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Abstract 21 

Given the importance that melt ponds have on the energy balance of summer sea ice, there have 22 

been several efforts to develop pan-Arctic datasets using satellite data. Here we intercompare three 23 

melt pond data sets that rely on multi-frequency optical satellite data. Early in the melt season, the 24 

three data sets have similar spatial patterns in melt pond fraction, but this agreement weakens as 25 

the melt season progresses despite relatively high interannual correlations in pond fractions 26 

between the data products. Most of the data sets do not exhibit trends towards increased melt pond 27 

fractions from 2002 to 2011 despite overall Arctic warming and earlier melt onset. Further 28 

comparisons are made against higher resolution optical data to assess relative accuracy. These 29 

comparisons reveal the challenges in retrieving melt ponds from coarse resolution satellite data, 30 

and the need to better discriminate between leads, small open water areas and melt ponds. Finally, 31 

we assess melt pond data sets as a function of ice type and how well they correlate with surface 32 

albedo. As expected, melt pond fractions are negatively correlated with surface albedo, though the 33 

strength of the correlation varies across products and regions. Overall, first-year ice has larger melt 34 

pond fractions than multi-year ice. 35 

 36 

1. Introduction  37 

Melt ponds are a dominant feature of Arctic sea ice in summer. During advanced melt they can 38 

occupy up to 50 to 60 % of the sea ice area (Fetterer and Untersteiner 1998, Eicken et al 2004). 39 

Since the presence of melt ponds greatly reduces the summer sea ice albedo, they play a significant 40 

role in controlling the sea ice energy balance (Perovich et al 2007, Nicolaus et al 2010). Melt 41 

ponds also allow more light to enter the upper ocean than bare or snow-covered sea ice, enhancing 42 
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under-ice algae blooms (e.g. Horvath et al 2017). Further, climate models have shown that melt 43 

ponds contribute not only to the heat and mass balances of sea ice, but also play a role in how 44 

much ice remains at the end of summer (Flocco et al 2010, Flocco et al 2012, Hunke et al 2013). 45 

In fact, studies have found that the timing of spring melt pond development may be important for 46 

predicting how much sea ice remains at the end of summer (Schröder et al 2014, Liu et al 2015).  47 

Given the importance of melt ponds in the Arctic climate system and the spectral differences 48 

between snow-covered sea ice, bare ice and melt ponds, efforts have gone into producing pan-49 

Arctic melt pond products from optical satellite systems.  Rösel et al (2012) utilized the Moderate 50 

Resolution Imaging Spectroradiometer (MODIS) 8-day atmospherically corrected surface 51 

reflectance product together with a spectral unmixing algorithm to produce an 8-day based melt 52 

pond fraction data set for 2000-2011. In a different approach, Lee et al (2020) applied machine 53 

learning approaches to top-of-the-atmosphere (TOA) MODIS reflectances, together with 54 

normalized band differences from four MODIS visible and near-infrared bands. This approach 55 

minimized the impact of anisotropic reflectance and atmospheric correction effects that exist when 56 

using MODIS atmospherically corrected data, which are not optimized for sea ice regions. Multi-57 

layer neural networks and multinomial logistic regressions were used to retrieve melt pond fraction 58 

and binary melt pond vs. ice classification between May and August from 2000 to 2022. Zege et 59 

al (2014) used another approach and a different satellite source: based on the physical and optical 60 

characteristics of sea ice and melt ponds without a priori information, an iterative process using 61 

the Newton-Raphson method was applied to Medium Resolution Imaging Spectrometer (MERIS) 62 

reflectance data. An atmospheric and bi-directional reflectance distribution function (BRDF) was 63 

applied to correct for the anisotropic reflectance properties of sea ice and melt ponds. Although 64 

each algorithm aims to retrieve melt ponds using optical satellite data, melt pond fractions differ 65 
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based on the input data used as well as the methods employed.  Further, temporal resolution differs 66 

between these three data sets (i.e. daily, 8-day or monthly). It is likely that each melt pond product 67 

has its own advantages and disadvantages, but a full assessment of how they compare has yet to 68 

be done.  69 

Here, we intercompare the above-mentioned melt pond products from 2002 to 2011. Clear-sky 70 

high resolution optical imagery from Worldview (WV) and Landsat are used as a baseline 71 

assessment of accuracy. Melt pond classifications derived from Planet SkySat and helicopter 72 

imagery during the Multidisciplinary drifting Observatory for the Arctic Climate (MOSAiC) 73 

campaign are used as well for comparison. We further evaluate how well the satellite-retrieved 74 

melt pond fractions correspond to surface albedo and depend on sea ice type.  75 

A comparative analysis of the different melt pond products can provide a recommendation to the 76 

science community regarding which products are suitable for their different needs.  77 

 78 

 79 

 80 

2. Data & Methods 81 

2.1 Melt pond products 82 

This study evaluates three publicly available melt pond products over the 2002-2011 period that 83 

all three products are available (see Table 1). Melt pond fraction is defined as the fractional area 84 

of ponded ice within the satellite pixel. The first data product is the Rösel et al (2012) (hereafter 85 

R2012) approach, which expanded on Tschudi et al (2008)’s earlier work that utilized 86 
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atmospherically corrected MODIS data (i.e., MOD09A1; 87 

https://lpdaac.usgs.gov/products/mod09a1v006/) together with spectral unmixing. To speed up the 88 

processing for a large volume of MODIS data, an Artificial Neural Network (ANN) approach was 89 

implemented. A disadvantage of the method, however, is that the atmospheric correction that goes 90 

into the MOD09 product is not optimized for the polar regions (i.e., unknown amounts of aerosol 91 

optical depth, water vapor and ozone). Another issue is that the Bidirectional Reflectance 92 

Distribution Function (BRDF) of snow/sea ice and melt ponds are not explicitly accounted for in 93 

this data set. Melt ponds and bare sea ice scatter light anisotropically, such that the assumption of 94 

a Lambertian surface can lead to unrealistic results during melt (e.g., Zege et al 2015, hereafter 95 

Z2015). Both of these issues are problematic when training the algorithm with spectral reflectance 96 

data obtained in situ, which are integrated over the entire hemisphere and taken under specific 97 

atmospheric conditions. The R2012 melt pond data set is available as 8-day composites on a 12.5 98 

km spatial resolution polar stereographic grid.  99 

The second data set (Z2015, and later updated by Istomina et al., 2020) produces melt pond 100 

fractions and spectral sea ice albedo from MERIS Level 1B optical imagery. An analytical iterative 101 

procedure based on the Newton-Raphson method without a prior information on the sea ice 102 

spectral albedo was applied, which explicitly accounts for atmospheric correction and the BRDF 103 

of sea ice surfaces. When information on atmospheric variables, such as aerosol optical depth are 104 

not available, default models that represent background Arctic conditions are used. These data are 105 

available at daily temporal resolution and are also gridded to a 12.5-km spatial resolution polar 106 

stereographic projection. 107 

Finally, Lee et al (2020) (hereafter L2020) worked with calibrated Level 1B TOA 250 and 500 m 108 

MODIS reflectances (e.g. MOD02HKM, https://ladsweb.modaps.eosdis.nasa.gov/missions-and-109 

https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD02HKM
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measurements/products/MOD02HKM). To reduce biases from incorrect atmospheric correction 110 

assumptions, and to minimize the BRDF effect, normalized band ratios were used as input into 111 

machine learning algorithms. As such the approach is not dependent on in situ data to train the 112 

algorithm. Melt pond fraction and binary melt pond classification were retrieved by multinomial 113 

logistic regression and multi-layer neural networks, respectively. Furthermore, since the departure 114 

from a Lambertian surface for ice and snow surfaces increases at high solar (𝜃𝑜) and viewing (𝜃𝑣) 115 

zenith angles, pixels corresponding to 𝜃𝑜 > 70° and 𝜃𝑣 > 50° were excluded. Finally, in order to 116 

avoid “false” melt pond identification once ponds are refrozen, surface temperatures from the 117 

MOD29 (1-km Ice Surface Temperature (IST)) product were used to eliminate refrozen melt ponds 118 

in August. Refer to Lee et al (2020) for further information. While melt pond classification is based 119 

on daily 500 m TOA reflectances, the spatial resolution of the resulting melt pond product is 120 

subsequently degraded to 5 km for the full time-series (2000-2023). Melt ponds are produced as 121 

daily and monthly averages and are provided on the Equal-Area Scalable Earth (EASE)-grid. 122 

As R2012 does not provide daily melt pond estimates, daily melt ponds from Z2015 and L2020 123 

are merged into 8-day melt pond composites (weeks evaluated are listed in Table 2). We further 124 

composite these into monthly means for long-term melt pond change analysis among the three data 125 

products. To intercompare seasonal and interannual variability among these data sets, all data sets 126 

are regridded to a 12.5-km EASE-grid using nearest neighbor interpolation. When comparing 127 

against higher resolution data (e.g. WorldView and Landsat), the native resolution of each product 128 

is used. Since each product has a different pole hole area, the largest pole hole (from Z2015) is 129 

applied to all products for time series comparison (Table 3 and Figure 1). Note, the difference in 130 

the location of the sea ice edge among the three products is less than 3%. When generating monthly 131 

averaged melt pond fractions it is important to note that cloud cover will influence the number of 132 

https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD02HKM
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days that go into the monthly average. In both the daily Z2015 and L2020 data sets, the number of 133 

days and hence overall satellite pixels used to create the monthly averaged pan-Arctic melt pond 134 

fraction in a given month varies with cloud fraction.  The mean daily cloud cover fractions over 135 

sea ice areas (defined using a 15% sea ice concentration threshold) in the Z2015 data set are 44, 136 

37, 60 and 58% in May, June, July and August, respectively, while those for L2020 in the same 137 

months are 77, 66, 78%, and 84%.  Both products typically exhibit higher cloud fraction in July 138 

and August than in May and June (Taylor et al 2019). 139 

 140 

 141 

 142 

 143 
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Table 1. Summary of three melt pond products   144 

 Sensor Time span Type Algorithm 

Main input 

(i.e., band) 

Spatial 

resolution 

of main 

input (m) 

Gridded 

resolution 

(km) 

Temporal 

resolution 

R2012 MODIS 

8 May to 13 Sep. 

2002 - 2012 

Fraction 

Neural 

networks 

Band 1, 2,  

and 3 

500 12.5 8-day 

Z2015 MERIS 

1 June to 30 Sep. 

2002 

1 May to 30 Sep. 

2003-2011 

Fraction 

Iterative 

Newton-

Rhapson 

method 

1, 2, 3, 8, 

10, 12, 13, 

and 14 

1000 12.5 Daily 

L2020 MODIS 

1 May to 31 Aug. 

2000-Present 

Fraction/Binary 

Multi-

layers 

neural 

networks 

Normalized 

band 

differences 

among 

band1-4 

250 and 

500 

5.0 Daily 
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and logistic 

regression 

  145 

 146 
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Table 2. Modification of temporal resolution of melt pond products. 147 

 Day (i.e., 8-day) Month 

W1 9 – 16 May 

Proxy of May W2 17 – 24 May 

W3 25 May -1 June 

W4 2 – 9 June 

Proxy of June 

W5 10 – 17 June 

W6 18 – 25 June 

W7 26 June - 3 July 

W8 4 – 11 July 

Proxy of July W9 12 – 19 July 

W10 20 – 27 July 

W11 28 July – 4 August 

Proxy of August 

W12 5 – 12 August 

W13 13 – 20 August 

W14 21 – 28 August 

 148 

2.2 Higher Resolution Data 149 

We compare the coarser resolution melt pond datasets against those retrieved from five classified 150 

2 m DigitalGlobe’s WorldView imagery (hereafter WV), as well as one Landsat-5 image (hereafter 151 

Landsat). Melt pond classification derived from WV follows the approach of Wright and 152 

Polashenski (2018) who developed an open-source algorithm to automatically classify four sea ice 153 
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surface types from WV panchromatic and 8-band multispectral data: snow/thick ice, dark/thin ice 154 

(i.e., it is not snow covered, and can include nilas and young ice during freeze-up), melt 155 

ponds/submerged ice, and ocean. While snow/thick ice, dark/thin ice are combined into one ice 156 

class, melt ponds/submerged ice is classified as melt ponds. After classifying the WV images, the 157 

classes are converted to pond fraction following Lee et al (2020).  While more WV images would 158 

have been desirable, it is challenging to find WV scenes that are cloud-free and spatially and 159 

temporally coincident with the three melt pond products. As melt pond fractions from R2012 are 160 

only provided as 8-day composites, we may not expect the composite to match exactly with the 161 

location/date of the WV image. On the other hand, while melt ponds from Z2015 are from the 162 

same date, the acquisition time is unknown. For L2020, we were able to locate WV images that 163 

were within 20 hours of the MODIS swath (see Table 4).  164 

Since Landsat has a larger swath than WV and a spatial resolution of ~30 m, this comparison has 165 

the benefit of including a larger area than can be achieved using WV data. The disadvantage is that 166 

there is no melt pond classification algorithm currently available for Landsat. Nevertheless, the 167 

data are useful for a visual assessment of melt pond locations. One Landsat image from 11 July 168 

2008 is utilized here. 169 

Finally, we additionally include melt pond classifications around the MOSAiC drifting station. 170 

The melt pond classification results are obtained using Planet SkySat satellite and helicopter 171 

imagery with a spatial resolution of 0.5 m and between 0.03 and 0.5 m, respectively. (Wright et al 172 

2021; Niel et al 2023). The SkySat imagery does not provide RGB composite imagery. The 173 

classification algorithm for SkySat used is same as the one employed for WV classification 174 

(Wright and Polashenski, 2018). The three-band (RGB) helicopter images are available as 175 

classified orthomosaics (Fuchs et al 2023). Surface type classes including melt ponds were derived 176 
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with the customized classification tool PASTA-ice (Fuchs 2023). It is notable that these data come 177 

from marginal ice zone in Fram Strait characterized by high sea ice dynamics, fragmentation, and 178 

the flooding at the edge of ice. 179 

 180 

2.3 Albedo and sea ice type data  181 

Surface albedo and sea ice type were additionally utilized to assess their relationship with the pan-182 

Arctic retrieved melt pond fractions. Clear-sky surface albedo comes from the National Oceanic 183 

and Atmospheric Administration (NOAA) Climate Data Record (CDR) of Extended and 184 

Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-x; Key et al 2019). 185 

The APP-x set contains several visible- and thermal-infrared-retrieved geophysical variables from 186 

1982 to present. These data are available twice daily (0400 and 1400 local solar time) at 25-km 187 

spatial resolution. Here we use the afternoon pass (1400).  188 

Sea ice type is derived from multi-sensor inputs, including Special Sensor Microwave-189 

Imager/Sounder (SSMIS), AMSR2, and ASCAT, through the Ocean and Sea ice Satellite 190 

Application Facility (OSI SAF) (Aaboe et al 2021). The three ice type classes are first-year ice 191 

(FYI), multi-year ice (MYI), and ambiguous. During summer, microwave emission and 192 

backscatter is impacted by liquid water, resulting in more pixels classified as ambiguous. This is 193 

problematic then in evaluating the role of ice type on melt pond fractions. Table 3 shows monthly 194 

mean ratio of FYI, MYI, and ambiguous classes. In particular, the ratio of ambiguous class is more 195 

than 30 % in June and August 2005 to 2011. When the ratio of ambiguous classes is more than 196 

50 % over sea ice (defined using a 15% sea ice concentration threshold), it is not used in 197 
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comparison with melt pond fraction. The ambiguous class is also excluded for the comparison. 198 

Sea ice type data is available daily from 2005 to present at 10km spatial resolution.  199 

In our comparisons below we create monthly averages of surface albedo and ice type, regrid them 200 

to 12.5 km and compare against the 12.5 km gridded monthly melt pond fractions. Spatial 201 

correlations between albedo and pond fractions are provided for May to August over the 2002 to 202 

2011 time-period.   203 

 204 

Table 3. Monthly mean ratio of first-year ice, Multi-year ice, and Ambiguous classes over sea ice 205 

in May to August 2005-2011. 206 

 First-year ice (%) Multi-year ice (%) Ambiguous (%) 

May 74 11 15 

June 64 4 32 

July 63 1 36 

August 51 13 36 

 207 

 208 

 209 

 210 

 211 
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 212 

 213 

3. Results  214 

Below we start with an intercomparison of the long-term monthly melt pond fractions from each 215 

data set at 12.5-km spatial resolution before comparing the products against higher spatial 216 

resolution data. 217 

 218 

3.1 Intercomparison of melt pond fraction  219 

Time-series of pan-Arctic averaged monthly melt pond fractions from 2002 to 2011 for May 220 

through August are shown in Figure 1. All three products generally show similar interannual 221 

variability in pan-Arctic melt pond fractions, though the agreement varies between months, with 222 

higher agreement generally in June and July and worse agreement at the start and end of the melt 223 

season (e.g., May and August) (Table 4). For example, a high correlation (r > 0.62) is found 224 

between R2012 and Z2015 in all months except for August when it drops to r = 0.44. Overall, 225 

despite Z2015 having the least amount of interannual variability, it is the most highly correlated 226 

product with R2012. The highest correlation with L2020 occurs in June, on the order of r = 0.70 227 

for both R2012 and Z2015, whereas in May and August the correlations decrease to 0.54 or less. 228 

Good agreement between L2020 and Z2015 is also found in July (r = 0.61), but not with R2012. 229 

In terms of long-term trends, the different retrieval methods mostly do not indicate a trend in pond 230 

fractions between 2002 and 2011. The exception is in July when mean fraction slightly increases 231 

(largest in the L2020 algorithm). L2020 further indicates an increase in melt pond fraction also in 232 

August. This increase starts in 2006, and the highest August melt pond fraction occurred in 2011, 233 
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exceeding 40% of the sea ice area.   The positive trends in July and August are not statistically 234 

significant.  235 

 236 

Table 4.  Correlation coefficients between total melt pond fractions as averaged over the entire 237 

Arctic Ocean for each summer month from 2002 to 2011 (confidence interval: 95%). 238 

Correlation 

coefficients 

May June July August 

R2012 

vs. 

Z2015 

0.62 0.73 0.72 0.44 

R2012 

vs. 

L2020 

0.40 0.71 0.46 0.54 

Z2015 

vs. 

L2020 

0.54 0.69 0.61 0.35 

 239 

Despite similar interannual variability, the areal coverage of melt ponds can differ considerably 240 

between data sets. Since L2020 relies on normalized band ratios between the blue and near-infrared 241 

bands, there is increased sensitivity to liquid water (Lee et al., 2020). This may falsely lead to wet 242 

snow being classified as a melt pond. The use of these two bands may also result in cases of thin 243 

ice and leads/cracks to be classified as melt ponds. Combined, this may help to explain why L2020 244 

has considerably higher pond fractions in June compared to the other data sets as this is the time 245 

of year when melt onset starts over large parts of the Arctic Ocean (e.g. Stroeve et al., 2014). 246 
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Interestingly, none of the data sets show monthly mean melt pond fractions in excess of 35% 247 

during the peak of the melt season in July in contrast to earlier studies (e.g., Romanov, 1995; 248 

Tschudi et al., 2001; Perovich et al., 2002). One reason could be that these studies provided melt 249 

pond fractions at higher spatial resolution resulting in overall higher percentage of ice area covered 250 

by ponds. However, regridding the L2020 data from 5 km to 12.5 km results in slightly higher 251 

melt pond fractions between May and July. It is only in August that the coarser resolution data 252 

resulted in lower pond fractions, and only between 2005 and 2007. Thus, melt pond fractions 253 

retrieved at different spatial scales may not be directly comparable.  254 

In general, R2012 has the lowest melt pond fraction in most months, while the L2020 product has 255 

the overall highest melt pond fractions. May is an exception, when sometimes the Z2015 algorithm 256 

gives the largest overall pond fractions in several years. Confirmation of a positive bias in L2020 257 

melt pond fractions in May 2009 and 2010 is seen through visual inspection of the level-2 250-m 258 

and 500-m spatial resolution MODIS images (not shown). Leads and cracks between ice floes are 259 

easily identifiable at 500 m, and while they should be separately classified as open water, it appears 260 

those are often falsely classified as melt ponds, especially within the marginal ice zone (MIZ). 261 

Since the L2020 melt pond algorithm is first run on the 500-m data before spatial averaging to 5 262 

km, variability in leads/cracks from year-to-year may in part also explain the higher interannual 263 

variability seen in the L2020 data set. Monthly spatial melt pond fractions from all data sets are 264 

shown in the supplementary material from 2002 to 2011 (Figure S1). 265 

One curious deviation between products occurs later in the time-series when melt pond fractions 266 

from L2020 start to increase faster than the other data products. For example, starting in July 2009, 267 

there is a spike in melt pond fraction as a result of high pond fractions within the Chukchi and 268 

Beaufort seas (see Figure S1) that continues in subsequent years. Similarly, in August 2007 there 269 
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is a step-wise increase in pond fraction. One would expect an increase in melt pond fraction during 270 

August given the delays in freeze-up across most of the Arctic (e.g. Stroeve and Notz, 2018). 271 

Trends in freeze-up from 2002 to 2011 are on the order of 1 to 4 days yr-1 each year, yet there is a 272 

discernable shift in later freeze-up in 2007 that could explain the observed increase in pond fraction. 273 
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 274 

Figure 1. Time-series of Pan-Arctic monthly mean melt pond fractions for each data set from 2002 275 

to 2011. Results from L2020 are given at two spatial resolutions, 5 km (dashed line) and 12.5 km 276 

(solid line). Note the different y-axis scales across panels.    277 
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 278 

Further insights behind the seasonal differences are revealed by looking at differences in the spatial 279 

patterns. Figure 2 shows an example of an 8-day composite in early June (2-9 June 2003) together 280 

with an Aqua MODIS RGB 250-m image (6 June 2003).  R2012 and Z2015 retrieve low melt pond 281 

fractions in the East Siberian Sea, whereas L2020 exhibits pond fractions exceeding 50% in many 282 

areas. The corresponding RGB MODIS image shows either very thin or flooded level ice by melt 283 

water in this region. Note that here and throughout the paper, we use the term “flooding” to 284 

describe sea ice that is inundated by meltwater, rather than the flooding that is associated with 285 

negative freeboard and snow-ice formation. In regions of level first-year ice, the surface often 286 

becomes extensively covered by melt ponds rather than forming smaller, isolated ponds like those 287 

typically observed on multiyear sea ice. In some instances, extensive ponding over level sea ice 288 

can be difficult to discern from very thin ice. This highlights the challenges of visually identifying 289 

what constitutes a melt pond. While melt ponds are not easily identifiable in the MODIS image, 290 

given the time of year of this image and the fact that the melt onset already began (spatially 291 

averaged melt onset date of 7 May), it is probable that there could be thin ice and/or flooding of 292 

the level ice by melt water that is then picked up as melt pond fraction using L2020.   293 
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 294 

Figure 2. 8-day composited (2-9 June 2003) melt pond fractions from (a) R2012, (b) Z2015, (c) 295 

L2020 at 5-km spatial resolution and (d) L2020 at 12.5-km spatial resolution. An Aqua MODIS 296 

RGB 250-m scene from 6 June 2003 is shown in (e). The blank areas represent cloud covers and 297 

ocean areas. 298 
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To further highlight spatial variability between the data sets, we show the mean 2002-2011 299 

averaged melt pond fractions for each month together with the standard deviation in Figure 3. On 300 

average, the 2002-2011 mean spatial patterns in melt pond fraction are broadly similar in May, but 301 

this changes dramatically as the summer progresses. Despite some similarities in spatial patterns 302 

as to where melt ponds tend to be more extensive (i.e., the Beaufort, Chukchi, and East Siberian 303 

seas in June), the magnitudes differ substantially, especially in comparison to the L2020 data set. 304 

The L2020 product suggests melt ponds expand north of Greenland in July and across the Arctic 305 

Ocean in August, reaching fractions as high as 50%, whereas the other two products show modest 306 

melt pond coverage in these regions during advanced melt. Leads and small open water area 307 

detected by the MODIS 500 m scale around MYI zone and central Arctic in July and August, 308 

leading to high L2020 melt pond fraction.  High melt pond fractions near the pole in August have 309 

been observed during field campaigns, including during the year-long Multidisciplinary drifting 310 

Observatory for the Study of Arctic Climate (MOSAiC) expedition (e.g. see Figure 1, Stroeve et 311 

al., 2022).  312 

In all products, the standard deviation is smallest in May, with interannual variability limited to 313 

the MIZ, where melt first begins and there is high temporal variability in the timing of melt onset. 314 

However, as summer progresses, the standard deviation increases over a larger region. Regions 315 

with a high standard deviation are generally limited to the MIZ in R2012 and Z2015, but slightly 316 

expand to more northerly locations by August. Overall, Z2015 shows the least amount of 317 

interannual variability (seen also in Figure 1), with Arctic-averaged standard deviations from May 318 

to August of 0.03, 0.05, 0.05, and 0.04, respectively. L2020, on the other hand, shows the largest 319 

and most widespread standard deviations which peak in August. Large interannual variability is 320 

not surprising in August as this is the time of year when melt pond fractions start to refreeze and 321 
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thus melt pond fraction is strongly dependent on synoptic weather patterns that vary from year-to-322 

year. The larger standard deviation in L2020 agrees with the larger interannual variability seen in 323 

Figure 1 and the step-wise increase in melt pond fraction in recent years.   324 

 325 

 326 
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Figure 3. Mean and standard deviation of melt pond fractions averaged from 2002 to 2011 for 327 

May through August from each dataset.   328 

 329 

3.2 Comparison against high-resolution images (i.e., Worldview and 330 

Landsat)      331 

It is challenging to fully assess why the three products sometimes provide very different melt pond 332 

fraction estimates since they use (1) different sensors, (2) different inputs from those sensors, (3) 333 

different approaches for masking out clouds, (4) different techniques of compositing, and (5) data 334 

with different spatial resolutions. Nevertheless, to assess the reliability of the different products, 335 

we compare melt pond fractions in 2010 and 2011 against high-resolution melt pond fractions 336 

derived from WV and imagery from Landsat.  337 

We first focus on comparisons against those retrieved from WV imagery using the Wright and 338 

Polashenski (2018) classification algorithm. The WV image on 14 June 2010 shows large ice floes 339 

surrounded by thin or brash ice, with few melt ponds and small open water areas between the floes 340 

(Figure 4(a) and (b)) The WV melt pond fraction in this scene is 9.3% (Table 4). Pond fractions 341 

from R2012 (10-17 June 2010) and Z2015 are in close agreement with the WV melt pond 342 

classification, showing few melt ponds  in the vicinity of the WV image and an overall pond 343 

fraction below 12% over the larger area. On the other hand, both the 500-m and the 12.5-km spatial 344 

resolution L2020 data set produces relatively high melt pond fractions within the WV scene (35.2% 345 

and 30.7%, respectively). In this instance, it appears that the thin ice areas are classified as melt 346 

ponds by L2020. Later in the melt season (25 June and 3 July 2010), WV imagery near Ellesmere 347 

Island show higher melt pond fractions (Figures 5 and 6), and all three melt pond products 348 



 24 

estimate broadly similar pond fractions that agree with the WV classification. Overall, L2020 349 

matches best with the WV data on both these dates, with the lowest RMSE value (see Table 5). 350 

Another early melt season example (4 May 2011) demonstrates the L2020 algorithm 351 

outperforming R2012 and Z2015. Interestingly, while this WV scene is quite early in the melt 352 

season given the northerly location (i.e., North of Ellesmere Island), the WV classification suggests 353 

8 % of the scene contains melt ponds (Figure 7 and Table 5). R2012 and Z2015 significantly 354 

underestimate the melt pond fraction, with fractions on the order of 0.3% and 4.7%, respectively. 355 

The temporal-resolution differences with the WV image may be one explanation for the low bias 356 

in R2012 and Z2015. On the other hand, movement of sea ice is limited in this region, so the 357 

temporal mismatch may not be the only factor. By 13 July 2011, all three data products show more 358 

advanced melt pond formation in agreement with the WV imagery (Figures 8). The L2020 data 359 

product once again gives the highest melt pond fraction at 34.2% and is close to the WV value of 360 

36.9%, while R2012 and Z2015 give pond fractions of 24.5% and 28.7%, respectively (Table 5 361 

and Figure 9).   362 

For comparison with WV in 2022, only L2020 data are available. The melt pond fraction derived 363 

from L2020 was found to be higher than the WV-based melt pond fraction (Figures 10 and 11). 364 

While the image acquisition times on 20 June and 20 July are only 9 and 33 minutes apart, 365 

respectively, a slight spatial mismatch may have led to the higher overall detected melt ponds in 366 

the L2020 data product, as some of the open water areas seen in the two data sets are not perfectly 367 

aligned. It is also apparent that the WV classification algorithm mis-classified some open water 368 

areas in the lower left-hand corner as melt ponds on 20 July 2022. 369 
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Overall, based on the few WV comparisons performed, the R2012 agreed best with the WV data 370 

on 14 June 2010 and underestimated the pond fractions on the other dates. Outside of 14 June 2010, 371 

L2020 provided the best agreement with WV-classified images. 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 
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Table   5.  WV mean melt pond fraction and mean melt pond fraction of three melt pond products. 388 

When the pond fraction is in red, it most closely matches the WV classification.  389 
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 392 

Figure 4. (a) WV band 2 (i.e., blue band) on 14 June 2010. (b) WV classification results on 14 393 

June 2010 (Wright and Polashenski, 2018).  (c) melt pond fraction from L2020 with the native 394 

resolution (i.e., 500 m) on 14 June 2010. (d) melt pond fraction from L2020 gridded into 12.5km 395 
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on 14 June 2010. (e) melt pond fraction from R2012 8-days composite centered on 10-17 June 396 

2010. (f) melt pond fraction from Z2015 on 14 June 2010.  397 

 398 

 399 

Figure 5. (a) WV band 2 (i.e., blue band) on 25 June 2010. (b) WV classification results on 25 400 

June 2010 (Wright and Polashenski, 2018). (c) melt pond fraction from L2020 with the native 401 

resolution (i.e., 500 m) on 25 June 2010. (d) melt pond fraction from L2020 gridded into 12.5km 402 

on 25 June 2010. (e) melt pond fraction from R2012 8-days composite centered on 18-25 June 403 

2010. (f) melt pond fraction from Z2015 on 25 June 2010.  404 
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 405 

 406 

 407 

Figure 6.  (a) WV band 2 (i.e., blue band) on 3 July 2010. (b) WV classification results on 3 July 408 

2010 (Wright and Polashenski, 2018). (C) melt pond fraction from L2020 with the native 409 

resolution (i.e., 500 m) on 3 July 2010. (d) melt pond fraction from L2020 gridded into 12.5km on 410 
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3 July 2010. (e) melt pond fraction from R2012 8-days composite centered on 26 June ~ 3 July 411 

2010. (f) melt pond fraction from Z2015 on 3 July 2010.  412 

 413 

 414 

 415 

Figure 7. (a) WV band 2 (i.e., blue band) on 4 May 2011. (b) WV classification results on 4 May 416 

2011 (Wright and Polashenski, 2018). (c) melt pond fraction from L2020 with the native resolution 417 
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(i.e., 500 m) on 4 May 2011. (d) melt pond fraction from L2020 gridded into 12.5km on 4 May 418 

2011. (e) melt pond fraction from R2012 8-days composite centered on 9-16 May 2011. (f) melt 419 

pond fraction from Z2015 on 4 May 2011.  420 

 421 

 422 

Figure 8. (a) WV band 2 (i.e., blue band) on 13 July 2011. (b) WV classification results on 13 July 423 

2011 (Wright and Polashenski, 2018).  (c) melt pond fraction from L2020 with the native 424 
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resolution (i.e., 500 m) on 13 July 2011. (d) melt pond fraction from L2020 gridded into 12.5km 425 

on 13 July 2011. (e) melt pond fraction from R2012 8-days composite centered on 12-19 July 2011. 426 

(f) melt pond fraction from Z2015 on 13 July 2011.  427 

 428 

Figure 9. (a) WV band 2 (i.e., blue band) on 20 June 2022. (b) WV classification results on 20 429 

June 2022 (Wright and Polashenski, 2018).  (c) melt pond fraction from L2020 with the native 430 

resolution (i.e., 500 m) on 20 June 2022. (d) melt pond fraction from L2020 gridded into 12.5km 431 

on 20 June 2022  432 
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 434 

 435 

 436 

 437 

Figure 10. (a) WV band 2 (i.e., blue band) on 10 July 2022. (b) WV classification results on 10 438 

July 2022 (Wright and Polashenski, 2018).  (c) melt pond fraction from L2020 with the native 439 

resolution (i.e., 500 m) on 10 July 2022. (d) melt pond fraction from L2020 gridded into 12.5km 440 

on 10 July 2022. 441 
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 442 

We also examined a Landsat scene within the MIZ in Beaufort Sea on 11 July 2008. This scene 443 

was within 21 minutes of a corresponding MODIS swath. Within this scene, L2020 once again 444 

indicates the highest melt pond fractions, followed by Z2015, and then R2012 (Figure 11). The 445 

Landsat image shows clear evidence of surface flooding in the lower center part of the image where 446 

high melt pond fractions are retrieved using L2020. However, these comparisons come with an 447 

important caveat as the ice is moving and thus an exact spatial match is not possible. This is 448 

especially problematic within the MIZ where the ice can be highly dynamic, and especially for 449 

comparisons with the R2012 algorithm as it only provides 8-day composites.  450 

Finally, we also include a comparison of melt pond classifications for the MOSAiC expedition 451 

with the melt pond fraction obtained from L2020 on 22 June 2020 (SkySat) and 22 July 2020 452 

(helicopter-borne melt pond) (Figure 12 and Figure 13). The temporal difference between L2020 453 

and Skysat/Helicopter-borne image is 28 mins and 1 hour 22 mins, respectively.  The L2020 melt 454 

pond fraction on 22 June 2020 with a spatial resolution of 500 m and 12.5 km is found to be 15.2% 455 

and 14.7%, respectively. In contrast, the melt pond fraction derived from SkySat is found to be 456 

10.1%. This pond fraction is somewhat low for the time of year, yet the MOSAiC floe was located 457 

above 81°N and thus we could expect lower overall melt pond fractions. In this comparison, the 458 

swath width of the SkySat image is less than for WV and thus the 12.5-km data product only had 459 

two pixels within the scene In terms of comparison against helicopter-borne melt pond 460 

classification, considering the time of year and temporal difference between the helicopter-borne 461 

image and L2020, the fraction difference between helicopter-borne image (24.5%) and L2020 462 

(53.3%) is 28.8%.  463 
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Overall, it is not surprising that L2020 tends to outperform the other two data sets in many of these 464 

intercomparisons given the data product is produced at a higher spatial resolution. As one would 465 

expect, the coarser the melt pond fraction data set (i.e., 12.5 km), the less the product can capture 466 

the spatial heterogeneity of the sea ice surface. Thus, higher-resolution products may be in better 467 

agreement with one another. On the other hand, L2020 tends to estimate a higher melt pond 468 

fraction compared to the other two data products especially early in the melt season in part because 469 

leads and small open water areas are sometimes misclassified as melt ponds. The L2020 algorithm 470 

also tends to map flooded level ice as melt ponds. While this perhaps is not exactly a melt pond in 471 

the classic sense, flooded ice will have similar impacts on the energy balance and light penetration 472 

through the ice. Thus, depending on the application of the melt pond datasets, this information 473 

may still be useful. 474 

However, it is also important to note that differences in acquisition times can also lead to biases in 475 

the comparison for the other data products, especially during periods of fast ice drift. This is 476 

challenging to correct for as current ice motion data products are not of sufficient spatial and 477 

temporal resolutions to capture drift speed a few hours apart.  Thus, an accuracy assessment of the 478 

R2012 and Z2015 is more challenging to assess. While these inter-comparisons cannot 479 

conclusively point to which melt pond product best captures the “true” melt pond fraction, they do 480 

provide a general sense of performance and the difficulties in mapping melt ponds at the relatively 481 

coarse spatial resolution of MODIS or MERIS data.  482 

 483 
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 484 

Figure 11. (a) melt pond fraction from R2012, 8-days composite centered on 4-11 July 2008; (b) 485 

melt pond fraction from Z2015 on 11 July 2008; melt pond fraction from L2020 on 11 July 2008 486 

at (c) 5 km spatial resolution and (d) 500 m swath data. The black areas in (a)-(d) are regions 487 

classified as clouds. (e) sea ice concentration from AMSR-E on 11 July 2008. (f) Landsat-5 band 488 

1(i.e., blue band) on 11 July 2008.  489 

 490 

 491 
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  492 

Figure 12. (a) Melt pond classification derived by Skysat from MOSAiC expedition. (b) melt pond 493 

fraction from L2020 with the native resolution (i.e., 500 m) on 22 June 2020. (c) melt pond fraction 494 

from L2020 gridded to 12.5 km on 22 June 2020. The time difference between Skysat and MODIS 495 

is 28 mins.  496 

 497 

 498 



 39 

 499 

Figure 13. (a) Melt pond classification of the MOSAiC Central Observatory 2 floe (expedition leg 500 

4) (b) blue band derived by helicopter from MOSAiC expedition. (c) melt pond fraction from 501 

L2020 with the native resolution (i.e., 500 m) on 22 July 2020.  502 

 503 

 504 

 505 

 506 

 507 
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3.3  Comparisons against albedo and sea ice type  508 

We lastly evaluate the relationship between interannual pond fractions, surface albedo and sea ice 509 

type. The surface albedo gradually decreases over time as melt ponds develop (Polashenski et al., 510 

2012 and Perovich and Polashenski, 2012), but even before melt ponds develop the albedo drops 511 

as the snow melts (Curry and Schramm, 1994).  By mid-July most snow has melted except near 512 

thicker, deformed ice where snow drifts can persist. The APP-X minimum surface albedo of 0.1 513 

to 0.4 in  July coincides with peak melt pond fraction, while in August, drained or refrozen melt 514 

ponds cause the albedo to increase towards the bare sea ice value of 0.7 (Light et al., 2022).  515 

As expected, a negative correlation exists between melt pond fraction and surface albedo (Figure 516 

14). Z2015 pond fractions are highly correlated with surface albedo across most of the Arctic 517 

Ocean (R< -0.70) (Figure 14b) whereas high correlations (R = -0.65)  for R2012 are limited to the 518 

north of Greenland and the Canadian Arctic Archipelago (Figure 14a). L2020 pond fractions are 519 

overall weaker correlated with surface albedo throughout the entire Arctic region (-0.83 < R < -520 

0.3).  521 

Times-series of monthly melt pond fraction and albedo from May to August for a location north 522 

of Greenland (85.383°N, 17.475°W) is shown in Figure 14d. In general, the surface albedo 523 

decreases from May to July and somewhat increases in August, whereas melt pond fraction 524 

increases from May to July and then slightly declines in August, leading to inverse correlation 525 

coefficients of -0.72 (R2012), -0.80 (Z2015), and -0.40 (L2020). However, sometimes melt pond 526 

fractions decline despite the albedo decreasing. For example, between May and June in 2002, 2006, 527 

and 2009, the L2020 melt pond fractions decrease. A decrease in R2012 melt pond fraction from 528 

May to June is also seen in 2009. A decrease in melt pond fraction can occur by rapid melt water 529 



 41 

drainage (Polashenski, et al., 2012; Perovich and Polashenski, 2012; Tanaka, 2020), which is 530 

normally reflected by an increase in the surface albedo. Another reason could be a result of 531 

excessive cloud coverage that biases both the monthly melt pond estimate as well as the clear-sky 532 

albedo. For example, since L2020 employs a strict cloud screening process, the monthly mean for 533 

June 2008 is based on just three days (28-30 June). The lack of sufficient clear-sky days also occurs 534 

in July 2004 (only three clear-sky days).  535 

 536 

Figure 14. The correlation map between melt pond fraction and albedo from May to August from 537 

2002 to 2011. (a) R2012 vs. albedo, (b) Z2015 vs. albedo, (c) L2020 vs. albedo, (d) the time series 538 

of R2012, Z2015, L2020, and albedo at North Greenland (85.383°N, 17.475°W).  539 

 540 
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Using the sea ice type masks, we find that melt pond fraction on FYI is typically higher than that 541 

on MYI. An exception is noted in May 2007 and 2009. The small open water areas classified as 542 

FYI in the East Siberian Sea in May 2007, where L2020 estimates high melt pond fraction (Sup. 543 

Figure 1). Z2015 produces lower pond fractions around the Beaufort Sea, which is classified as 544 

MYI, resulting in lower fraction in May 2009 than June (Sup. Figure 1). 545 

From May to August, the daily mean differences in Z2015 melt pond fractions between FYI and 546 

MYI are 2 %, 5 %, 4 %, and 3 %. On the other hand, the corresponding differences in L2020 melt 547 

pond fractions are 2 %, 6 %, 13 %, and 17 %.  The melt pond fraction on FYI shows greater 548 

variability than on MYI. L2020 displays larger deviations within every month than Z2015. While 549 

melt pond fraction from Z2015 and L2020 on FYI is larger than on MYI in June, Webster et al 550 

(2015) demonstrates melt pond fraction on MYI surpasses on FYI in June around the Chukchi Sea.   551 

 552 

  553 
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 554 

Figure 15. Mean melt pond fraction based on sea ice type (i.e., FYI and MYI) from 2005 to 2011. 555 

 556 

Since monthly averages exclude the spatio-temporal variability that is important for initiating melt 557 

pond formation, we show examples of regionally averaged melt pond fractions together with 558 

albedo in Figure 16. The NSIDC regional mask (https://nsidc.org/data/g02186/versions/1) is used 559 

for calculating regional averages for eight Arctic Ocean regions. Since the R2012 dataset is not 560 

available at daily resolution, it is not included.  561 

https://nsidc.org/data/g02186/versions/1
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While there is an inverse relationship between melt pond fraction and albedo across all regions, 562 

the level of co-variation between the two variables differs across regions\. The daily melt pond 563 

evolution from L2020 shows more temporal variability than Z2015, which tends to gradually 564 

increase through July and then decrease in August. L2020 generally shows similar increases and 565 

decreases yet is considerably noisier. While the albedo rapidly decreases after early to mid-June, 566 

the albedo exhibits little temporal variability.  567 

 568 

 569 

Figure 16. Daily regional mean melt pond and albedo  based on NSIDC Arctic regional mask from 570 

9 May to 31 August 2003. Grey columns indicate mean melt onset date. Albedo evolution stages 571 

are illustrated with melt pond fractions in Central Arctic in 2003. 572 

 573 
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Next we analyzed the spatial distribution of melt ponds in comparison with albedo over landfast 574 

ice in the East Siberian Sea. Note however that the spatial distribution of melt pond fractions from 575 

each product can differ due to the different cloud screening processes involved in data product 576 

(Figure 17 and 18). While the monthly mean melt pond fraction from L2020 is generally higher 577 

than that from R2012 and Z2015, the mean melt pond fraction from L2020 is lower in East Siberian 578 

Sea on 13 July 2003 (Figure 17). The intercomparison results on 17 June 2010 are similar to those 579 

on 13 July 2003 (Figure 18). Although the overall melt pond fraction spatial distributions are 580 

similar, at 72 °N/132 °E, the L2020 produces noticeably lower fractions than R2012, and in a 581 

region where the surface albedo is around 0.35.  582 

 583 

 584 

Figure 17. Spatial comparison against albedo on 13 July 2003 around East Siberian Sea. 8-day 585 

composited (12-19 July 2003) melt pond fraction from R2012 at 12.5 km spatial resolution.   586 

 587 
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 588 

 589 

Figure 18. Spatial comparison against albedo on 17 June 2010 around East Siberian Sea. 8-day 590 

composited (10-17 June 2010) melt pond fraction from R2012 at 12.5 km spatial resolution. 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 
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4. Discussion 599 

While we cannot clearly state which melt pond product is most accurate based on the above 600 

comparisons, some general statements can be made about how the products differ. This 601 

information may help users make informed decisions about which product is most suitable 602 

depending on the application as well as provide insights as to how the data providers may improve 603 

their products. This study demonstrates that MODIS and MERIS-derived melt pond products 604 

suffer from a loss of detail as compared to high-resolution imagery like WV, Landsat, and Skysat. 605 

While the spatial resolution of input data for the melt pond data products evaluated is less than 1-606 

km, it is worth noting that the gridded resolution of L2020 is nearly twice as high as that of R2012 607 

and Z2015. Thus, it is not surprising that L2020 better matches the higher resolution melt pond 608 

estimates. On the other hand, since sea ice is dynamic, direct matching of WV or Landsat with a 609 

MODIS or MERIS image complicates these intercomparisons. It is further difficult to find clear-610 

sky coincident higher resolution images, limiting the number of intercomparisons used in this 611 

study. We also cannot fully assess whether the satellite-based melt pond products are higher or 612 

lower than in-situ observations (Webster et al 2022). To further address the accuracy of the 613 

individual data sets, a comprehensive field campaign that combines in situ data, airborne imaging, 614 

high resolution (< 3 m) and coarse resolution (<12.5 km) satellite data is needed.  615 

Coarse resolution satellite data is the only way to observe the pan-Arctic daily. Despite the 616 

limitations of the three satellite data products evaluated, the seasonal evolution is broadly 617 

consistent between the data sets. The key differences pertain to pond fractions in June and August, 618 

when the L2020 data product consistently shows higher pond fractions as well as higher 619 

interannual variability. It appears L2020 is more sensitive to ice flooding, thin ice and leads, which 620 

may lead to an overestimation of melt pond fraction. On the other hand, it is unclear if flooded ice 621 
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should not also be classified as a melt pond. While L2020 produced higher melt pond fractions 622 

than R2020 and Z2015, in comparison with WV, melt pond fractions from L2020 in closer 623 

agreement to those derived from WV imagery. The spatial distribution of L2020 is more correlated 624 

than Z2015 in the spatial comparison with other melt related variables. Although the dependence 625 

on using a normalized band ratio between the blue and the near-infrared band may result in more 626 

sensitivity to liquid water in the L2020 data product, the use of band ratios helps to reduce biases 627 

from incorrect atmospheric correction assumptions and minimizes errors related to unknown 628 

BRDF distributions. While L2020 melt pond fractions in August are larger than the other data 629 

products despite the removal of refrozen melt ponds from the final pond fraction estimates, this is 630 

in agreement with trends towards later freeze-up.   631 

It is interesting that none of the data sets show monthly mean melt pond fractions in excess of 35% 632 

during the peak of the melt season in July in contrast to earlier studies (e.g., Romanov, 1995; 633 

Tschudi et al., 2001; Perovich et al., 2002). These studies provided melt pond fractions at higher 634 

spatial resolution than those used here and thus a direct comparison may not be validA path 635 

forward could be to blend melt pond classification results from WV with those from 636 

MODIS/MERIS to obtain increased spatial structure and improved information on melt pond 637 

characteristics. L2020 melt pond fraction shows good agreement with WV-based classification 638 

results, yet its monthly correlation with albedo is weaker than R2012 and Z2015. This is because 639 

km-scale albedo cannot explain change in albedo by the spatial detail of melt pond.  640 

Finally, it is unclear how best to classify flooded ice. Flooded ice is common over level ice, such 641 

as first-year or landfast ice. For example, in Dease Strait (Nunavut) one study found that as a result 642 

of delayed melt pond formation, more than 95% of the level ice was flooded on the 18th of June 643 
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2014 (Diaz et al., 2018). This extensive flooding had to do with level ice that was covered by 10 644 

cm of new snow prior to a period of warm air temperatures.  645 

 646 

 647 

5. Conclusions    648 

Given the importance melt ponds play in the Arctic climate system, pan-Arctic melt pond products 649 

have historically been a critical data gap. Several studies have tried to fill this data gap by 650 

developing satellite-based melt pond products, yet they differ in method, spatial and temporal 651 

resolution, resulting in stark differences in pond fraction and interannual variability. This paper 652 

intercompares three publicly available melt pond products, Rösel et al (2012), Lee et al (2020) and 653 

Zege et al (2015).  654 

These different products are at times in agreement, especially early in the melt season, but they 655 

start to deviate as the melt season progresses, with the melt pond product of Lee et al (2020) having 656 

considerably larger melt pond fractions in June and August. In a sense, increased melt pond 657 

fractions in August are in agreement with trends towards later freeze-up (e.g. Stroeve and Notz, 658 

2018), and thus one would expect ponds still cover the ice in August. It is important to note 659 

however that none of the three melt products indicate a significant change in melt pond fractions 660 

between 2002 and 2011 except in July; L2020 further shows positive trend in melt pond fractions 661 

in August.  However, none of the trends are statistically significant.  662 

Comparison of the coarser resolution melt pond fraction estimates with high resolution satellite 663 

images such as Landsat and WorldView reveals that R2012 generally has the lowest melt pond 664 

fractions and may be most accurate in May. However, for the other summer months this algorithm 665 
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underestimates pond fractions and we find that L2020 best matches WV-derived pond fractions in 666 

June and July in part because of the higher spatial resolution. However, while the higher spatial 667 

resolution data set of L2020 better captures the spatial distribution of WV-derived pond fractions, 668 

it does at times suffer from biases as a result of flooded ice, thin ice and/or leads misclassified as 669 

ponds. For spatial correlation between monthly melt pond fraction and albedo, Z2015 is the most 670 

negatively correlated, followed by R2012 and L2020. While the melt pond fraction on FYI 671 

generally is higher than on MYI, the difference is more pronounced in L2020 than R2012.   672 

The purpose of this paper is to show the characteristics of current available melt pond products 673 

and provide a recommendation to the science community for user’s needs. For further study, 674 

Artificial Intelligence (AI) approaches that consider the “shape” of melt ponds such as perimeter, 675 

fractal dimension, roundness, and convex degree could be developed to constrain the shape of 676 

expected melt ponds and perhaps separate out ponds over multiyear or rough ice from melt water 677 

over level ice. 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 
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Data availability  687 

All data used in this study are publicly available at the following URL: R2012 688 

(https://www.cen.uni-hamburg.de/en/icdc/data/cryosphere/arctic-meltponds.html), Z2015 689 

(https://seaice.uni-bremen.de/melt-ponds/) L2020 (http://www.cpom.ucl.ac.uk/melt_pond/ and 690 

https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01444). Helicopter derived 691 

surface type maps are available on PANGAEA (https://doi.org/10.1594/PANGAEA.949167). 692 
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