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Gravitationally induced decoherence vs
space-time diffusion: testing the quantum
nature of gravity

Jonathan Oppenheim 1 , Carlo Sparaciari 1, Barbara Šoda 1,2,3 &
Zachary Weller-Davies1,3

We consider two interacting systems when one is treated classically while the
other system remains quantum.Consistent dynamics of this coupling has been
shown to exist, and explored in the context of treating space-time classically.
Here, we prove that any such hybrid dynamics necessarily results in deco-
herence of the quantum system, and a breakdown in predictability in the
classical phase space.We further prove that a trade-off between the rate of this
decoherence and the degree of diffusion induced in the classical system is a
general feature of all classical quantum dynamics; long coherence times
require strongdiffusion in phase-space relative to the strengthof the coupling.
Applying the trade-off relation to gravity, we find a relationship between the
strength of gravitationally-induced decoherence versus diffusion of themetric
and its conjugate momenta. This provides an experimental signature of the-
ories in which gravity is fundamentally classical. Bounds on decoherence rates
arising from current interferometry experiments, combined with precision
measurements of mass, place significant restrictions on theories where Ein-
stein’s classical theory of gravity interacts with quantum matter. We find that
part of the parameter space of such theories are already squeezed out, and
provide figures of merit which can be used in future mass measurements and
interference experiments.

When considering the dynamics of composite quantum systems, there
are many regimes where one system can be taken to be classical and
the other quantum-mechanical. For example, in quantum thermo-
dynamics, we often have a quantum system interacting with a large
thermal reservoir that can be treated classically, whilst in atomic
physics it is common to consider the behaviour of quantum atoms in
the presence of classical electromagnetic fields. Things become more
complicated when one considers classical-quantum (CQ) dynamics
where the quantum system back-reacts on the classical system. This is
particularly relevant in gravity because we would like to study the
back-reaction of thermal radiation being emitted from black holes in
space–time, and while the matter fields can be described by quantum

field theory,weonly knowhow to treat space–time classically. Likewise
in cosmology, vacuum fluctuations are a quantum effect that we
believe seeds galaxy formation, while the expanding space–time
they live on can only be treated classically. In addition to the need for
an effective theory that treats space–time in the classical limit, there
has long been a debate about whether one should quantise gravity1–12.

The prevailing view has been that a quantum–classical coupling is
inconsistent. Many proposals for such dynamics13,14 are not completely
positive (CP), meaning they are at best an approximation and fail
outside a regime of validity15,16. A map Λ is completely positive (CP), iff
1� Λ is positive. This is the required condition used toderive theGKSL
equation. If it is violated, the dynamics acting on half of an entangled
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state, give negative probabilities. The semi-classical Einstein’s
equation17–19, which replaces the quantum operator corresponding to
the stress-energy tensor by its expectation value, is another attempt to
treat the classical limit from an effective point of view, but it is non-
linear in the state, leading to pathological behaviour if quantum fluc-
tuations are of comparable magnitude to the stress-energy tensor20.
This is often the precise regime we would like to understand.

However, examples of classical–quantum dynamics such as those
first introduced in refs. 21,22 and studied in refs. 11,23–27 do not suffer
from such problems and are consistent. More generally, the master
equation shown in Eq. (4)11, is linear in the state space, preserves the
division of classical degrees of freedom and quantum ones, and is
completely positive (CP), and preserves normalisation. This ensures
that probabilities of measurement outcomes remain positive and
always add to 1. The dynamics is related to the GKSL or Lindblad
equation28,29, which for bounded generators of the dynamics, is the
most general Markovian dynamics for an open quantum system.
More precisely, we consider dynamics which is autonomous, meaning
the couplings in the theory do not depend on time. Likewise, Eq. (4) is
the most general Markovian classical–quantum dynamics with boun-
ded generators11,30. Sub-classes of this master equation, along with
measurement and feedback approaches, have been discussed in the
context of Newtonian models of gravity24,25,31–35 and further developed
into a spatially covariant framework so that Einstein gravity in the ADM
formalism36 emerges as a limiting case11,37. Dynamics which is mani-
festly diffeomorphism invariant has also been introduced using path
integral methods38,39.

In this work, we move away from specific realisations of CQ
dynamics, in order to discuss their common features and the experi-
mental signatures that follow from this. An early precursor to the
discussion here is the insight of Diósi22, who added classical noise and
quantum decoherence to the master equation of ref. 13, and found
the noise and decoherence trade-off required for the dynamics to
become completely positive. Here we prove that the phenomena
found in refs. 11,22,26 are generic features of all CQ dynamics;
the classical–quantum interaction necessarily induces decoherence on
the quantum system, and there is a generic trade-off between the
rate of decoherence and the amount of diffusion in the classical phase
space. The stronger the interaction between the quantum system and
the classical one, the greater the trade-off. One cannot have quantum
systems with long-coherence times without inducing a lot of diffusion
in the classical system. One can also generalise this result to a trade-off
between the rate of diffusion and the strength of more general
couplings to Lindblad operators, with decoherence being a
special case.

Results
Our main result is expressed as Eqs. (26) and (23), which bounds
the product of diffusion coefficients and Lindblad coupling constants
in terms of the strength of the CQ-interaction. It is precisely this
trade-off which allows the theories considered here, to evade the
no-go arguments of Feynmann1,2, Aharonov3, Eppley and Hannah4

and others1,7–9,15,16,40–48. The essence of arguments against
quantum–classical interactions is that they would prohibit super-
positions of quantum systems that source a classical field. Since dif-
ferent classical fields are perfectly distinguishable in principle, if
the classical field is in a distinct state for each quantum state in the
superposition, the classicalfield could always be used to determine the
state of the quantum system, causing it to decohere instantly. By
satisfying the trade-off, the quantum system preserves coherence
because diffusion of the classical degrees of freedom means that the
state of the classical field does not determine the state of the quantum
system11,25. Equation (26) and other variants we derive, quantify the
amount of diffusion required to preserve any amount of coherence. If
space–time curvature is treated classically, then complete positivity of

the dynamics means its interaction with quantum fields necessarily
results in unpredictability and gravitationally induced decoherence.

This trade-off between the decoherence rate and diffusion pro-
vides an experimental signature, not only of models of hybrid New-
tonian dynamics such as refs. 24,33 or post-quantum theories of
general relativity such as refs. 11,39 but of any theory which treats
gravity as being fundamentally classical. The metric and their con-
jugate momenta necessarily diffuse away from what Einstein’s general
relativity predicts. This experimental signature squeezes
classical–quantum theories of gravity from both sides: if one has
shorter decoherence times for superpositions of different mass dis-
tributions, one necessarily has more diffusion of the metric and con-
jugatemomenta. In the “Methods” subsection “Detecting gravitational
diffusion” we show that the latter effect causes imprecision in mea-
surements of mass such as those undertaken in the Cavendish
experiment49–51 or in measurements of Newton’s constant “Big G"52–54.
The precision at which a mass can be measured in a short time, thus
provides an upper bound on the amount of gravitational diffusion, as
quantifiedbyEq. (42). In theother direction, decoherenceexperiments
place a lower bound on the diffusion. Our estimates suggest that
experimental lower bounds on the coherence time of large
molecules55–60, combined with gravitational experiments measuring
the acceleration of small masses61–63, already place strong restrictions
on theories where space–time is not quantised. In the section
“Physical constraints on the classicality of gravity”we show that several
realisations ofCQ-gravity are already ruled out, while other realisations
produce enough diffusion away from general relativity to be detect-
able by future table-top experiments. Although the absence of such
deviations fromgeneral relativitywouldnot be asdirect a confirmation
of the quantum nature of gravity, such as experiments proposed in
refs. 64–74 to exhibit entanglement or coherence generated by grav-
itons, it would effectively rule out any sensible theory that treats
space–time classically. While confirmation of gravitational diffusion
would suggest that space-time is fundamentally classical. Experiments
to detect or bind gravitational diffusion also provide immediate-term
prospects for probing the quantumness of gravity, while
entanglement-based experimentswill only be feasible in the long term.

The outline of the remainder of this paper is as follows. In the
subsection “Classical-quantum dynamics” we review the general form
of the CQmaster equation of classical–quantum systems as derived in
refs. 11,30. The CQ-map can be represented in a manner akin to the
Kraus representation75 for quantum maps, with conditions for it to be
completely positive and trace preserving (CPTP). We can perform a
short time moment expansion of the CQ-map taking states at some
initial time, to states at a later time. This gives us the CQ version of the
Kramers–Moyal expansion76,77, presented in the subsection “The CQ
Kramers–Moyal expansion”. The physical meaning of the moments is
given in the subsection “Physical interpretation of the moments”. Our
main result is presented in the section “A trade-off between deco-
herence and diffusion”, wherewe show that there is a general trade-off
between decoherence of the quantum system and diffusion in the
classical system. We generalise the trade-off to the case of fields in the
subsection “Trade-off in the presence of fields” and in the subsection
“Physical constraints on the classicality of gravity”, we apply the
inequality in the gravitational setting. The positivity constraints mean
that the considerations do not depend on the specifics of the theory,
only that it treats gravity classically, and is time-local. This allows us to
discuss some of the observational implications of this result and we
comment on the relevant figures of merit required in interference and
precisionmassmeasurements in order to constrain theories of gravity,
as they arenot always readily available in published reports. In addition
to table-top constraints, we consider those due to cosmological
observations. We then conclude with a discussion of our results. The
“Methods” section collects or previews a number of technical results.
Since this paper appeared on the arXiv, we have found that when the
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decoherence-diffusion trade-off is saturated, there are two important
consequences. The first is that in the continuous class of dynamics, the
quantum state remains pure, conditioned on the classical trajectory78.
The second is that in the path integral formulation, one can show that
the dynamics are completely positive from the path integral alone39.
For a generic path integral of Feynman–Vernon form79, one typically
only knows that the dynamics are completely positive if it was derived
from a CPTP master equation.

Classical–quantum dynamics
Let us first review the general map and master equation governing
classical–quantum dynamics. The classical degrees of freedom are
described by a differentialmanifoldM andwe shall generically denote
elements of the classical space by z. For example, we could take the
classical degrees of freedom tobeposition andmomenta inwhichcase
M=R2 and z = (q, p). The quantum degrees of freedom are described
by a Hilbert space H. Given the Hilbert space, we denote the set of
positive semi-definite operators with trace at most unity as S≤ 1ðHÞ.
Then the CQ object defining the state of the CQ system at a given time
is a map ϱ : M ! S≤ 1ðHÞ subject to a normalisation constraintR
MdzTrH ϱ½ �= 1. To put it differently, we associate to each classical

degree of freedom an un-normalised density operator, ϱ(z), such that
TrH ϱ½ �=pðzÞ≥0 is a normalised probability distribution over the clas-
sical degrees of freedom and

R
MdzϱðzÞ is a normalised density

operator onH. An example of such a CQ-state is the CQqubit depicted
as a 2 × 2 matrix over phase space26. More generally, we can define any
CQoperator f(z) which lives in the fibre bundle with base spaceM and
fibreH.

Just as the Lindblad equation is the most general evolution law
that maps density matrices to density matrices, we can ask what is the
most general evolution law that preserves the quantum-classical state-
space. Any such dynamics, if it is to preserve probabilities, must be
completely positive, norm-preserving, and linear in the CQ-state. That
dynamics must be linear can be seen as follows: if someone prepares a
system in one of two states σ0 or σ1 depending on the value of a coin
toss ( 0j i 0h j with probability p, 1j i 1h j with probability 1−p), then the
evolution L of the system must satisfy p 0j i 0h j � Lσ0 + ð1� pÞ 1j i 1h j �
Lσ1 =Lðpσ0 + ð1� pÞσ1Þ otherwise the system evolves differently
depending on whether we are aware of the value of the coin toss. A
violation of linearity further implies that when the system is in state σ0
it evolves differently depending on what state the system would have
been prepared in, had the coin been 1j i 1h j instead of 0j i 0h j. This
motivates our restriction to linear theories. We will also require the
map to be Markovian on the combined classical–quantum system,
which is equivalent to requiring that there is no hidden system that
acts as a memory. This is natural if the interaction is taken to be fun-
damental, but is the assumption that one might want to remove if one
thinks of the hybrid theory as an effective description. We thus take
these as the minimal requirements that any fundamental
classical–quantum theory must satisfy if it is to be consistent.

The most general CQ-dynamics, which maps CQ states onto
themselves can be written in the form11

ϱðz, t + δtÞ=
Z

dz0
X
μν

Λμνðzjz0, δtÞLμϱðz0, tÞLyν ð1Þ

where the Lμ is an orthogonal basis of operators and Λμνðzjz0,δtÞ is
positive semi-definite for each z, z0. Henceforth, we will adopt
the Einstein summation convention so that we can drop ∑μν with the
understanding that equal upper and lower indices are presumed to be
summed over. The normalisation of probabilities requires

Z
dzΛμνðzjz0,δtÞLyνLμ = I: ð2Þ

The choice of basis Lμ is arbitrary, although there may be one
which allows for unique trajectories26. Equation (1) can be viewed as a
generalisation of the Kraus decomposition theorem.

In the case where the classical degrees of freedom are taken to be
discrete, Poulin25 used thediagonal formof thismap toderive themost
general form of Markovian master equation for bounded operators,
which is the one introduced in ref. 21. When the classical degrees of
freedomare taken to live in a continuous configuration space, we need
to be a little more careful, since ϱ(z) may only be defined in a dis-
tributional sense; for example, ϱðzÞ= δðz, �zÞϱð�zÞ. In this case (1) is
completely positive if the eigenvalues of Λμνðzjz0,δtÞ, λμðzjz0,δtÞ, are
positive so that

R
dzdz0Pμðz, z0Þλμðzjz0,δtÞ≥0 for any vector with

positive components Pμðz, z0Þ30. One can derive the CQ master equa-
tion by performing a short time expansion of Eq. (1) in the case when
the Lμ is bounded11. To do so, we first introduce an arbitrary basis of
traceless Lindblad operators on the Hilbert space, Lμ = {I, Lα}. Now, at
δt =0, we know Eq. (1) is the identity map, which tells us that
Λ00ðzjz0,δt =0Þ= δðz, z0Þ. Looking at the short-time expansion coeffi-
cients, by Taylor expanding in δt≪ 1, we can write

Λμνðzjz0, δtÞ= δμ
0δ

ν
0δðz, z0Þ+W μνðzjz0Þδt +Oðδt2Þ: ð3Þ

By substituting the short-time expansion coefficients into Eq. (1)
and taking the limitδt→0wecanwrite themaster equation in the form

∂ϱðz, tÞ
∂t

=
Z

dz0 W μνðzjz0ÞLμϱðz0ÞLyν �
1
2
W μνðzÞfLyνLμ, ϱg + , ð4Þ

where {, }+ is the anti-commutator, and preservation of normalisation
under the trace and ∫dz defines

W μνðzÞ=
Z

dz0W μνðz0jzÞ: ð5Þ

We see the CQ master equation is a natural generalisation of the
Lindblad equation and classical rate equation in the case of
classical–quantum coupling. We give a more precise interpretation of
the different terms arising when we perform the Kramers–Moyal
expansion of the master equation at the end of the section. The posi-
tivity conditions from Eq. (1) transfer to positivity conditions on the
master equation via (3). We can write the positivity conditions in an
illuminating formby writing the short time expansion of the transition
amplitude Λμνðzjz0, δtÞ, as defined by Eq. (3), in block form

Λμνðzjz0,δtÞ= δðz, z0Þ+ δtW00ðzjz0Þ δtW0βðzjz0Þ
δtW α0ðzjz0Þ δtW αβðzjz0Þ

" #
+Oðδt2Þ ð6Þ

and the dynamics will be positive if and only ifΛμνðzjz0,δtÞ is a positive
matrix. It is possible to introduce an arbitrary set of Lindblad operators
�Lμ and appropriately redefine the couplings W μνðzjz0Þ in Eq. (4)11. For
most purposes, we shall work with a set of Lindblad operators that
includes the identity Lμ = (I, Lα); this is sufficient since any CQ master
equation is completely positive if and only if it can be brought to the
form in Eq. (4), where the matrix (6) is positive.

The CQ Kramers–Moyal expansion
In order to study the positivity conditions it is first useful to perform a
moment expansion of the dynamics in a classical-quantum version of
the Kramers–Moyal expansion as in ref. 11. In classical Markovian
dynamics, the Kramers–Moyal expansion relates the master equation
to the moments of the probability transition amplitude and proves to
be useful for amultitude of reasons. Firstly, themoments are related to
observable quantities; for example, the first and second moments of
the probability transition amplitude characterise the amount of drift
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anddiffusion in the system. This is reviewed in the subsection “Physical
interpretation of themoments”. Secondly, the positivity conditions on
the master equation transfer naturally to positivity conditions on the
moments, which we can then relate to observable quantities. In the
classical–quantum case, we shall perform a short time moment
expansion of the transition amplitude Λμνðzjz0,δtÞ and then show that
the master equation can be written in terms of these moments. We
then relate the moments to observational quantities, such as the
decoherence of the quantum system and the diffusion in the classical
system.

We work with the form of the dynamics in Eq. (4), using an arbi-
trary orthogonal basis of Lindblad operators Lμ = fI, Lαg. We take the
classical degrees of freedomM to be d dimensional, z = (z1,…zd), and
we label the components as zi, i∈ {1,…d}. We begin by introducing the
moments of the transition amplitude Wμνðzjz0Þ appearing in the CQ
master Eq. (3)

Dμν
n, i1 ...in

ðz0Þ:¼ 1
n!

Z
dzWμνðzjz0Þðz � z0Þi1 . . . ðz � z0Þin : ð7Þ

The subscripts ij∈ {1,…d } label the different components of the
vectors ðz � z0Þ. For example, in the case where d = 2 and the classical
degrees of freedom are position and momenta of a particle,
z = (z1, z2) = (q, p), then we have
ðz � z0Þ= ðz1 � z01, z2 � z02Þ= ðq� q0,p� p0Þ. The components are then
given by ðz � z0Þ1 = ðq� q0Þ and ðz � z0Þ2 = ðp� p0Þ. Mμν

n, i1 ...in
ðz0,δtÞ is

seen to be an nth rank tensor with dn components.
In terms of the components Dμν

n, i1 ...in
the short time expansion of

the transition amplitude Λμνðzjz0Þ is given by30

Λμνðzjz0, δtÞ =δμ
0δ

ν
0δðz, z0Þ+ δt

X1
n=0

Dμν
n, i1 ...in

ðz0Þ ∂n

∂z0i1 . . .∂z
0
in

 !
δðz, z0Þ+Oðδt2Þ,

ð8Þ

and the master equation takes the form11

∂ϱðz, tÞ
∂t

=
X1
n= 1

ð�1Þn ∂n

∂zi1 . . . ∂zin

 !
D00
n, i1 ...in

ðzÞϱðz, tÞ
� �

� i½HðzÞ, ϱðzÞ�+Dαβ
0 ðzÞLαϱðzÞLyβ �

1
2
Dαβ
0 ðzÞfLyβLα , ϱðzÞg+

+
X
μν≠00

X1
n= 1

ð�1Þn ∂n

∂zi1 . . .∂zin

 !
Dμν

n, i1 ...in
ðzÞLμϱðz, tÞLyν

� �
,

ð9Þ

where we define the Hermitian operator HðzÞ= i
2 ðD

μ0
0 Lμ � D0μ

0 LyμÞ
(which is Hermitian since Dμ0

0 =D0μ*
0 ). We see the first line of Eq. (9)

describes purely classical dynamics, and is fully described by the
moments of the identity component of the dynamics Λ00ðzjz0Þ. The
second line describes pure quantum Lindbladian evolution described
by the zeroth moments of the components Λα0ðzjz0Þ,Λαβðzjz0Þ; speci-
fically the (block) off diagonals, Dα0

0 ðzÞ, describe the pure Hamiltonian
evolution, whilst the components Dαβ

0 ðzÞ describe the dissipative part
of the pure quantum evolution. Note that the Hamiltonian and Lind-
blad couplings can depend on the classical degrees of freedom so the
second line describes the action of the classical system on the quan-
tumone. The third line contains thenon-trivial classical-quantumback-
reaction, where changes in the distribution over phase space are
induced and can be accompanied by changes in the quantum state.

Physical interpretation of the moments
Let us now briefly review the physical interpretation of the moments
that will appear in our trade-off relation. In particular, the zeroth
moment determines the rate of decoherence (and Lindbladian cou-
pling more generally), the first moment gives the force exerted by the
quantum system on the classical system, and the second moment

determines the diffusion of the classical degrees of freedom. For this
discussion, we shall take the classical degrees of freedom to live in a
phase space Γ= ðM,ωÞ, where ω is the symplectic form.

Consider the expectation value of any CQ operator
OðzÞ, hOðzÞi :¼ R dzTr OðzÞϱ½ � which does not have an explicit time
dependence. Its evolution law can be determined via Eq. (9)

dhOi
dt

=
Z

dzTr OðzÞ∂ϱ
∂t

� �
=
Z

dzTrϱ

�i½OðzÞ,HðzÞ�+Dαβ
0 ðzÞLyβOðzÞLα � 1

2
Dαβ
0 ðzÞfLαLyβ,OðzÞg+

�

+
X1
n = 1

Dμν
n, i1 ...in

ðzÞ ∂n

∂zi1 . . . ∂zin

 !
LyνLμOðz, tÞ
� �#

,

ð10Þ

wherewehave used cyclicity of trace and integration by parts, to bring
the equation of motion into a form that would enable us to write a CQ
version of the Heisenberg representation11 for a CQ operator. If we are
interested in the expectation value of phase space variables OðzÞ= ziI
then Eq. (10) gives

dhzii
dt

=
Z

dzDμν
1, iTr LyνLμϱðz, tÞ

h i
ð11Þ

with all higher order terms vanishing, andwe see that
P

μν≠00D
μν
1, ihLyνLμi

governs the average rate at which the quantum system moves the
classical system through phase space, and with the back-reaction is
quantified by the Hermitian matrix Dαμ

1 :¼ ðDbr
1 Þαμ. The force of this

back-reaction is especially apparent if the equations of motion are
Hamiltonian in the classical limit as in ref. 11. I.e. if we define
HI ðzÞ :¼ hαβLyβLα and take Dαβ

1, i =ω
j
idjh

αβ with ω the symplectic form
and dj the exterior derivative. Then Eq. (11) is analogous to Hamilton’s
equations, and the CQ evolution equation after tracing out the
quantum system has the form of a Liouville’s equation to first order
and in the classical limit,

∂ρðz, tÞ
∂t

= fHc,ρðz, tÞg+ tr fHI ðzÞ, ϱðzÞg
� �

+ . . . ð12Þ

with ρðzÞ :¼ Tr ϱðzÞ½ �.
The significance of the secondmoment is also seen via Eq. (10) to

be related to the variance of phase space variables
σzi1 zi2

:¼ hzi1zi2 i � hzi1 ihzi2 i

dσ2
zi1 , zi2

dt
=2hDαβ

2, i1 , i2
LyβLαi+ hz2D

αβ
1, zi1

LyβLαi � hzi2 ihD
αβ
1, zi1

LyβLαi

+ hzi1D
αβ
1, zi2

LyβLαi � hzi1 ihD
αβ
1, zi2

LyβLαi:
ð13Þ

In the case when D1, zi1
is uncorrelated with zi2 and D1, zi2

uncor-
related with zi1 , then the growth of the variance only depends on the
diffusion coefficient.

The zeroth moment Dαβ
0 is just the pure Lindbladian couplings.

The simplest example is the case of a pure decoherence process with a
single Hermitian Lindblad operator L and decoherence coupling D0.
Then we can define a basis f aj ig via the eigenvectors of L and

a
∂ϱ
∂t

����
����b

	 

= � i aj ½HðzÞ, ϱ� jb� �� 1

2
D0ðLðaÞ � LðbÞÞ2hajϱjbi, ð14Þ

and we see that the matrix elements of ϱ which quantify coherence
between the states aj i, b

�� � decay exponentially fast with a decay rate of
D0(L(a)−L(b))2. For a damping/pumping process of a quantum har-
monic oscillator with Hamiltonian H =ωa†a, L↓ = a, L↑ = a†, a the crea-
tion operator, and D""

0 ,D##
0 the non-zero couplings, then standard
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calculations26,80 show that an initial superposition 1ffiffi
2

p n +mj i with n,m
large and n≫m will initially decohere at a rate of approximately
ðD""

0 +D##
0 Þðm+nÞ=2, and the state will eventually thermalise to a

temperature of ω= logðD##
0 =D""

0 Þ. So in this case, the Lindblad
couplings not only determine the rate of decoherence but also the
rate at which energy is pumped into the harmonic oscillator. In the
next section, we will derive the trade-off between Lindblad couplings
and the diffusion coefficients. Althoughwewill sometimes refer to this
as a trade-off between decoherence and diffusion, this terminology
is only strictly appropriate for pure decoherence processes, while
more generally, it is a trade-off between Lindblad couplings and
diffusion coefficients.

A trade-off between decoherence and diffusion
In this section, we present our main result by using positivity condi-
tions toprove the trade-off betweendecoherenceanddiffusion seen in
models such as those of refs. 11,22,26 are in fact a general feature of all
classical-quantum interactions. We shall also generalise this, and
derive a trade-off between diffusion and arbitrary Lindbladian cou-
pling strengths. The trade-off is in relation to the strength of the
dynamics and is captured by Eqs. (20), (23) and (26). In the subsection
“Trade off in the presence of fields”we extend the trade-off to the case
where the classical and quantum degrees of freedom can be fields and
use this to show that treating the metric as being classical necessarily
results in diffusion of the gravitational field.

There are two separate possible sources for the force (or drift) of
the back-reaction of the quantum system on phase space—it can be
sourced by either theD0α

1, i components or the Lindbladian components
Dαβ
1, i . We shall deal with both sources simultaneously by considering a

CQ Cauchy-Schwartz inequality which arises from the positivity of

Tr
Z

dzdz0Λμνðzjz0ÞOμðz, z0Þρðz0ÞOy
νðz, z0Þ

� �
≥0 ð15Þ

for any vector of CQ operators Oμ. One can verify that this must be
positive directly from the positivity conditions on Λμνðzjz0Þ and we go
through the details in the Appendix section “Positivity conditions and
the trade-off between decoherence and diffusion”. A common choice
forOμwould be the set of operatorsLμ = fI, Lαg appearing in themaster
equation.

The inequality in Eq. (15) turns out to be especially useful since it
can be used to define a (pseudo) inner product on a vector of opera-
tors with components Oμ via

h�O1, �O2i=
Z

dzdz0Tr Λμνðzjz0ÞO1μϱðz0ÞOy
2ν

h i
ð16Þ

where jj�Ojj=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�O, �Oi

p
≥0 due to Eq. (15). Technically this is not positive

definite, but this shall not be important for our purpose. Taking the
combination Oμ = jj�O2jj2O1μ � h�O1, �O2iO2μ for vectors O1μ,O2μ, posi-
tivity of the norm gives

jj�Ojj2 = jj jj�O2jj2 �O1 � h�O1, �O2i�O2

� �jj2
= jj�O2jj2 jj�O1jj2jj�O2jj2 � jh�O1, �O2ij2

� �
≥0,

ð17Þ

and as long as jj�O2jj≠0 we have a Cauchy–Schwartz inequality

jj�O1jj2jj�O2jj2 � jh�O1, �O2ij2 ≥0: ð18Þ

We can use Eq. (18) to get a trade-off between the observed dif-
fusion and decoherence by picking O2μ = δ

α
μLα and O1μ = b

iðz � z0ÞiLμ,
where Lμ = fI, Lαg are the Lindblad operators appearing in the master
equation and bi are the components of an arbitrary vector. In this case
jj�O2jj=

R
dzTr Dαβ

0 LαϱL
y
β

h i
and one can verify using CQ Pawula

theorem30 that in order to have non-trivial back-reaction on the

quantum system complete positivity demands that jj�O2jj>0, meaning
the Cauchy-Schwartz inequality in Equation (18) must hold. To reach
this conclusion one can insert the CQ state into the CQ
Cauchy–Schwartz inequality and repeat the proof of the Pawula
theorem30, which must now hold once averaged over the state. By
using the short-time moment expansion of Λμνðzjz0Þ defined in Eq. (8)
and using integration by parts, we then arrive at the observational
trade-off between decoherence and diffusion

Z
dzTr 2bi*Dμν

2, ijb
jLμϱðzÞLyν

h iZ
dzTr Dαβ

0 LαϱðzÞLyβ
h i

≥
Z

dzTr biDμα
1, iLμϱðzÞLyα

h i����
����
2

,

ð19Þ

which must hold for any positive CQ state ϱ(z). Stripping out the bi

vectors, (19) is equivalent to the matrix positivity condition

0 � 2hD2ihD0i � hDbr
1 ihDbr

1 iy, 8ϱðzÞ, ð20Þ

where we define

hD0i=
Z

dzTr Dαβ
0 LαϱðzÞLyβ

h i
, hDbr

1 ii =
Z

dzTr Dμα
1, iLμϱðzÞLyα

h i
,

hD2iij =
Z

dzTr Dμν
2, ijLμϱðzÞLyν

h i
:

ð21Þ

Since Eq. (20) holds for all states, the tightest bound is provided
by the infimum over all states

0 � inf
ϱðzÞ

f2hD2ihD0i � hDbr
1 ihDbr

1 iyg: ð22Þ

The quantities 〈D2〉 and 〈D0〉 appearing in Eq. (20) are related to
observational quantities. In particular 〈D2〉 is the expectation value of
the amount of classical diffusion which is observed and 〈D0〉 is related
to the amount of decoherence on the quantum system. The expecta-
tion value of the back-reaction matrix hDbr

1 i quantifies the amount of
back-reaction on the classical system. In the trivial caseDbr

1 = 0, Eq. (20)
places little restriction on the diffusion and Lindbladian rates appear-
ing on the left-hand side.We already knew from refs. 28,29 that theDαβ

0
must be a positive semi-definite matrix, and we also know that diffu-
sion coefficients must be positive semi-definite. However, in the non-
trivial case, the larger the back-reaction exerted by the quantum sys-
tem, the stronger the trade-off between the diffusion coefficients and
Lindbladian coupling. Equation (20) gives a general trade-off between
observed diffusion and Lindbladian rates, but we can also find a trade-
off in terms of a theory’s coupling coefficients alone. We show in the
Appendix section “General trade-off between decoherence and diffu-
sion coefficients” that the general matrix trade-off

Dbr
1 D�1

0 Dbry
1 � 2D2 ð23Þ

holds for the matrix whose elements are the couplings Dμν
2, ij ,D

αμ
1, i ,D

αβ
0

for any CQdynamics.Moreover, ðI� D0D
�1
0 ÞDbr

1 = 0, which tells us that
D0 cannot vanish if there is non-zero back-reaction. Equation (23)
quantifies the required amount of decoherence and diffusion in order
for the dynamics to be completely positive. In Eq. (23), and
throughout, D�1

0 is the generalised inverse of Dαβ
0 , since Dαβ

0 is only
required to be positive semi-definite. In the special case of a single
Lindblad operator α = 1 and classical degree of freedom, and when the
only non-zero couplings are D11

0 :¼ D0,D
00
2,pp :¼ 2D2 and D0

1, q = 1 this
trade-off reduces to the condition D2D0 ≥ 1 used in ref. 22.

As a more general example, let us consider the class of theories
that are continuous in phase space, and whose back-reaction is gen-
erated by a classical-quantum Hamiltonian Ĥ

ðmÞ
which is only a
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function of the canonical coordinates qi30. These are given by

∂ϱ
∂t

= fHc, ϱg � i Ĥ
ðmÞ

, ϱ
h i

+
1
2

Ĥ
ðmÞ

, ϱ
n o

� 1
2

ϱ, Ĥ
ðmÞn o

+ fpi, fpj,D2, ijϱgg+
1
2
D0, ij

∂Ĥ
ðmÞ

∂qi
, ϱ,

∂Ĥ
ðmÞ

∂qj

" #" # ð24Þ

where Hc is the purely classical Hamiltonian, pj are the conjugate
momenta, andD0 andD2 are qi dependentmatrices with elementsD0,ij

andD2,ij. Then the trade-off (23) implies that theymust obey thematrix
equation 2D2D0⪯ 1.

It is also useful to try to obtain an observational trade-off in terms
of the total drift due to back-reaction as calculated in Eq. (11)

hDT
1 ii =

X
μν≠00

Z
dzTr Dμν

1, iLμϱðzÞLyν
h i

: ð25Þ

It follows directly from Eq. (20) that when the back-reaction is
sourced by either D0μ

1, i or D
αβ
1, i we can arrive at the observational trade-

off in terms of the total drift

0 � 8hD2ihD0i � hDT
1 ihDT

1 i
y
, 8ϱðzÞ, ð26Þ

where the quantities appearing in Eq. (26) are now all observational
quantities, related to drift, decoherence and diffusion as outlined in
the previous subsection “Physical interpretation of the moments”. We
believe that Eq. (26) should holdmore generally, thoughwe don’t have
a general proof.

In the case where the back-reaction is Hamiltonian at first order in
the sense of Eq. (12), then Eq. (26) can be written as

ω � ∂HI

∂ z!
	 


ω � ∂HI

∂ z!
	 
y

� 8hD2ihD0i, 8ϱðzÞ: ð27Þ

As a result, we can derive a trade-off between diffusion and
decoherence for any theory that reproduces this classical limit and
treats one of the systems classically.

To summarise, whenever the back-reaction of the quantum sys-
temon the classical system induces a forceon thephase space, thenwe
have a trade-off between the amount of diffusion on the classical
system and the strength of decoherence on the quantum system (or
more precisely the strength of the Lindbladian couplingsDαβ

0 ). This can
be expressed both as a condition on the matrix of coupling co-
efficients in the master equation, via Eq. (23) or in terms of observable
quantities using Eqs. (20) and (26). In the case when the back-reaction
is Hamiltonian, we further have Equation (27). We would like to apply
this trade-off to the case of gravity in the non-relativistic, Newtonian
limit. In order to do so, we will need to generalise the trade-off to the
case of quantum fields interacting with classical ones, which we do in
the subsection “Trade-off in the presence of fields”. The goal will be to
understand the implications of treating the metric (or Newtonian
potential) as being classical by using the trade-off when the quantum
back-reaction induces a force on the gravitational field which, on
expectation, is the same as the weak field limit of General Relativity.

Trade-off in the presence of fields
We would like to explore the trade-off in the gravitational setting and
explore the consequences of treating the gravitational field as being
classical and matter quantum. Since gravity is a field theory, we must
first discuss classical-quantum master equations in the presence of
fields. In the field-theoretic case, both the Lindblad operators and the
phase space degrees of freedom can have spatial dependence,
z(x), Lμ(x) and a general bounded CP map which preserves the

classicality of the two systems can be written11

ρðz, tÞ=
Z

dz0dxdyΛμνðzjz0, t; x, yÞLμðx, z, z0Þϱðz0, 0ÞLyνðy, z, z0Þ, ð28Þ

where, as is usually the case with fields, in Eq. (28) it should be impli-
citly understood that a smearing procedure has been implemented.
We elaborate on some of the details when fields are introduced in the
Appendix section “Classical-quantum dynamics with fields”. The con-
dition for Eq. (28) to be completely positive on all CQ states is that for
all vectors at x with components Aνðy, z, z0Þ

Z
dzdxdyA*

μðx, z, z0ÞΛμνðzjz0; x, yÞAνðy, z, z0Þ≥0 ð29Þ

meaning that Λμν(x, y) can be viewed as a positive matrix in μν and a
positive kernel in x, y. In the field-theoretic case, one can still perform
a Kramers–Moyal expansion and find a trade-off between the
coefficients D0(x, y),D1(x, y),D2(x, y) appearing in the master equation.
The coefficients now have an x, y dependence, due to the spatial
dependence of the Lindblad operators. The coefficients
D1(x, y),D2(x, y) still have a natural interpretation as measuring the
amount of force (drift) and diffusion, whilst D0(x, y) describes the
purely quantum evolution on the system and can be related to
decoherence.

Using the positivity condition in Eq. (29) we find the same trade of
between coupling constants in Eq. (23) but where now D2(x, y) is the
(p + 1)n × (p + 1)nmatrix-kernel with elements Dμν

2, ijðx, yÞ,Dbr
1 ðx, yÞ is the

(p + 1)n × pmatrix-kernel with rows labelled by μi, columns labelled by
β, and elements Dμβ

1, iðx, yÞ, and D0(x, y) is the p × p decoherence matrix-
kernel with elements Dαβ

0 ðx, yÞ. Here i∈ {1,…, n}α∈ {1,…, p} and
μ∈ {1,…, p + 1}. In the field-theoretic trade off we are treating the
objects in Eq. (23) as matrix-kernels, so that for any position-
dependent vector bi

μðxÞ, ðD2bÞμi ðxÞ=
R
dyDμν

2, ijðx, yÞb
j
νðyÞ, whilst for any

position-dependent vector aβðxÞ, ðD0aÞαðxÞ=
R
dyDαβ

0 ðx, yÞaβðyÞ.
Explicitly, we find that positivity of the dynamics is equivalent to the
matrix condition

Z
dxdy½b*ðxÞ,a*ðxÞ� 2D2ðx, yÞ Dbr

1 ðx, yÞ
Dbr
1 ðx, yÞ D0ðx, yÞ

" #
bðyÞ
aðyÞ

� �
≥0 ð30Þ

which should be positive for any position-dependent vectors bi
μðxÞ and

aα(x). This is equivalent to trade-off between coupling constants in
Eq. (23) if we view (23) as a matrix-kernel equation.

In order for the theory to be diffeomorphism invariant, we expect
D0(x, y) and D2(x, y) to approach delta functions. We will not assume
this, but we shall assume that the drift back-reaction is local, so that
Dbr
1 ðx, yÞ= δðx, yÞDbr

1 ðxÞ. As we shall see in the next section, this is a
natural assumption ifwewant to haveback-reactionwhich is given by a
local Hamiltonian. However, one might not want to assume that the
form of the Hamiltonian remains unchanged to arbitrarily small dis-
tances. With this locality assumption, Eq. (30) gives rise to the same
trade-off of Eq. (23), where the trade-off is to be interpreted as amatrix
kernel inequality. Writing this out explicitly we have

Z
dxdyai*

ν ðxÞDμα
1, i ðxÞðD�1

0 Þαβðx, yÞDβν
1, jðx0Þai

νðx0Þ≤
Z

dxdy2ai*
μ ðxÞDμν

2, ijðx, yÞaj
νðyÞ,

ð31Þ

where asking that this inequality holds for all vectors ai
μðxÞ is equiva-

lent to the matrix-kernel trade-off condition of Eq. (23).
We give two examples ofmaster equations satisfying the coupling

constant trade-off in the Appendix section “Examples of Kernels
saturating the decoherence diffusion coupling constants trade-off”.
The decoherence-diffusion trade-off tells us how much diffusion and
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stochasticity are required to maintain coherence when the quantum
system back-reacts on the classical one. If the interaction between the
classical and quantum degrees of freedom is dictated by unbounded
operators, such as the mass density, then there can exist states for
which the back-reaction can be made arbitrarily large. This is the case
for a quantum particle interacting with its Newtonian potential
through its mass density at arbitrarily short distances. Hence, if one
considers a particle in a superposition of two peaked mass densities,
then there can be an arbitrarily large response in the Newtonian
potential around those points, and either there must be an arbitrary
amount of diffusion, or the decoherence must occur arbitrarily fast.
The former is unphysical, while the latter turns out to be the case in
simple examples of theories such as those discussed in the Methods
subsection “Decoherence rates”.

Since our goal is to experimentally constrain classical-quantum
theories of gravity, we shall hereby ask that the map (28) is CP when
acting on all physical states ρ. If one allows for arbitrarily peakedmass
distributions then the coupling constant trade-off of Eq. (31) should be
satisfied. In the field-theoretic case, we can similarly find an observa-
tional trade-off, relating the expected value of the diffusion matrix
〈D2(x, y)〉 to the expected value of the drift in a physical state ϱ as we
did in subsection “A trade-off between decoherence and diffusion”.
This is done explicitly in the “Methods” subsection “Classical-quantum
dynamics with fields”, using a field-theoretic version of the
Cauchy–Schwartz inequality given by Eq.n (73), we find

2hD2ðx, xÞi
Z

dx0dy0hD0ðx0, y0ÞikhDbr
1 ðxÞihDbr

1 ðxÞiy, ð32Þ

where Eq. (34) is to be understood as a matrix inequality with entries

hD0ðx, yÞi =
Z

dzTr Dαβ
0 LαðxÞϱLyβðyÞ

h i
, ð33aÞ

hDbr
1 ðx, yÞii =

Z
dzTr Dμα

1, iLμðxÞϱLyαðxÞ
h i

, ð33bÞ

hD2ðx, yÞiij =
Z

dzTr Dμν
2, ijLαðxÞϱLyβðyÞ

h i
: ð33cÞ

Similarly, when the back-reaction is sourced by eitherD0μ
1, i orD

αβ
1, i it

follows from Eq. (32) we can arrive at the observational trade-off in
terms of the total drift due to back-reaction

8hD2ðx, xÞi
Z

dx0dy0hD0ðx0, y0ÞikhDT
1 ðxÞihDT

1 ðxÞi
y
, ð34Þ

where

hDT
1 ðxÞii =

Z
dzTr D0α

1, i ðxÞϱLyαðxÞ+Dα0
1, i ðxÞLαϱðxÞ+Dαβ

1, iðxÞLαðxÞϱLyβðxÞ
h i

:

ð35Þ

We shall now use the trade-off to study the consequences of
treating the gravitational field classically. We will consider the back-
reaction of the mass on the gravitational field to be governed by the
Newtonian interaction (or more accurately, a weak field limit of Gen-
eral Relativity). We shall then find that experimental bounds on
coherence lifetimes for particles in superposition require large diffu-
sion in the gravitational field in order to bemaintained and this can be
upper bounded by gravitational experiments.

To summarise this section, we have derived the trade-off between
decoherence and diffusion for classical–quantum field theories, both
in terms of coupling constants of the theory and in terms of

observational quantities. This trade-off puts tight observational con-
straints on classical theories of gravity which we now discuss.

Physical constraints on the classicality of gravity
In this section, we apply the trade-off of Eq. (30) to the case of gravity.
A number of classical-quantum models of Newtonian gravity have
been proposed24,31–33, but since the trade-offs derived in the previous
section depend only on the back-reaction, or drift term, they are
insensitive to the particulars of the theory. We shall consider the
Newtonian, non-relativistic limit of a classical gravitational field which
we reproduce in the “Methods” subsection “Newtonian limit of CQ
theory”. A fuller discussion, including a derivation of the Newtonian
limit starting from the covariant theories of refs. 11,39 can be found in
ref. 81. It is in taking this limit where some care should be taken, since
one is gauge fixing the full general relativistic theory. We denote Φ to
be the Newtonian potential and in the weak field limit of General
Relativity, it has a conjugate momenta we denote by πΦ. We assume:
(i) The theory satisfies the assumptions used to derive the master

equation as in subsections “Trade-off in the presence of fields”; in
particular that the theory be a completely positive norm-
preserving Markovian map, and that we can perform a short-
time Kramers–Moyal expansion as in “Methods” subsection
“Classical-quantum dynamics with fields”.

(ii) We apply the theory to the weak field limit of General Relativity,
whereas recalled in “Methods” subsection “Newtonian limit of CQ
theory” the Newtonian potential interacts with matter through its
mass density m(x),

HI ðΦÞ=
Z

d3xΦðxÞmðxÞ: ð36Þ

and the conjugate momentum to Φ satisfies

_πΦ = ∇2Φ
4πG �mðxÞ, ð37Þ

where in the c→∞ limit the momentum constraint πΦ ≈0 is imposed
and we recover Poisson’s equation for the Newtonian potential. We
assume this limit of General Relativity is satisfied on expectation, at
least to leading order. This may be an overly strong assumption, since
the weak field limit may cease to be valid at short distances when the
diffusion becomes large. A relativistic treatment is initiated in (J.
Oppenheim and A. Russo, manuscript in preparation). It is also worth
noting that General Relativity has not been tested at distances shorter
than the millimeter scale, and here we assume it holds to arbitrarily
short distances.

(iii) In relating D0 to the decoherence rate of a particle in super-
position, we shall assume that the state of interest is well
approximated by a state living in a Hilbert space of fixed particle
number. We believe this is a mild assumption: ordinary non-
relativistic quantum mechanics is described via a single particle
Hilbert space, and we frequently place composite massive
particles in superposition and they do not typically decay into
multiple particles.

(iv) We will assume that the diffusion kernel D2ðΦ, x, x0Þ does not
depend on πΦ i.e. it isminimally coupled. This is reasonable, since
in the purely classical case matter couples to the Newtonian
potential and not its conjugate momenta.

With these assumptions, and treating the matter density as a
quantumoperator m̂ðxÞ, this tells us that in order for the back-reaction
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term to reproduce the Newtonian interaction on average

Tr fHI , ϱg
� �

=Tr
Z

d3x m̂ðxÞ δϱ
δπΦ

� �

= �
X
μν≠00

Tr
Z

d3xDμν
1,πΦ

ðΦ,πΦ, xÞLμðxÞ
δϱ
δπΦ

LyνðxÞ
� �

,
ð38Þ

then we must pick

hDT
1,πϕ

ðΦ,πΦ, xÞi = � hm̂ðxÞi, ð39Þ

meaning that the back-reaction matrix Dμα
1,πΦ

is nonvanishing. In the
“Methods” subsection “Newtonian limit of CQ theory” we give
examples of master equations for which Eq. (39) is satisfied, but their
details are irrelevant sinceweonly require the expectation of the back-
reaction force to be the expectation value of the mass—a necessary
condition for the theory to reproduce Newtonian gravity.

As a consequence of the coupling constant and observational
trade-offs derived in Eqs. (31) and (32), a non-zero D1,πΦ

implies that
theremust bediffusion in themomenta conjugate toπΦ. Thisdiffusion
is equivalent to adding a stochastic random process J(x, t) (the Lan-
gevin picture), to the equation of motion (37) to give

_πΦ =
∇2Φ

4πG
�mðxÞ+ uðΦ, m̂Þ Jðt, xÞ, ð40Þ

where we allow some colouring to the noise via a function uðΦ, m̂Þ
which can depend on Φ, and the matter distribution m̂ (assumption
(iv)). The noise process satisfies

Em,Φ½uJðx, tÞ�=0, Em,Φ½uJðx, tÞuJðy, t0Þ�=2hD2ðx, y,ΦÞiδðt, t0Þ, ð41Þ

where we have defined hD2ðx, y,ΦÞi=Tr½Dμν
2 ðx, y,ΦÞLμðxÞρLyνðyÞ�, and ρ

is the quantum state for the decohered mass density. Here the m,Φ
subscripts of Em,Φ allow for the possibility that the statistics of the
noise process can be dependent on the Newtonian potential andmass
distribution of the particle. The restriction on Em,Φ½uJðx, tÞ� follows
from assumption (ii). If uJ(x, t) is Gaussian, Eq. (41) completely deter-
mines the noise process, but in general, higher-order correlations are
possible, although they need not concern us here, since we are only
interested in bounding the effects due to D2(x, y,Φ).

In the non-relativistic limit, where c→∞, we impose the momen-
tum constraint πΦ ≈0 and we recover Poisson’s equation for gravity,
but with a stochastic contribution to the mass. This is precisely as
expected on purely physical grounds: in order to maintain coherence
of any mass in superposition, there must be noise in the Newtonian
potential and this must be such that we cannot tell which element of
the superposition the particle will be in, meaning the Newtonian
potential should look like it is being sourced in part by a randommass
distribution. In other words, the trade-off requires that the stochastic
component of the coupling obscures the amount of mass m at the
different points in space where the mass may be found.

In the case where u is independent of Φ, it is simple to solve
Eq. (40) in terms of Green’s function for Poisson’s equation as in the
“Methods” subsection “Detecting gravitational diffusion”. A formal
treatment of solutions to non-linear stochastic integrals of the more
general form of Eq. (40) can be found in ref. 82. A higher precision
calculation would involve a full simulation of CQ dynamics, for
exampleusing unravellingmethods26,78 or the path integral as in ref. 81.
However, care should be taken, as we have found that relativistic
corrections put constraints on the degree of diffusion even at low
energy (J. Oppenheim and A. Russo, manuscript in preparation), and
one should bear this inmindwhen drawing conclusions on themodels
presented here.

In30 it was shown that there are two classes of CQ dynamics, at
least in the sense that there are those with continuous trajectories in
phase space and those which contain discrete jumps. For the class of
continuous CQmodels (see ref. 24 and Appendix section “Continuous
master equation”), we know that J(x, t) should be described by a white
noise process in time, and its statistics should be independent of the
mass density of the particle.

For the discrete class (see ref. 11 and J. Oppenheim, “The con-
straints of a continuous realisation of post-quantum-classical gravity",
manuscript in preparation) and “Methods” subsection “Discrete mas-
ter equation”), J(x, t) can involve higher order moments, and will gen-
erally be described by a jumpprocess26,30. Its statistics can also depend
on the mass density, since in general the diffusionmatrix Dμν

2, ij couples
to Lindblad operators. It is worth noting that the discrete CQ theories
considered in11,26,37 generically suppress higher order moments, and
often we expect that we can approximate the dynamics by a Gaussian
process, but this need not be the case in general.

The stochastic contribution to the Newtonian potential leads to
observational consequences which can be used to experimentally test
and constrain CQ theories of gravity for various choices of kernels
appearing in the CQ master equation. One immediate consequence is
that the variation in Newtonian potential leads to a variation of force
experienced by a particle or composite mass via
F
!

tot = � R d3xmðxÞ∇ΦðxÞ. We can also estimate the time-averaged
force via 1

ΔT

R ΔT
0 F

!
tot where ΔT is the time resolution over which the

force is measured and is the useful quantity when compared with
experiments. In the “Methods” subsection “Table-top experiments”we
impose the constraint π ≈0 in Eq. (40) and find that the variance of the
magnitude of the time-averaged force experienced by a particle in a
Newtonian potential is given by Eq. (146),

σ2
F =

2G2

ΔT

Z
d3xd3yd3x0d3y0mðxÞmðyÞ

ð x!� x!0Þ � ð y!� y!0Þ
jx � x0j3jy� y0j3 hD2ðx0, y0,ΦÞi,

ð42Þ

where the variation is averagedover the time resolutionΔT.Wewill use
this to estimate the variation in precisionmeasurements of mass, such
as modern versions of the Cavendish experiment for various choices
of hD2ðx0, y0,ΦÞi.

On the other hand, experimentally measured decoherence rates
can be related to D0. The important point is that the decoherence rate
is dominated by the background Newtonian potential Φb due to the
Earth. In the “Methods” subsection “Decoherence rates”, we show that
for amasswhosequantum state is a superposition of two states Lj i and
Rj i of approximately orthogonal mass densities mL(x),mR(x), and
whose separation we take to be larger than the correlation range of
D0(x, y), the decoherence rate is given by

λ=
1
2

Z
dxdyDαβ

0 ðx, yÞðhLjLyβðyÞLαðxÞjLi+ hRjL
y
βðyÞLαðxÞjRiÞ: ð43Þ

Via the coupling constant trade-off, Eqs. (42) and (43) then give
rise to a double-sided squeeze on the couplingD2. Equation (42) upper
bounds D2 in terms of the uncertainty of acceleration measurements
seen in gravitational torsion experiments, whilst the coupling constant
trade-off Eq. (43) lower bounds D2 in terms of experimentally mea-
sured decoherence rates arising from interferometry experiments.

We now show this for various choices of diffusion kernel, with the
details given in the “Methods” subsection “Table-top experiments”.
Thebounds are summarised inTable 1. Thediffusion coupling strength
will be characterised by the coupling constantD2, whichwe take tobea
dimension-full quantity with units kg2 sm−3, and is related to the rate of
diffusion for the conjugate momenta of the Newtonian potential. We
upper bound D2 by considering the variation of the time averaged
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acceleration σa =
σF
M for a composite mass M which contains N atoms

whichwe treat as spheres of constant density ρwith radius rN andmass
mN. We lower bound D2 via the coupling constant trade-off of Eq. (30)
and then by considering bounds on the coherence time for composite
particles with total massMλ and which aremade up of Nλ constituents,
eachwith typical length scale when in superposition Rλ and volume Vλ.

For continuous dynamics 〈D2(x, y,Φ)〉 = D2(x, y,Φ) since the dif-
fusion is not associated with any Lindblad operators. Let us now con-
sider a very natural kernel, namely D2(x, y;Φ) =D2(Φ)δ(x, y) which is
both translation invariant, and does not create any correlations over
space-like separated regions. We call dynamics which does not create
correlations over space-like separated regions ultra-local since the-
ories that are not of this form can still be non-signalling. This is a
natural kernel from the point of view of constructing theories which
are diffeomorphism invariant. We also label this model as being non-
relativistic since it does not include various relativistic corrections to
the diffusion.

The decoherence rate for this kernel is found in the “Method”
subsection “Decoherence rates” and follows immediately from Eq.
(137). For a nucleon of mass Mλ and wavepacket volume Vλ, it is
λ=2D0M

2
λ=V λ. In general, the squeeze will depend on the functional

choice of D2(Φ) on the Newtonian potential. However, in the presence
of a large background potentialΦb, such as that of the Earth’s, we will
often be able to approximate D2(Φ) =D2(Φb). This is true for kernels
that depend on Φ and∇Φ, though the approximation does not hold
for all kernels, for example D2 ~ −∇

2Φ of Eq. (118) which creates diffu-
sion only where there is mass density. For diffusion kernels D2(Φb)
where the background potential is dominant, we find the promised
squeeze on D2(Φb)

σ2
aNr

4
NΔT

VbG
2 ≥D2 ≥

NλM
2
λ

V λλ
, ð44Þ

whereVb is the volumeof space overwhich the backgroundNewtonian
potential is significant. Vb enters since the variation in acceleration is
found to be

σ2
a ∼

D2G
2

r4NNΔT

Z
d3x0D2ðΦbÞ, ð45Þ

where the d3x0 integral is over all space.
This immediately rules out continuous theories of Newtonian

gravity with noise everywhere, i.e., with a diffusion coefficient inde-
pendent of the Newtonian potential, since the integral will diverge. We
consider the relativistic case elsewhere.

Standard Cavendish-type classical torsion balance experiments49

measure accelerations of the order 10−7 m s−2 over minutes ΔT ~ 102, so
a very conservative bound is σa ~ 10

−7 m s−2, whilst for a kgmass N ~ 1026

and rN ~ 10−15 m. Conservatively taking Vb ∼ r2Ehm3 where rE is the
radius of the Earth and h is the atmospheric height gives
D2 ≤ 10−41 kg2 sm−3. The decoherence rate λ is bounded by various
experiments83. Typically, the goal of such experiments is to witness
interference patterns of molecules that are as massive as possible.

Taking a conservative bound on λ, for example, that arising from the
interferometry experiment of59 which saw coherence in large organic
fullerene molecules with total mass Mλ = 10−24 kg over a timescale of
0.1s, gives an upper bound on the decoherence rate λ < 101 s−1. Full-
erenemolecules aremade up ofNλ ~ 10

3 particles with a typical atomic
size 10−15 m. After passing through the slits the molecule becomes
delocalised in the transverse direction on the order of 10−7 m before
being detected. Since the interference effects are due to the super-
position in the transverse x direction, which is the direction of align-
ment of the gratings, it seems like a reasonable assumption to take the
size of the wavepacket in the remaining y, z direction to be the size of
the fullerene, since we could imagine measuring the y, z directions
without effecting the coherence. We, therefore, take the volume
Vλ ~ 10

−1510−1510−7m3 = 10−37 m3, which gives D2 ≥ 10−9 kg2 sm−3, and sug-
gests that classical–quantum theories of Newtonian gravity with ultra-
local continuous noise are ruled out by experiment.

On the other hand, the discrete models appear less constrained
due to the suppression of the noise away from the mass density. For
example consider the ultra-local discrete jumping models, such as the
one given in the section “Discrete master equation” which have

hD2ðx, y,ΦbÞi= l3PD2ðΦbÞ
mP

mðxÞ, where mP =
ffiffiffiffi
_c
G

q
is the Planck mass and

lP =
ffiffiffiffi
_G
c3

q
is the Planck length, required to ensure D2 has the units of

kg2 sm−3. We find the squeeze on D2

σ2
aNr

4
NΔT

mNG
2 ≥

l3P
mP

D2 ≥
Mλ

λ
, ð46Þ

and plugging in the numbers tells us that discrete theories of classical
gravity are not ruled out by experiments and we
find 10�1 kg≥ l3P

mP
D2 ≥ 10

�25 kg.
We can alsoconsider other noisekernels,with examples and some

discussion is given in the section “Examples of Kernels saturating the
decoherence diffusion coupling constants trade-off”. A natural kernel
is D2ðx, y,ΦbÞ= � l2PDðΦbÞ∇2δðx, yÞ. The inverse Lindbladian kernel
satisfying the coupling constants trade-off is to zeroeth order inΦ(x),
the Diosi-Penrose kernelD0ðx, y,ΦbÞ= D0ðΦbÞ

jx�yj . We here consider higher-
order terms such as those coming from the relativistic theory and in
particular the diffusion kernel of Eq. (118). For this choice of dynamics,
we find the squeeze for D2 in terms of the variation in acceleration

σ2
aNr

3
NΔT

G2 ≥ l2PD2 ≥
NλM

2
λ

Rλλ
: ð47Þ

Using the same numbers as for the ultra-local continuous model,
with Rλ ∼V 1=3

λ ∼ 10�12 m we find that classical torsion experiments
upper bound D2 by 10�9 kg2sm�1 ≥ l2PD2, whilst interferometry
experiments bound D2 from below via l2PD2 ≥ 10

�35 kg2 sm�1.
Equations (44), (46) and (47) show that classical theories of gravity

are squeezed by experiments from both ways. We have here been
extremely conservative, and we anticipate that further analysis, as well
as near-term experiments, can tighten the bounds by orders of

Table 1 | Current experimental bounds on classical-quantum theories for different master equations and functional depen-
dence on the diffusion coefficient

Master equation Diffusion kernel Experimental squeeze

Continuous (ultra-local, non-rel.) D2(Φ; x, y) =D2(Φ)δ(x, y)D2(Φ) = ∑nc
nΦn 10−41� D2 � 10−9 kg2 sm−3 (Eq. (44))

Continuous (Eq. (116) or (118)) D2ðΦ; x,yÞ= � l2pD2ðΦÞ∇2δðx,yÞD2ðΦÞ=Pnc
nΦn 10�9 � l2PD2 � 10�35 kg2sm�1 (Eq. (47))

Discrete (ultra-local) D2ðΦ; x,yÞ= l2P
mP

D2ðΦÞδðx,yÞD2ðΦÞ=Pnc
nΦn 10�1 � l2PD2

mP
� 10�25 kg (Eq. (46))

The diffusion coefficient is bounded from above by observed acceleration variations σ2
a seen in precision mass experiments via Eq. (42). In all cases the master equation is assumed to saturate the

boundwhich is used to find the lower bound the amount of diffusion on the quantum systemby boundingD0 from coherence rates via Eq. (43). It is seen that minimally coupled continuousmodels
which are non-relativistic and do not create spatial correlations (we call these ultra-local) and have polynomial dependence on the Newtonian potential are ruled out, while continuousmodels with
non-local correlations, such as the Diosi–Penrose (DP) kernel of Eq. (116)or the relativity inspired kernel of Eq. (118), and ultra-local discrete models are less constrained. Here lP,mP are the Planck
length and Planck mass respectively, which are required in order for the dimensions of D2(Φ) to be the same in all cases.
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magnitude. There are several proposals for table-top experiments to
precisely measure gravity, some of which have recently been per-
formed, andwhichcouldgive rise to tighter upper boundsonD2. Some
of these experiments involve millimeter-sized masses whose gravita-
tional coupling is measured via torsional pendula61,62, or rotating
attractors63. With such devices, the gravitational coupling between
small masses can be measured while limiting the amount of other
sources of noise. There are proposals for further mitigating the noise
due to the environment, including inertial noise, gasparticle collisions,
photon scattering on the masses, and curvature fluctuations due to
other sources84–86. Other experiments are based on interference
between masses; for example, atomic interferometers allow for the
measurement of the curvature of space-time over a macroscopic
superposition87–89.

We can get stronger lower bounds via improved coherence
experiments. Typically, the goal of such experiments is to witness
interference patterns of molecules that are as massive as possible,
while here, we see that the experimental bound on CQ theories is
generically obtained by maximising the coherence time for massive
particles with as small wave-packet size Vλ.

Thus far we have considered local effects on particles due to
diffusion. While this enables us to rule out some types of theories, the
bounds are generally weak if one wants to rule out all of them. How-
ever, it may be possible to do so via cosmological considerations. In
attempting to place experimental constraints on this diffusion, it is
also worth considering other regimes, such as longer range effects
whichmight be detected by gravitational wave detectors such as LIGO,
or table-top interferometers90,91. We leave a detailed study of the effect
of gravitational diffusion on cosmological scales and LIGO to future
work. It suffices to mention that the effect will again depend on the
formof the kernelD2ðx, x0Þ. Our estimates (J.OppenheimandZ.Weller-
Davies, “Estimating space-time diffusion in interferometers", unpub-
lished note) suggest that local effects from table-top experiments
currently place a stronger bound on gravitational theories than LIGO
currently does. In particular, unlike gravitational wave measurements,
which are reasonably high-frequency events requiring extraordinarily
high precision in the relative displacement of the arm length from its
average, it is preferential to have a lower precision measurement,
which occurs over a longer time period to allows for the diffusion in
path length to build up, and with a smaller uncertainty in the average
length of the arm itself. Furthermore, since the LIGO arm is kept in a
vacuum, we do not expect strong bounds on discrete models where
the diffusion is associated with an energy density.

Discussion
A number of direct proposals to test the quantumnature of gravity are
expected to comeonline in the nextdecade or two. These are based on
the detection of entanglement between mesoscopic masses inside
matter-wave interferometers64–70,72,73. For these experiments, some
theoretical assumptions are needed: one requires that it is only grav-
itons that travel between the two masses and mediate the creation of
entanglement. If this is the case, then the onset of entanglement
implies that gravity is not a classical field. These can be thought of as
experiments that if successful, would confirm the quantum nature of
gravity (although other alternatives to quantum theory are possible92).

Here, we come from the other direction, by supposing that gravity
is instead classical, and then exploring the consequences. Theories in
which gravity is fundamentally classical were thought to have been
ruled out by various no-go theorems and conceptual difficulties.
However, these no-go theorems are avoided if one allows for non-
deterministic coupling as in11,21–26,30,37. We have here proven that this
feature is indeed necessary and made it quantitative by exploring the
consequences of complete positivity on any dynamics that couples
quantum and classical degrees of freedom. Complete positivity is
required to ensure the probabilities ofmeasurement outcomes remain

positive throughout the dynamics. We have shown that any theory
which preserves probabilities and treats one system classically is
required to have fundamental decoherence of the quantum system,
and diffusion in phase space, both of which are signatures of infor-
mation loss. Using a CQ version of the Kramers–Moyal expansion, we
have derived a trade-off between decoherence on the quantum sys-
tem, and the system’s diffusion in phase space. The trade-off is
expressed in termsof the strength of the back-reactionof the quantum
system on the classical one. We have derived the trade-off both in
terms of coupling constants of the theory and in terms of observa-
tional quantities that can be measured experimentally.

In the case of gravity, the trade-off places a lower bound on the
rate of diffusion of the gravitational degrees of freedom in terms of the
decoherence rate of particles in superposition. We find that theories
that treat gravity as fundamentally classical, are not ruled out by cur-
rent experiments, however, we have been able to rule out a broad
parameter space of Newtonian theories. This is done partly through
table-top observations via Eqs. (44), (46) and (47). Given any diffusion
kernel, we can compute the inaccuracy of mass measurements due to
fluctuations in the gravitational field, and using the trade-off, we can
derive a bound on the associated decoherence rate. This allows us to
rule out broad classes of theories in terms of their diffusion kernel. For
example, we are able to rule out a number of non-relativistic theories
which back-react continuously in phase space.

Any theory that treats gravity classically has fairly limited freedom
toevade the effects of the trade-off. There is the freedomto choose the
diffusion or decoherence kernels D2ðx, x0Þ and D0ðx, x0Þ, but the trade-
off restricts one in terms of the other. Then, because of the results
proven in30, one can consider two classes of theory, those which are
continuous realisations and whose diffusion can only depend on the
gravitational degrees of freedom, and discrete theories whose diffu-
sion can also depend directly on the matter fields. Examples of both
classes of the theoryare given in the “Methods” subsection “Newtonian
limit of CQ theory”. Finally, one could consider theories that do not
reproduce the weak field limit of General Relativity to all distances,
namely we could imagine that the interaction Hamiltonian of Eq. (36)
does not hold to arbitrarily short distances, or arbitrarily high mass
densities. This is reasonable since we do expect the Newtonian theory
to break down at short distances where relativistic corrections at high
energy affect the low-energy behaviour of the theory. One could also
consider modifying D1ðx, x0Þ in some other way, for example, by
making it slightly non-local, or by disallowing arbitrarily high mass
densities, or by including an additional contribution such as the fric-
tion term discussed in the continuous master equation. All of these
modifications would seem to violate Lorentz invariance in some way,
and likely lead to observational consequences93.

Here, we have only given an order of magnitude estimate of when
gravitational diffusion will lead to appreciable deviations from New-
tonian gravity. The most promising experiments bounding the diffu-
sion appear to be table-top experiments which precisely measure the
mass of anobject. This is anarea that is important from theperspective
ofweight standards, for example, thoseundertakenbyNISTon the 1 kg
mass standard K20 and K494. The increased precision and measuring
time of Kibble Balances95 and atomic interferometers87,88,96,97 would
make such measurements an ideal testing ground, both to further
constrain the diffusion kernel and to look for diffusion effects, whose
dependence on the test mass is outlined in the “Methods” subsection
“Detecting gravitational diffusion”. Here, we have found that the
resolution time ΔT over which variations of acceleration are estimated
affects the strength of the bound, and it would be helpful if future
experiments reported this value. Sincewe have found that CQ theories
predict an uncertainty in mass measurements it is perhaps intriguing
that different experiments to measure Newton’s constant G yield
results whose relative uncertainty differs by as much as
5 × 10−4 m3 kg−1 s−2, which is more than an order of magnitude larger
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than the average reported uncertainty52–54. If one were to try and
explain the discrepancy in Gmeasurements via gravitational diffusion,
then for all the kernels we studied in Section ’Physical constraints on
the classicality of gravity’ we find that the variation in acceleration
depends on 1ffiffiffi

N
p the number of nucleons in the testmass, so thatmasses

with smaller volume should yield larger uncertainty and this would be
the effect to look for in measurement discrepancies. The relatively
large uncertainty in such measurements, also makes it challenging for
table-top experiments to place strong upper bounds on gravitational
diffusion.

Turning to the other side of the trade-off, improved decoherence
times would further squeeze theories in which gravity remains classi-
cal. While a current experimental challenge is to demonstrate inter-
ference patterns using larger and larger mass particles, we here find
the bounds in Eqs. (44) and (46) depend on the expectation of the
particle’s mass density in ways that depend on the particular kernel.
Thus interference experiments with particles of high mass density
rather than mass can be preferable. There are also kernels, for which
the relevant quantity is the expectation of the mass density orM2

λ=V λ,
which will depend on both the particle’s massMλ and volume Vλ of the
wave-packet used in the interference experiment, a quantity which is
not always obtainable from many reports on such experiments. While
this dependence might initially appear counter-intuitive, it follows
from the fact that in order to relate the trade-off in terms of coupling
constants to observational quantities, and in particular, the deco-
herence rate, we took expectation values of the relevant quantities to
get a trade-off in terms of only averages. And indeed the decoherence
rate, which is an expectation value, can easily depend on the wave-
packet density, as we see from examples in the section “Deco-
herence rates”.

Since we here show that all theories that treat gravity classically
necessarily decohere the quantum system, another constraint on
theories that treat gravity classically is given by constraints on funda-
mental decoherence. These are usually constrained by bounds on
anomalous heating of the quantum system98. However, these con-
straints are not in themselves very strong, since fundamental deco-
herence effects can bemade arbitrarilyweak. In the simplifiedmodel in
the “Methods” subsection “Newtonian limit of CQ theory”, the strength
of the decoherence depends on the strength of the gravitational field,
thus, constraints due to heating98–111 can be suppressed, either by
scaling the Lindbladian coupling constants or by having strong deco-
herence effects more pronounced near stronger gravitational fields
such as near black holes where one expects information loss to occur.
The necessity for decoherence to heat the quantum system is further
weakened by the fact that the dynamics are not Markovian on the
quantum fields, if one integrates out the classical degrees of freedom,
space-time acts as a memory. This potentially captures some of the
non-Markovian features advocated in ref. 112, who recognised that
Markovianity is a key assumption in attempts to rule out fundamental
decoherence or information loss. Here, however, we see that there is
less freedom than one might imagine. If the Lindbladian coupling
constants are made small to reduce direct heating, the gravitational
diffusion must be large. Thus, heating constraints which place bounds
on D0ðx, x0Þ place additional constraints on D2ðx, x0Þ. In35, it was found
that for the Newtonian models of ref. 33, large D2ðx, x0Þ creates sec-
ondary heatingwhich further constrain the theory experimentally. The
decoherence-diffusion trade-off implies that this is a general feature of
all theories which treat gravity classically.

While the absence of diffusion could rule out theories where
gravity is fundamentally classical, the presence of such deviations, at
least on short time scales, might not by itself be a confirmation of the
classical nature of gravity. Such effects could instead be caused by
quantumtheories of gravitywhose classical limit is effectivelydescribed

by Oppenheim11. In other words, one might expect some gravitational
diffusion, because, from an effective theory point of view, one is in a
regime where space-time is behaving classically. There are even claims
that holographic effects could cause stochasticity113–115 in the gravita-
tional field. However, the trade-off we have derived is a direct con-
sequence of treating the background space-time as fundamentally
classical. In a fully quantum theory of gravity, the interaction of the
gravitational field with particles in a superposition of two trajectories
will cause decoherence, but coherence can then be restored when the
two trajectories converge. This is because the particle’s position is
entangled with the gravitational field (or dressed by it), and this
entanglement is erased when the different paths of the superposition
converge. This is what happens when electrons interact with the elec-
tromagnetic field while passing through a diffraction grating, yet still
form an interference pattern at the screen. This is a non-Markovian
effect—the which-path superposition decoheres almost immediately,
but this is false-decoherence116 so the amount of diffusion can be arbi-
trarily small and is unrelated to the coherence timeof the superposition.

On the other hand, the trade-off we derived is a direct con-
sequence of the positivity condition, which is a direct consequence of
the Markovian assumption. In the non-Markovian theory where Gen-
eral Relativity is treated classically, one still expects the master equa-
tion to take the formfound in11, butwithout thematrixwhose elements
are Dμν

n needing to be positive semi-definite at all times117,118. It would
therefore be surprising, if a quantum theory of gravity predicted
anything close to the level of diffusion predicted by the decoherence-
vs-diffusion trade-off, as there would be no need for diffusion to
explain the coherence of superpositions. The regime in which the
classical–quantum theory can be regarded as an effective one is taken
up in ref. 119, both to address the issue of false decoherence, and also
to explore the regime in which the classical–quantum theorymay be a
useful tool to understand the back-reaction of quantum matter in
space–time, such as during black-hole evaporation, and during infla-
tion. If we instead regard the theory as describing a fundamentally
classical space-time, then it follows from the decoherence-diffusion
trade-off, that the diffusion is either fundamental or its source is not
describable within quantum or classical mechanics (J. Oppenheim,
“Post-quantum soup", unpublished note).

Methods
Positivity conditions and the trade-off between decoherence
and diffusion
In this section, we will introduce two forms of positivity conditions
used to prove the decoherence diffusion trade-off.

The first inequality we would like to introduce is

Z
dzA*

μðz, z0ÞΛμνðzjz0, δtÞAνðz, z0Þ≥0, ð48Þ

which holds for any Aμðz, z0Þ for which Eq. (48) is well defined: i.e., so
that the distributional derivatives in Eq. (48) are well defined.

We can derive the positivity condition (48) from the positivity of
Λμνðzjz0Þ, which must be a positive semi-definite matrix in μν. More
precisely, the eigenvalues of Λμνðzjz0Þ, which we denote by λμðzjz0Þ
must be positive. They must be positive in the distributional sense,
since we allow for the case that λμðzjz0Þ is a positive distribution, for
example λ0ðzjz0Þ∼δðz � z0Þ. Hence we require

Z
dzdz0λμðzjz0ÞPðz, z0Þ ð49Þ

is positive for any positive smearing function Pðz, z0Þ. Since each λμ

must be positive, we can also pick a different smearing function for
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each μ, so that

Z
dzdz0λμðzjz0ÞPμðz, z0Þ ð50Þ

should be positive for any vector Pμðz, z0Þ with all positive entries. We
can then write the matrix Λμνðzjz0Þ in terms of its eigenvalues

Λμνðzjz0Þ=Uμy
ρ ðzjz0Þλρðzjz0ÞUν

ρðzjz0Þ: ð51Þ

We can then see the positivity of Eq. (48) directly since

Z
dzA*

μðz, z0ÞΛμνðzjz0,δtÞAνðz, z0Þ=
Z

dzðUAÞyμðzjz0Þλμðzjz0ÞðUAÞμðz, z0Þ

=
Z

dzjðUAÞμj2ðz, z0Þλμðzjz0Þ

ð52Þ

which is positive as a consequence of Eq. (50).
As a consequence of Eq. (48) being positive, we also know that

Tr
Z

dzΛμνðzjz0ÞOμðz, z0Þρðz0ÞOy
νðz, z0Þ

� �
≥0 ð53Þ

will be positive for any vector of operators (potentially phase space
dependent) Oμðz, z0Þ. This follows from the cyclicity of the trace and
the fact that Λμνðzjz0ÞOy

νðz, z0ÞOμðz, z0Þ will be a positive operator so
long as Eq. (48) holds. A common choice of Oμ would be the Lindblad
operator Lμ appearing in the master equation.

The inequality in Eq. (48) proves useful to derive positivity
conditions on the coupling constants appearing in the master
equation, whilst Eq. (53) is useful in deriving the observational
trade-off for the continuous master equation as we shall now
discuss.

General trade-off between decoherence and diffusion
coefficients
We can get a general trade-off between the decoherence and diffusion
coefficientswhich appear in themaster equation, arriving at a trade-off
between the decoherence and diffusion coefficients in terms of the
back-reaction drift coefficient Dμα

1, i .
Consider Eq. (48), and choose Aμ = δ

α
μaα + b

i
μðz � z0Þi. By inte-

grating parts over the phase space degrees of freedom, we find

2bi*
μD

μν
2, ijb

j
ν + b

i*
μD

μβ
1, iaβ +a

*
αD

αμ
1, ib

i
μ +a

*
αD

αβ
0 aβ ≥0: ð54Þ

Taking i∈ {1,…, n}α∈ {1,…, p} and μ∈ {1,…, p + 1}, we can write
this as a matrix positivity condition

½b*,a*� 2D2 Dbr
1

Dbr
1 D0

" #
b

a

� �
≥0 ð55Þ

where D2 is the (p + 1)n × (p + 1)n matrix with elements Dμν
2, ij ,D

br
1 is

the (p + 1)n × p matrix with rows labelled by μi and columns
labelled by β with elements Dμβ

1, i and D0 is the p × p decoherence
matrix with elements Dαβ

0 . Dbr
1, i describes the quantum back-

reacting components of the drift. Equation (55) is equivalent to
the condition that the ðp+ 1Þn +pð Þ× ðp+ 1Þn+pð Þ matrix

2D2 Dbr
1

Dbr
1 D0

" #
k0: ð56Þ

Sincewe knowD2 andD0must be positive semi-definite, weknow from
Schur decomposition that

2D2kDbr
1 D�1

0 Dbry
1 , ð57Þ

and ðI� D0D0 � 1ÞDbr
1 = 0, where D0 is the generalised inverse of D0.

Furthermore, if D0 vanishes, then clearly Dbr
1 must also vanish in order

for (56) to be positive semi-definite.

Classical-quantum dynamics with fields
In this section, we describe CQ dynamics in the case where the Lind-
blad operators and the phase-space degrees of freedom can have
spatial dependence z(x), Lμ(x).

For the case of fields, operators O(x) constructed out of local
fields ϕ(x) will in general be unbounded and hence the Stinespring
dilation theorem does not hold. This problem is a common one in the
study of algebraic quantum field theory and we can get around it by
considering the case in which operators of interest are obtained by
smearing the local fields over bounded functionals F. For example, we
can first smear the local field fields over a smearing function
f,ϕf = ∫dxϕ(x)f(x) and then consider bounded functions of ϕf such as
Fðϕf Þ= eiϕf . In doing this we can write a CQ version of the Stinespring
dilation theorem exactly and proceed along the lines of Oppenheim11

to show that any completely positive CQ map can be written in the
form

ρ0ðzÞ=
Z

dzdxdyΛμνðzjz0; x, yÞLμðx, z, z0Þϱðz0ÞLyνðy, z, z0Þ, ð58Þ

where the positivity condition states

Z
dzdxdyA*

μðx, z, z0ÞΛμνðzjz0; x, yÞAνðy, z, z0Þ≥0: ð59Þ

We shall assume that we deal with dynamics which can be written
in Lindblad form, as is usually assumed in the unbounded case120.

CQ Kramers–Moyal expansion for fields
Just as in the section “The CQ Kramers–Moyal expansion”, we can
formally introduce the moments of the transition amplitude

Mμν
n, i1 ...in

ðw1, . . .wn; x, y, δtÞ=
Z

DzΛμνðzjz0; x, y, δtÞ ðz � z0Þi1 ðw1Þ . . . ðz � z0Þin ðwnÞ

ð60Þ

which we assume to exist; which might involve a smearing of the
operators z(x). Defining L0ðxÞ= δðxÞI, we can define the coefficients
Dμν
n, i1 ...in

implicitly via

Mμν
n, i1 ...in

ðz0,w1, . . .wn; x, y, δtÞ= δμ
0δ

ν
0 + δtn!D

μν
n, i1 ...in

ðw1, . . .wn; x, y, δtÞ:
ð61Þ

The characteristic function then takes the form

Cμνðu, z0; x, yÞ=
Z

Dzei
R

dwuðwÞ�ðzðwÞ�z0 ðwÞÞΛμνðzjz0; x, yÞ ð62Þ

and expanding out the exponential this takes the form

Cμνðu, z0; x, yÞ=
X1
n =0

Z
dw1 . . .dwn

uiðw1Þ . . .uin
ðwnÞ

n!
Mμν

n, i1 ...in
ðz0,w1, . . .wn; x, y, δtÞ

ð63Þ

performing the inverse Fourier transform, allows us to write the
transition amplitude in terms of functional derivatives of the delta
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function

Λμνðzjz0; x, y, δtÞ=
X1
n=0

Z
dw1 . . .dwn

Mμν
n, i1 ...in

ðz0,w1, . . .wn; x, y, δtÞ
n!

δn

δz 0i1 ðw1Þ . . . z0in ðwnÞ
δðz, z0Þ

ð64Þ

and we can use this to write a CQ master equation in the form

∂ϱðz, δtÞ
∂t

=
X1
n= 1

Z
dw1 . . .dwnð�1Þn δn

δzi1 ðw1Þ . . . zin ðwnÞ
D00
n, i1 ...in

ðz,w1, . . .wnÞϱðzÞ
� �

� i½H, ϱðzÞ�

+
Z

dxdyDαβ
0 ðz; x, yÞLαðxÞϱðzÞLβðyÞ �

1
2
Dαβ
0 ðz; x, yÞfLyβðyÞLαðxÞ, ϱg

+
X1
n=0

X
μν≠00

Z
dxdydw1 . . .dwnð�1Þn

δn

δzi1 ðw1Þ . . . zin ðwnÞ
Dμν
n, i1 ...in

ðz,w1, . . .wn; x, yÞLμðxÞϱðzÞLyνðyÞ
� �

:

ð65Þ

Since we are interested in studying dynamics with local back-
reaction, we shall hereby take Dμν

1 ðz,w; x, yÞ=Dμν
1 ðxÞδðx, yÞδðx,wÞ.

By the decoherence diffusion trade-off, which we derive in the
next subsection, this also means that the diffusion matrix
Dμν
2, ijðz,w1,w2, x, yÞ is lower bounded by the matrix

Dμα
1 ðxÞðD�1

0 Þαβðx, yÞDβν*
1 ðyÞδðw1, xÞδðw2, yÞ. This can be seen more pre-

cisely, by taking Eq. (59) with AμðxÞ= δα
μaαðxÞ+

R
dwbi

μðx,wÞðz �
z0Þðx,wÞ and applying the same methods as in the subsection “Trade-
off between diffusion and decoherence couplings in the presence of
fields”. Without loss of generality we thus take
D2(z,w1,w2, x, y) =D2(z, x, y)δ(x,w1)δ(y,w2).

Trade-off between diffusion and decoherence couplings in the
presence of fields
In the field-theoretic case, the positivity condition is given by Eq. (59)
and we can find a trade-off between decoherence and diffusion by
considering AμðxÞ= δα

μaαðxÞ+
R
dxbi

μðxÞðz � z0ÞðxÞ. So that

Z
dxdy2bi*

μ ðxÞDμν
2, ijðx, yÞb

j
νðyÞ+bi*

μ ðxÞDμβ
1, iðx, yÞaβðyÞ+a*

αðxÞDαμ
1, iðx, yÞb

i
μðyÞ

+a*
αðxÞDαβ

0 ðx, yÞaβðyÞ≥0
ð66Þ

where we use the shorthand notation Dμν
2, ijðz, x, yÞ :¼ Dμν

2, ijðx, yÞ and
similarly Dαμ

1, i ðz; x, yÞ :¼ Dαμ
1, iðx, yÞ.

Taking i∈ {1,…, n}α∈ {1,…, p} and μ∈ {1,…, p + 1}, we can write
this as a matrix positivity condition

R
dxdy½b*ðxÞ,a*ðxÞ� 2D2ðx, yÞ Dbr

1 ðx, yÞ
Dbr
1 ðx, yÞ D0ðx, yÞ

" #
bðyÞ
αðyÞ

� �
≥0 ð67Þ

where D2(x, y) is the (p + 1)n × (p + 1)n matrix-kernel with elements
Dμν
2, ijðx, yÞ,Dbr

1 ðx, yÞ is the (p + 1)n × pmatrix-kernelwith rows labelledby
μi and columns labelled by βwith elements Dμβ

1, iðx, yÞ andD0(x, y) is the
p × p decoherencematrix-kernel with elementsDαβ

0 ðx, yÞ.Dbr
1, i describes

the quantum back-reacting components of the drift.
Equation (67) is equivalent to the condition that the

ðp+ 1Þn +pð Þ× ðp+ 1Þn+pð Þ matrix of operators

2D2 Dbr
1

Dbr
1 D0

" #
k0 ð68Þ

be positive semi-definite. Here we are viewing the objects of
Eq. (68) as matrix-kernels, so that for any position-dependent
vector bi

μðxÞ, ðD2bÞμi ðxÞ=
R
dyDμν

2, ijðx, yÞb
j
ν ðyÞ.

Since we knowD2 andD0must be positive semi-definite, we know
from Schur decomposition that

2D2kDbr
1 D�1

0 Dbry
1

ð69Þ

and

ðI� D0D
�1
0 ÞDbr

1 = 0, ð70Þ

where D�1
0 is the generalised inverse of D0. Furthermore, from Equa-

tion (70), we see if D0 vanishes, then clearly Dbr
1 must also vanish in

order for (68) to be positive semi-definite.

Observational trade-off in the presence of fields
We can use the same methods to arrive at an observational trade-off
using the field-theoretic version of the Cauchy–Schwartz inequality in
Eq. (18). This arises from the positivity of

Tr
Z

dzdz0dxdyΛμνðzjz0, x, yÞOμðz, z0, xÞρðz0ÞOy
νðz, z0, yÞ

� �
≥0 ð71Þ

for any local vector of CQ operators Oμðz, z0, xÞ. We have to be careful,
since (71) is not in general well defined sinceOμmay not be trace-class.
Wehenceassume thatwe consider statesρ(z) andoperatorsOμðz, z0, xÞ
for which Eq. (71) is well defined. Since we are interested in getting an
observational trade-off we expect this to always be the case for
physical classical–quantum states ρ(z).

We shall use Eq. (71) to arrive at a (pseudo) inner product on a
vector of operators Oμ via

h�O1, �O2i=
Z

dzdz0dxdyTr Λμνðzjz0x, yÞO1μðxÞϱðz0ÞOy
2νðyÞ

h i
ð72Þ

where jj�Ojj=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�O, �Oi

p
≥0 due to Eq. (71). Technically this is not positive

definite, but again, this will not worry us. Hence, so long as jj�O2jj≠0,
which holds due to the CQ inequality derived in the derivation of the
Pawula theorem30, we again have a Cauchy–Schwartz inequality

jj�O1jj2jj�O2jj2 � jh�O1, �O2ij2 ≥0: ð73Þ

Choosing O1,μðxÞ= δα
μLαðxÞ and

O2,μðxÞ=
R
dx0biðxÞðz � z0ÞiðxÞLμðxÞ, one finds

jj�O1jj2 =
Z

dzdxdyTr Dαβ
0 ðz; x, yÞLαðxÞϱðzÞLyβðyÞ

h i
:¼ hD0i ð74aÞ

jj�O2jj2 = 2
Z

dzdxdyTr bj*ðxÞDμν
2, ijðz; x, yÞLμðxÞϱðzÞLyνðyÞb

iðyÞ
h i

ð74bÞ

jh�O1, �O2ij2 =
Z

dzdxTr bi*ðxÞDαν
1, iðz; xÞLαðxÞϱðzÞLyνðxÞ

h i����
����
2

:¼
Z

dxbi*ðxÞDbr
1, iðxÞ

	 
����
����
2

ð74cÞ

Taking the limit biðxÞ ! δðx, �xÞbið�xÞ, we arrive at a local trade-
off between diffusion, drift and total decoherence. In particular,
using (74), the definitions of the expectation values of couplings
defined in Eq. (33) and the fact that for back-reaction the
expectation value of D0 cannot vanish, we arrive at the observa-
tional trade-off of Eq. (34)

bið�xÞ 2hD2, ijð�x, �xÞihD0i � jhDbr
1, ið�xÞij2

h i
bjð�xÞ≥0 ð75Þ
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which we write in matrix form as

2hD2ð�x, �xÞihD0ikhDbr
1 ð�xÞihDbr

1 ð�xÞiy: ð76Þ

It then follows directly from Eq. (76) that when the back-reaction
is sourced by either D0μ

1, i or Dαβ
1, i components we can arrive at the

observational trade-off in terms of the total drift

8hD2ð�x, �xÞihD0ikhDT
1 ð�xÞihDT

1 ð�xÞi
y
, ð77Þ

where in Eq. (77) recall that the definition of hDT
1 ð�xÞi

y
is given byEq. (35)

in the main body.

A spatially averaged observational trade-off
It is also useful to note that one can arrive at a spatially averaged
observational trade-off which can be used to bound all of the elements
of the diffusion matrix, not just its diagonals. Specifically, taking Eq.
(74) with bi(x) = bi a constant, we arrive at the trade-off

8
Z

dxdyhD2ðx, yÞihD0ik
Z

dxDT
1 ðxÞ

	 
 Z
dxDT

1 ðxÞ
	 
y

, ð78Þ

where we define the expectation matrix

hD2ðx, yÞiij =
Z

dzTr Dμν
2, ijðz; x, yÞLμðxÞϱðzÞLyνðyÞ

h i
: ð79Þ

For the Newtonian limit discussed in the main body this bounds
the diffusion in terms of the total mass of the particle

Z
dxdyhD2ðx, yÞi≥

M2

16λ
: ð80Þ

We can also arrive at a trade-off in terms of the effective New-
tonian potential sourced by the masses by taking biðxÞ= 1

j�x�xj. In this
case, we find the trade-off

8
Z

dxdy
hD2ðx, yÞi

j�x � xjj�x � yj hD0ik
Z

dx
DT

1 ðxÞ
j�x � xj

* + Z
dx

DT
1 ðxÞ

j�x � xj

* +y

ð81Þ

which for the Newtonian limit gives a trade-off between the diffusion
matrix and the effective Newtonian potential of the particle as sourced
by its expectation value

Z
dxdy

hD2,πΦπΦ
ðx, yÞi

j�x � xjj�x � yj ≥

�� R dx hm̂ðxÞi
j�x�xj

��2
16λ

=
jhΦ̂ð�xÞij2
16G2λ

, ð82Þ

where we have defined the effective Newtonian potential
as hΦ̂i= � G

R
dx hm̂ðxÞi

j�x�xj .

Newtonian limit of CQ theory
In this section we motivate the Newtonian limit of gravity used in
Section ’Physical constraints on the classicality of gravity’121. A fuller
treatment can be found in81. We begin with classical General Relativity
in the ADM formulation36. To derive theHamiltonian, we start from the
3+1 split of the four metric

ds2 = � ðNcdtÞ2 + gij dxi +Nicdt
� �

dxj +Njcdt
� �

, ð83Þ

in which case, denoting ϕm,πm as canonical variables for the
matter degrees of freedom, we can write the action for minimally

coupled matter

S=
Z

d4x πij ∂gij

∂t
+πm

∂ϕm

∂t
� NH� NiHi

� �
, ð84Þ

where we are ignoring the boundary contributions to the action. Here,

H � � c4

16πG
g1=2R +

16πG
c2

1
g1=2

gikgjlπ
ijπkl � 1

2
π2

� �� �
+HðmÞ, ð85Þ

Hi �
c3

8πG
gij∇kπ

jk +HðmÞ
i , ð86Þ

are the Hamiltonian and momentum constraints and πij is defined in
terms of the extrinsic curvature tensor of constant t surfaces, Kij, via

πij � � c3

16πG
g1=2 Kij � Kgij

� �
: ð87Þ

It is useful to note that the matter densities HðmÞ,HðmÞ
i can be

related to the matter stress-energy Tμν via

HðmÞ =
ffiffiffi
g

p
N2T00, ð88aÞ

HðmÞ
i =

ffiffiffi
g

p
NT0

i : ð88bÞ

We here take the Newtonian limit of the gravitational field to be
given by

N = 1 +
Φ

c2

� �
,Ni =0, gij = 1� 2Φ

c2

� �
δij ,π

ij = � c2

6
πΦδ

ij , ð89Þ

with Φ(x) corresponding to the Newtonian potential. The choice of
πij = � c2

6 πΦδ
ij , is to ensure that πΦ is canonically conjugate to Φ. A

more detailed derivation starts from the full weak field metric, and
gauge fixing of the shift can be found in81. Here, we find the effective
action can be written

S=
Z

d4x πΦ
∂Φ
∂t

+πm
∂ϕm

∂t
� HNewt

� �
, ð90Þ

where the Newtonian Hamiltonian is given by

HNewt =Hc +H
ðmÞ
0 +HI ð91Þ

with

Hc =
Z

d3x � 2Gπc2

3
π2
Φ +

ð∇ΦÞ2
8πG

 !
ð92Þ

the pure gravity Hamiltonian, and

HI =
Z

d3xΦðxÞmðxÞ ð93Þ

is the interaction Hamiltonian, from which we see that non-relativistic
matter couples to the Newtonian potential through its mass density
m(x). In the casewherewe have the state ofmatter being described by a
point particle δ(x−x(t)) ofmassm thepurematterHamiltonianwouldbe

HðmÞ
0 =mc2 +

δijpipj

2m
: ð94Þ
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The equations of motion for the gravitational degrees of freedom
reads

_Φ= � 4πGc2

3
πΦ, ð95Þ

_πΦ =
∇2Φ

4πG
�mðxÞ, ð96Þ

which, for πΦ = 0 yields the Newtonian solution for a stationary mass
density. In a Louivile formulation the dynamics for the density
ρ(Φ,πΦ, xi, pi) is given by

∂ρ
∂t

= fHc +H
ðmÞ
0 ,ρg � ∂iΦðxÞ ∂ρ

∂pi
+
Z

d3x mðxÞ δρ
δπΦðxÞ

, ð97Þ

where the Hamiltonian and momentum constraints tell us that
ρ(Φ,πΦ, xi, pi) should only have support over phase space degrees of
freedomwhich satisfy the constraint πΦ ρ(Φ,πΦ) = 0. From Eq. (97) we
can identify the classical drift associated to the back-reaction of the
matter on the gravitational field from the mðxÞ δρ

δπΦðxÞ term, so that

Dbr
1,πΦ

ðxÞ= �mðxÞ: ð98Þ

In the classical-quantum case, we promotem(x) to an operator m̂.
In this case Eq. (93) is the interaction Hamiltonian used in ref. 24 to
study CQ gravity. We see from Eq. (97) that in any theory whose first
moment reproduces the Newtonian back-reaction on average

Tr fHI , ϱg
� �

=
Z

d3x Tr m̂ðxÞ δρ
δπΦðxÞ

� �
ð99Þ

must have a Dbr
1,πΦ

given by

hDbr
1πΦ

ðxÞi= � hm̂ðxÞi, ð100Þ

from which the discussion at the beginning of the section “Physical
constraints on the classicality of gravity” follows.

Note that the present discussion is insensitive to the details of the
theory provided it satisfies Poisson’s equation on average. None-
theless, it’s interesting that when starting from the relativistic theories
of refs. 11,39, we find that the weak field limit resembles the models of
Tilloy and Di´osi33, which is discontinuous in Φ, rather than the con-
tinuous model of Di´osi24. This is because24 allows for non-zero con-
jugate momentum πΦwith the kinetic energy of a different sign, while
in ref. 81, themomentum is set to zero via the constraint equations and
gauge fixing of the lapse. The discontinuity then arises because we are
operating in the c→∞ limit, while in ref. 33, the discontinuity arises due
to sourcing the Newtonian potential via a weakmeasurement process.
We refer the reader to ref. 81 for details.

Weak field CQ master equations
Although the trade-off we derive does not depend on the parti-
culars of the classical–quantum theory (provided it reproduces
Newtonian gravity in the classical limit), we give two concrete
examples for completeness. In ref. 30 we show that there are two
classes of classical-quantum dynamics, one which is continuous in
phase space, and one which has discrete jumps in phase space.
We will give examples of each. Although they are the weak field
limit of Oppenheim11, it is worth stressing that taking the New-
tonian limit entails certain coordinate choices and restrictions on
the metric. For example, here, we have restricted ourselves to
metrics of the form of Eq. (89). Any gauge fixing of General
Relativity which is done before deriving the master equation, is

generally not equivalent to taking the master equations of
Oppenheim11, and then taking the appropriate limit81.

Continuous master equation
For the class of master equations with continuous back-reaction,
specifying that the first moment on average satisfies Eq. (100) is
enough (up to drift terms which vanish under trace) to ensure the
master Equation includes a term

∂ϱ
∂t

≈ fHcðΦÞ, ϱg � i½HðmÞ
0 , ϱ�+

Z
d3x m̂ðxÞ δϱ

δπΦ
+

δϱ
δπΦ

m̂ðxÞ
� �

+
Z

d3xd3y
δ2

δπΦðxÞδπΦðx0Þ ðD2ðΦ,πΦ; x, yÞϱÞ

+
1
2

Z
d3xdyD0ðΦ, x, x0Þ ½m̂ðxÞ, ½ϱ, m̂ðyÞ��� �

,

ð101Þ

where Hc is the purely classical gravity Hamiltonian. We have
taken the dynamics, i.e., the drift to be local in x, while we allow
for the decoherence and diffusion terms to have some range. In
this case, the evolution law is still local but correlations can be
created122. One can also add extra diffusion and decoherence into
Eq. (101) which we do not consider here since it only leads to
worse experimental bounds. However, adding additional diffu-
sion in Φ will generally be required in order to impose the con-
straint πΦ ≈ 081. This master equation is close to the one
considered in ref. 24, where the decoherence and diffusion ker-
nels are chosen to be the ones discussed in the second example
of Examples of Kernels saturating the decoherence diffusion
coupling constants trade-off. This is the weak field limit of the
simplest realisation in ref. 11. The case where the diffusion is
spatially uncorrelated D2ðx, yÞ= ϵðx � x0Þ a regulator which
approaches a scalar delta function corresponds to the Newtonian
limit of the diffusion term ϵðx � x0ÞfNðxÞ

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
, f

ffiffiffiffiffiffiffiffiffiffi
gðx0Þ

p
, ϱgg.

Another natural diffusion kernel is
D2ðx, yÞ= � D2ð1 +Φðx0ÞÞΔx0δðx, yÞ, which can be understood as the
Newtonian limit of the spatial diffeomorphism invariant kernel
discussed in the section “Diffeomorphism invariant kernel”.

One can supplement the kernel by some mechanism to control
the diffusion. For example, a friction term such as

F ðϱÞ=Df
1
2

R
dxdx0dyfNðxÞ

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
, f

ffiffiffiffiffiffiffiffiffiffi
gðx0Þ

p
ϵðx � x0Þ,HðyÞgϱg: ð102Þ

In the weak field limit, this would add a term proportional to

F ðϱÞ≈
Z

dxdx0
δ

δπΦðxÞ
πΦðx0Þϱ
� � ð103Þ

to the master equation of Eq. (101). Such a term would break Lorentz
invariance since it sets a temperature scale, although this is not
necessarily a deal breaker, since it is believed by many that quantum
gravity is also likely to also have an anomaly. However, the friction
term is a modification to D1(x), and if too large, could run afoul of
precision tests of General Relativity, such as the orbital decay of binary
pulsars.

Discrete master equation
An example of a discrete master equation satisfying Eq. (100) is

∂ϱ
∂t

≈ fHcðΦÞ, ϱg � i½HðmÞ
0 , ϱ�+ c2

_τ

Z
d3x

e
_τ
c2

R
dyϵðx�yÞ 1 + 2ΦðyÞ

c2

� �
δ

δπΦ ðyÞ 1� 2ΦðxÞ
c2

� �
ψðxÞϱψyðxÞ � 1

2
fmðxÞ, ϱg+

" #
,

ð104Þ

with τ a dimensionless constant, and m̂ðxÞ=ψyψ. We have here inclu-
ded ℏ and c to make it easier to compare with experiments. To
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leading order, we could drop terms proportional toΦ(x)/c2 in both the
exponential and in N

ffiffiffi
g

p
≈1� 2Φ=c2 inside the integral over x. This

gives

∂ϱ
∂t

≈ fHcðΦÞ, ϱg � i½HðmÞ
0 , ϱ�+ c2

_τ

Z
d3x e

_τ
c2

R
dyϵðx�yÞ δ

δπΦ ðyÞψðxÞϱψyðxÞ � 1
2
fmðxÞ, ϱg+

� �
:

ð105Þ

These dynamical equations are supplemented with modified
constraint equations as outlined in ref. 37. In any case, the trade-off in
Eq. (31) is a statement independent of constraints and constraint pre-
servation, at least in the weak field limit.

Examples of Kernels saturating the decoherence diffusion cou-
pling constants trade-off
In this section, we give examples of kernels satisfying the decoherence
diffusion coupling constant trade-off in Eq. (23). For any choice of
kernel, we can compute the degree of diffusion it induces in precision
mass measurements (see the section “Detecting gravitational diffu-
sion”) and decoherence experiments (see the section “Decoherence
rates”) which allows us to rule out certain kernels experimentally.
Diffeomorphism invariance may single out having both D0(x, y) and
D2(x, y) approach delta functions at short distances39, but other alter-
natives may be possible.

As a first example, we shall take the Lindbladian coupling to be
Gaussian, taking

Dαβ
0 ðx, yÞ= λαβr30

m2
0

gN ðx, yÞ ð106Þ

where gN ðx, yÞ is a normalised Gaussian distribution. The massm0 is a
reference mass, and we shall take it equal to the mass of the nucleons
which were considered in the section “Physical constraints on the
classicality of gravity”, meanwhile λαβ is a coupling constant that
determines the strength of the Lindbladian.

It should be noted that with this choice of smearing function,
the pure Lindbladian evolution appearing in Eq. (101) can be taken
to resemble the Lindbladian part of spontaneous collapse
models60,99,123–125, except here, there is no need to think about any ad-
hoc field, nor think of the collapse as being a physical process. Rather,
one necessarily gets decoherence of the wave function for free, via
gravitationally induced decoherence11,25,33,35,126

We now find the diffusion kernel D2(x, y) using the coupling
constants trade-off in (23). For simplicity, we shall assume the trade-off
is saturated, and we will take the back-reaction to be local, so that
ðDbr

1 Þμαi ðx, yÞ= ðDbr
1 Þμαi ðxÞδðx, yÞ. In this case we find

Dμν
2, ijðx, yÞ=

1
2
ðDbr

1 Þμαi ðxÞm
2
0

r30λ
g�1
N ðx, yÞðDbr*

1 Þμαi ðyÞ, ð107Þ

where g�1
N ðx, yÞ is the kernel inverse of a normalised Gaussian

distribution.
It is shown in ref. 127, that the inverse distribution takes the form

g�1
N ðx, yÞ= Fðx, yÞgN ðx, yÞ, ð108Þ

where

Fðx, yÞ=
Yd
i = 1

XN
n=0

cnðr0ÞH2n
xi � yi
r0

� �
, ð109Þ

and the limit N→∞ is taken. In Eq. (109) cnðr0Þ= ð�1Þnðr0Þ2nn!
2n and d is the

spatial dimension, so that x = (x1, x2,…, xd).

In total then,we arrive at the expression for theD2 which saturates
the bound

D2ðx, yÞ=
1
2
ðDbr

1 Þμαi ðxÞm
2
0

r30λ
Fðx, yÞgN ðx, yÞðDbr*

1 Þμαi ðyÞ: ð110Þ

If we further take the back-reaction that of the Newtonian limit in
the section “Newtonian limit of CQ theory”
ðDbr

1 Þμαi ðx, yÞ= 1
2 δ

0mδπΦ

i δðx, yÞ then we find the D2 which saturates the
bound is

D2ðx, yÞ=
1
8
m2

0

r30λ
Fðx, yÞgN ðx, yÞ: ð111Þ

Another exampleof a Lindbladian couplingwhich is familiar in the
literature is,

Dαβ
0 ðx, yÞ= Dαβ

0

jx � yj :
ð112Þ

For a single Lindblad operator, this is the coupling introduced in24

used to reproduce a CQmaster equation of gravitywith a decoherence
rate given by the Diosi–Penrose formula128–130. Here we consider the
special case where the x, y dependence of D0(x, y) is the same for all
α, β which need not hold in general. The fact that it gives the same
decoherence rate as Diosi–Penrose can be seen by plugging Eq. (112)
into the classical-quantum master equation in Eq. (101).

To invert the kernel in Eq. (112) we use the fact that

� 1
4π

∇2
x

1
jx � yj

� �
= δðx, yÞ, ð113Þ

from which one can immediately read of the generalised inverse
ðD�1

0 Þαβðx, yÞ to be

ðD�1
0 Þαβðx, yÞ=

ðD�1
0 Þαβ
4π

∇2
yðδðx, yÞÞ, ð114Þ

where ðD�1
0 Þαβ are thematrix elements of the generalised inverse ofD0.

As a consequence, we find for this specific choice of kernel that the
diffusion matrix saturating the coupling constants bound in Eq. (31) is

Dμν
2, ijðx, yÞ=

1
2
Dμα
1, i ðxÞ

ðD�1
0 Þαβ
4π

∇2
yðδðx, yÞÞDβν

1, jðyÞ, ð115Þ

where we have also assumed the back-reaction is local. Taking the
back-reaction to further be that of the Newtonian limit of Eq. (101)
ðDbr

1 Þμαi ðxÞ= 1
2 δ

0mδπΦ

i we find

D2ðx, yÞ=
1
8
ðD�1

0 Þ
4π

∇2
yðδðx, yÞÞ: ð116Þ

This diffusion kernel is argued for on the grounds of having the
fluctuations satisfy a Poisson equation, in ref. 24.

Diffeomorphism invariant kernel
Attempts to derive the constraint algebra of a generally covariant CQ
theory37 (and J. Oppenheim, “The constraints of a continuous realisa-
tion of post-quantum-classical gravity", manuscript in preparation),
motivates the spatial diffeomorphism invariant kernel

Dijkl
2 ðx, x0Þ= � 1

8
D

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
NðxÞgijgklΔx0δðx, x0Þ, ð117Þ
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where Δx is the Laplace–Beltrami operator. One can also consider the
full 3 + 1 kernel, via Δð4Þδðx, x0Þδðt, t0Þ along with the associated Green’s
function of Δ(4) but this is irrelevant for the Newtonian limit. It is
however useful in removing the apparent asymmetry in the expres-
sions below, since onemust recall that the δðx, x0Þ is a scalar in the first
coordinate and a tensor density in the second, and likewise δðt, t0Þ has
an implicit lapse Nðx0Þ in the second position. This kernel’s weak field
limit is

Dijkl
2 ðx, x0Þ= � 1

8 Dδijδkl 1 +ΦðxÞð ÞΔx0δðx, x0Þ, ð118Þ

which is close to that of Eq. (116), but with a correction term that turns
out to be important.

Using D1ðx, x0Þ= � 1
2N

ffiffiffi
g

p
δðx, x0Þ, the Lindbladian kernel in

dimension d which saturates the trade-off for this diffusion kernel is

D0, ijklðx, x0Þ= 1

2d2D

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
Nðx0ÞgijðxÞgjkðx0ÞGðx, x0Þ, ð119Þ

with Gðx, x0Þ the Green’s function for −Δ. It is a density in the x0 coor-
dinate and a scalar in x. In theweak field limit, and to 0th order inΦ(x),
this gives the Diosi–Penrose kernel, Eq. (112).

One could also consider the kernel

Dijkl
2 ðx, x0Þ= � 1

8
D

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
gijgklΔxNðxÞδðx, x0Þ, ð120Þ

which in the weak field limit is

Dijkl
2 ðx, x0Þ= � 1

8 DδijδklΔΦðxÞδðx, x0Þ: ð121Þ

A comment on divergences
The kernel examples given above give rise to divergent variance in the
classical degrees of freedom, since in both cases the diffusion coeffi-
cient diverges when evaluated at the same point D2(x, x). Though we
do not have a general proof, this seems to be a general feature of the
coupling constant trade-off: for the examples where we can compute
the kernel inverse, at least one of D2(x, x) and D0(x, x) diverge. A
divergent D2(x, x) generally leads to a formally divergent classical
energy production, whilst a divergent Lindbladian coupling D0(x, x)
can lead to a divergent energy production in the matter degrees of
freedom. The latter is related to the BPS problem98 of anomalous
heating, although it isn’t necessarily equivalent since somekernelsmay
diverge and be well-behaved from the point of view of energy pro-
duction. This is not an issue from a conceptual point of view, since the
only reason we expect energy to be conserved is due to Noether’s
theorem, and Noether’s theorem doesn’t apply when the evolution
isn’t unitary.

In the standard BPS problem, energy production in open
quantum field theory can be made small by renormalizing the
Lindbladian coefficient D0(x, y) appearing in the master equation.
Thus the problem is merely one akin to the hierarchy problem,
where we are required to introduce another energy scale. How-
ever, in the case of classical–quantum coupling, the coupling
constant trade-off tells us that we cannot re-normalise D0(x, y)
without affecting D2(x, y). In particular, tuning the diagonals
D0(x, x) to be arbitrarily small (large) has the effect of tuning
D2(x, x) to be arbitrarily (large) small: heuristically, one trades
energy production in the classical system with energy production
in the quantum system, and the relationship is fixed by the trade-
off. On expectation, the total energy could be preserved, and the
back-reaction can even slow down the flow of energy, but it’s
unclear if this is enough.

However, it is worth noting that while D2ðx, x0Þ may appear
to diverge at a single point as x ! x0, when integrated over
test functions,

R
dxdx0D2ðx, x0Þf ðxÞf ðx0Þ is usually well-behaved.

The kernels discussed above have this property. When it comes
to physically relevant quantities, such as measuring the gravita-
tional diffusion in tabletop experiments, it is the smeared well-
behaved quantity that is physically relevant. However, in cos-
mology, we typically take the constraint equation of General
Relativity to be exactly satisfied at each point, and so one
might imagine that π2

ΦðxÞ, and hence D2(x, x) is the relevant
quantity (see the discussion in the section “Detecting gravita-
tional diffusion”). However, one can set πΦ ≈ 0 via a gauge
freedom81. In GR, the counterpart to the π2

Φ kinetic term is
Gijklπ

ijπkl(x), and it’s perhaps worth noting that this quantity is not
positive definite. It is also important to note that here, we have
taken the weak field and c→ ∞ limit of General Relativity. At short
distances when the diffusion becomes large, we expect this
approximation to break down. One possible method of studying
this problem rigorously would be through the regularisation
properties of the classical-quantum path integral which we
introduce in38,39.

Decoherence rates
In this section, we relate decoherence rates to D0, and also to the
average hD0i=

R
dzTr½Dαβ

0 ðz; x, yÞLαðxÞϱLyβðyÞ�. In particular, we shall
show that the decoherence rate of a mass in superposition, is given by
Eq. (131) in terms of the Lindblad operators andDαβ

0 , and canbe related
to the quantity 〈D0〉.

We consider the case of a quantum mass initially in a partially
decohered superposition of state Lj i and Rj i. We describe the
quantum state using creation and annihilation operators
ψ(x), ψ†(x) on a Fock space, related to the usual momentum-based

Fock operators as ψðxÞ= R dpei~p�~xa~p. The mass density operator is

defined via m̂ðxÞ=mψyðxÞψðxÞ, where m is the mass of the particle.
We assume that the state remains well approximated by a state
with fixed particle number, and the superposition can be taken to
be distributions centred around x = xL and x = xR with total mass
M, i.e., for a one-particle state we could take

jL=Ri= R d3xf L=RðxÞψyðxÞj0i. We will take them to be well sepa-

rated so that fL(x)fR(x) ≈ 0, and we take the separation distance to
be larger than the scale of the non-locality in D0(x, y). Mathema-

tically this means that hLjDαβ
0 ðz; x, yÞLyβðyÞLαðxÞjRi≈0 for any local

operators Lα(x) and Lβ(y).

With this orthogonality condition, we can then (at least initially)
consider the joint quantum classical state restricted to the two-
dimensional Hilbert space of these two states so that the total
quantum-classical system can be written as

ϱðΦ,πΦ, tÞ=
uLðΦ,πΦ, tÞ αðΦ,πΦ, tÞ
α?ðΦ,πΦ, tÞ uRðΦ,πΦ, tÞ

� �
, ð122Þ

where uL(Φ,πΦ, t) and uR(Φ,πΦ, t) correspond to some subnormalised
probability distribution over the classical states of the
gravitational field.

We define the total quantum state ρQ by integrating over the
classical degrees of freedom

ρQ =
Z

DΦDπΦϱðΦ,πΦ, tÞ, ð123Þ

and we shall relate 〈D0〉 appearing in the trade-off to the
decoherence rate of the off diagonals of ρQ. Integrating over
the classical phase space in Eq. (9), one finds the following expression
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for the evolution of ρQ

∂ρQ

∂t
=
Z

DϕDπΦ � i½HðΦ,πΦÞ, ϱðΦ,πΦÞ�

+
Z

DϕDπΦ

Z
dxdy Dαβ

0 ðΦ,πΦ; x, yÞLαðxÞϱðΦ,πΦ, tÞLyβðyÞ
h

� 1
2
Dαβ
0 ðΦ,πΦ; x, yÞfLyβðyÞLαðxÞ, ϱðΦ,πΦ, tÞg

�
:

ð124Þ

In particular, one finds that the off-diagonals hLj ∂ρQ

∂t jRi evolve in
part according to the commutator, and in part due to the Lindbladian
term

Z
DϕDπΦ

Z
dxdy hLjDαβ

0 ðΦ,πΦ; x, yÞLαðxÞϱðΦ,πΦ, tÞLyβðyÞjRi
h

� 1
2
Dαβ

0 ðΦ,πΦ; x, yÞhLjfLyβðyÞLαðxÞ, ϱðΦ,πΦ, tÞgjRi
�
:

ð125Þ

Care must be taken however, because both the quantum Hamil-
tonian and the Lindbladian coupling constants depend on the classical
degrees of freedom which are affected by the quantum degrees of
freedom, and thus the evolution of the quantum system is non-
Markovian in general.

We shall now study the two terms appearing in Eq. (125) sepa-
rately, starting with the first term. Since we assume that the state is
well approximated by a state with fixed particle number then the
contributions to the first term in Eq. (125) only come from
terms where Lα(x) and Lβ(y) have the same number of creation and
annihilation operators. To compute the expression, one
commutes through the creation operators to act on the Lh j bra, and
picks up a term fL(x). Similarly, one commutes the annihilation
operators to the act on the Rj i ket, and picks up a term fR(y). As a
consequence

hLjDαβ
0 ðΦ,πΦ; x, yÞLαðxÞϱðΦ,πΦ, tÞLyβðyÞjRi∼Dαβ

0 ðΦ,πΦ; x, yÞf LðxÞf RðyÞ≈0,
ð126Þ

where the last equality follows from the fact that we are taking the
masses to be well separated and the range of D0(x, y) is assumed to be
much less than the separation between the masses.

Hence, the evolution of the off-diagonals comes from the
(off-diagonals) of the unitary evolution and the second term in Eq.
(125), the so-called no-event term. The off-diagonals of the no-event
term is

� 1
2

Z
DϕDπΦ

Z
dxdyDαβ

0 ðΦ,πΦ; x, yÞhLjfLyβðyÞLαðxÞ, ϱðΦ,πΦ, tÞgjRi,

ð127Þ

which is negative definite and acts to exponentially suppress the
coherence. To see this, note that expanding out ϱ(Φ,πΦ, t) in terms of
the approximate 2 dimensional Hilbert space

ϱðΦ,πΦ, tÞ= uLðΦ,πΦ, tÞjLihLj+uRðΦ,πΦ, tÞjRihRj
+αðΦ,πΦ, tÞjLihRj+α*ðΦ,πΦ, tÞjRihLj,

ð128Þ

and using the fact that the range of D0(x, y) is much less than the
separation between the left and right masses, we can write the off-
diagonals of the no-event term as

� 1
2

Z
DΦDπDαβ

0 ðΦ,πΦ; x, yÞ hLjLyβðyÞLαðxÞjLi+ hRjL
y
βðyÞLαðxÞjRi

� �
hLjϱðΦ,πΦÞjRi:

ð129Þ

Equation (129) already expresses the fact that the off-diagonal
termswill decay, and the particlewill decohere at a rate determined by
the integrand of Eq. (129).

We can go slightly further when in the presence of a background
Newtonian potential which is dominant, such as the Earth’s Φb. The
Earth’s background potential dominates over small fluctuations in Φ
due to the particles and we can approximate Eq. (129) by

� 1
2
Dαβ
0 ðx, yÞðhLjLyβðyÞL

y
βðyÞLαðxÞjLi+ hRjL

y
βðyÞL

y
βðyÞLαðxÞjRiÞhLjρQjRi,

ð130Þ

where the coupling Dαβ
0 ðx, yÞ depends on the background Newtonian

potential, but is otherwise phase-space independent. The result is to
exponentially decrease the coherence 〈L∣ρQ∣R〉 with a rate λ deter-
mined by

λ=
1
2

Z
dxdyDαβ

0 ðx, yÞðhLjLyβðyÞLαðxÞjLi+ hRjL
y
βðyÞLαðxÞjRiÞ: ð131Þ

Let us now show that the 〈D0〉 term appearing in the trade-off (34)
is always less than (twice) this decoherence rate when in the presence
of a background potential. Specifically, we show that

hD0i=
Z

DΦDπΦ

Z
dxdyTr Dαβ

0 ðΦ,πΦ; x, yÞLyβðyÞLαðxÞϱðΦ,πΦÞ
h i

≤ 2λ,

ð132Þ

where we assume that we are in the presence of a background
potential. To see this, we first expand out the CQ state in terms of
Eq. (128) and use the fact thatD0 has a range less than the separation of
themasses.We then arrive at the following expression for the left-hand
side of Eq. (132)

Z
DΦDπΦ

Z
dxdyDαβ

0 ðΦ,πΦ; x, yÞðhLjLyβðyÞLαðxÞjLiuLðΦ,πΦ, tÞ+ hRjLyβðyÞLαðxÞjRiuRðΦ,πΦ, tÞÞ,

ð133Þ

In the presence of a background potential, this dominates the
contribution to the decoherence and we are left with

Z
dxdyDαβ

0 ðx, yÞðhLjLyβðyÞLαðxÞjLihLjρQjLi+ hRjLyβðyÞLαðxÞjRihRjρQjRiÞ:

ð134Þ

Due to the positivity of theCQdensitymatrix 〈L∣ρQ∣L〉 and 〈R∣ρQ∣R〉
must both be positive. Furthermore, they must sum to one due to
normalisation, from which Eq. (131) directly follows.

It is also important to note that though λ is the decoherence rate
of a particle in superposition of L/R states, the bound (132) holds even
for fully decohered masses in any mixture of Lj i Lh j, Rj i Rh j states. This
can be seen directly from (133) which depends only on uL, uR.

Decoherence rate examples
In this section, we give an explicit example of a decoherence rate
calculation. Importantly, we see that in general, the decoherence rate
can depend on the probability density. This suggests that the terms
appearing in the trade-off relation will need to depend on expectation
values such as the expectation value of the mass at a point x, rather
than a stronger bound in terms of themass density. This is perhaps not
surprising, since the decoherence rate itself can be thought of as an
expectation value, being related to the average time it takes for off-
diagonal elements to decay. In conclusion, this motivates us to
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advocate for the volumeof thewavepacket to be included in thefigure
of merit in future interference experiments.

We take the Newtonian limitmaster equation defined by Eq. (101).
We ignore the unitary part of the evolution, since it will not directly
contribute to the decoherence rate, and can be small for a free particle
in superposition. From Eq. (101) we find the relevant evolution for the
quantum state ρQ, obtained by integrating over the classical degrees of
freedom to be

∂ρQ

∂t
=
1
2

Z
d3xd3yD0ðx, yÞ ½m̂ðxÞ, ½ρQ, m̂ðyÞ��� �

: ð135Þ

We now compute the off-diagonal elements for a particle in
superposition of orthogonal Lj i, Rj i states

L
∂ρQ

∂t

����
����R

	 

= �

Z
d3xd3yD0ðx, yÞ ðmLðxÞ �mRðxÞÞðmLðyÞ �mRðyÞÞhLjρQjRi:

ð136Þ

where mLðxÞ≈ hLjm̂ðxÞjLi and similarly for the right state. We see that
the off-diagonals decay exponentially with a rate determined by

λ=
Z

d3xd3yD0ðx, yÞðmLðxÞ �mRðxÞÞðmLðyÞ �mRðyÞÞ: ð137Þ

In the main body, and the previous subsection, we have assumed
that the superposition of the particle ismuch less than the typical scale
of D0(x, y). In this example, this means that we take the particles suf-
ficiently separated so that we can approximate D0(x, y)mL(x)mR(y) ≈0,
in which case Eq. (137) is precisely the decoherence rate calculated in
Eq. (131) with LðxÞ= m̂ðxÞ, as is to be expected.

The natural decoherence kernel from the point of view of dif-
feomorphism invariance is D0(x, y) =D0δ(x, y), in which case for a
particle of massM, and uniform wave-packet volume V, Eq. (137) gives
λ = 2D0M2/V.

As another example, we can takeD0ðx, x0Þ to be theDiosi–Penrose
decoherence kernel defined via D0ðx, yÞ= D0

jx�yj, so that the off-
diagonals decay exponentially with a rate proportional to the
Diosi–Penrose decoherence rate

λ=
Z

d3xd3y
D0

jx � yj ðmLðxÞ �mRðxÞÞðmLðyÞ �mRðyÞÞ: ð138Þ

In this example, taking the superposition to be sufficiently sepa-
rated means that we are approximating D0

jxL�xRj ≈0 in comparison with
the rest of the terms appearing in Eq. (138). We are then left with

λ=
Z

d3xd3y
D0

jx � yj ðmLðxÞmLðyÞ+mRðxÞmRðyÞÞ, ð139Þ

which for spherical distributions of radius R and total mass M is pro-
portional to the average gravitational self-energy of each mass
distribution λ= 6D0M

2

5R .
For a composite particle of mass M, made up of N constituents

each of radius R, themass density will be represented by a sumover all
of the particles m(x) =∑imi(x). The decoherence rate is given by

λ=
Z

d3xd3y
D0

jx � yj
X
i, j

mL, iðxÞmL, jðyÞ+
X
i, j

mR, iðxÞmR, jðyÞ
 !

:

ð140Þ

Since the cross terms involving i, j are suppressed by a factor of
inter-atomic scales, to leading order the contribution to the deco-
herence rate is lower boundedby the i = j component of the sums inEq.

(140), which gives an extra factor of N relative to the single particle
case λ= 6D0NM

2

5R .
Both Eqs. (138) and (139) depend on the probability density of the

mass. In particular, taking the probability density to be arbitrarily
peaked, one finds that the decoherence rate also diverges. This has to
be the case: recall from the section “A Trade-off between decoherence
and diffusion” that if one considers a particle in a superposition of two
arbitrarily peaked probability densities, then there can be an arbitrarily
large response in the Newtonian potential around those points. As a
consequence, for such states, the decoherence must occur arbitrarily
fast, or there must be an arbitrarily large amount of diffusion to cover
up the back-reaction and maintain coherence. For the continuous
master equation, such as that of Eq. (101) this diffusionmust also occur
throughout space, although it can dependon the gravitational degrees
of freedom. Since divergent energy production throughout space is
clearly unphysical, it must be the case that the decoherence rate must
also depend on the expected mass density, as is the case for this
example. This argument allows us to rule out continuous master
equations that have pure Lindbladian terms that predict decoherence
rates which remain finite as the mass density becomes arbitrarily
peaked since the coupling constant trade-off will demand that an
infinite amount of diffusion is required to cover up the back-reaction
and maintain coherence. This is the case for the class of models with
CSL-type Lindbladian couplings which are phase space independent,
for example in Eq. (106).

Detecting gravitational diffusion
In this section, we show how the diffusion induced on the Newtonian
potential can be measured experimentally. metric leads to observable
effects, such as variations in the accelerations involved in torsion
experiments and stochastic wave production in cosmology. As shown
in the main body of the text, in the non-relativistic limit, c→∞, the CQ
dynamics can be approximated by sourcing the Newtonian potential
by a randommass term, and in order tomaintain the coherence of any
mass is superposition, there must be noise in the Newtonian potential
such that we cannot tell which element of the superposition the par-
ticle will be in

∇2Φ=4πG½mðx, tÞ+uðΦ, m̂Þ Jðx, tÞ�, ð141Þ

with

Em½ Jðx, tÞ�=0,Em½uJðx, tÞuJðy, t0Þ�=2hD2ðx, y,ΦÞiδðt, t0Þ, ð142Þ

where hD2ðx, y,ΦÞi :¼ Tr½Dμν
2 ðx, y,ΦbÞLμðxÞρLyνðyÞ� and ρ is the quan-

tum state for the decohered mass density. The diffusion coefficient in
Eq. (142) is chosen in order for the dynamics to have the same
moments as the CQ master equation (4). The solution to Eq. (141),
having absorbed u into J is given by

Φðt, xÞ= � G
Z

d3x0
½mðx0, tÞ � uðΦ, m̂ÞJðx0, tÞ�

jx � x0j , ð143Þ

where the statistics of J are described by Eq. (142). A formal treatment
of solutions to non-linear stochastic integrals of the form Eq. (141) can
be found in ref. 82.

One can also verify this behaviour in specific cases. In the con-
tinuous model of the section “Continuous master equation”, the noise
is taken to be Gaussian, and this, as well as the evolution of the
quantum state, is what determines the diffusion in Eq. (143). For the
class of discrete models, the higher order moments such as
Em½Jðx, tÞJðy, t0ÞJðz, t00Þ� are suppressed by an order parameter11,26,37 and
whenever this is true we expect we can approximate the dynamics of
the Newtonian potential by a Gaussian process. Whether this is the
case or not, it is the second-order moment that enters into our
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discussion of the variance here. As such, for minimally coupled the-
ories, the Newtonian potential will appear to be sourced by a random
mass distribution.

In the discrete case, a precise understanding of the effects of the
diffusion beyond the Gaussian approximation involves solving the full
classical-quantum dynamics, perhaps using the methods of Oppen-
heim et al.26. In Eq. (141) we are also taking the time scale of the dif-
fusion to be faster than the dynamics of the matter distribution.
Likewise for thedecoherence—we showed in the “Methods” subsection
“Decoherence rates” for continuous models the evolution of the
quantum state acts to decohere it into a mass density eigenbasism(x).
One could of course also include the quantum state evolution in a
simulation of full CQ dynamics, but this is beyond the scope of the
current work.

Note that if the moments of the noise process are Galilean
invariant, then the theory given by Eq. (141) is Galilean invariant as we
would expect in the Newtonian limit. One can further derive Eq. (141)
from manifestly diffeomorphism invariant theories81, such as those of
refs. 39,131.

Table-top experiments
In this section we estimate the variation in force which would be seen
in table-top experiments which bounds the diffusion of classical the-
ories of gravity from above, giving a squeezed bound on D2 due to
lower bounds on diffusion arising from coherence experiments.We do
this for dynamics in Eq. (141), but the methodology is general and
could also be used in a full simulation of CQ dynamics.

The variation in force induced on a composite mass is found via

F
!

tot = �
Z

d3xmðxÞ∇Φ: ð144Þ

Using the solution in Eq. (143), the total force can be written

F
!

tot = � G
Z

d3xd3x0mðxÞ ð x
!� x!0Þ
jx � x0j3 ½mðx0, tÞ � Jðx0, tÞ�: ð145Þ

In reality, we measure time-averaged force by measuring time-
averaged accelerations over the time resolution of the experiment
ΔT 1

ΔT

R ΔT
0 dtF tot. The total variation in the force’s time-averaged mag-

nitude. The full covariancematrix for various kernels in the Newtonian
limit is given in (J. Oppenheim and A. Russo, manuscript in prepara-
tion), σ2

F :¼ F
!

tot � F
!

tot can be written as

σ2
F =

1
ΔT

2G2
Z

d3xd3yd3x0d3y0mðxÞmðyÞ ð x
!� x!0Þ � ð y!� y!0Þ
jx � x0j3jy� y0j3 hD2ðx0, y0,ΦÞi:

ð146Þ

We shall use Eq. (146) to provide an upper bound on coupling
constants of CQ theories for different choices of kernels D2ðx0, y0,ΦÞ.
Given a choice of functional form of the kernel, all that remains is the
strength of the diffusion coupling, which for the translation invariant
kernels we consider here takes the form of a single coupling constant
D2.We takeD2 to be a dimension-full quantitywith units kg2 sm−3 which
characterises the rate of diffusion for the conjugate momenta of the
Newtonian potential.

For a composite mass, we can approximate the mass density by
summing overN individual atomsofmass densitymi(x),m(x) =∑imi(x).
The total force is the given by F

!
tot =

P
i F
!

i, where F
!

i is the force on
each individual atom F

!
i = � R VdxmiðxÞ∇ΦðxÞ, and the total variation

of force is then σ2
F =E½PijFiFj � �E½PiFi�2.

In general, the squeeze will depend on the functional choice of
D2(x, y,Φ) on theNewtonian potential. Asmentioned in themainbody,
in the presence of a large background potentialΦb, such as that of the
Earth’s, we will often be able to approximate D2(x, y,Φ) =D2(x, y,Φb).

This is true for the kernels with functional dependence of the form
D2 ~Φ

n,D2 ~∇Φ, though the approximation does not hold for all ker-
nels, for example, D2 ~∇

2Φ which creates diffusion only where there is
the mass density. We hereby shall only consider diffusion kernels
D2(x, y,Φb) where the background potential is dominant, leavingmore
general considerations for future work.

For local translation invariant dynamics forwhich the background
Newtonian potential is dominant, for example, D2 ~Φ

n, we have
〈D2(x, y,Φb)〉 = 〈D2(Φb)〉δ(x, y) and we arrive at the expression for the
total variation in time-averaged force

σ2
F =

2G2

ΔT

X
ij

Z
d3xd3yd3x0miðxÞmjðyÞ

ð x!� x!0Þ � ð y!� x!0Þ
jx � x0j3jy� x0j3 hD2ðx0,ΦbÞi:

ð147Þ

To leading order, the integral in Eq. (147) is dominated by the self
variation term where i = j, since nuclear scales 10−15m dominate over
inter-atomic scales 10−9 m, so that E½PijF iFj�∼

P
iE½F2

i �. Approximat-
ing the mass density of the atoms as coming from their nucleus, and
taking them tobe spheresof constant density ρwith radius rN andmass
mN, we find that the integral in Eq. (147) is approximately

σ2
F ∼

NG2ρ2r2N
ΔT

Z
d3x0hD2ðΦbÞi: ð148Þ

For the class of continuous dynamics 〈D2(Φb)〉 =D2(Φb), since the
diffusion is not associatedwith any Lindblad operators. If there is noise
everywhere throughout space, then the integral in Eq. (148) diverges
and gives evidence that continuous CQ theories with noise everywhere
should be ruled out.

As such, we expect that continuous CQ theory must contain non-
linear terms proportional to the Newtonian potential appearing in Eq.
(141), in which case we can approximate

R
dx0D2 by VbD2 where Vb is

the volume of the region over which the background Newtonian
potential is significant. In total then, we find for continuous local CQ
dynamics

σ2
F ∼

D2NG
2ρ2r2NVb

ΔT
: ð149Þ

From this, we can calculateD2 in terms of the total variance of the
acceleration σ2

a =
σ2
F

m2
tot
to get a lower bound

D2 ≤
σ2
aNr

4
NΔT

VbG
2 : ð150Þ

Standard Cavendish type classical torsion experiments measure
accelerations of the order 10−7 m s−2, and we can take the time over
which the acceleration is averaged to be that of minutes ΔT ~ 102 s, so a
very conservative bound is σa ~ 10

−7 m s−2, whilst N will be N ~ 1026 and
rN ~ 10−15m. We take the background Newtonian potential to be that of
the Earth and we (conservatively) take Vb to be Vb ∼ r2Eh∼ 1015 m3

where rE is the Earth’s radius and h is the atmospheric height. We see
that this bounds D2 from above by D2 ≤ 10−41 kg2 sm−3.

On the other hand,D2 is bounded from below from interferometry
experiments which bound the decoherence rate. From Eq. (137) and the
coupling constant trade-off, for the kernel D2(x, y) =D2δ(x, y) we see
(ignoring constant factors) that the decoherence rate is found to be

λ∼
NλM

2
λ

V λD2
, ð151Þ

where Mλ is the mass of a composite particle in the interferometry
experiment, which ismadeupofNλparticles, eachwith volumeVλ. This
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gives rise to the squeeze

σ2
aNr

4
NΔT

VbG
2 ≥D2 ≥

NλM
2
λ

V λλ
: ð152Þ

Using the numbers from ref. 59, with Mλ ~ 10
−24 kg,Nλ ~ 10

3, and
Vλ ~ 10

−1510−1510−7 m3 = 10−37 m3, λ ~ 101 s−1 we find that D2 ≥ 10−9 kg2 sm−3.
This suggests that the D2(x, y) =D2δ(x, y) kernel for classical gravity is
already ruled out by experiment.

For the local discrete models, such as that of Eq. (104), the theory
is less constrained due to the dependence of the diffusion on themass
density. In this case hD2ðΦbÞi= l3P

mP
D2ðΦbÞmðxÞ, where the factors of

Planck length and Planck mass are to ensure that D2(Φb) has the
required units. We arrive at the upper bound for D2

σ2
aNr

4
NΔTmP

mNG
2l3P

≥D2: ð153Þ

Meanwhile, from Eq. (131), and coupling constant trade-off (30)
the decoherence rate for local discreet jumping models goes as

λ∼ MλmP

l3PD2
, which gives rise to the lower bound for D2. From this, we

arrive at the squeeze

σ2
aNr

4
NΔT

mNG
2 ≥

l3PD2

mP
≥
Mλ

λ
, ð154Þ

andplugging in the numberswefind the boundgivenby Eq. (46)which
gives rise to the squeeze for local discrete mod-
els 10�1 kgs≥ l3P

mP
D2 ≥ 10

�25 kgs.
We can also consider other diffusion kernels, for example, that of

Eq. (118). In this case, for continuous dynamics, we have that
hD2ðx, yÞi = � l2PD2ðΦbÞ∇2δðx, yÞ. The Lindbladian kernel saturating the
coupling constants trade-off at zeroeth order in Φ(x), is the
Diosi–Penrose kernel D0ðx, y,ΦbÞ= D0ðΦbÞ

jx�yj , as we saw in the section
“Examples of Kernels saturating the decoherence diffusion coupling
constants trade-off”. Approximating themasses as spheres of constant
density we find from a substitution of the kernel into Eq. (146) that the
variation in time-averaged force is given by

σ2
F ∼

l2PG
2m2

NND2

ΔTr3N
: ð155Þ

We therefore find a lower bound forD2 in terms of the variation in
acceleration

D2 ≤
ΔTl2Pσ

2
aNr

3
N

G2 , ð156Þ

which for classical torsion experiments σa ~ 10
−7 m s−2, T ~ 102 s,N ~ 1026

and rN ~ 10−15 m gives D2l
2
p ≤ 10

�9kgm�1. On the other hand, for this
kernel the decoherence rate can be calculated via Eq. (139)

λ∼
NM2

λ

l2PD2Rλ

, ð157Þ

which gives the squeeze on D2

ΔTσ2
aNr

3
N

G2 ≥ l2PD2 ≥
NλM

2
λ

Rλλ
: ð158Þ

For the numbers used in the main body of the
text59Mλ ~ 10

−24 kg,Nλ ~ 10
3,Rλ ~V1/3 = 10−12 m, λ ~ 101 s, this yields

D2l
2
P ≥ 10

�35 kgm�1 and so this model is not ruled out by experiment.

In general then, we expect that by simulating full CQ dynamics
satisfying the decoherence diffusion trade-off we will be able to
squeeze D2 from above and below. We bound D2 from above by
studying the effects of diffusion on gravitational experiments, and we
bound D2 from below using the coupling constant trade-off and
coherence experiments lower bounding the decoherence rate. As we
have seen in this section, it appears that classes of continuous CQ
hybrid theories of gravity, including models without spatial correla-
tions, are already experimentally ruled out, whilst others, such as the
kernels in subsection “Diffeomorphism invariant kernel” require
stronger bounds from both gravitational and coherence experiments.
We have been very conservative in our estimates, and so we expect a
more thourough analysis will tighten the bounds by orders of
magnitute.
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