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SUMMARY
Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In
some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow.
We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering lon-
gitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing,
and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endo-
thelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing
pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for
type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving
diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of
restrictive granulomas andweremore capable of killingMtb. Our results define the complexmulticellular eco-
systems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to
develop new vaccine and therapeutic strategies for TB.
Immunity 55, 827–846, May 10, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 827
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INTRODUCTION

Tuberculosis (TB), caused byMycobacterium tuberculosis (Mtb),

remains a major global health threat (WHO, 2019). Mtb infection

is characterized by the formation of granulomas predominantly

in the lungs and lymph nodes (Flynn and Klein, 2011; Lin et al.,

2014b; Russell et al., 2010; Ulrichs and Kaufmann, 2006). These

spatially organized structures, composed of amixture of immune

and non-immune cells (Ehlers and Schaible, 2013; Flynn and

Klein, 2011; Gideon et al., 2019; Lin et al., 2006; Mattila et al.,

2013; Pagan andRamakrishnan, 2014; Phuah et al., 2012; Reece

and Kaufmann, 2012; Ulrichs and Kaufmann, 2006), are key sites

of host-pathogen interactions that can either restrict or facilitate

bacterial survival. Delineating protective responses in humans

has been challenging given the limited accessibility of affected

lung tissue and difficulty determining the true extent of bacterial

control. The cynomolgus macaque model of Mtb infection reca-

pitulates the diversity of human outcomes and granuloma

pathologies and enables detailed studies of the features of

immunologic success and failure in Mtb granulomas (Canetti,

1955; Flynn and Klein, 2011; Lin et al., 2006).

A spectrum of granuloma types, organization, and cellular

composition has been described in both humans and non-hu-

man primates (NHPs) (Canetti, 1955; Flynn and Klein, 2011;

Hunter, 2011, 2016; Lin et al., 2006). The bacterial burden in in-

dividual granulomas is highest early in infection and then de-

creases due to increased bacterial killing as the immune

response matures, even in macaques that ultimately develop

active TB (Cadena et al., 2016; Lin et al., 2014b; Maiello et al.,

2018). Strikingly, however, individual granulomas within a single

host follow independent trajectories with respect to inflamma-

tion, cellular composition, reactivation risk, and ability to kill

Mtb (Coleman et al., 2014b; Gideon et al., 2015; Lenaerts

et al., 2015; Lin et al., 2013, 2014b; Malherbe et al., 2016; Martin

et al., 2017). We and others have profiled immune responses

among individual cell types in macaque lung granulomas,

including those of T cells (Diedrich et al., 2020; Foreman et al.,

2016; Gideon et al., 2015; Lin et al., 2012; Mattila et al., 2011;

Wong et al., 2018), macrophages (Mattila et al., 2013), B cells

(Phuah et al., 2012, 2016), and neutrophils (Gideon et al., 2019;

Mattila et al., 2015) and have also examined the instructive roles

of cytokines, including interferon (IFN)-g, interleukin (IL)-2, tumor

necrosis factor (TNF), IL-17, and IL-10 (Gideon et al., 2015; Lin

et al., 2010; Wong et al., 2020). Although these analyses have

led to insights into how specific canonical cell types and effector

molecules relate to bacterial burden, they have not yet revealed

how the integrated actions of diverse cell types within individual

granulomas influence control.

High-throughput single-cell genomic profiling methods afford

new opportunities to define the cell types, phenotypic states,

and intercellular circuits that comprise granulomas and inform

their dynamics (Prakadan et al., 2017). Here, we developed and

applied a multifactorial profiling pipeline—integrating longitudi-

nal positron emission tomography and computed tomography

(PET-CT) imaging, single-cell RNA sequencing (scRNA-seq),

and molecular measures of bacterial killing with immunohisto-

chemistry and flow cytometry—to identify features of TB lung

granulomas that correlatewithbacterial clearance in cynomolgus

macaques. We defined the cellular compositions and cell-cell
828 Immunity 55, 827–846, May 10, 2022
signaling networks associated with bacterial persistence or con-

trol. Collectively, our data define the cellular ecosystems within

TB lung granulomas in which Mtb is controlled or alternatively

survives andmultiplies, uncovering therapeutic and prophylactic

targets for future investigation.

RESULTS

Profiling longitudinal TB granuloma dynamics, bacterial
burden, and bacterial killing
We sought to define the complex cellular ecosystems of granu-

lomas that manifest different degrees of bacterial control in

NHPs. Four cynomolgus macaques were infected with a low

dose of Mtb (<10 CFU; Erdman strain) and followed for 10 weeks

(Figure 1A). Tenweeks post-infection (p.i.) was chosen as a pivotal

time point at which bacterial killing could be identified in some but

not all granulomas during the course of immune activation and

mobilization, even in macaques that would eventually progress

to active TB (Figures S1A–S1C). Progression of Mtb infection

and individual granuloma dynamics were monitored at 4, 8, and

10 weeks p.i. by using PET-CT imaging of FDG avidity as a proxy

for inflammation (Figures S1D and S1E; Table S1) (Coleman et al.,

2014b; White et al., 2017). At necropsy, individual PET-CT identi-

fied lung granulomas were excised and dissociated to obtain a

single-cell suspension; viable bacterial burden (CFU, colony form-

ing units—i.e., culturable live bacterial burden) and cumulative

(live + dead) bacterial load (chromosomal equivalents, CEQ)

were measured to define the extent of bacterial growth and killing

in each granuloma (Lin et al., 2014b; Munoz-Elias et al., 2005).

Twenty-six granulomas from four animals were randomly

selected at the time of necropsy 10 weeks p.i. for scRNA-seq

analysis. Among them, there was a range of granuloma-level

bacterial burdens, from sterile (0 CFU/granuloma) to high (4.6

log10 CFU/granuloma) (Figures 1B and 1C; Table S1). We binned

the granulomas by bacterial burden (low, n = 13; high, n = 13).

There was a significant difference in CFU between low and

high CFU granulomas (median 2.2 [low] vs 3.6 [high] log10
CFU/granuloma, p < 0.0001, Mann-Whitney U [MWU] test) (Fig-

ure 1C). To determine whether low CFU reflected reduced bac-

terial growth or increased bacterial killing, we assessed the total

number of bacterial genomes (CEQ), because we have previ-

ously shown that the genomes of dead bacteria are not readily

cleared and that CEQ provides a measure of cumulative bacte-

rial load (Munoz-Elias et al., 2005). There was not a significant

difference in CEQ values between low- and high-burden granu-

lomas, although there was a trend toward higher CEQ in high-

burden lesions (Figure 1D). However, the extent of bacterial

killing, calculated as the ratio of CFU to CEQ, was significantly

higher in the low-bacterial-burden granulomas (p = 0.03, MWU

test) (Figure 1E), indicating that the lower CFU largely reflected

greater killing rather than more limited bacterial growth.

We then sought to identify granuloma features correlated with

the degree of bacterial control. Post hoc analysis of serial PET-

CT imaging data revealed a strong association between the

apparent timing of lesion formation and the extent of bacterial

control. All high-bacterial-burden granulomas were detected at

the four-week scan, whereas most (11/13) low-bacterial-burden

granulomas were first detected at the final pre-necropsy scan

(10 weeks) (Figures 1F, 1G, and S1E). Consistent with these
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Figure 1. Characteristics of animals over the course of Mtb infection and granuloma bacterial burden

(A) Study design: cynomolgus macaques (n = 4) were infected with a low-dose inoculum of Mtb (Erdman strain), and serial PET-CT scans were performed at four,

eight, and 10 weeks post-infection (p.i.), with the final scan used as a map for lesion identification at necropsy.

(B) Distribution of CFU per granuloma sampled for Seq-Well assay for each animal.

(C and G) CFU log10 per granuloma (total live bacteria). Box plot showing median, interquartile range, and range with MWU.

(D and H) CEQ log10 per granuloma (live + dead Mtb) organized by time of detection. Box plot showing median, interquartile range, and range with MWU.

(E and I) Ratio between CFU (viable bacteria) and CEQ (total bacterial burden)—i.e., relative bacterial survival. Box plot showing median, interquartile range, and

range with MWU. Lower ratio (negative values) corresponds to increased killing, and higher ratio corresponds to increased Mtb survival.

(C–E) Organized by bacterial burden: low, green; high, orange.

(F) Individual granuloma bacterial burden (log10 CFU) plotted with time of detection by PET-CT scans: four weeks p.i. (early) or 10 weeks p.i. (late).

(F–I) Time of detection by PET-CT scan (Table S1): early granulomas (maroon), late granulomas (blue).

(J) Histological evaluation of necrosis across early-arising and late-arising granulomas at 10–12 weeks post-infection (n = 87 granulomas across 16 macaques).

See also Figures S1, S3, and S6; Table S1.

ll
OPEN ACCESSArticle

Immunity 55, 827–846, May 10, 2022 829



A

C

B

Figure 2. Analysis of scRNA-seq of tuberculosis lung granulomas

(A) Uniform manifold approximation and projection (UMAP) plot of 109,584 cells from 26 granulomas colored by identities of 13 generic cell types.

(B) Expression levels of cluster-defining genes. Color intensity corresponds to the level of gene expression, whereas the size of dots represents the percent of

cells with non-zero expression in each cluster.

(C) Significant correlations between proportion of canonical cell types with bacterial burden of individual granulomas (log10 CFU per granuloma) using non-

parametric Spearman’s rho correlation test with Benjamini-Hochberg multiple testing correction. Color indicates binned granuloma bacterial burden.

See also Figures S2, S3, and S5; Table S2.
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data, we further evaluated bacterial burden between early- and

late-appearing granulomas in 10 additional animals at 10 weeks

p.i (Figures S1F and S1G) and again found that the median CFU/

granuloma per animal was significantly lower in late granulomas

than in early ones (p < 0.0001, Student’s t test). We considered

themodel that late lesions have lower CFU because the bacterial

population had simply not had sufficient time to expand. Howev-

er, the CFU/CEQ analysis was most consistent with greater bac-

terial killing in late-appearing granulomas (�2.1 log10 CFU/CEQ

per granuloma) as compared to that in early-appearing ones

(�1.2 log10 CFU/CEQ per granuloma, p = 0.01, MWU test)

(Figure 1I).

Late-appearing granulomas could be due to differences in

the timing of lesion formation, most likely due to a dissemina-

tion event from an early granuloma, such that granuloma

development occurs in the context of an activated immune

response, which we have previously shown to confer signifi-

cant protection against reinfection (Cadena et al., 2018).

Alternatively, we considered the possibility that differences
830 Immunity 55, 827–846, May 10, 2022
in inflammatory-response characteristics, and specifically

the extent of necrosis, might make some granulomas both

detectable by PET-CT before others and associated with

higher bacterial burdens. Therefore, we reviewed the histopa-

thology from 87 historical granuloma samples from 16 cyno-

molgus macaques at 10–12 weeks p.i. but found no associa-

tion between necrosis and time of granuloma detection (p =

0.72, Fisher exact test; Figure 1J), suggesting that bacterial

control in early and late granulomas is a result of more com-

plex factors than necrosis alone.

Cellular composition of TB lung granulomas
We next sought to identify cellular and molecular factors associ-

ated with increased Mtb killing in an unbiased fashion through

scRNA-seq (STAR Methods) (Gierahn et al., 2017; Macosko

et al., 2015; Young and Behjati, 2018; Lun et al., 2019; McGinnis

et al., 2019; Wolf et al., 2019). Among the 10-week granulomas,

we analyzed 109,584 cells, resolving 13 general cell types

(Figures 2A, 2B, and S2A–S2G; Table S2; STAR Methods)
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(Tabula Muris Consortium et al., 2018; Han et al., 2018; Liberzon

et al., 2011; Lopez et al., 2017; Varemo et al., 2013; Guo et al.,

2018; Zilionis et al., 2019). These encompass groups of lympho-

cytes, including B cells, T and NK cells (T/NK), and plasma cells;

myeloid cells, including conventional dendritic cells (cDCs), plas-

macytoid dendritic cells (pDCs), and macrophages; mast cells;

neutrophils; erythroid cells; stromal cells, including endothelial

cells and fibroblasts; type 1 pneumocytes; and type 2 pneumo-

cytes (Figures 2A, 2B, and S2G; Table S2). For each of these

13 cell types, we also performed further within cell-type sub-

clustering; in these analyses, we only detected substructure

among the T/NK and macrophage clusters (detailed below,

STAR Methods).

Cell types associated with timing of granuloma
formation and control
To investigate the relationship between cell type composition

and bacterial burden, we quantified the correlation between

cellular frequency and CFU across all granulomas. Our data re-

vealed multiple cell types that were significantly enriched in

high-burden (early-appearing) granulomas, including plasma

cells (relative cell abundance vs CFU, q = 0.00021, non-para-

metric Spearman’s rho correlation test with Benjamini-Hochberg

multiple testing correction), mast cells (q = 0.016), endothelial

cells (q = 0.0087), and fibroblasts (q = 0.036) (Figure 2C;

Table S3). By contrast, T/NK cells were more abundant in

low-burden (late-appearing) granulomas (q = 0.023) (Figure 2C;

Table S3). Cynomolgus macaques are variable in their infection

outcomes (Figure 1B), so to control for inter-subject variability,

each of the cellular associations between granuloma dynamics

and bacterial control was examined both (1) across all animals

and lesions and (2) through a directed analysis of the granulomas

from a single NHP host (4017) (Figure S2H). We found similar

trends in bulk RNA-sequencing data of 12 additional granulomas

(six high-CFU [early] and six low-CFU [late] granulomas) from

separate macaques (Figure S3A) (Newman et al., 2015). To ac-

count for compositional dependencies between the cell types

comprising each granuloma, we also conducted a multivariate

Dirichlet regression analysis, which explicitly considers how

shifts in the abundance of one cell type affect the relative propor-

tions of the others present (Smillie et al., 2019). In this framework,

T/NK cells were also significantly associatedwith low burden (Di-

richlet p = 3.3 3 10�5), and mast cells and plasma cells signifi-

cantly associated with high burden (Dirichlet p = 0.025 & p =

0.021, respectively). We chose to prioritize cell types for further

investigation based on concordance across statistical testing

frameworks.

High-bacterial-burden granulomas are characterized by
fibrosis and type 2 immune features
To validate our mast cell observations, we performed immuno-

histochemistry on NHP and human granuloma sections by using

tryptase and C-kit/CD117 markers (Figures S3B–S3E) (Schinde-

lin et al., 2012). This revealed the presence of mast cells within

both NHP and human granulomas and that they primarily localize

to the outer regions of NHP granulomas, including the lympho-

cyte cuff (Figure S3D) and could be found within and around hu-

man granulomas (Figure S3E) (Garcia-Rodriguez et al., 2017). In

our data, mast cells were distinguished by their expression of IL4
and IL13 (Figure S3B), which we also recently observed in a

study of human nasal polyposis, a type 2 inflammatory disease

associated with far-reaching epithelial remodeling (Ordovas-

Montanes et al., 2018). This association between mast cells

and fibrosis is further supported by a study on the spatial struc-

ture of human TB granulomas, which found a class of local

signaling neighborhoods characterized by elevated proportions

of mast and endothelial cells and speculated about an associa-

tion with tissue repair (McCaffrey et al., 2022). Mast cells were

also marked by expression of ALOX5A and ALOX5AP, which

encode the system to synthesize the anti-inflammatory lipoxin

LXA4; the balance between LXA4 and the pro-inflammatory lip-

oxin LTB4 has been strongly implicated in the progression of

TB disease in humans (Tobin et al., 2010, 2012).

Plasma cells were also abundant in high-burden lesions,

consistent with previous findings (Jacobs et al., 2016; Phuah

et al., 2012). Recruitment of mast cells can be characteristic of

allergic type 2 immune responses mediated by IgE (Kanagarat-

ham et al., 2020), but mast cell function is also regulated by

IgG, which is muchmore abundant in the circulation and tissues.

Among the plasma cells in our scRNA-seq dataset, the vast ma-

jority expressed either IGHG or IGHA (Collins and Jackson, 2013)

constant chains (Figures S3B and S3C), suggesting that IgG and

IgA were the dominant antibody classes. Taken together, these

data suggested that granulomas with failed bacterial clearance

are characterized by a type 2 immune environment, but the anti-

body features were not consistent with a canonical allergic

response.

T and NK functional subclusters as mediators of
protection
Of the 13 broad cell types, only the T/NK cell subcluster was

associated with more robust bacterial control in granulomas

(q = 0.023; Dirichlet p = 3.3 3 10�5; Figure 2C). Previously, we

showed that �90% of T cells in granulomas are tissue localized,

with only�10% immigrating to the tissue from blood over a 24-h

period; �95% of the tissue-localized cells exhibit a tissue-resi-

dent memory phenotype (Potter et al., 2021). To further assess

functional diversity within the T and NK cell cluster and associa-

tion with bacterial burden, we performed additional sub-clus-

tering analyses. This revealed 13 T/NK cell subclusters which

we annotated based upon expression of the following: lineage-

defining markers; known cytotoxic, regulatory, and proliferation

genes (Figures 3A–3C and S4; Table S4); and TCR constant

gene (TRAC, TRBC, and TRDC) expression (Figure 3B). The pro-

cess of annotation revealed that most subclusters did not corre-

spond neatly to canonical T and NK cell subsets, consistent with

recent studies in other systems (Rath et al., 2020). Accordingly,

we annotated each subset based on distinguishing functional

patterns of gene expression by using known T cell markers

and literature-derived genes of interest where possible, as

opposed to ontological classification based on pre-structured

developmental relationships. These genes were parts of broader

transcriptional signatures that appeared to reflect dominant

cellular response states superimposed on cell-lineage-associ-

ated gene-expression programs. Among the 13 T/NK cell sub-

clusters, two were significantly negatively associated with bac-

terial burden (with another four trending toward significance

with q<0.1) (Figure 3D; Table S3).
Immunity 55, 827–846, May 10, 2022 831
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Figure 3. Diversity in the unified T and NK cell cluster and relationship to granuloma-level bacterial burden

(A) Subclustering of 41,222 cells in the unified T/NK cell cluster.

(B) Frequency of expression of TCR genes TRAC, TRBC1, or TRBC2 (yellow) and TRDC (green).

(C) Expression levels of T/NK cell cluster-defining genes. Color intensity corresponds to the level of gene expression and the size of dots represents the percent of

cells with non-zero expression in each cluster.

(D) Significant correlations between proportion of T/NK subclusters with bacterial burden of individual granulomas (log10 CFU per granuloma) using non-

parametric Spearman’s rho correlation test with Benjamini-Hochberg multiple testing correction.

See also Figure S4; Tables S2, S3, and S4.
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A prominent role for type 1-type 17 T cells in bacterial
control
One T/NK cell subcluster represented the most abundant cell

type identified across all granulomas (8.8%) (Table S4), and

the strongest correlate with bacterial control (q = 0.016; Dirichlet

p = 3.3 3 10�9) (Figure 3D; Table S3). This subcluster, which we
832 Immunity 55, 827–846, May 10, 2022
designated type 1-type 17 (T1-T17) (Figure 3C), was enriched for

expression of classical Th1-associated genes, including IFNG

and TNF (Raphael et al., 2015), as well as transcription factors

associated with Th17 differentiation (Yosef et al., 2013),

including RORA (Yang et al., 2008), RORC (Ivanov et al., 2006),

RBPJ (Meyer Zu Horste et al., 2016), and BHLHE40 (Huynh
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et al., 2018; Lin et al., 2014a, 2016). Although we also detected

additional features of T17 cells, including CCR6 (Hirota et al.,

2007) and IL23R (Kobayashi et al., 2008), we did not observe

expression of either IL17A or IL17F (Figure 4A; Table S4), which

was consistent with our published flow-cytometry data demon-

strating minimal IL-17 production from granuloma T cells

(Gideon et al., 2015; Wong et al., 2020). T1-T17 cells in our data-

set were double positive for CXCR3 and CCR6 (Figure 4A),

consistent with markers for Th1* or ex-Th17 cells, which are

believed to be precursors to tissue-resident memory cells. Mul-

tiple prior studies have reported a CXCR3+CCR6+ Th1/Th17

subset that contributes to Mtb-specific T cell responses (Becat-

tini et al., 2015; Nikitina et al., 2018) and is capable of producing

IFNg, IL-17, and IL-22 after stimulation, but not Th2-biased IL-4,

IL-5, or IL-13 (Acosta-Rodriguez et al., 2007; Becattini et al.,

2015; Lindestam Arlehamn et al., 2013; Mahnke et al., 2013).

These CXCR3+CCR6+ Th1/Th17 T cells have also been demon-

strated to express Th1-associated TBX21 (encoding T-bet) and

Th17-associated RORC (encoding RORgt), but not Th2-associ-

ated GATA3 (Acosta-Rodriguez et al., 2007; Becattini et al.,

2015), supporting the existence of the T1-T17 cell type. Further

supporting a hybrid cell state, we independently confirmed the

presence of a subset of granuloma T cells expressing both

T-bet and RORa by flow cytometry (Grant et al., 2022). Notably,

although Th1* and ex-Th17 subsets are described primarily as

CD4 T cells (Darrah et al., 2020; Gideon et al., 2015; Lyadova

and Panteleev, 2015; Mpande et al., 2018), our T1-T17 sub-clus-

ter was characterized by the expression of both CD4 and CD8A/

B transcripts (Figures 3C, 4A–4C, S4D, and S4E), suggesting

that this phenotype is not an identity program but context depen-

dent, consistent with findings in other systems (Lee et al., 2021).

To better resolve the identities of the cells in this cluster, we

further sub-clustered the T1-T17 cells. This revealed four distinct

subpopulations, each of which expressed T1-T17 cluster

markers (RORA, RORC, IL23R, and BHLHE40) but were further

distinguished by markers of cell type and state (Figure 4B;

Table S4): T1-T17 subpopulation 1 was distinguished by expres-

sionofCD4andmarkersof activation andmotility, including IL7R,

CD6, TXNIP, PDE4D, ZFP36L2, ITGB1, CCR6, and CXCR3

(Figures 4B–4D; Table S4), making it most akin to ex-Th17 cells

(Amezcua Vesely et al., 2019; Nikitina et al., 2018); T1-T17 sub-

population 2 was characterized by increased relative expression

of both CD8A and CD8B and cytotoxic effector molecules; T1-

T17 subpopulation 3, which includes cells expressing either

CD8A/B orCD4, was characterized by cytokine gene expression

(IFNG, TNF, LTA, and LTB) and markers of an inhibitory cell state

(CTLA4, GADD45B, and SLA); and T1-T17 subpopulation 4 was

very low in abundance and characterized by heat shock and
Figure 4. Phenotypic Diversity in T1-T17 cells

(A) T1-T17 subcluster overlaid on unified T/NK cell cluster (left) and colored by nor

boxes) and non-enriched canonical Type1 and type 17 genes (right).

(B) Subclustering of 9,234 T1-T17 cells resulting in four phenotypic sub-populati

(C) Cluster-defining genes for T1-T17 subpopulations 1, 2, 3 and 4. Color intensity

percent of cells with non-zero expression in each cluster.

(D) Subclustering of T1-T17 cells colored by normalized gene-expression values

(E) Significant correlations between proportion of T1-T17 subcluster and subpop

loma) using non-parametric Spearman’s rho correlation test with Benjamini-Hoc

See also Figure S4; Tables S3 and S4.
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DNA damage associated transcripts (DNAJB1 and HSPH1). In

a univariate analysis, there was a trend toward negative associa-

tion between bacterial burden and higher abundance of T1-T17

subpopulation 1 (q = 0.074) and a significant negative association

between bacterial burden and abundance of T1-T17 subpopula-

tion 2 (q = 0.043); both of thesewere significantly associated with

low burden in the multivariate Dirichlet regression analysis (Di-

richlet p = 0.001 & p = 0.018, respectively). T1-T17 subpopulation

3, however, was not correlated with bacterial burden, despite

elevated expression of IFNG and TNF (Figure 4E; Table S4)—cy-

tokines generally considered as critical mediators of control in

Mtb infection (O’Garra et al., 2013; Scriba et al., 2017).

CD4 and CD8 subclusters associated with low bacterial
burden
Among the remaining 12 T/NK cell subclusters, six were enriched

for both CD4 and CD8 expression (Figures 3A–D, S4D, and S4E;

Table S4). The most abundant subcluster (8.3% of granuloma

cells, q = 0.074, Dirichlet p = 0.00049; Figure 3D; Tables S3 and

S4) exhibited elevated expression of markers of naive and

memory T cells (TCF7, CCR7, IL7R, and TXNIP) and activation

or memory state (CD69 and ITGB1) (Figure 3C; Table S4). When

we conducted further subclustering of this population to evaluate

the potential presence of separate naive or memory T cell states,

we instead found that these markers were expressed homoge-

nously and overlapped throughout the subcluster (Figure S4F).

As such, these cells could represent a ‘‘stem-like’’ population of

T cells, which has been described as an early differentiatingmem-

ory phenotype, distinct from naive T cells, that are long lived and

possess a distinguishing ability to proliferate and self-renew

(Ahmed et al., 2016; Caccamo et al., 2018; Gattinoni et al.,

2011). Further targeted experimentation will be required to estab-

lish true stem capacity for these cells in tissue.

We also identified a cluster of proliferating T CD4- and CD8-ex-

pressing cells (2.4%; q = 0.074, Dirichlet p = 0.016; Figure 3D;

Tables S3 and S4), which was characterized by high expression

of transcripts associated with cellular proliferation (MKI67,

STMN1, and TOP2A) (Figure 3C; Table S4). We found a very small

population of metallothionein-expressing T cells (0.05%; q =

0.074, Dirichlet p = 0.071; Figure 3D; Table S4), defined by metal-

lothionein genes, such as MT1 and MT2 (Figure 3C; Table S4),

which play a role in negative regulation of type 1 regulatory (Tr1)

CD4+ cells (Wu et al., 2013). A cluster labeled SRRM2-T cells

(0.6%; q = 0.044, Dirichlet p = 0.17) was characterized by enrich-

ment of genes associated with nuclear speckles and splicing fac-

tors such as PNISR and SRRM2 (Figures 3C and 3D; Table S4).

The remaining two CD4/CD8 subclusters were not associated

with bacterial control by either statistical framework. One was
malized expression values for T1-T17 subcluster-defining genes (bold outlined

ons.

corresponds to the level of gene expression, and the size of dots represents the

for selected subcluster (top row) and subpopulation defining genes.

ulations with bacterial burden of individual granulomas (log10 CFU per granu-

hberg multiple testing correction.
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regulatory T cells (1.2%), defined by elevated expression of ca-

nonical Treg markers (FOXP3, CTLA4, TIGIT, and IL1RL1) and

GATA3, a Th2 lineage-defining transcription factor that has

been observed in a subset of tissue-resident Tregs (Figures 3C

and 3D; Table S4) (Wohlfert et al., 2011). Of note, although

CTLA-4was highly expressed by regulatory T cells, the inhibitory

receptor PD-1 (PDCD1) was only sparsely detected in our data

set, concordant with recent work (McCaffrey et al., 2022; Wong

et al., 2018). The final subcluster was interferon-responsive

T cells (0.4%), which were enriched for type-1-interferon-induc-

ible molecules (Szabo et al., 2019) (Figures 3C and 3D, Table S4).

Bacterial control is associated with a specific cytotoxic
T cell population
The remaining six T/NK subclusters were broadly defined by

expression ofCD8A and/orCD8B and cytotoxic genes, including

granzymes, granulysin, and/or perforin (designated cytotoxic

1–6, Figure 3C; Table S4). We confirmed expression of multiple

granzymes among CD8 ab T cells in Mtb granulomas by flow cy-

tometry (Figure S8).

Low-bacterial-burden granulomas were associated with a

higher proportion of cells from cytotoxic subcluster C4 (3.8%

of granuloma cells; q = 0.074, Dirichlet p = 0.00042; Figure 3D;

Table S4). C4 expressed both CD8A and CD8B and TCRA and

TCRB, but not TCRD, indicating that it is composed primarily

of conventional CD8 ab T cells (Figures 3B, 3C, and S4). C4

was further enriched for genes associated with cytotoxic effector

functions (PRF1, GZMH, GZMB, and GZMM), motility, migration

and tissue residency (CX3CR1, TGFBR3, and S100A10), and

regulators of cell state (AHNAK, KLF3, and ZEB2; Figure 3C;

Table S4).

The remaining five cytotoxic subclusters did not associate

with bacterial control by either statistical framework. Cytotoxic

subclusters C1-3 were enriched for the expression of CD8A

but not CD8B and elevated TCRD, implying that these cells

possessed innate cytotoxic function (Figures 3B and 3C). C5,

which expressed CD8A and CD8B, was distinguished by

elevated expression of GZMK (Figure 3C), which has been

recently described as a hallmark of immune dysfunction in

inflammation (Mogilenko et al., 2021).

The functional complexity of these six subclusters, along with

the common and distinct responses they represent, suggests a

significant and underappreciated role for cytotoxic cells in TB

granulomas.

Macrophage heterogeneity in Mtb granulomas
Although macrophages are responsible for much of the bacterial

killing within granulomas, we did not observe any association be-

tween overall macrophage abundance and bacterial burden

(Figures 2 and S5). Yet, like the T/NK cell cluster, the macro-

phage cluster had discernable substructure based on unbiased

gene-expression analyses. Among the 27,670macrophages, we

identified nine subclusters (Table S4). The only cluster indepen-

dently associated with bacterial control wasMac4, a subpopula-

tion of macrophages enriched in high-burden lesions (q =

1.6 3 10�5, Dirichlet p = 0.12; Figure S5E; Table S4). Upregu-

lated genes in Mac4 included known interferon-response genes

(NFKBIA, IFI27, IFI30), as well as more general pro-inflammatory

processes (IL1B, CXCL8, LYZ) and complement activation
(C1QA, C1QB, C1QC) (Figures S6A and S6B), consistent with

the ‘‘macrophage IFN’’ phenotype described by Esaulova et al.

as associated with poor bacterial control (Esaulova et al.,

2021). Mac5 and Mac3, meanwhile, were the populations that

most strongly expressed genes that have been described as

characteristic of epithelioid macrophages in zebrafish granu-

lomas (q = 1.67 3 10�7 and q = 9.17 3 10�6, respectively;

Figures S6C–S6E) (Cronan et al., 2021). Mac5 was statistically

significantly associated with high burden via multivariate Dirich-

let regression analysis (Dirichlet p = 0.034), but not via univariate

correlations with CFU (q = 0.31; Figure S9E).

Defining trajectories of bacterial burden and granuloma
phenotype
To further understand the temporal emergence of variations in

bacterial burden and granuloma states, we evaluated how

cellular identities and compositions track with time. Here, we

leveraged a scRNA-seq discovery dataset from six granulomas

isolated at four weeks p.i. from two separate macaques

(Figures 5A–5C). Four weeks is the earliest timepoint at which

we can reliably identify granulomas by imaging; these lesions

are by definition early appearing and thus likely to be high

burden at 10 weeks p.i. However, they were captured at an

earlier point in their development and therefore might be

considered more analogous to late-appearing lesions at the

10-week timepoint (i.e., those first detected four weeks prior).

We defined cell-type-specific ‘‘burden-associated gene sets’’

based on differentially expressed genes between 10-week p.i.

high- vs. low-burden granulomas. Scoring four-week p.i. gran-

uloma cells for these gene sets demonstrated that the T cell

and macrophage phenotypes were more concordant with the

early, high-burden lesions at 10 weeks than the later-appearing,

more restrictive lesions (Figures 5D and 5E).

These data suggest a measure of stability in the cellular micro-

environment between four and 10 weeks in early-appearing

granulomas. They further indicate that the differences between

high- and low-burden granulomas at 10 weeks do not simply

reflect lesions at different stages in the same maturation

continuum. Instead, they suggest that late-appearing, low-

burden granulomas reflect a different path. We propose that

late-appearing granulomas develop in the context of an

emerging adaptive immune response, can recruit adaptive

T cells quickly, and are better able to kill Mtb. This model is

consistent with our published work showing robust clearance

of Mtb in a reinfection model (Cadena et al., 2018). However,

we also acknowledge the potential for bacterial burden to shape

granuloma phenotype, with burden and multicellular microenvi-

ronment each having the capacity to influence one another,

potentially in a self-reinforcing manner.

Cellular ecology of pulmonary TB granulomas
Given demonstrable differences in cellular composition across

the bacterial burden spectrum, we wondered whether specific

cell types co-occur in TB lung granulomas to collectively influ-

ence control. By using hierarchical clustering of pairwise correla-

tions between cell type frequencies, we defined five groups of

cell types whose collective abundances were associated across

granulomas (Figure 6A; Table S5). Of these, group 2 (shown in

red), which included mast cells, plasma cells, Mac4, and certain
Immunity 55, 827–846, May 10, 2022 835
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Figure 5. Profiling the temporal trajectory of granuloma development

(A) Comparison of bacterial burdens across timing of granuloma development and time p.i., using MWU test with Benjamini-Hochberg correction for multiple

hypothesis testing.

(B) UMAP visualization of scRNA-seq data of 10,007 cells from six granulomas across two macaques at four weeks p.i.

(C) Expression levels of cluster-defining genes. Color intensity corresponds to level of gene expression, and size of dots represents the proportion of cells with

non-zero expression in each cluster.

(D) Expression levels of macrophage burden-associated gene set, defined by using genes differentially expressed between macrophages in 10-week-p.i. high-

burden and 10-week-p.i. low-burden granulomas; boxplot with median, interquartile range, and whiskers extending a maximum of 1.5*IQR; MWU test with

Benjamini-Hochberg correction for multiple hypothesis testing.

(E) Expression levels of T cell burden-associated gene set, defined by using genes differentially expressed between T cells in 10-week p.i. high-burden and

10-week p.i. low-burden granulomas; MWU test with Benjamini-Hochberg correction for multiple hypothesis testing.
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stromal populations, was significantly expanded in high-bacte-

rial-burden granulomas (p = 3 3 10�4, MWU test; Figure 6B;

Table S5). Group 3 (shown in blue) was significantly more abun-

dant in low-bacterial-burden granulomas (p = 0.026; Figure 6B;

Table S5) and consisted of many T cell subclusters/subpopula-

tions, including stem-like; cytotoxic subclusters C2, C4, and

C6; metallothionein; proliferating; SRRM2+; and T1-T17 sub-

populations 1, 3, and 4, as well as Mac7. This macrophage

subset was distinguished in part, by expression of the immuno-

modulatory genes IDO and CHIT (encoding chitotriosidase),

which is abundantly produced by lipid-laden macrophages in

other conditions such as Gaucher’s disease, Niemenn-Pick dis-

ease, and atherosclerosis (Barone et al., 2007; Yap et al., 2020).

Distinct cellular ecosystems associate with granuloma-
level bacterial burden
To further explore how specific cellular compositions might

underpin differential bacterial control, we examined putative

cell-cell interactions within each granuloma (STAR Methods).

High-bacterial-burden lesions were dominated by signals sent

by group 2 cell types (i.e., mast, fibroblast, endothelial, plasma,

type 1 pneumocyte, and Mac4); these cell types displayed the

highest counts of high-burden-linked interactions as well as

those most strengthened in high-burden granulomas

(p < 2.2 3 10�16, binomial test) (Figures 6C and 6D). In contrast,

interactions in low-burden granulomas more evenly involved

groups 1, 3, 4, and 5, with group 3 showing the strongest enrich-

ment for signaling activity strengthened in low-burden granu-

lomas (p < 2.23 10�16) (Figures 6E and 6F). We further examined

shifts in intercellular interaction network topology by quantifying

the sender and receiver activity associated with different de-

grees of bacterial burden. In high-burden granulomas, group 2

cell types were the key source of intercellular signals (Figure 6G),

with strong intra-group 2 signaling. This suggests that high-

burden lesions are driven by self-reinforcing interactions

amongst group 2 cell types (e.g., between mast cells, plasma

cells, fibroblasts, and endothelial cells). In contrast, in low-

burden granulomas, we found only sparse contributions from

group 2 cell types (Figure 6H); instead, low-burden granulomas

were characterized by a more even distribution of signals stem-

ming and terminating in groups 1, 3, 4, and 5 cell types, sugges-

tive of a coordinated immune response involvingmultiple cellular

subsets.

We next examined which specific axes of intercellular commu-

nication and, among whom, which were associated with varying
(C) Number of interactions strengthened in high-burden granulomas, organized b

(D) Representation of each cell type group as sender cell population among the

(E) Number of interactions strengthened in low-burden granulomas, organized b

(F) Representation of each cell type group as sender among the 10% of ligands

(G) Network of interactions across cell type groups, subsetted to interactions stren

of interactions between cell type groups, and widths are on same scale as for

strengthened in high-burden granulomas.

(H) Network of interactions across cell type groups, subsetted to only highlight

portional to number of interactions between cell type groups, and widths are on sa

which were strengthened in low-burden granulomas.

(I) Overall high-vs-low granuloma burden fold-change of interactions strengths o

(J) Cell-cluster-specific interaction strength fold changes of each ligand, average

sender population.

See also Figure S6; Table S5.
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bacterial control. Among the ligands whose interactions are

most strengthened in high-burden granulomas, we identified

genes implicated in fibrosis (e.g, FGF1, PDGFB, CTGF, FGF7,

IL34), vascular remodeling (VEGFB, VEGFC, ANGPTL4) and

TGFb signaling (TGFB2, TGFB3, BMP6), suggestive of a

wound-healing response (Figure 6I) (Joshi et al., 2020; Padela

et al., 2008). In addition, we observed evidence of intercellular

communication via genes implicated in type 2 immunity

(CCL11, CCL13, CD5L, IL4, IL5, IL13, IL24) and allergy-linked

inflammation (CCL19) (Nakano et al., 2019). These specific li-

gands were largely produced and received by group 2 cell types

(with only sparse contributions from groups 3–5). Collectively,

this supports a model where intra-group 2 signaling drives a

self-reinforcing high-burden microenvironment via wound-heal-

ing-like responses and associated type 2 immune activity (Fig-

ure 6J). This interpretation was further supported by enrichment

of pathways such as TGFb, WNT, and FGF signaling, as well as

organogenesis, epithelial/endothelial proliferation, and tissue-

remodeling processes (Figure S6F); is consistent with prior de-

scriptions of angiogenesis and fibrosis in human granulomas

(McCaffrey et al., 2022; Polena et al., 2016); and supports the tar-

geting of vasculature as a therapeutic direction for tuberculosis

(Datta et al., 2015; Oehlers et al., 2015).

In contrast, low-burden granulomas exhibited cell-cell interac-

tions consistent with type 1 immune responses (CCL3, CXCL9/

10/11, IL18) and Th17 chemoattraction (CXCL16, CCL20), co-

stimulatory molecules important in immune activation (CD40LG,

CD48, CD80, CD86), and those involved in lymphocyte adhesion

(CD58) (Figure 6I) (Li et al., 2013; Lim et al., 2008; Touzot et al.,

2014). Importantly, signaling occurred between multiple T and

macrophage cell subsets, suggesting that successful Mtb control

required coordinated interactions across diverse innate and

adaptive immune cell types.

Our cell-cell interaction analyses also indicated context-

dependent roles for certain cell types and ligands. For instance,

the macrophage-dominated group 1 was not statistically corre-

lated with granuloma control in our compositional analyses (Fig-

ure 6A) but participated in the second-most interactions in both

high- and low-burden granulomas (Figures 6B, 6C, 6E, 6G, and

6H). The idea of dual roles for group 1 cells was borne out by ex-

amination of the ligands produced by group 1 cell types in high-

(PDGFB, CD5L, TNFSF13) and low-burden (CXCL9/10/11,

CD86, IL18, CCL20) microenvironments (Figures 6I and 6J).

Similarly, some individual ligands participated in interactions in

both high- and low-burden granulomas, suggesting pleiotropic
y sender cell clusters.

10% of ligands most strengthened in high-burden granulomas.

y sender cell clusters.

most strengthened in low-burden granulomas.

gthened in high-burden granulomas.Widths of arcs are proportional to number

inset (H). n = 2,899 statistically significant interactions, 1,837 of which were

interactions strengthened in low-burden granulomas. Widths of arcs are pro-

me scale as for inset (G). n = 2,899 statistically significant interactions, 1,062 of

f key ligands, averaged across all statistically significant interactions.

d across all statistically significant interactions where each cell cluster was the
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effects. As one specific example, IL-1’s effects on Mtb vary

based on disease stage and model (Juffermans et al., 2000;

Law et al., 1996; Mayer-Barber et al., 2014; Mishra et al., 2013;

Zhang et al., 2014). Based on our analyses, IL1A and IL1B

each mediated interactions associated with both high and low

bacterial burden but were derived from different sender cell pop-

ulations in the two instances. Thus, our intercellular interaction

analyses uncover axes of cellular plasticity and ligand pleiotropy

across granuloma microenvironments, important for improved

understanding and therapeutic modulation of Mtb (Keshavjee

and Farmer, 2012).

DISCUSSION

Within an individual with Mtb infection, distinct granulomas can

achieve sterilizing immunity, immune standoff, or frank immune

failure (Flynn, 2006; Flynn and Klein, 2011; Lin et al., 2009,

2014b). In NHPs, which most closely recapitulate human Mtb

infection and disease (Coleman et al., 2014a), this heterogeneity

provides an opportunity to define the cellular and molecular fac-

tors that correlate with bacterial control to identify potential host-

directed prevention and cure strategies for TB. Here, our data

substantiate a model where the state of the surrounding host

cellular ecosystem helps inform a granuloma’s infection trajec-

tory, leading to long-term, stable states which either permit or

restrict bacterial survival.

To exemplify the links between cellular composition, gene

expression, intercellular interaction patterns, and bacterial

burden, we highlight mast cells: most abundant in high-burden

lesions, mast cells were major producers of type 2 cytokines,

especially IL4, IL5, and IL13, which are down-modulators of

lymphocyte and macrophage antimicrobial activity, including in-

hibiting the cytolytic functions of CD8+ T cells (Kienzle et al.,

2005; Wijesundara et al., 2013). However, IL-4 and IL-13 have

broader functions in the context of wound healing. Indeed, the

cellular interactions in high-burden granulomas revealed both

specific signaling molecules (e.g., FGF1 from type 1 pneumo-

cytes, PDGFB from endothelial cells, ANGPTL4 from plasma

and mast cells, among others) and broad pathways that re-

flected fibrosis, metabolic remodeling, and angiogenesis.

Collectively, these data suggest a cascade of interactions in

early-appearing granulomas with failed control, whereby an

initially permissive environment is reinforced by a tissue-remod-

eling response that seeks to limit and wall off pathologic activity.

Althoughmore detailed studies on the roles of wound-healing re-

sponses and tissue remodeling in TB are indicated, these fea-

tures could represent critical targets for host-directed therapies

that need to not only enhance restrictive adaptive immune re-

sponses but also address the maladaptive features of microen-

vironments permissive to granuloma persistence (Ahidjo

et al., 2016).

The strongest cellular correlate of bacterial control was a sub-

cluster of cells with transcriptional features of both type 1 and

type 17 T cells that was expanded in granulomas with bacterial

control. Previous studies have revealed a prominent role for

CD4 Th1 and Th17 cytokines in control of Mtb infection,

including IFN-g, TNF, and IL-17 (Algood et al., 2005; Green

et al., 2013; Khader et al., 2007; Khader and Gopal, 2010; Lin

et al., 2007; Lyadova and Panteleev, 2015; Millington et al.,
2007; O’Garra et al., 2013; Scriba et al., 2017), and studies in

NHP granulomas suggest an association between T1 and T17

cytokine expression and bacterial burden (Gideon et al., 2015).

In addition, in murine models, BHLHE40 is required for control

of Mtb infection, as a repressor of IL-10 production (Huynh

et al., 2018). Aspects of these data are consistent with recent ob-

servations that granulomas established in immune-primed envi-

ronments—e.g., existing Mtb infection (Cadena et al., 2018) or

intravenous or intrabronchial BCG vaccination—are character-

ized by Th1/17 expression patterns that are associated with pro-

tection (Darrah et al., 2020; Dijkman et al., 2019); however, we

extend these findings, defining appreciable substructure among

the T1-T17 subcluster of relevance to control. The CD4 T1-T17

subpopulation (subpopulation 1) is most consistent with pub-

lished descriptions of Th1/17 cells (e.g., Th1* or ex-Th17)

(Acosta-Rodriguez et al., 2007; Amezcua Vesely et al., 2019; Be-

cattini et al., 2015; Lee et al., 2021; Lindestam Arlehamn et al.,

2013;Mahnke et al., 2013; Nikitina et al., 2018). These cells could

represent precursors to long-lived tissue memory, which has

been shown to play a crucial protective role in autoimmunity,

bacterial control, and memory immune responses to pathogens

(Amezcua Vesely et al., 2019; Liang et al., 2015; van Hamburg

and Tas, 2018; Wacleche et al., 2016), including Mtb infection.

A recent study using flow cytometry and immunohistochemistry

in Mtb-infected rhesus macaques supports an association of

Th1 (IFNg+) and Th17 (IL-17+) cells in lung tissue with latent

infection (Shanmugasundaram et al., 2020); in contrast, another

study using scRNA-seq reported activated CD4 and CD8 T cells

including Th1 and Th17 in the lung tissue of macaques with pul-

monary TB (Esaulova et al., 2021). The CD8 subsets within the

T1-T17 subcluster (subpopulations 2 and 3), meanwhile, have

not been described previously. The former of these was strongly

associated with bacterial control and could represent an

immunologic paradigm that can be exploited for vaccine

development.

Our data also revealed aCD4- andCD8-expressing T cell sub-

cluster associated with low-burden granulomas that resembles

stem-like T cells (Ahmed et al., 2016; Caccamo et al., 2018; Cart-

wright et al., 2016; Fuertes Marraco et al., 2015; Gattinoni et al.,

2011; Mateus et al., 2015; Todryk, 2018). We hypothesize that

these cells could be a source of T cell renewal in granulomas

and could differentiate into the various functional subsets we

observewithin them. It is possible, however, that these represent

memory T cells that are not specific for Mtb antigens but migrate

to the granuloma in response to inflammation and/or chemokine

gradients. Indeed, flow-cytometry-based studies support that a

majority of T cells in granulomas do not respond to Mtb antigens

by making cytokines and do not display hallmarks of exhaustion

(Gideon et al., 2015; Sakai et al., 2016; Wong et al., 2018).

Although both CD4 and CD8 T cells have been implicated in

control of Mtb infection, the cytotoxic function of lymphocytes

in Mtb infection has been relatively understudied. However, we

also found previously unappreciated complexity among

granuloma cytotoxic cells of relevance to bacterial control. Of

these, cytotoxic subcluster 4, which was enriched for CD8 ab

T cells and defined by expression of several granzymes and per-

forin, likely represents cytotoxic effector T cells that target in-

fected cells and is associated with low-burden granulomas.

Our findings contrast with those in model systems like mice,
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which notably do not have the capacity to sterilize sites of

infection and whose CD8 T cells also do not express granulysin

(Hojo-Souza et al., 2020). However, our findings are consistent

with a recent study on lung tissue from Mtb-infected macaques

which also found evidence of cytotoxic molecule expression

associated with controlled infection (Esaulova et al., 2021).

Our analyses not only revealed sets of biological pathways uti-

lized in the host cells of high- vs. low-burden granulomas but also

assigned roles to the specific cell types that drive these signaling

patterns. In particular, the strong internal signaling among group

2 cell types and comparatively weaker cross-talk to other groups

in early lesions could drive establishment of a cellular ecosystem

dominated by type 2 immune and wound-healing responses that

preclude effective T cell engagement and conversion to a more

restrictive state. By comparison, in late-appearing lesions,

primed T cell populations, in concert with different innate popu-

lations, could use a variety of pro-inflammatory and pro-activa-

tion interactions to control Mtb growth or dissemination; a similar

phenomenon might explain how infection with Mtb can protect

against subsequent reinfection (Cadena et al., 2018) even in

the presence of ongoing original infection, by locally recruiting

adaptive responses that can act before self-reinforcing group 2

responses work to limit pathology.

We note that the contrasting microenvironments revealed

through our analyses can occur within the same individual.

Knowledge of intercellular networks underlying granuloma stabil-

ity will spur future research efforts to identify and manipulate

linchpins that serve as key nodes in limiting or enhancing the ef-

ficacy of therapeutic and prophylactic measures. For instance,

there might be a potential therapeutic role for IL-15 super-ago-

nists in clinical development that candrive expansion of cytotoxic

populations (Fujii et al., 2018; Knudson et al., 2019). We also

found strong enrichment for the expression of distinct neuro-hor-

monal modulators by group 2 (NRG1, RLN3, NTS) and group 3

cells (UCN3), as well as associations with transcriptional targets

of sex hormones. Ligands and receptors implicated in low-

burden interactions were enriched for targets of several neuro-

modulatory agents, including buprenorphine and fluoxetine,

where serotonin reuptake inhibitors have already been identified

in screens for host-acting compounds that improvemacrophage

control of Mtb, supporting potential for their further investigation

(Heemskerk et al., 2021; Stanley et al., 2014).

In summary, our scRNA-seq investigation revealed cellular

and molecular features that dynamically associate with natural

control of Mtb in pulmonary granulomas. Interactive visualiza-

tions of all scRNA-seq data and associated metadata are hosted

through the Broad Single-Cell Portal for further exploration and

re-analyses (see data and code availability). Beyond recapitu-

lating canonical correlates, our analysis defined nuanced,

actionable, innate as well as adaptive functional cell states and

shed light on essential dynamics among host-pathogen interac-

tions (Iwasaki and Medzhitov, 2015). Collectively, our data sub-

stantiate a model where high Mtb burden within granulomas is

dictated locally by type 2 immunity and tissue-protective

(wound-healing) responses that seek to maintain essential tissue

functionality at the expense of creating a niche for bacterial

persistence. In granulomas that form later in infection, and,

therefore, in the context of an adaptive immune response, this

balance is tipped toward bacterial control by the emergence of
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adaptive T1-T17 and cytotoxic responses, with interactions

involving innate immune cell types enabling sufficient infiltration

and activation of these T cell subsets. As a result, successful im-

mune coordination across cell types in late-forming granulomas

could obviate the self-reinforcing type 2 immune/wound-healing

responses that would otherwise exclude immune effector func-

tions needed for Mtb control. We also identified cell types and li-

gands that participate in both high- and low-burden granulomas

potentially indictive of phenotypic plasticity and pleiotropic ef-

fects thatmight both bemolded by and (in turn) reinforce distinct,

pathology-associated granuloma microenvironments. Such a

framework is consistent with previous observations of natural

(Cadena et al., 2018) or induced (Darrah et al., 2020) control

and supports the need to look to combinatorial host-directed

paradigms for the development of efficacious therapeutic and

prophylactic measures.

Moving beyond the perspective of individual molecular tar-

gets, our work highlights the importance of the complexities of

divergent host cellular ecosystems in driving Mtb persistence

or control. By defining and nominating several putative axes of

intra- and intercellular signaling associated with contrasting

Mtb outcomes, our work provides a foundation for enabling

effective manipulation of the properties and states of complex

cellular ecosystems, therapeutically relevant destabilization of

pathologic molecular environments to enable adaptive immune

access and fundamental connections to other inflammatory

and infectious diseases that affect epithelial barrier tissues

(Hughes et al., 2020; Ordovas-Montanes et al., 2018).

Limitations of the study
Granulomas are inherently heterogeneous and include necrotic

debris, requiring robust technical correction and quality control;

this results in an analysis of only high-quality cells. Because only

a fraction of cells from each granuloma were analyzed, propor-

tions might not have reflected the true composition of cells within

a granuloma and could be skewed toward lymphocytes, high-

lighting the importance of orthogonal validations. In bulk RNA-

sequencing analysis of a separate set of dissociated early and

late granulomas, we observe generally similar trends in cell-type

composition, supporting our conclusions; similar studies will

need to be performed in undigested granulomas to account for

dissociation artifacts. In the absence of prior comparable studies

on macaque granulomas, we could not predict a priori the granu-

loma diversity uncovered by scRNA-seq profiling, even before

considering potential genetic differences in both host and path-

ogen. Even with these considerations, the sample size of this

study was sufficient to reveal features of host responses linked

to Mtb persistence or control that could inform future efforts

across the TB community. Furthermore, knowledge of T cell anti-

gen specificity could serve to prioritize T cell subsets for their rele-

vance to bacterial control but would require the development of

new methodologies that allow analysis of very small numbers of

primary cells and a very large antigenic repertoire against thema-

jor histocompatibility complex diversity of outbred macaques.

Relatedly, the transcriptomic granuloma landscape investigated

here is from a pair of (albeit pivotal) time points, including granu-

lomas at the earliest timepoint of reliable, non-invasive detection

and granulomas across a spectrum of growth trajectories when

bacterial killing can be identified in some but not all granulomas.
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It is likely that expression of certain genes that arise early in infec-

tion and then are downregulated as infection progress will be

missed, as will some populations critical to guiding overall granu-

loma outcome. More generally, matched profiling of additional

timepoints p.i., along with analysis of lung tissue and granulomas

from vaccinated or reinfected and protected animals, will provide

a more complete picture of the temporal control of Mtb in granu-

lomas and is the subject of future work.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-human c-kit, clone CL1657 Novus Biologicals Cat# NBP2-52975

Mouse anti-human tryptase, clone AA1 Abcam Cat# ab2378; RRID: AB_303023

Mouse anti-human CD11c, clone 5D11 Leica Biosystems Cat# CD11C-563-L-CE; RRID: AB_2750846

Rabbit anti-human CD20, polyclonal ThermoFisher Cat# RB-9013; RRID: AB_149767

Rabbit anti-human CD3, polyclonal Dako Omnis Cat# GA503

Donkey anti-rabbit IgG Alexa Fluor 647 Jackson ImmunoResearch

Laboratories

Cat# 711-605-152; RRID: AB_2492288

Donkey anti-rabbit IgG Alexa Fluor 488 ThermoFisher Cat# A32790; RRID: AB_2866495

Donkey anti-rabbit IgG Alexa Fluor 546 ThermoFisher Cat# A10040; RRID: AB_2534016

Goat anti-mouse IgG1 Alexa Fluor 546 ThermoFisher Cat# A21123; RRID: AB_2535765

Anti-rabbit IgG Alexa Fluor 488 ThermoFisher Cat# Z25302; RRID: AB_2572214

Anti-rabbit IgG Alexa Fluor 546 ThermoFisher Cat# Z25304; RRID: AB_2736947

Donkey anti-mouse IgG Alexa Fluor 488 ThermoFisher Cat# A-21202; RRID: AB_141607

Mouse anti-human CD3, clone SP34-2 BD Biosciences Cat# 551916; RRID: AB_394293

Mouse anti-human CD4, clone L200 BD Biosciences Cat# 551980; RRID: AB_398521

Mouse anti-human CD8a, clone RPA-T8 BD Biosciences Cat# 563823; RRID: AB_2687487

Mouse anti-human CD8b, clone 2ST8.5H7 BD Biosciences Cat# 641058; RRID: AB_1645723

Mouse anti-human TCR gamma/delta, clone 5A6.E9 Invitrogen Cat# TCR1061; RRID: AB_223500

Mouse anti-human CD16, clone 3G8 BD Biosciences Cat# 556617; RRID: AB_396489

Mouse anti-human NKG2A, clone Z199 Beckman Coulter Cat# A60797; RRID: AB_10643105

Mouse anti-human Granzyme B, clone GB11 BD Biosciences Cat# 561998; RRID: AB_10894005

Mouse anti-human Granzyme A, clone CB9 BD Biosciences Cat# 557449; RRID: AB_396712

Mouse anti-human Granzyme K, clone G3H69 BD Biosciences Cat# 566655; RRID: AB_2869812

Bacterial and virus strains

M. tuberculosis: Erdman strain Flynn Lab N/A

Biological samples

Cynomolgus macaque granulomas This study N/A

Human granulomas This study N/A

Chemicals, peptides, and recombinant proteins

2-mercaptoethanol Sigma Cat# M3148

Buffer RLT QIAGEN Cat# 79216

Buffer RLT Plus QIAGEN Cat# 1053393

Deoxynucleotide (dNTP) solution mix NewEngland BioLabs Cat# N0447L

Superase.In RNase Inhibitor Thermo Fisher Cat# AM2696

Maxima H minus reverse transcriptase Fisher Scientific Cat# EP0753

AMPure XP beads Beckman Coulter Cat# A63881

Guanidinium thiocyanate Thermo Fisher Cat# AM9422

N-Lauroylsarcosine sodium salt solution (Sarkosyl NL) Sigma Cat# L7414

Exonuclease l New England BioLabs Cat# M0293S

Klenow Fragment New England BioLabs Cat# M0212L

Polycarbonate membrane filters 62x22 Fisher Scientific/Sterlitech

Corporation

Cat# NC1421644

MACOSKO-2011-10 mRNA Capture Beads Fisher Scientific/ChemGenes Cat# NC0927472

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Nextera XT DNA Library Preparation Kit Illumina Cat# FC-131-1096

Nextseq 500/550 High output v2.5 kit (75 cycles) Illumina Cat# 20024906

Kapa HiFi HotStart ReadyMix Kapa Biosystems Cat# KK2602

High Sensitivity D5000 ScreenTape Agilent Cat# 5067–5592

Qubit dsDNA High-Sensitivity kit Thermo Fisher Cat# Q32854

Rneasy Kit Qiagen, Inc. Cat# 74004

0.1mm Zirconia/Silica Beads BioSpec Products Cat# NC0362415

TaqMan Universal Master Mix II Life Technologies Cat# 4440043

Zombie NIR Fixable Viability Kit BioLegend Cat# 423105

Deposited data

scRNA-seq data from 10-week p.i. granulomas This study Gene Expression Omnibus: GSE200151;

https://singlecell.broadinstitute.org/single_

cell/study/SCP257

scRNA-seq data from 4-week p.i. granulomas This study Gene Expression Omnibus: GSE200151;

https://singlecell.broadinstitute.org/single_

cell/study/SCP1749

Experimental models: Organisms/strains

Cynomolgus macaques Valley Biosystems N/A

Oligonucleotides

Seq-Well ISPCR: AAG CAG TGG TAT CAA CGC AGA GT Integrated DNA Technologies N/A

Custom Read 1 Primer: GCC TGT CCG CGG AAG CAG

TGG TAT CAA CGC AGA GTA C

Integrated DNA Technologies N/A

Seq-Well TSO: AAG CAG TGG TAT CAA CGC AGA

GTG AAT rGrGrG

Integrated DNA Technologies N/A

Seq-Well Custom P5-SMART PCR hybrid oligo: AAT

GAT ACG GCG ACC ACC GAG ATC TAC ACG CCT

GTC CGC GGA AGC AGT GGT ATC AAC GCA GAG TAC

Integrated DNA Technologies N/A

Seq-Well dN-SMRT oligo: AAG CAG TGG TAT CAA

CGC AGA GTG ANN NGG NNN B

Integrated DNA Technologies N/A

Software and algorithms

R project for statistical computing v4.1.2 R Core Team https://www.r-project.org

R package – Seurat v4.0.2 GitHub https://github.com/satijalab/seurat

R package – Circlize v0.4.8 CRAN https://cran.r-project.org/web/packages/

circlize/index.html

R package – data.table v1.12.0 GitHub https://github.com/Rdatatable/data.table

R package – ggplot2 v3.2.1 CRAN https://cran.r-project.org/web/packages/

ggplot2/index.html

R package – ComplexHeatmap v2.7.3 Bioconductor https://bioconductor.org/packages/

ComplexHeatmap/

R package – dplyr v1.0.7 CRAN https://cran.r-project.org/web/packages/dplyr/

GraphPad Prism v8 (GraphPad software, San Diego, CA),

JMP Pro v12

Prism https://www.graphpad.com/

JMP Pro v12 JMP https://www.jmp.com/

FlowJo FlowJo https://www.flowjo.com/

DropSeqTools v1.12 Macosko et al., 2015 https://github.com/broadinstitute/Drop-seq

OsiriX DICOM Pixmeo SARL https://www.oxirix-viewer.com

NIS-Elements AR Nikon https://www.microscope.healthcare.

nikon.com/products/software/nis-elements/

nis-elements-advanced-research

SpectroFlo Cytek https://cytekbio.com/pages/spectro-flo
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources, analytical code, and reagents should be directed to and will be fulfilled by the lead

contact, Alex K. Shalek (shalek@mit.edu).

Materials availability
The study did not generate new unique reagents.

Data and code availability
d scRNA-seq data generated for this study is available at Gene Expression Omnibus. Accession numbers are listed in the

key resources table. Processed data from granulomas sampled at 10 weeks p.i. can be accessed and visualized at https://

singlecell.broadinstitute.org/single_cell/study/SCP257/cellular-ecology-of-m-tuberculosis-granulomas-10-week-dataset#/.

Data from granulomas sampled at 4 weeks p.i. can be accessed and visualized at https://singlecell.broadinstitute.org/

single_cell/study/SCP1749/cellular-ecology-of-m-tuberculosis-granulomas-4-week-dataset.

d All original code has been deposited to Zenodo at https://doi.org/10.5281/zenodo.6419143.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Research animals
Cynomolgus macaques (Macaca fascicularis), >4 years of age, (Valley Biosystems, Sacramento, CA) were housed within a Biosafety

Level 3 (BSL-3) primate facility. Further information (including biological sex, number of granulomas, etc.) for eachmacaque involved

in this study can be found in Table S1. Animals were infected with low dose (�10 colony-forming units (CFUs)) M tuberculosis (Erd-

man strain) via bronchoscopic instillation. Infection was confirmed by PET-CT scan at 4 weeks andmonitored with clinical and radio-

graphic examinations until 10 weeks p.i.

All experimental manipulations, protocols, and care of the animals were approved by the University of Pittsburgh School of

Medicine Institutional Animal Care and Use Committee (IACUC). The protocol assurance number for our IACUC is D16-00118.

Our specific protocol approval numbers for this project are 18124275 and IM-18124275-1. The IACUC adheres to national guidelines

established in the Animal Welfare Act (7 U.S.C. Sections 2131 - 2159) and the Guide for the Care and Use of Laboratory Animals (8th

Edition) as mandated by the U.S. Public Health Service Policy.

All macaques used in this study were housed at the University of Pittsburgh in rooms with autonomously controlled temper-

ature, humidity, and lighting. Animals were singly housed in caging at least 2 square meters apart that allowed visual and tactile

contact with neighboring conspecifics. The macaques were fed twice daily with biscuits formulated for nonhuman primates,

supplemented at least 4 days/week with large pieces of fresh fruits or vegetables. Animals had access to water ad libitum.

Because our macaques were singly housed due to the infectious nature of these studies, an enhanced enrichment plan was

designed and overseen by our nonhuman primate enrichment specialist. This plan has three components. First, species-spe-

cific behaviors are encouraged. All animals have access to toys and other manipulata, some of which will be filled with food

treats (e.g., frozen fruit, peanut butter, etc.). These are rotated on a regular basis. Puzzle feeders foraging boards, and card-

board tubes containing small food items also are placed in the cage to stimulate foraging behaviors. Adjustable mirrors acces-

sible to the animals stimulate interaction between animals. Second, routine interaction between humans and macaques are

encouraged. These interactions occur daily and consist mainly of small food objects offered as enrichment and adhere to es-

tablished safety protocols. Animal caretakers are encouraged to interact with the animals (by talking or with facial expressions)

while performing tasks in the housing area. Routine procedures (e.g. feeding, cage cleaning, etc) are done on a strict schedule

to allow the animals to acclimate to a routine daily schedule. Third, all macaques are provided with a variety of visual and audi-

tory stimulation. Housing areas contain either radios or TV/video equipment that play cartoons or other formats designed for

children for at least 3 h each day. The videos and radios are rotated between animal rooms so that the same enrichment is

not played repetitively for the same group of animals.

All animals are checked at least twice daily to assess appetite, attitude, activity level, hydration status, etc. Following

M. tuberculosis infection, the animals are monitored closely for evidence of disease (e.g., anorexia, weight loss, tachypnea,

dyspnea, coughing). Physical exams, including weights, are performed on a regular basis. Animals are sedated prior to all vet-

erinary procedures (e.g. blood draws, etc.) using ketamine or other approved drugs. Regular PET/CT imaging is conducted on

most of our macaques following infection and has proved very useful for monitoring disease progression. Our veterinary

technicians monitor animals especially closely for any signs of pain or distress. If any are noted, appropriate supportive care

(e.g. dietary supplementation, rehydration) and clinical treatments (analgesics) are given. Any animal considered to have

advanced disease or intractable pain or distress from any cause is sedated with ketamine and then humanely euthanatized

using sodium pentobarbital.
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METHOD DETAILS

Serial PET-CT Imaging
Animals underwent PET-CT scans after Mtb infection at 4 weeks, 8 weeks and pre necropsy (i.e. 10 weeks post-infection) as previ-

ously described (White et al., 2017). Briefly, animals were sedated, intubated and imaged by 2-deoxy-2-18F-D-deoxyglucose (FDG)

PET imaging (microPET Focus 220 preclinical PET scanner, Seimens Medical Solutions, USA, Malvern, PA) and Cretom CT scanner

(Neurologica Corp, Danvers, MA, USA) within biosafety level 3 facility. The total lung FDG avidity was analyzed using Osirix viewer, an

open-source PACS workstation and DICOM viewer (Pixmeo, Bernex, Switzerland). The whole lung was segmented on CT by using

the growing region algorithm on the Osirix viewer to create a ROI of normal lung (Hounsfield units <200). The closing tool was used to

include individual nodules and other pulmonary disease. The ROI was transferred to the co-registered PET scan andmanually edited

to ensure all pulmonary diseasewas included. Voxels outside the ROIwere set to zero and voxels with an SUV greater than or equal to

normal lung (SUV >2.3) were isolated. Finally, the ‘‘Export ROIs’’ plug-in was then used to export the data from these isolated ROIs to

a spreadsheet where the total SUV per voxel were summed to represent the total lung FDG activity. Total FDG activity in lungs was

used to estimate thoracic bacterial burden prior to reinfection (Figure 1C), as previously published (Coleman et al., 2014b;White et al.,

2017). Granulomas were individually characterized by their date of establishment (scan date), size (mm), and relative metabolic ac-

tivity as a proxy for inflammation ([18F]-FDG standard uptake normalized tomuscle [SUVR]) (Coleman et al., 2014b;White et al., 2017).

Granulomas greater than 1mm are detected by CT scan.

Necropsy
Necropsy was performed as previously described (Gideon et al., 2015; Lin et al., 2009, 2013; Maiello et al., 2018). Briefly, an 18F-FDG

PET-CT scanwas performed on every animal 1–3 days prior to necropsy tomeasure disease progression and identify individual gran-

ulomas. At necropsy, monkeys were maximally bled and humanely sacrificed using pentobarbital and phenytoin (Beuthanasia;

Schering-Plough, Kenilworth, NJ). Individual granulomas previously identified by PET-CT and those that were not seen on imaging

from lung andmediastinal lymph nodes were excised for histological analysis, bacterial burden, and other immunological studies. TB

specific gross pathologic lesions and overall gross pathologic disease burden were quantified using a previously published method

(Maiello et al., 2018). The size of each granuloma was measured by pre-necropsy scans and at necropsy. Granulomas were enzy-

matically dissociated using the gentleMACS dissociator system (Miltenyi Biotec Inc) to obtain a single suspension for enumerating

bacterial burden and for single cell RNA-sequencing (scRNA-seq) on the Seq-Well platform.

Bacterial burden
200 mL of each granuloma homogenate were plated in serial dilutions onto 7H11 medium, and the CFU of M. tuberculosis growth

were enumerated 21 days later to determine the number of bacilli in each granuloma (Gideon et al., 2015). As a quantitative measure

of overall bacterial burden, a CFU score was derived from the summation of the log-transformed CFU/gram of each sample at the

time of necropsy.

Chromosomal equivalents, CEQ
DNA extraction and qPCR were performed with modifications as described previously (Lin et al., 2014b). Briefly, frozen aliquots of

homogenates were thawed and volumes recorded throughout the extraction process. Samples were transferred to tubes containing

150 mL of 0.1mm zirconia-silica beads (Biospec Products) before adding 600mL of Tris-EDTA buffer, pH 8.0. Three hundred micro-

liters of phenol/chloroform/isoamyl alcohol (25:24:1, Sigma-Aldrich) at 70 �Cwere subsequently added and the samples incubated at

room temperature for 10 min. The samples were then vortexed, the aqueous layer separated and supplemented with 50 mL 5M NaCl

and a second phenol chloroform extraction performed on the extracted aqueous layer. DNAwas precipitated with the addition of one

volume of 100% isopropanol and one-tenth volume of 3M sodium acetate and incubating at �20 �C overnight. The DNA pellet was

washed with 70% ethanol, dried and resuspended in nuclease-free water. Mtb genomes were then quantified using Taqman Univer-

sal Master Mix II (Life Technologies) and previously published sigF primer-probe combination (Lin et al., 2014b). Each sample was

amplified in triplicate using an ABI Systems 7900HT machine. Chromosomal equivalents (CEQ) were quantified by comparing the

samples with a standard curve derived from serial dilution of Mtb genomes prepared from liquid culture. Our detection limit for

the standard curve was 10 copies per reaction. When we calculated the number of genomes for the whole granuloma, our detection

limit was 1,000 copies per granuloma. Of the 26 granulomas analyzed, 2 granulomas failed at the CEQ quantification and they were

eliminated from CEQ and CFU/CEQ analysis.

Immunohistochemistry analysis
Granulomas from macaques were harvested at 10 or 11 weeks post Mtb infection from other published (Phuah et al., 2016) and un-

published studies at the University of Pittsburgh. Following formalin fixation and paraffin embedding, 5 mm sections were placed on

slides for staining. Slides were deparaffinized in xylenes, hydrated in a series of graded ethanol dips, and then antigen retrieval was

performed by boiling the slides in a pressure cooker containing antigen retrieval citrate buffer for slides stained with c-kit and tryptase

or Tris-EDTA buffer (Mattila et al., 2013) for slides stained with CD11c, CD20, and CD3. Sections were cooled to room temperature

and washed with 13 PBS then stained overnight at 4 �C in a humidified chamber using anti-human c-kit, anti-mast cell tryptase an-

tibodies, or rabbit-anti-CD3 andmouse anti-CD11c antibodies as previously described (Phuah et al., 2016). For the c-kit and tryptase
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stained slides, the tissue sections were washed three times using 13 PBS and then incubated with anti-mouse IgG1 AF546 to label

the anti-c-kit antibodies for 1 h at room temperature in a humidified chamber. Tryptase staining was performed overnight at 4 �Cwith

anti-tryptase antibodies that were labeled with an Alexa Fluor 488 anti-rabbit IgG Zenon labeling kit. For the CD3, C11c, and CD20

stained sections, the CD3 and CD11c antibodies were labeled with donkey anti-rabbit IgG Alexa Fluor 647 and anti-mouse IgG Alexa

Fluor 488-conjugated secondaries purchased from Jackson ImmunoResearch Laboratories (West Grove, PA) or ThermoFisher,

respectively. After the secondary antibodies were removed with PBS washes, CD20 was stained with rabbit anti-CD20 that was

labeled with Alexa Fluor 546 anti-rabbit IgG Zenon labeling kit. For both staining panels, the sections were washed again in 13

PBS and coverslips were applied using ProLong Gold Antifade Mountant with DAPI. For the slides stained with CD3, CD11c, and

CD20, individual image channels were acquired with an Olympus FluoView 500 laser scanning confocal microscope (Olympus,

Life Sciences Waltham, MA) maintained by the University of Pittsburgh’s Center for Biologic Imaging and combined and pseudocol-

ored with the FIJI build of ImageJ (Schindelin et al., 2012). Images of c-kit and tryptase-stained slides were acquired with a Nikon

e1000 epifluorescence microscope (Nikon Instruments, Melville, NY) operated by the NIS-Elements AR software package (Nikon).

Human granulomas were identified from sections of lung tissue obtained at subjects undergoing partial lung resection for clinical

indications at KingDinzulu Hospital and Inksosi Albert Luthili Central Hospital in Durban, South Africa. Gross pathology was assessed

by Haematoxylin and Eosin (H&E) staining. Briefly, samples of lung were fixed in 10% neutral buffered formalin and processed

routinely in a vacuum filtration processor using a xylene-free method with isopropanol as the main substitute fixative. Tissue sections

were embedded in paraffin wax. Sections were cut at 4 mm using a microtome, heated at 56 �C for 15 min, dewaxed through two

changes of xylene and rehydrated through descending grades of alcohol to water and stained with Haematoxylin & Eosin (H&E,

5 min incubation with each stain). Slides were dehydrated in ascending grades of alcohol, cleared in xylene, and mounted with a

mixture of distyrene, plasticizer, and xylene (DPX). For immunohistochemistry, 4 mm sections and were mounted on charged slides

and heated at 56 �C for 15 min. Mounted sections were dewaxed in xylene followed by rinsing in 100% ethanol and 1 change of SVR

(95%). Slides were then washed under running water for 2 min followed by antigen retrieval via Heat Induced Epitope Retrieval (HIER)

in Tris-sodium chloride (pH 6.0) for 30 min. Slides were then cooled for 15 min and rinsed under running water for 2 min. Endogenous

peroxide activity was blocked using 3% hydrogen peroxide for 10 min at room temperature (RT). Slides were then washed in phos-

phate-buffered saline with 1%Tween (PBST) and blocked with protein block (Novolink) for 5 min at RT. Sections were incubated with

primary antibodies for CD117 (A4502-CD117,c-kit, DAKO, 1:500), followed by washing and incubation with post primary (Novolink)

for 30min at RT. Slides were washed with PBST followed by incubation with the polymer (Novolink) for 30min at RT. Slides were then

washed and stained with DAB for 5 min, washed under running water and counterstained with hematoxylin for 2 min. Slides were

rinsed under running water, blued in 3% ammoniated water for 30 s, washed under water, dehydrated and mounted in DPX.

Flow cytometry
Granulomas harvested from other Mtb infected NHPs were used in the flow cytometry analysis and processed as previously pub-

lished (Gideon et al., 2015). Cells were counted and stained for viability using fixable viability dye (Zombie NIR, BioLegend) and other

surface and intracellular markers using the standard protocols. Surface markers include: CD3 (SP34-2, BD), CD4 (L200, BD), CD8a

(RPA-T8, BD), CD8b (2ST8.5H7, BD), TCR gd (5A6.E9, Invitrogen), CD16 (3G8, BD), NKG2A (Z199, BeckmanCoulter) and intracellular

markers include: Granzyme B (GB11, BD), Granzyme A (CB9, BD) and Granzyme K (G3H69, BD). Samples were acquired on a Cytek

Aurora spectral cytometer (5 laser configuration) and unmixed using SpectroFlo software (Cytek). Final analysis was performed in

FlowJo (v10, FlowJo)

Single-cell RNA-sequencing (scRNA-seq)
High-throughput scRNA-seq was performed using the Seq-Well platform as previously described (Gierahn et al., 2017). Briefly, total

cell counts from single-cell suspension of granuloma homogenate were enumerated and �15,000–30,000 cells were applied to the

surface of a Seq-Well device loaded with capture beads in the BSL-3 facility at University of Pittsburgh. Following cell loading, Seq-

Well devices were reversibly sealed with a polycarbonate membrane and incubated at 37 �C for 30 min. After membrane sealing,

Seq-Well devices were submerged in lysis buffer (5 M guanidine thiocyanate, 10 mM EDTA, 0.1% b-mercaptoethanol, 0.1% Sarko-

syl) and rocked for 30 min. Following cell lysis, arrays were rocked for 40 min in 2 M NaCl to promote hybridization of mRNA to bead-

bound capture oligos. Beads were removed from arrays by centrifugation and reverse transcription was performed at 52 �C for 2 h.

Following reverse transcription, arrayswerewashedwith TE-SDS (TEBuffer +0.1%SDS) and twicewith TE-Tween (TEBuffer +0.01%

Tween20). Following ExoI digestion, PCR amplification was performed to generate whole-transcriptome amplification (WTA) li-

braries. Specifically, a total of 2,000 beads were amplified in each PCR reaction using 16 cycles as previously described (Gierahn

et al., 2017). Following PCR amplification, SPRI purification was performed at 0.63 and 0.83 volumetric ratios and eluted samples

were quantified using aQubit. Sequencing libraries were prepared by tagmentation of 800 pg of cDNA input using IlluminaNextera XT

reagents. Tagmented libraries were purified using 0.63 and 0.83 volumetric SPRI ratios and final library concentrations were deter-

mined using a Qubit. Library size distributions were established using an Agilent TapeStation with D1000 High Sensitivity

ScreenTapes (Agilent, Inc., USA).

Bulk RNA sequencing
Bulk RNA sequencing was performed using cells obtained from a total of 12 granulomas from a separate set of animals infected with

Mtb for 10 weeks. Initially, granulomas were enzymatically dissociated and cells from each granuloma were placed in 100 uL of lysis
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buffer. RNA was then extracted from whole lysates using RNeasy kits (Qiagen, Inc.) and combined with mRNA capture beads.

Reverse transcription, whole transcriptome amplification, tagmentation and sequencing were performed as described above. Within

each bulk RNA sequencing sample, expression values were summarized across bead barcodes to obtain an aggregate expression

profile for each population.

Sequencing and alignment
Libraries for each sample were sequenced on a NextSeq550 or NovaSeq 6000 (Illumina Inc., Sunnyvale, CA, USA). For each library,

20 bases were sequenced in read 1, which contains information for cell barcode (12 bp) and unique molecular identifier (UMI, 8bp),

while 50 bases were obtained for each read 2 sequence. Cell barcode and UMI tagging of transcript reads was performed using

DropSeqTools v1.12 (Macosko et al., 2015). Barcode and UMI-tagged sequencing reads were aligned to the Macaca fascicularis

v5 genome (https://useast.ensembl.org/Macaca_fascicularis/Info/Index) using the STAR aligner. Aligned reads were then collapsed

by barcode and UMI sequences to generate digital gene expression matrices with 10,000 barcodes for each array.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing and quality control
Initially, after examining a range of cell inclusion thresholds, a combined dataset of 169,830 barcodes was generated by applying a

cutoff of 500 genes and 750 transcripts (UMIs). We visualized cells from each array using t-SNE across 30 principal components and

performed Louvain clustering in Seurat. For many arrays, large clusters of cell barcodes were identified that were not marked by

distinct cell-type defining gene expression. Instead, these cells weremarked by distributed, low-level expression of genes presumed

to originate from other cell types (e.g. HBB from erythrocytes, JCHAIN from plasma cells, and CPA3 frommast cells). To understand

the identity of these barcodesmore fully, sequencing quality metrics were initially examined, and non-descript clusters did not signif-

icantly differ in the total number of aligned reads, detected genes, UMIs/cell, or mitochondrial percentage.

To more fully understand the identity of these clusters, multiple modeling approaches were pursued:

1. Initially, low-quality clusters were modeled as array-specific doublets. Here, models were constructed in which pseudo-dou-

blets/multiplets (n = 2, 5, 10, 15, or 20 cells) were created from random sampling of the remaining cell type clusters. However, in

these models, there was not significant overlap between the generated pseudo-multiplets and the clusters with non-distinct

gene expression patterns.

2. Random cells were created by binomial sampling a pseudo-population average expression vector generated by summation of

expression profiles across all cell type clusters not suspected to be derived from ambient contamination. In these models, direct

overlapwasnotobservedbetween the simulatedmixedpopulationand thoseclusterswithnon-distinct geneexpressionpatterns.

3. Finally, we examined whether these clusters might represent deep sampling of ambient contamination or cellular debris by

generating a ‘‘contamination’’ scoring scheme. First, to identify the clusters within each array, 30 principal components

were calculated (this was observed to consistently capture the majority of variation in each array), and Louvain clustering (res-

olution = 1.25) was performed using all significant principal components (JackStraw Empirical P-value < 0.05). Next, within

each array, cluster-specific ‘‘contamination’’ scores were generated that consisted of 3 components:
e6 Im
a. Ameasure of array-specific background contamination by cluster (‘‘soup expression’’). For each array, a background

expression profile was generated based on low-UMI barcodes (See correction for residual background contamination

below for full details). A set of ‘‘soup’’-defining genes was identified at a range of thresholds for soup-defining gene expres-

sion (0.01, 0.005, 0.001, and 0.0005), a value that represents the proportional contribution of a given gene to the cumulative

soup expression profile for each array. Array-specific, background-contamination scores were generated for the set of

soup-defining transcripts using the AddModuleScore function in Seurat. Clusters with ambiguous/overlapping expression

of lineage-defining gene expression signatures (Erythrocytes: HBB, Plasma cells: JCHAIN, Mast cells: CPA3, etc.) were

observed to be significantly enriched for soup-defining gene expression. Finally, to calculate ‘‘contamination’ scores,

expression scores for soup genes at a threshold of 0.001 were generated to calculate the average soup-profile score for

each cluster within each array.

b. An estimate of biological signal (‘‘biological signal’’). Here, the average log-fold change for the top 5 genes enriched

within each cluster was calculated. For clusters dominated by ambient RNA, lower fold change enrichments for their bio-

logical signature genes were observed relative to clusters characterized by expression of canonical cluster-defining genes.

In cases where the highest average log-fold change values within a cluster were below the ‘‘return threshold’’ in Seurat, we

set the value to the default return threshold of 0.25.

c. A measure of co-expression of lineage-defining genes (‘‘soup lineage coexpression’’). 5 genes were manually

selected that were recurrently over-represented in clusters suspected to arise from ambient contamination and cellular

debris. Specifically, the following genes were selected:HBB (an erythrocyte-defining gene), JCHAIN (a plasma cell-defining

gene), COL3A1 (a fibroblast-defining gene), SFTPC (a type 2 pneumocyte-defining gene), and CPA3 (a mast cell-defining

gene). For each cell barcode, the number of these five genes with non-zero expression was calculated as ameasure of line-

age-defining co-expression. Within each cluster, the average co-expression of these genes was calculated and one was

subtracted from this average to allow for endogenous expression of 1 lineage-defining gene. This parameter was
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specifically added to avoid exclusion of bona fide cell clusters with high-background contamination (presumably due to low

endogenous RNA content) and low biological signal (e.g., naive T cells). Here, cell populations that scored high for markers

of a single lineage yet had higher soup-expression scores presented with lower rates of co-expression of these soup and

lineage defining transcripts relative to clusters which did not, likely representing ambient RNA and debris.
Using these three values, cluster-specific background ‘‘contamination’’ scores were calculated for each array in 2 ways:

Contamination Score 1 =
ðSoup ExpressionÞ x ðSoup Lineage CoexpressionÞ

Biological Signal
Contamination Score 2 =
ðScaled � Soup ExpressionÞ x ðSoup Lineage CoexpressionÞ

Biological Signal

These two ‘‘contamination’’ scores quantify both the (1) absolute and (2) relative soup-profile contamination in subsequent cluster

classification.

Next, for each array, clustering was performed to identify clusters with array-specific ambient contamination and debris. Specif-

ically, hierarchical clustering was performed using a total of 7 variables to identify clusters defined by ambient contamination: the 2

contamination scores (shown above), three scaled soup scores (soup gene thresholds: 0.01, 0.05 and 0.001), the average log-fold

change for the top 5 cluster genes, and soup/lineage gene co-expression. For each array, the hierarchical clustering tree was cut at

the first branch point to identify clusters with a signature of ambient contamination. In total, 41 array-specific clusters, comprising

56,590 barcodes from 21 out of 32 total arrays, were identified as characterized by ambient RNA contamination and cellular debris

and removed them in all subsequent analyses.

Correction for residual background contamination
After removal of cell barcodes that were derived from background contamination and extracellular debris, additional correction for

ambient RNA contamination was performed among remaining cell barcodes on an array-by-array basis. Among filtered cell barco-

des, array-specific, ambient RNA contamination was observed to be marked by ectopic expression of cell-type defining genes (e.g.,

widespread expression of JCHAIN, HBB, and CPA3, etc.). Specifically, this contamination was observed to vary in relation to the

overall distribution of cell types recovered from each array. To correct for residual ambient contamination within each array, SoupX

(Young and Behjati, 2018) was used to: (1) generate array-specific profiles of background contamination, (2) estimate per-cell

contamination fractions, and (3) generate corrected background-corrected UMI counts matrices. To generate background expres-

sion profiles, counts matrices containing up to 50,000 barcodes were generated to assemble a collection of low-UMI cell barcodes

that presumably represent extracellular mRNA. For each array, a UMI threshold for background expression was determined using

EmptyDrops (Lun et al., 2019) to estimate the likelihood distribution that low-UMI barcodes represent cells rather than ambient

contamination. Using an array-specific UMI-threshold (Range: 20–100 UMIs), a composite background profile was created for

each array. To estimate the per-cell contamination fraction, a set of lineage-defining genes was first identified with bimodal expres-

sion patterns across cells (i.e., lineage defining genes with leaky expression). For each array, this set of soup-defining, lineage genes

was used to estimate contamination fraction for cell types with known endogenous expression. Finally, the composite soup profile

was subtracted from each the transcriptional profile of each cell based on the estimated contamination fraction. For each array,

individual transcriptsmost likely to be contamination were removed from each single-cell based on the estimated contamination frac-

tion. Specifically, individual transcripts were sequentially removed from each single-cell transcriptome until the probability of subse-

quent transcripts being soup-derived was less than 0.5 to generate a background-corrected counts matrix for each array.

Separation of doublets
Within each array, doublet identification and separation were performed using DoubletFinder. To account for differences in cell

loading densities and expected cell doublet frequencies, array-specific estimates of the expected number of doublets were gener-

ated (Table S1). For example, for a total of 20,000 cells applied to a Seq-Well device containing 85,000 wells (lambda = 20,000), an

expected doublet rate of >2.37% (since not all of the array’s surface area contains wells) was calculated. For each array, pseudo-

doublets were generated using DoubletFinder (McGinnis et al., 2019). Here, the pK parameter estimate was separately optimized

for each array by performing a parameter sweep in which we selected the pK value with the maximum bimodality coefficient, while

a pN = 0.25 was maintained across all arrays based on published recommendations (McGinnis et al., 2019). Cells were identified as

doublets based on their rank order in the distribution of the proportion of artificial nearest neighbors (pANN). Specifically, the pANN

value for the cell at the expected doublet percentile was identified and the corresponding pANN value was used as a threshold to

remove additional cells in the event of ties. In total, we excluded 3,656 cells as doublets.

Integrated cell type classification
Following the aforementioned quality filtering, a combined dataset of 109,584 cells was used in downstream analysis (Table S1). An

initial dimensionality reduction was performed on these cells by selecting 1580 variable genes, performing principal component

analysis (PCA), UMAP dimensionality reduction and Louvain clustering using Scanpy (Wolf et al., 2018). To identify broad cell types,
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we examined cluster assignments at multiple clustering resolutions (Resolutions: 0.5 to 2.25). We selected a cluster resolution of 1.00

because this was the resolution beyond which branching did not result in discovery of clusters that represent distinct cell lineages

(e.g., division of Type 1 and Type 2 pneumocytes) (Table S2). To define major cell populations, extensive comparisons to existing

signatures of lung parenchyma and immune cell populations were performed using data from the Tabula Muris (Tabula Muris Con-

sortium et al., 2018) and Mouse Cell Atlas (Han et al., 2018) studies. Specifically, lung scRNA-seq data from both studies were

collected and used to calculate enriched gene expression signatures for each lung cell type cluster using a Wilcox rank-sum test.

For each cluster, the top 20 genes (Table S2) were selected as a cluster-specific expression signature and then used them to score

all cells in the granuloma dataset. The average signature score within each cluster was calculated and the distribution of signature

score was examined within each granuloma cell type, and significance was determined via permutation testing.

Cell type assignment of proliferating cells
Among our top-level clusters was one defined by markers of cellular proliferation (MKI67, TOP2A, and CDK1). To identify the under-

lying cell type identity for these cells, a separate dimensionality reduction and clustering was performed among 3,123 cells defined by

this proliferation signature. UMAP dimensionality reduction and Louvain clustering was running at multiple clustering resolutions

(0.4-0.8), and a resolution of 0.70 was selected as the value beyond which no additional major cell type clusters were observed (Fig-

ure S3E). For each of the major cell types identified in the global clustering analysis, we generated a gene signature using the top 20

enriched genes and scored the proliferating cells clusters using the AddModuleScore function in Seurat. We then examined the dis-

tribution of cell-type signature scores across each of the sub-clusters of proliferating cells and re-assigned clusters based on enrich-

ment of lineage-specific gene expression. Here, we assessed the significance of the cluster scores using a permutation test. More

specifically, 1,000 permutations were performed in which the proliferating clusters were down-sampled to have the same number of

cells. Cluster assignments of the cells were randomized and the average generic cell type signature score was calculated for each

randomized cluster. The significance of a cell type score for each proliferating cluster was determined by comparing the observed

average signature score to the random null distribution. Through this approach, distinct clusters of proliferating B cells, macro-

phages, neutrophils, plasma cells, and T cells were identified and re-assigned to their respective cell types.

Filtering of soup-defining transcripts
To avoid artifacts from ambient RNA contamination and cellular debris in sub-clustering of T cells andmacrophages, genes that were

observed tobe soup-defining for anyarraywereexcluded.Specifically, a set of 210 soup-defininggeneswas identified that comprised

0.001 of total soup expression in any array. The threshold of 0.001 was selected to maximize the cumulative fraction of soup expres-

sion with the least number of genes to avoid removing underlying biology. Here, this threshold value represents cumulative fraction of

soup expression accounted for by a given gene for each array. In a further effort to avoid removing cell type specific biology, any genes

with average log-fold changes greater than 1.00 in T cells andmacrophages compared to all other generic cell types were retained. In

total, 204 and 180 genes were removed prior to sub-clustering analysis of T cells and macrophages, respectively.

Sub-clustering of granuloma unified T and NK cells
Across the complete set of 44,766 T and NK cells, Louvain clustering was initially performed at a range of resolution of values

(0.30–0.75) to examine the relationships between clustermembership. In this analysis, a cluster was observed to be defined by persis-

tent expression of contaminating transcripts derived frommacrophage andmast cells (Cluster 4 - LouvainResolution 0.60). Toconfirm

that these cells did not represent persistent doublets, all T cells were scored by expression of the top 20 cluster defining T cells and

similar signature scores between the contaminated cell population were observed. Additional sub-clustering within the ‘‘contami-

nated’’ T cell cluster was performed to understand whether residual contamination obscured additional T cell biology; this failed to

reveal additional T cell clusters not identified among the remaining non-contaminated populations. Since this contamination cluster

was not observed to obscure a novel T cell phenotype, this population was excluded from downstream analysis (including composi-

tional analyses associating cell type/group abundances with bacterial burden). Following removal of the cluster of T cells defined by

residual contamination, dimensionality reduction and clustering atmultiple clustering resolutions (Louvain resolution: 0.25–0.75) were

performed. In this final analysis, a total of 12 T cell populations were identified at a clustering resolution of 0.75. Finally, additional sub-

clustering was performed within the population of 2,377 gd and cytotoxic T cells, including dimensionality reduction and clustering at

multiple resolutions (0.30–0.75). Here, 2 primary populations of cells were identified: sub-cluster 2, a population of cytotoxic cells en-

riched for expression of TRDC and sub-cluster 3, a population of XCL1+ NK cells. Differential expression analysis was performed to

determine differences in gene expression between these clusters upon which the classification of these cells was based.

Additional sub-clustering analysis was performed within the T1-T17 population through repeated variable gene identification,

dimensionality reduction and Louvain clustering (Resolution = 0.55), and 4 distinct sub-populations were discovered. Differential

expression analysis was performed within the 9,234 T1-T17 cells using a Wilcoxon test in Seurat to identify sub-cluster defining

gene signatures.

Annotation of T /NK subclusters
T cell populations were classified using a combination of manual curation and comparison to literature-derived sequences. Granu-

loma T cell populations were compared to publicly available T cell population and scRNA-seq signatures. Specifically, comparisons

were performed in the following ways:
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1. For each T cell cluster, cluster-defining genes were compared to publicly available databases of immune signatures, including

IPA, GeneGO,MSigDb (Liberzon et al., 2011) and SaVant (Lopez et al., 2017). This was performed by comparing the set of T cell

cluster-defining genes (Adjusted p value < 0.001 and log-FC > 0.2) to the signatures in GSEA and the SaVant data using Piano

(Lopez et al., 2017; Varemo et al., 2013). Specifically, significance was assessed using a hypergeometic test to examine the

likelihood of the observed frequency of enriched genes. Among cluster-defining genes for each T/NK cell sub-cluster, com-

parisons were performed within each GSEA collection C1-7 (https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp)

and to the SaVant database. Expression signatures were also compared to MSigDB signatures using GSEA. Here, pseudo-

bulk expression signatures were generated for each T/NK sub-population as the average gene expression across all cells

within each cluster. These average expression values were used to perform GSEA for each cluster in which the expression

values were compared to all other clusters using 1,000 permutations.

2. Each T cell cluster was compared to literature-derived signatures of T cells from another scRNA-seq study. Here, cell signature

scores were generated in Seurat using the AddModuleScore function using gene expression signatures obtained from human

lung cancer (Guo et al., 2018). To determine the significance of these score, 1,000 permutations were performed in which T cell

cluster identity was randomly re-assigned to generate a null distribution of module scores.

3. Finally, extensivemanual curationwas performed based on literature evidence. For each cell population, an extensive literature

search was performed to support classification of T cell sub-populations based on patterns of enriched gene expression. For

example, regulatory T cells were identified on the basis of expression of known regulatory T cell markers (FOXP3, IKZF1, and

TNFSF18/GITR). However, inmany cases, surfacemarkers used to define canonical T cell populations were not detected in the

scRNA-seq data.

Next, expression of TRAC and TRBC or TRDC was evaluated within T cells in the scRNA-seq data and the frequency of cells ex-

pressing either TRAC/TRBC (yellow) or TRDC (green) within each of the 13 clusters was calculated. While TRAC/TRBC expression

was observed in all 13 subclusters, TRDC expression was observedmainly in subclusters 1-3 compared to subclusters 4–13. Finally,

cluster-specific expression of CD4 and CD8A and CD8Bwere examined as the proportion of cells with non-zero expression of CD4,

CD8A/B or CD4&CD8 (A/B).

Sub-clustering of granuloma macrophages
Across 27,670 macrophages, dimensionality reduction and Louvain clustering at multiple clustering resolutions was performed. In

initial clustering, a cluster defined by contaminating transcripts derived from other cell types (including mast cells (KIT and CLU),

T cells (CD3D), and plasma cells (JCHAIN)) and soup-defining gene expression was identified. By comparing the distribution of

macrophage-defining gene expression in this cluster to other clusters, this cluster was observed to have enriched signature scores

relative to other clusters. The enrichment of macrophage expression signatures was examined to determine the population of mac-

rophages that have a core macrophage expression program. While this population of macrophages exhibits primarily soup-defining

gene expression, this cluster was not excluded due to the possibility that this represents an efferocytotic macrophage population.

Classification of macrophage populations
Identities of themacrophage clusters were established through a combination of manual curation and comparison to published gene

expression signatures from both population and scRNA-seq studies. More specifically:

1. For eachmacrophage cluster, similar comparison to databases of immune signatures includingMSigDb andSaVanTwere per-

formed (See Identification of T cell Populations).

2. A series of gene expression signatures were generated from published scRNA-Seq studies of macrophage states. For

example, a recently published atlas of myeloid states in lung (Zilionis et al., 2019) was used to score granuloma macrophages.

Further, a list of myeloid expression signatures was generated using lung myeloid cells from the Mouse Cell Atlas (Han et al.,

2018). For each study, signatures for the top 20 cluster-defining genes were selected to generate gene expression signatures

(Table S3). Signature scores were generated for each cell using the AddModuleScore function in Seurat.

3. Finally, in cases where an existing description of a macrophage population was not discovered, extensive literature searches

were performed to contextualize possible identities of macrophage populations.
Deconvolution of bulk RNA-sequencing data
Population deconvolution was performed using CiberSort (Newman et al., 2015) using reference populations generated from random

sampling of a quarter of the single cells within each of the 13 generic cell types identified in our single-cell analysis.

Co-variation in granuloma composition
We calculated correlations in cell-type proportions to identify underlying structure in the co-occurrence of cell types across all granu-

lomas. Specifically, we calculated Pearson correlation coefficients for all pair-wise cell-type combinations (N.B., we also performed

each analysis using Spearman correlation coefficients and obtained similar results). For each pairwise combination of cell types, we

calculated permutation p values by randomly re-assigning cell type labels to generate a set of background correlation values (Table S5).
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We then performed hierarchical clustering to identify clusters of correlated cell-types across granulomas, calculating the propor-

tional composition of correlated cell-type clusters within each lesion. For each of the 5 clusters identified through hierarchical clus-

tering, we calculated permutation p values to examine average correlation values. To understand the relationship between identified

cell-type clusters and granuloma-level bacterial burden, we examined the abundance of correlated cell types by grouping lesions by

timing of granuloma formation.

Cell-communication analysis
To examine cell-cell interactions, we first generated a curated list of receptor-ligand pairs through a combination of publicly-available

databases and literature review. Within each granuloma, we generated edge weights between cell types for a given receptor ligand

pair bymultiplying the average receptor expression in Cell Type 1 by the average ligand expression in Cell Type 2. Edge weights were

constructed for all receptor-ligand pairs and pairwise-cell type combinations within granulomas individually. Within each granuloma,

we performed a total of 1,000 permutations for each receptor-ligand pair in which cell-type identifiers were randomly resorted and the

resulting edge weight was recorded. For each receptor-ligand pair, the significance of the observed value was calculated from a

z-score comparison of the observed value relative the permuted values.

We further performed adjustment of receptor-ligand edge weights at multiple levels. (1) To account for differences in the relative

abundance of ‘sender’ cell types, we multiplied receptor-ligand edge weights by the proportion of all ‘sender’ cells within a granu-

loma. In effect, this generates a pool of ‘sender’ cell derived ligand that is available to act upon cell types bearing appropriate recep-

tors. (2) To identify the most likely receiver cells, we weighted receptor-ligand edge-weights by the proportion of total receptor

expression within the receiving cell subset cluster relative to the average receptor expression across all cells in the granuloma. In

this scheme, receptors with more uniform expression across the entire granuloma will be down-weighted to reflect non-autonomous

sinks of extracellular ligands, while receptors predominantly expressed by a single cell subset will be up-weighted. (3) Finally, we

adjusted receptor-ligand edge weights to account for the percent of cells within the receiver cell subset expressing a given receptor

bymultiplying our receptor-ligand edgeweights by the proportion of all ‘receiver’ cells expressing the receptor within the receiver cell

subset.

To identify axes of intercellular communication with differential weights across granulomas, we performed student’s t-tests of re-

ceptor-ligand edge weights between (A) high-burden and low-burden lesions, and (B) original and late-blooming lesions. We filtered

results based on the following criteria: (1) the average permutation p values for the receptor-ligand pair within high or low-burden

lesions <0.05, (2) p value from Student’s t test in (A) or (B) above <0.05. The ‘‘dplyr’’ package in R was used to filter the resulting

cell-cell interaction database to count significant interactions across cell type groups and granuloma burdens, identify cell type

groups contributing to the top 10%of ligandsmost strengthened in either high or low burden granulomas, identify ligandsmost asso-

ciated with high or low burden granulomas, and identify cell type specificity of these ligands. The ‘‘circlize’’ package in R was used to

generate circus plots of the topology of signaling networks across high and low burden granulomas.

Statistical methods
Non-parametric Spearman’s rhowith Benjamini-Hochbergmultiple testing correction was calculated for correlation analysis for eval-

uating the degree of relationship between cellular abundance and bacterial burden. As a complementary analysis approach that

accounts for the inter-dependent nature of compositional data (i.e., where changes in counts of one cell type necessarily affect pro-

portions of all other cell type, Dirichlet regression analysis was conducted to evaluate relationships between cell type abundances

with bacterial burden; cell types were prioritized based on concordance between these two statistical testing frameworks. Non para-

metric t test or Mann-Whitney U test was used when comparing two groups. p values, or where appropriate adjusted or permutation

p values,% 0.05 were considered significant. Statistical analysis was performed using GraphPad Prism v8 (GraphPad software, San

Diego, CA), JMP Pro v12 and R base statistics.
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