or the less common and more recently discovered genes GANAB, ALG5,ALG8 

ALG9, DNAJB11 and IFT140  (Hughes et al. 1995; The European Polycystic Kidney 

Disease Consortium. 1994; T. Mochizuki et al. 1996.; Apple et al. 2023; Lemoine et al. 

2022; Porath et al. 2016; Cornec-Le Gall et al. 2018; Senum et al. 2022) with roughly 

5% of cases remaining unsolved (Bergmann et al. 2018). Genotype-phenotype 

correlations are described in more detail in Table 3-2  
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Table 3-2 Genotype-phenotype correlation of the causes of ADPKD 

Gene ADPKD 

attributable  

to gene 

Protein Renal phenotype Liver 

phenotype 

PKD1 78% Polycystin-1 Truncating: 

Innumerable bilateral 

kidney cysts leading to 

progressive kidney 

enlargement, median 

age of ESRF about 55 

years 

Polycystic 

liver disease, 

mild to 

severe 

 

 

Non-truncating: 

Innumerable bilateral 

kidney cysts leading to 

progressive kidney 

enlargement, median 

age of ESRF about 67 

years 

PKD2 15% Polycystin-2 Innumerable bilateral 

kidney cysts leading to 

progressive kidney 

enlargement, median 

age of ESRF about 79 

years 

Polycystic 

liver disease, 

mild to 

severe 

ALG5 <0.5% Dolichyl-phosphate 

beta-

glucosyltranseferase 

Non-enlarging cystic 

kidneys with some 

interstitial fibrosis. 

ESRF in those greater 

than 65 potentially 

Polycystic 

liver disease, 

absent or 

mild 

ALG8 <0.5% Alpha-1,3-

glucosyltransferase 

Bilateral cysts with 

normal kidney size, 

nephrolithiasis 

Some liver 

cysts but not 

unique 
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ALG9 <0.5% Alpha-1,2-

mannosyltransferase  

Moderate number of 

bilateral cysts. Rarely 

progresses to ESRF 

Polycystic 

liver disease, 

absent to 

mild 

DNAJB11 <0.5% DnaJ homolog 

subfamily B 

member 11 

Normal to small 

kidneys, small cysts, 

potential evolution to 

ESRF after 60 years 

Polycystic 

liver disease, 

absent to 

moderate 

GANAB <0.5% Neutral alpha-

glucosidase AB 

Bilateral cysts, normal 

renal function  

Polycystic 

liver disease, 

mild to 

severe 

IFT140 1-2% Intraflagellar 

transport protein 

140 homolog 

Bilateral renal cysts, 

mild effect on renal 

function akin to non-

truncating PKD2 

variants 

Occasional 

polycystic 

liver disease 

ADPKD ï Autosomal dominant polycystic kidney disease 

 

Until recently, treatment of ADPKD centred on the management of symptoms 

secondary to renal cyst formation and chronic kidney disease. However, with the 

approval for the use of Tolvaptan (Torres et al. 2012), there is now a treatment designed 

to retard disease progression, with many novel compounds currently going through 

clinical trials (J. X. Zhou and Torres 2023). Treatment initiation is now focused on 

those patients with rapidly progressive disease as evidenced by several factors including 

rate of kidney decline, rapidity of cyst growth, family history of ESRF and crucially 

genotype, with truncating PKD1 variants requiring treatment initiation early (Cornec-Le 

Gall et al. 2016). This has given added impetus to the need to molecularly screen 

individuals.  
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3.1.2 Autosomal recessive polycystic kidney disease 

Autosomal recessive polycystic kidney (ARPKD) is a severe disorder occurring in 1 in 

20,000 births. It causes severe dilatation of the kidney collecting ducts and 

malformation of the portobiliary system. Often diagnosed in utero or at birth, the 

patients suffer from large echogenic kidneys leading to poorly functioning kidneys and 

consequent oligohydramnios. Perinatal mortality is roughly 30%, with children that 

survive mostly reaching ESRF by adulthood (42% renal survival by 20 years old) 

(Bergmann et al. 2018). Nearly all patients suffer a gamut of issues related to renal 

failure, portal hypertension and biliary failure. Patients who are diagnosed later tend to 

have a better renal prognosis. Later presentations of the disease have phenotypic overlap 

with ADPKD and can lead to diagnostic misclassification (Sekine et al. 2022).  

 

ARPKD is predominately caused by variants in the polycystic and hepatic disease gene 

1 (PKHD1) and codes for the fibrocystin-polyductin complex (FPC) (L. F. Onuchic et 

al. 2002). Most affected patients are compound heterozygotes. Management is largely 

supportive with no dedicated treatments at present.  

 

Other recessive cystic diseases include PMM2 associated hyperinsulinaemic 

hypoglycaemia with PKD and DZIP1L associated ARPKD (Cabezas et al. 2017; H. Lu 

et al. 2017). Antenatal enlarge hyperechogenic kidneys and bilateral small cysts are 

present in both. In PMM2 associated disease there are small liver cysts and 

hyperinsulinaemic hypoglycaemia whilst DZ1P1L disease has no associated extra-renal 

manifestations.  

 

Treatment is supportive, with genetic testing allowing for a molecular diagnosis and 

genetic counselling.  

 

3.1.3 HNF1ɓ associated cystic renal disease. 

Broad renal involvement is now seen as one of the earliest manifestations of HNF1ɓ 

associated disease. Various phenotypes have been attributed to HNF1ɓ, classically 
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starting with maturity onset diabetes of the young (MODY) coupled with renal cysts 

leading to the term ñrenal cysts and diabetes syndromeò (Horikawa et al. 1997). 

However, there are now over 10 different renal pathologies associated with HNF1ɓ-

nephropathy (Izzi et al. 2020). This is mirrored in the ever-expanding list of extra-renal 

side phenotypes such as exocrine pancreatic failure, liver function abnormalities, gout, 

and genital tract malformations.  

 

HNF1ɓ-codes hepatocyte nuclear factor homeobox B found on chromosome 17q12 and 

plays an integral role in early embryonic development. Its protein product, transcription 

factor-2 (TCF2) is a necessary component in tissue specific gene expression in many 

epithelial tissues including kidney, pancreas, liver and genitourinary tract (Kolatsi-

Joannou et al. 2001; Ferrè and Igarashi 2019).   

 

Structural variants involving HNF1ɓ  are of note. In ~45% of cases with HNF1ɓ 

variants, a whole gene deletion of HNF1ɓ occurs as part of the 17q12 deletion 

syndrome, causing a multi-system disorder with renal involvement (OIM #614527) 

(Mitchel et al. 2016). The other cases are mainly heterozygous SNVs (Fokkema et al. 

2011). There is little correlation between phenotype and genotype but large cohorts 

studying this condition are lacking (Nagano et al. 2019; Dubois-Laforgue et al. 2017) 

with none assessing the burden of HNF1ɓ at a genome wide level using WGS.  

 

There are no specific treatments for this condition bar supportive care and surveillance 

for multi-organ involvement in patients with 17q12 deletions.  

3.1.4 Pathophysiology of cyst formation from genetic insights 

3.1.4.1 ADPKD 

PKD1 is a large gene with 46 exons, of which the first 34 are homologous (and 

therefore very similar in sequence) to several nearby pseudogenes as well as being GC 

rich making sequencing challenging. PKD2 is much smaller (15 exons) and is therefore 

easier to sequence. Their respective discoveries in 1995 and 1996 have led to the 

development of a polycystin model of cyst formation.  
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The polycystins 1 and 2 coded (PC1 and PC2) by PKD1/2 respectively are found 

predominantly in the primary cilium although are expressed in epithelial cells, vascular 

smooth muscle, cardiac myocytes as well as other locations (A. C. Ong 2000). Within 

the cells PC1 is found throughout lateral membrane junctions, focal adhesions, apical 

vesicles and primary cilia whereas PC2 is mainly found at the endoplasmic reticulum 

although the two proteins do also co-express (A. C. M. Ong and Harris 2005) . PC1 is a 

4303 amino acid membrane bound protein with 11 transmembrane domains, a large 

extracellular domain and a ~200 amino acid intracellular carboxy-terminal tail thought 

to be integral in the regulation in multiple signalling cascades (Harris and Torres 2014). 

The cleavage of PC1 at its G protein couple receptor regulates biogenesis and 

trafficking of PC1 (Kurbegovic et al. 2014) as well as modulating signalling pathways 

via the release of the intracellular C-terminal tail, freeing PC1 fragments into the 

cytoplasm and nucleus (Y. Xu et al. 2016). PC2 is less than 968 amino acids and has six 

transmembrane spanning domains acting as a calcium permeable channel, it sits within 

the transient receptor potential (TRP) family and in isolation forms a tetrameric channel 

structure with a pore loop and voltage sensing domain (Shen et al. 2016).  

 

PC2 co-localises with PC1 within the primary cilia shaft and basal body in renal 

epithelia (Geng et al. 1997), and their correct localisations and function are dependent 

on both elements functioning correctly (H. Kim et al. 2014; Cai et al. 2014). The C-

terminal tail of PC1 facilitates the interaction between PC1 and PC2 (Tsiokas et al. 

1997), which together act as an ion transporter involved in calcium signalling but many 

functions of both PC1 and PC2 remain unclear. The structure of a modified PC1-PC2 

complex was solved by cryo-electron microscopy in 2018, revealing a structure  (1:3 

PC1:PC2) resembling a TRP with a novel pore like structure in which the C-terminal 

domain of PC1 contributes one side of the tetrameric channel (Su et al. 2018). This 

asymmetric pore loop structure makes it very different to TRP channels as it potentially 

ameliorates the cation selectivity of the polycystin channel, explaining why 

electrophysiology to date have found it difficult to reach a consensus on the cation 

selectivity of the channel (Delling et al. 2016). A ligand for this polycystin complex is 

yet to be elucidated with a recent study suggesting the cleaved N-terminus of PC1(a 

mutational hotspot) as a candidate (Ha et al. 2020). This last point is of note as Su et al 
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were unable to include the entire extracellular N terminus of PC1 in their structure due 

to the protein being too large and unstable to analyse.  

 

Given the similarities in phenotype between ADPKD phenotypes caused by PKD 

variants and the physical proximity of PC1 and PC2 in cells, common signalling 

pathways have been sought. Cyclic AMP (cAMP), mammalian target of rapamycin 

complex 1 (mTORC1), extracellular signal-regulated kinases (ERK), 5' AMP-activated 

protein kinase (AMPK) and JAK-STAT  have all been shown to be affected by aberrant 

polycystin functioning (Harris and Torres 2014). cAMP in particular has been targeted 

for downregulation via vasopressin receptor 2 antagonism using Tolvaptan, successfully 

retarding cyst growth and disease progression. These disrupted signalling pathways 

have then been postulated to cause cyst formation and growth vial clonal expansion of 

epithelial cells, alterations in apical-basal polarity, planar cell polarity, increased 

extracellular matrix production and cellular metabolism creating a snowball effect in 

which the secondary events take on an increasing role in cyst formation and growth 

(Figure 3-1).  

 

 

Figure 3-1 Proposed model of ADPKD pathology 
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Proposed mechanisms of the pathobiology of ADPKD. Taken from (Lanktree, Haghighi, et al. 2021). 

Even though the germline variants in ADPKD are present in all cells, cysts form in less than 10% of 

tubules focally (Grantham 1996). This led to a ñsecond hitò hypothesis of cystogenesis. Under this model 

a somatic second hit is required to alter the remaining normal copy of PKD1 or PKD2. This has been 

shown to be the case in studies of kidney cysts in patients with PKD1, showing loss of heterozygosity due 

to a somatic variant, supporting a cellularly recessive mechanism for cyst formation in ADPKD (A. Y. 

Tan et al. 2018; Brasier and Henske 1997; Watnick et al. 1998).  

 

However, there are numerous examples of patient with hypomorphic variants, which 

reduced the level of the gene product in the polycystin genes suffering CyKD 

suggesting a ñthresholdò mechanism of cystogenesis (Gallagher, Germino, and Somlo 

2010; Rossetti et al. 2009; Harris 2010). It has been suggested that a dose of functional 

polycystin below ~10-30% of normal within tubular epithelial cells is enough to start 

cyst formation (Hopp et al. 2012; Lantinga-van Leeuwen et al. 2004) leading to various 

downstream aberrant cellular processes via multiple signalling pathways (S.-T. Jiang et 

al. 2006; Boca et al. 2006; Song et al. 2009; Lanktree, Haghighi, et al. 2021). Timing of 

gene inactivation is also vital. PKD1 inactivation up to 13 days prior to birth in a mouse 

model led to severe CyKD compared to PKD1 inactivation after day 14 of age in the 

same model which results in a far milder form of CyKD (Piontek et al. 2007).  

 

More recently, genes linked to ADPKD have been discovered that affect protein 

creation, modification, and trafficking within the endoplasmic reticulum (ER). These 

genes effect the entry of unfolded protein into the ER (SEC63 and SEC61B (Besse et al. 

2017), the control of protein through the ER (Cornec-Le Gall et al. 2018), N-

glycosylation of nascent proteins (a vital step in the trafficking of glycoproteins) (Apple 

et al. 2023; Besse et al. 2019; Lemoine et al. 2022; Cabezas et al. 2017) and the removal 

of glucose molecules to allow export from the ER to the Golgi complex (Porath et al. 

2016).  These variants have all been shown to lower the ñdoseò of polycystins, 

particularly PC1, within the cell, helping to a) confirm their role in pathogenesis and b) 

further elucidate the pathway the polycystin complex takes from transcription to final 

destination.  

 

The latest discovery of monoallelic variants in IFT140 causing a mild form of CyKD is 

of particular interest as it the first description of a protein involved in ciliary structure 

and function being described as causing ADPKD (Senum et al. 2022). ADPKD has 
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been seen by many as a ñciliopathyò with many of the experimental assays for the 

various causative genes showing clear ciliary disruption but never in monoallelic human 

disease. As part of the IFT-A complex that is responsible for retrograde transport in 

cilia, IFT140 has a clearly defined ciliary role. However, IFT140 is not required for the 

assembly of the IFT-A complex but does account for roughly half of the TULP3 binding 

surface of the complex (M. Jiang et al. 2023). Combined with work by Legue et al 

showing TULP3ôs involvement in ciliary trafficking in CyKD (Legué and Liem 2019), 

it as has been proposed that truncating IFT140 variants disrupt TULP3-mediated cargo 

transport. IFT140 disruption may lead to disruption in the trafficking of the polycystins 

to the cilia but this requires further experimental work.  

 

Figure 3-2 details a schematic of the journey the polycystins take to their target with 

listed genes (modified from Lanktree et al. 2021). We can see that genes along the 

entire route of PC-1/2 journey to the cilium have been discovered to affect gene 

formation. As shown in the results chapter, these more recent genes have lower effect 

sizes than PKD1/PKD2 and their recent discoveries is down to larger cohorts being 

sequenced with the latest technologies. This has enabled a higher diagnostic yield and 

an excellent elucidation of ciliary biology.  



Cystic kidney disease 

68 

 

 

3.1.4.2 ARPKD 

Most ARPKD cases are caused by variants in PKHD1, found on chromosome 6p21 

which encodes fibrocystin. PKHD1 has multiple transcripts, with a 4074 amino acid 

made up of a single transmembrane domain, an extensive extracellular N-terminal 

domain, and a short C-terminal cytoplasmic tail, comprising the largest one. The 

function of fibrocystin is still debated, but it is found throughout the kidney and 

epithelial cells of hepatic bile ducts and localises to the primary cilia membrane (Ward 

et al. 2003, 2002; L. F. Onuchic et al. 2002). The proteolytic cleavage of fibrocystin 

releases its C terminus, and this cleaved product has been the focus of much of the 

IFT140 

ALG5 

Schematic representing the genes indicating in ADPKD and their effects on the maturation of PC1/PC2 

(Modified from Lanktree et al 2021) 

Figure 3-2 Genes in implicated in ADPKD and their effect on PC1/2 maturation. 
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speculated pathophysiology of ARPKD as its motifs are associated with ciliary 

targeting and interactions with the polycystin complex (Follit et al. 2010).  

 

Many of the signalling pathways affected in ADPKD are also disrupted in ARPKD 

including cAMP (X. Wang et al. 2005) and mTOR (Fischer et al. 2009) but the general 

pathophysiology remains poorly understood. This has been compounded by mouse 

models of PKHD1 including knockouts having minimal renal disease before adulthood 

(Moser et al. 2005; S. S. Williams et al. 2008) making functional characterisations of 

fibrocystin challenging. Recent work has highlighted the role the cleaved C-terminus of  

fibrocystin may have in preventing cytogenesis via its interaction with mitochondrial 

pathways (R. Walker et al. 2022), work which carriers homology with that of Caplan et 

al which showed the C-terminal of PC-1 suppresses cystic disease via a mitochondrial 

pathway (L. Onuchic et al. 2023). The potential for a mechanism other than direct 

interaction was confirmed by work on a digenic system combining PKHD1 knock out 

mice with a hypomorphic PKD1 mutant showing no interaction between the fibrocystin 

protein and polycystins (Olson et al. 2019) directly. It is likely that a shared ciliary 

mechanism or mitochondrial process is the missing link.  

 

Variants in the gene DZIPI1L, coding for the ciliary transition zone protein DAZ-

interacting protein 1-like protein has been described as a moderate cause of ARPKD. 

Working at the barrier between the cell and cilium, variants in this gene have been 

shown to disrupt the transport of PC21 and PC2 into the cilium (H. Lu et al. 2017). 

Phosphomannomutase2 (PMM2) variants have also been described as causing ARPKD, 

whilst the pathophysiology has not been fully delineated PMM2 is an enzyme critical to 

N-linked glycosylation, potentially causing a trafficking issue with the polycystins 

similar to the other ER linked monogenic causes of CyKD (Cabezas et al. 2017).  

3.1.4.3 HNF1ɓ and ADPKD 

HNF1ɓ is thought to be an autosomal dominant condition with haploinsufficiency as the 

molecular mechanism, as patients with whole-gene deletions have a similar phenotype 

to those with coding or splice variants. Up to 50% of HNF1ɓ cases are thought to be de 

novo (Ulinski et al. 2006; Edghill et al. 2007).  
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Mice with renal specific depletion of HNF1ɓ develop CyKD and renal dysfunction 

(Gresh et al. 2004; Hiesberger et al. 3 2004). Further molecular analysis reveals 

HNF1ɓôs role in regulating the transcription of PKHD1, PKD2, UMOD and gene 

implicated in nephronophthisis (Attanasio et al. 2007; Song et al. 2009; Gong et al. 

2009) which explains the variable nature of the phenotype as well as the mechanism of 

disease. Bar the effects on known monogenic causes of cystogenesis, HNF1ɓ also 

directly increases cAMP levels via the regulation of the expression of 

phosphodiesterase 4C which catabolises cAMP in the primary cilium (Y.-H. Choi et al. 

2011), inhibition of cAMP being a primary mechanism of Tolvaptanôs function. Further 

functional work is required to map the full molecular pathway of HNF1ɓ associated 

renal disease. 
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3.2 Cystic kidney disease as a monogenic disorder 

3.2.1 Introduction  

Rare variants that cause classical Mendelian disease are kept rare through the process of 

natural selection whereby rare deleterious variants are prevented from becoming 

common in the general population by negatively affecting reproductive fitness. Rare 

diseases are typically caused by rare variants and CyKD is no exception. Rare, highly 

penetrant alleles that are very damaging make up the bulk of causative variants in 

CyKD and offer the most clues as to the underlying biology of the disease. This is 

reflected in the vast swathes of published genetics research on CyKD being focused on 

monogenic causes in patients and families (Bergmann et al. 2018). This chapter focuses 

on rare variants, defined as those with a MAF<0.1%, as the primary driver of CyKD.  

 

3.2.2 Aims 

1. To determine the prevalence of known monogenic disease in a large cohort of 

patients with cystic kidney disease. 

2. To discover novel candidate genes using an unbiased exome-wide rare variant 

association testing approach. 

 

3.2.3 Methods 

3.2.3.1 Case selection 

Cases were recruited under the ñCystic kidney diseaseò 100KGP cohort by clinicians 

across the country using the following inclusion criteria: 

¶ >5 cysts affecting one or both kidneys with one of the following features: 

o cysts not clinically characteristic of ADPKD 

o onset before the age of 10 

o syndromic features  

o where a genetic diagnosis would influence management 
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o Unaffected individuals had to have undergone appropriate screening for 

cryptic disease. 

 

A second tranche of recruitment widened the inclusion criteria to include participants 

with features suggestive of classical ADPKD who had not undergone prior genetic 

testing of PKD1 and PKD2. Participants were excluded if they suffered from end-stage 

kidney failure due to identified (non-cystic) disease, if they had multicystic dysplastic 

kidney(s) or if they had a prior genetic diagnosis for their condition. This recruitment 

strategy led the total cohort being a mixture of unsolved cystic cases and those more 

obviously ADPKD-PKD1 and ADPKD-PKD2. 

 

3.2.3.2 Control selection 

Controls were made up of unaffected relatives of non-renal rare disease participants in 

the 100KGP. We refined this further by excluding those with HPO and/or hospital 

episode statistics (HES) terms related to kidney disease or failure. Within the >20,000 

controls there was the possibility that some harboured undetected cystic kidney disease 

as we did not have access to imaging data, however, it was felt their contribution to 

statistical signal would not significantly affect the outcome.  

3.2.3.3 Identification of pathogenic variants 

All cases recruited for had been assessed in the clinical interpretation arm of the 

100KGP (100000 Genomes Project Pilot Investigators et al. 2021). For this, patientsô 

WGS data is extracted variants that are rare (MAF < 1% for autosomal recessive and 

MAF < .1% or autosomal dominant inheritance), protein-truncating or missense. These 

are then cross referenced with an expertly curated (Antonio Rueda Martin et al. 2019) 

panel of 28 CyKD associated genes (https://nhsgms-

panelapp.genomicsengland.co.uk/panels/283/v4.0)  CNVs losses with a 60% overlap 

with the 2q13 loci associated with NPHP1 loss and the 17q12 loci associated with 

HNF1ɓ loss were also  ascertained for.  

 

https://nhsgms-panelapp.genomicsengland.co.uk/panels/283/v4.0
https://nhsgms-panelapp.genomicsengland.co.uk/panels/283/v4.0
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These results then underwent multi-disciplinary (MDT) review with the recruiting 

clinical team, local genomic medicine centre with support from Genomics England. 

Candidate variants were assessed against the Association for Clinical Genomic Science 

(ACGS) Best Practice Guidelines for Variant Classification in Rare Disease 

(https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant- 

classification-v4-01-2020.pdf). These criteria are based on recommendations from the  

 American College of Molecular Genetics (ACMG) criteria to determine pathogenicity 

(Richards et al. 2015) using a host of metrics including population frequency of alleles, 

in silico predictions of deleteriousness, functional localization, putative mechanism of 

disease and known associations with phenotypes in validated disease databases to 

assign one of the following classifications: pathogenic, likely pathogenic, variant of 

uncertain significance (VUS), likely benign or benign.  

 

3.2.3.4 Aggregate rare coding variant analysis  

3.2.3.4.1 Overview of rare variant association tests 

Rare variant analysis is considered more challenging than common variant analysis due 

to several factors. Firstly, rare variants, by definition, occur at a low frequency in the 

population. As a result, large sample sizes are often required to have sufficient 

statistical power to detect associations. Secondly, when rare variants are called single 

variant association testing is underpowered due to the scarcity of variants in a given 

population (Seunggeung Lee et al. 2014).  

 

In order to overcome some of these issues, collapsing analyses have been employed to 

boost power. In this statistical method, variants are ñcollapsedò by some kind of region, 

most commonly per gene, and their effect sizes cumulated to test for an association with 

the disease or trait of interest. This is particularly helpful for allelic heterogeneity where 

multiple different alleles account for a disease, with no single allele explaining a large 

fraction of risk; a situation found in ADPKD (Paul et al. 2014). I will discuss below the 

broad categories of rare variant collapsing tests as well as the rationale for selecting my 

chosen method.  
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3.2.3.4.1.1   Burden tests 

Collapsing burden tests combined multiple genetic variants into a single genetic score 

per region, testing for an association between this region and the disease of interest. A 

simple example would involve counting the number of minor alleles in all variants in 

each region. The score statistic would be:  

 

ὗ ύὛ  

 

where m = the number of variants in the region, ύ  = the weight for variant j (e.g., 

using MAF or beta effect size), and Ὓ = the score statistic for variant j generated from 

the sum of allele counts (0,1, or 2) for each individual at variant j, accounting for 

phenotype. Ὓ is positive when variant j increases disease risk, and negative when 

associated with decreased disease risk. A P value is then obtained by comparing the 

burden test statistic to chi-squared distribution with 1 degree of freedom (Seunggeung 

Lee et al. 2014) 

 

Multiple different implementations of the burden test exist which make different 

assumptions about disease mechanism and architecture. In the main, a dominant mode 

of inheritance is assumed to maximise power, with the various methods differing on 

how they define the weight (ύ  of variants to be collapsed. The MZ test for example 

counts individuals with at least one minor allele in the region (Morris and Zeggini 2010) 

whilst the cohort allelic sums test (CAST)  assumes any rare variant in a region can 

cause loss of function (Morgenthaler and Thilly 2007) both of which give a binary 

weight to ύ. The Madsen and Browning method weights by the MAF as a proportion 

to give a beta of densities (Madsen and Browning 2009) . Finally, the Combined 

Multivariate and Collapsing (CMC) test uses the CAST approach but by collapsing 

groups based on their MAF per region and then using a non-regression technique 

(Hotelingôs t test) to combine the effects (B. Li and Leal 2008). Burden tests assume 
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most the variants collapsed are causative and have the same direction of effect with 

violations of these assumptions resulting in a significant loss of power.  

 

Burden testing has been further adapted with ñadaptive burdenò tests to help account for 

the null variants and variants affecting disease risk in either direction. Whilst such 

methods such as the kernel-based adaptive cluster (KBAC) method (D. J. Liu and Leal 

2010) have overcome these issues most adaptive methods require P value permutation 

and are therefore computationally intensive, making them unsuitable for large scale 

biobank studies.  

 

3.2.3.4.1.2  Variance Component tests 

Variance component tests use a random effects model to overcome some of the issues 

of unknown underlying genetic architecture and variant effects. Instead of aggregating 

variants and then generating a combined test statistic on the whole region, variance-

component tests look at the distribution of individual test statistics per variant and then 

aggregate these to compute an overall P value. The most used variance-component test 

is the sequence kernel association test (SKAT) (Wu et al. 2011) which can be 

represented as: 

 

ὗ  ύ Ὓ 

 

The SKAT test uses the weighted sum of squares of single variant score statistics Sj. By 

collapsing Ὓ instead of Sj as per the burden test, SKAT is robust to both non-causal and 

variants acting in direction of effect. The addition of covariates to this analysis allows 

for adjustment for population stratification. SKAT testing has two major issues: firstly, 

contrary to the burden test, if a large proportion of variants are causal, variance-

component tests lose power; secondly, for binary traits calculating many P values on a 

per variant basis and then combining them per region can lead to high type 1 error rates 

especially when the minor allele count is low or the sample size small.  
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3.2.3.4.1.3  Combined tests 

An understanding of the genetic architecture of a disease is often lacking at the time of 

analysis effecting the power of both approaches to collapsing analysis discussed. Even 

for conditions such as CyKD, the architecture of disease may differ on a gene-by-gene 

basis as evidenced by both recessive and dominant Mendelian conditions causing 

kidney cysts. This has led to the development of a combined method which uses a linear 

combination of burden and SKAT testing based on the underlying data to maximise 

power, SKAT-O (Seunggeun Lee et al. 2012). SKAT-O can be represented as: 

 

Qʍ =  (1  ʍ)QSKAT +  ʍ1burden ȟ π  ʍ  ρ  

The key term here is the parameter ɟ which represents the pairwise correlation between 

genetic-effect coefficients (ɓ). ɟ = 1 when all variants act in the same direction, 

meaning the test statistic resolves as the Qburden, whereas if the variants are uncorrelated 

in their direction and magnitude of effects then the ɟ = 0 and the test statistic 

approximates to the QSKAT. In reality the ɟ is unknown so SKAT-O uses an adaptive 

procedure to approximate the value and calculate P values analytically, allowing for a 

combined method that uses that uses the best of both methods and allows for 

uncertainty in the underlying genetic architecture. SKAT-O has been shown to perform 

well across a wide range of disease models and is widely used in association tests 

(Seunggeun Lee et al. 2012).  

 

3.2.3.4.2 Selection of qualifying variants 

As powerful as the collapsing methods discussed above are, if the majority of variants 

selected to be collapsed per region have little or no effect then the power gained by 

collapsing variants is limited. Including qualifying variants that are more likely to be 

damaging and therefore disease causing will increase the power to detect association. In 

general, ñdamagingò or ñdeleteriousò variants include those that are rare, loss-of-

function e.g. protein truncating, or predicted in silico to be damaging. For my analyses I 

collapsed variants across genes using a number of parameters applied as a ñmaskò 

detailed below. Thanks to having access to WGS data I was also able to include masks 

that included intronic variants also. I applied the ñmissense+ò and ñLoFò mask to the 
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total CyKD cohort and then removed cases that had qualifying variants in statistically 

significant genes until we had a cohort of patients with ñno variants detectedò (NVD). 

To this cohort we applied all the masks listed: 

 

1. Likely damaging (ñmissense+ò):  

Å MAF < 0.1% or absent from gnomAD (version 3.1.1)  

Å Annotated as missense, in-frame insertion, in-frame deletion, start loss, stop 

gain, frameshift, splice donor or splice acceptor.  

Å CADD (version 1.5) score Ó 20 corresponding to the top 1% of all predicted 

deleterious variants in the genome. Indels without CADD scores were also 

kept as most frameshift variants do not have assigned CADD scores.  

 

2. Loss-of-function (ñLoFò):  

Å MAF < 0.01% or absent from gnomAD (version 3.1.1)  

Å óHigh confidenceô loss-of-function variants (stop gain, splice site, or 

frameshift) as determined by LOFTEE (Karczewski et al. 2020).   

 

3. Intronic: 

Å MAF < 0.01% or absent from gnomAD (version 3.1.1)  

Å Variants labelled as intronic 

Å CADD score Ó 20 

 

4. 5ô untranslated region (ñ5ô UTRò): 

Å MAF < 0.01% or absent from gnomAD (version 3.1.1)  

Å Variants labelled as 5ôUTR 

Å CADD score Ó 10 

 

5. 3ô untranslated region (ñ3ô UTRò): 

Å MAF < 0.01% or absent from gnomAD (version 3.1.1)  

Å Variants labelled as 3ôUTR 

Å CADD score Ó 10 
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6. Splicing (ñdonor loss,ò ñdonor gain,ò ñacceptor loss,ò ñacceptor gainò): 

Å SpliceAI score Ó 0.8 (discussed in Methods 2.2.5) 

 

Variants meeting the following quality control filters were retained: MAC Ò 20, median 

site-wide sequencing depth in non-missing samples > 20 and median GQ Ó 30. Sample-

level QC metrics for each site were set to minimum depth per sample of 10, minimum 

GQ per sample of 20 and ABratio P value > 0.001. Variants with significantly different 

missingness between cases and controls (P<10-5) or >5% missingness overall were 

excluded. 

 

3.2.3.4.3 SAIGE-GENE 

I employed SAIGE-GENE (W. Zhou et al. 2020) to ascertain whether rare coding 

variation was enriched in cases on a per-gene basis exome-wide. SAIGE-GENE uses a 

generalized mixed-model to correct for population stratification and cryptic relatedness 

as well as a saddle point approximation and efficient resampling adjustment to account 

for the inflated type 1 error rates seen with unbalanced case-control ratios (see chapter 

2.5 for further details). It combines single-variant score statistics and their covariance 

estimate to perform SKAT-O gene-based association testing, upweighting rarer variants 

using the beta (1,25) weights option. Sex and the top ten principal components were 

included as fixed effects when fitting the null model. A Bonferroni adjusted P value of 

2.58×10-6 (0.05/19,364 genes) was used to determine the exome-wide significance 

threshold. Binary odds ratios and 95% confidence intervals were calculated for exome-

wide significance genes by extracting the number of cases and controls carrying 

qualifying variants per gene in the collapsing analysis and applying a Fisherôs test in R.  

 

3.2.3.4.4 Genomic inflation in rare variant collapsing tests 

Genomic inflation estimates using rare variants is unreliable as the variant distribution 

under the null model is unknown when allele counts are low, making inferences about 

population stratification difficult. Equally, different set or gene based association tests 

have different numbers of variants per set meaning inflation statistics are incomparable 
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to each other (Q. Liu, Nicolae, and Chen 2013). For reference most of my genomic 

inflation values for rare variant analyses fell below 1 with figures between 0.5-0.9 

however, these are unreliable. I have provided quantile-quantile plots (QQ-plots) as 

they continue to provide a good visual method of assessing inflation and have taken the 

well-controlled inflation values from the common variant seqGWAS analysis as 

evidence of a lack of population stratification in my rare variant analyses (please see 

chapter 5 for further details). Furthermore, there is good evidence that the addition of 

controls allows for appropriate stratification correction in rare variant analyses, even in 

situations of large case: control imbalances when a GLMM and PC approach is used for 

correction (Bouaziz et al. 2021); an approach I have adhered to in my rare variant 

analyses.  

3.2.3.5 Stratification by primary variant and depleting analysis 

The type of variant driving ADPKD is known to affect the renal prognosis with 

truncating PKD1 variants carrying the worst prognosis (Cornec-Le Gall et al. 2016). 

Within families it is also known that those with the same variant can have vastly 

different phenotypes (Harris and Rossetti 2010) with the heritability of time to ESRF 

ranging from 45-50% (Paterson et al. 2005; Fain et al. 2005). Whilst there are known 

environmental factors affecting disease progression such as caffeine and smoking 

(Tanner and Tanner 2001; Orth et al. 1998) it is clear that there are genetic modifiers of 

ADPKD. This will likely hold true for other causes of CyKD but has yet to be studied in 

detail.  

 

Until now, candidate gene studies have been unsuccessful in identifying modifier genes 

due to small study sizes, lack of clinical characterisation and problematic endpoints 

(Baboolal et al. 1997; A. Persu et al. 2002; D. Walker et al. 2003). In the biobank era 

with access to WGS we are now able to stratify cohorts based on the primary driving 

disease causing variant and conduct genetic association studies to look for secondary 

genetic markers causing disease. As will be discussed in the time to event analysis 

chapter, biobanks also contain renal function endpoints, allowing for association studies 

to look for markers of disease progression within each molecular cohort.  
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CyKD patients who have their phenotype ñsolvedò by the clinical multi-disciplinary 

team (MDT) had a report issued with the details of the molecular diagnosis. These were 

available to researchers in the 100KGP and could be manipulated in R using the 

LabKey tool (Nelson et al. 2011). Depending on the molecular diagnosis CyKD patients 

were placed into different cohorts: PKD1-truncating (PKD1-T), PKD2-truncating 

(PKD2-T), PKD1-non truncating (PKD1-NT), PKD2 non-truncating (PKD2-NT), 

ñother geneò (encompassing other green genes in the PanelApp list of approved genes 

thought to cause CyKD) and no variant detected (NVD). In the patients with NVD I 

bioinformatically reanalysed them looking for variants that met the ñmissense+ò or 

ñloss-of-function maskò (detailed below), in the approved cystic kidney disease panel of 

genes in PanelApp (Antonio Rueda Martin et al. 2019) and placing them in the relevant 

cohort. The filtering was performed using BCFtools and filter-VEP (McLaren et al. 

2016). For each subsequent round of analysis if a gene or structural variant was found to 

be significantly enriched in cases, I identified the cases that contained qualifying 

variants and removed them from the NVD cohort and re-analysed the cohort, eventually 

leaving 266 cases with no clear genetic cause of disease.  

 

I performed all single-variant, gene-burden, and structural variant analysis in each 

molecular subgroup (bar the ñother genesò group as this was a heterogenous group of 

disorder). I used the same controls for each subgroup without repeating ancestry 

matching as there was no evidence of genomic inflation within each subgroup and the 

controls (lambda between 0.99-1.02 in all common variant analyses). 

3.2.3.6 Pathway analysis using collapsing rare variant summary statistics 

Gene set analysis (GSA), similar to collapsing tests via genes, aims to increase the 

power to detect signal by collapsing variant signals across sets of genes associated with 

a molecular pathway. GSA aggregates signals from genes into sets sharing biological or 

functional characteristics. This reduces the number of tests performed and can provide 

insight into the pathways of cellular mechanisms involved in a trait or phenotype (Pers 

2016).  
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For the cohort of patients that had no molecular diagnosis the summary statistics from 

their rare variant SKAT-O analysis with SAIGE-GENE was analysed using the Gene 

set analysis Association using Sparse Signals method (GAUSS) with default settings 

(Dutta et al. 2021). The summary statistics were analysed using the canonical curated 

gene set pathways from the Gene Set Enrichment Analysis (GSEA) group 

(Subramanian et al. 2005).  GAUSS was selected as it has been shown to be more 

powerful than existing methods, whilst controlling for type I error and scaling to 

biobank level datasets.  

3.2.4 Results 

All variants contributing to significant associations in the collapsing tests can be found 

in the summary statistics available in the supplementary data.  

3.2.4.1 Diagnostic yield of WGS in CyKD 

3.2.4.1.1 Cohort description  

1558 participants were recruited to the 100KGP under cystic kidney disease. 1294 were 

probands. 921 were recruited as singletons (59.11%), 187 (12%) as a duo with their 

mother or father, 147(9.44%) as a trio with their mother and father, 124 (7.96%) as a 

duo, 81 (5.2%) as a family with more than three participants, 66 (4.24%) as a trio with 

one of their mothers or fathers and another biological relation, 32 (2.05%) as a trio with 

other biological relatives. The median age of the cohort was 50 with a family history in 

58% of the cohort. 25% of the cohort had reached ESRF with a median age of 52. The 

demographic information of probands and the ancestry matched controls is set out in 

table 3-3. The top five most frequent human phenotype ontology codes are set out in 

table 3-4.  
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Table 3-3 Demographic breakdown of the recruited cystic kidney disease probands and 

controls 

Demographics Case Control 

Female 669(51.75%) 14557(55.78%) 

Median age 50 (IQR 37-61) 47.89(IQR 39-54) 

Affected 1st degree relative 752(58.03%) NA 

Consanguinity in parents 41(3.17%) NA 

End-stage kidney disease 398(25.55%) NA 

Median age ESRF 52(IQR 44-60) NA 

Self-reported ethnicity 

European 924(71.41%) 18445 (70.68%) 

African 58(4.42%) 564 (2.16%) 

Other Asian 12(0.93%) 461 (17.67%) 

South Asian 54(4.17%) 2308 (8.84%) 

East Asian 6(0.46%) 73 (0.28%) 

Mixed 25(1.93%) 357 (1.37%) 

Not stated/unknown 215(16.62%) 3888 (14.90%) 

IQR ï Interquartile Range, ESRF ï End Stage Renal Failure 

 

 

Table 3-4 Top 5 most frequent HPO terms in the CyKD cohort 

HPO code Count(percentage) 

Multiple renal cysts 1085(83.85%) 

Hypertension 697(53.86%) 

Enlarged Kidney 513(39.64%) 

Hepatic cysts 383(29.60%) 

Haematuria 162(12.52%) 

HPO ï Human phenotype ontology 

3.2.4.1.2 Prevalence of monogenic disease in the clinical arm of 100KGP 

Of these probands 1290 had outcome data from the 100KGP clinical pipeline: 640 

(52.93%) were solved, 34 (2.81%) partially solved, 79 (6.54%) unaccounted for and 

537 (44.42%) unsolved. The full breakdown of solved cases and their types of variants 

can be found in table 3-5 (3 patients were solved for primary conditions unrelated to 

their cystic kidney disease e.g. intellectual disability and were not included in this table 

and 12 cases did not have listed genes despite being listed as solved). Of the 1290 cases 

578 had data regarding kidney function in the form of HPO or HES codes with 398 

having reached ESRF.  
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Table 3-5 Molecular diagnosis in cystic kidney disease cases that were solved by the 

100,000-genome project clinical pipeline. 

Gene (Condition) Consequence Count 

PKD1 (ADPKD) Protein truncating 340 

Non protein truncating 118 

PKD2 (ADPKD) Protein truncating 122 

Non protein truncating 13 

PKHD1 (ARPKD) Compound heterozygous 7 

Homozygous 5 

DNAJB11 (ADPKD) Protein truncating 5 

Non protein truncating 1 

BBS1 (Bardet-Biedl syndrome 1; biallelic) Non protein truncating 2 

HNF1B (Renal cysts and diabetes syndrome) Protein truncating 2 

SALL1 (Townes-Brocks syndrome) Protein truncating 1 

Non protein truncating 1 

COL4A4 (Alport syndrome) Truncating 1 

FAN1 (Interstitial nephritis) Protein truncating 1 

GANAB (ADPKD) Protein truncating 1 

OFD1 (Joubert syndrome 10) Protein truncating 1 

SDCCAG8 (Bardet-Biedl syndrome 16; biallelic) Protein truncating 1 

TMEM67 (Joubert syndrome 6) Protein truncating 1 

UMOD (Tubulointerstitial kidney disease) Non protein truncating 1 

WT1 (Denys-Drash syndrome) Non protein truncating 1 

ADPKD ï Autosomal dominant polycystic kidney disease, ARPKD ï Autosomal recessive polycystic 

kidney disease 

3.2.4.1.3 Survival analysis 

Grouping the solved cases into their respective primary driving variants and performing 

survival analysis led to the graph in figure 3-3. Age of reaching ESRF was the endpoint 

and in keeping with the known literature, patients with truncating PKD1 variants carried 

the worse prognosis with a median age of ESRF of 58 years. There were not enough 

events in the PKD2 non-truncating group to be included in the Kaplan-Meier plot (two 
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events with median age of ESF 71 years). The no-variant detected group had a survival 

profile (median age of ESRF 76 years) between that of PKD1 non-truncating variants 

(median age 63 years) and PKD2 truncating variants (median age 89 years) highlighting 

their unmet clinical need.  

 

 

Figure 3-3 Kaplan-Meier plot of renal survival plotted by primary driving variant  

PKD1-T PKD1-truncating variant, PKD1-NT PKD1-nontruncating variant, PKD2-T PKD2-truncating 

variant, Other-another variant in the PanelApp cystic kidney disease gene panel, NVD ï no variant 

detected. Note PKD2-NT is not plotted due to the low number of events.  

 

3.2.4.2 Rare variant association testing 

3.2.4.2.1 Depleting analysis of cases 

I performed SKAT-O testing as implemented via SAGIE-GENE in 1209 CyKD cases 

ancestry matched to 26096 unrelated controls in all coding genes collapsed by the 

ñmissense+ò (likely damaging [CADD >20, MAF <0.01, at least a missense 
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annotation]) and ñLoFò tags (MAF<0.01, high confidence of causing loss-of-function). 

I then consequently depleted the cases for those solved by the 100KGP project or those 

who carried variants that made up the significantly associated gene signals under the 

ñmissense+ò or ñLoFò masks. At each step of analysis, I removed those cases making 

up significant associations until any positive signal was ameliorated. Unless otherwise 

stated, all individuals with qualifying variants for the results presented here were 

heterozygous for their variants. 

3.2.4.2.2 Likely damaging variants (ñmissense+ò) 

Rare variant analysis of the total ancestry matched cohort of 1209 cases and 26096 

controls under the ñmissense+ò mask showed a significant enrichment of cases for 

PKD1 (P=1.17x10-309, OR=10.60, 95% CI = 9.35-12.01), PKD2 (P=1.96x10-150, 

OR=19.07, 95% CI 15.13-23.99), DNAJB11(P=3.52x10-07, OR 1.07, 95% CI 0.95-

1.21), and COL4A3(P=1.26x10-06, OR=3.02, 95% CI 2.10-4.22). Notable genes just 

below genome wide significance included IFT140 (P=1.02x10-05, OR=2.04, 95% CI 

1.53-2.75)) and PKHD1 (P=8.17x10-06, OR=1.60, 95%CI=1.27-2.00) (Figure 3-4). 

There was no evidence of genomic inflation (lambda<1 and Figure 3-5). 
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Figure 3-4 Gene based Manhattan for the association of likely damaging variants between 

all CyKD cases and control. 

Manhattan plot of exome-wide gene-based rare, likely damaging variant association testing for 1209 

CyKD cases and 26096 ancestry matched controls. SAIGE-GENE was performed for 19,168 genes with 

loss-of-function and likely damaging missense variants with MAF < 0.1%. Each dot represents a gene. 

The red line indicates the exome-wide significance threshold of P=2.58×10-6. PKD1 and PKD2 are listed 

at the top of the graph to highlight they fall far out of bounds of the scale due to the strength of their 

association. 
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Figure 3-5 Q-Q plot for the association of likely damaging variants between all CyKD 

cases and control 

Q-Q plot of exome-wide gene-based association testing for 1209 CyKD cases and 26096 ancestry 

matched controls. Each dot represents a gene. The red line signifies the observed versus the expected ï

log10(P) for each gene tested. 

 

Removing cases solved by 100KGP and patients that had a bioinformatically 

ascertained pathogenic variant in a known cystic gene left 308 cases. Performing rare 

variant analysis under the ñmissense+ò tag showed a significant enrichment of cases 

with variants in IFT140 (P=1.26x10-16, OR=5.57, 95%CI 3.63-8.21) and COL4A3 

(P=6.83x10-07, OR=4.93 95%CI 2.77-8.11) compared with 26096 controls (Figure 3-6, 

QQ-plot 3-7). 

 

 

Figure 3-6 Gene based Manhattan for the association of likely damaging variants between 

unsolved CyKD case and controls.  

Manhattan plot of exome-wide gene-based rare, likely damaging variant association testing for 308 

unsolved CyKD cases and 26096 ancestry matched controls. SAIGE-GENE was performed for 19,168 

genes with loss-of-function and likely damaging missense variants with MAF < 0.1%. Each dot 

represents a gene. The red line indicates the exome-wide significance threshold of P=2.58×10-6. 
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Figure 3-7 Q-Q plot for the association of likely damaging variants between unsolved 

CyKD cases and controls 

Q-Q plot of exome-wide gene-based association testing for 308 unsolved CyKD cases and 26096 

ancestry matched controls. Each dot represents a gene. The red line signifies the observed versus the 

expected ïlog10(P) for each gene tested. 

 

3.2.4.2.3 Loss of function variants 

Collapsing rare variants that had a high confidence call for loss-of-function under the 

ñLoFò mask revealed significant enrichment for PKD2 (P=3.05x10-147, OR=130.85, 

95% CI = 83.66-215.37), PKD1(P=1.29x10-117,OR=36.01, 95% CI 30.52-42.23), 

IFT140 (P=3.00x10-25, OR=14.03, 95%CI 7.91-24.45), DNAJB11(P=1.84x10-12, OR 

1.07, 95% CI 0.95-1.21) and PKHD1 (P=2.98x10-08, OR=4.07 95%CI 2.24-6.88) 

(Figure 3-8 and QQ Figure 3-9).  

 










































































































































































































































